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PROXIMAL ITERATIVE ALGORITHM FOR FIXED POINT
PROBLEMS OF TOTAL ASYMPTOTICALLY NONEXPANSIVE
MAPPINGS AND SYSTEM OF GENERALIZED NONLINEAR

VARIATIONAL-LIKE INEQUALITIES

JAVAD BALOOEE

ABSTRACT. This paper aims at investigating the problem of finding a common
element of the set of fixed points of a total asymptotically nonexpansive map-
ping and the set of solutions of a system of generalized nonlinear variational-like
inequalities. With the goal of finding such an point, we apply the notion of P-n-
proximal mapping and propose a proximal iterative algorithm. At the end of the
paper, under suitable assumptions imposed on the parameters and mappings, the
strong convergence of the sequence generated by our suggested iterative algorithm
to a common element of the two sets mentioned above is proved.

1. INTRODUCTION

The theory of variational inequalities, which the starting point of its study dates
back to around the middle of 60’s with the pioneer work of Fichera [24] and Stam-
pacchia [40], independently, has been widely studied and continues to be an active
topic for research. This is mainly because of its extraordinary utility and broad
applicability in many area of science, engineering, social science, and management,
see, for example [4,5,9,18,23]. Due to the fact that many problems occurring
in optimization, transportation, economics, elasticity and applied sciences can be
formulated in the form of variational inequalities (see, for example, [25,26]), the in-
troduction of different generalizations of variational inequalities has received a great
deal of interest from the mathematics community and many interesting extensions
of them in different contexts have been appeared in the literature during the last
decades.

With inspiration and motivation from the concept of invexity which was first
introduced by Hanson in 1981 [29], Parida et al. [37] and Yang and Chen [44] pro-
ceeded, independently, to introduce an extension of variational inequalities that have
been emerged in the literature entitled variational-like inequalities or pre-variational
inequalities. It is significant to emphasize that there is a difference between the
class of variational inequalities and the class of variational-like inequalities; indeed,
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in the formulation of variational inequalities the linear term y — x has been re-
placed by a vector-valued term 7(y,x), where n is a vector-valued bifunction. In
the last decades, there has been substantial progress made by authors in developing
efficient and implementable iterative methods for solving a wide class of variant
variational inequality problems, which for example one can refer to linear approx-
imation method, descent and Newton’s methods, inertial proximal-point method,
projection method and its variant forms, fixed point iteration method, extragradient
method, the method based on KKM technique, Wiener-Hopf technique and the aux-
iliary principle technique, Halpern’s iterative method, and so forth. The presence of
the vector-valued term 7(y, z) in the formulation of the variational-like inequalities
makes us a restriction in using of most of the solution methods mentioned above. For
solving different classes of variational-like inequalities, among these methods, the
method based on the auxiliary principle technique and proximal-point method are
the most popular ones. Indeed, due to the need to solve various kinds of variational-
like inequalities in the framework of different spaces, the introduction of resolvent
operators has attracted and continues to attract the interest of many authors. For
instance, Ding and Luo [20] and Lee et al. [32] introduced, independently, the con-
cepts of n-subdifferential and n-proximal point mappings of a proper functional and
with the aid of them found the solutions of classes of variational-like inequalities
in the setting of Hilbert space. Two years later, Ding and Xia [22] succeeded to
introduce the notion of J-proximal mapping associated with a lower semicontinu-
ous subdifferentiable proper (not necessarily convex) functional on reflexive Banach
spaces. In another successfully attempt in this direction, other class of resolvent
operators the so-called J"-proximal (also referred to as P-n-proximal) mappings
associated with a proper, lower semicontinuous and 7n-subdifferentiable (not neces-
sarily convex) functional, which is essentially wider than the class of J-proximal
mappings, was introduced by Ahmad et al. [2] and Kazmi and Bhat [30] indepen-
dently. Under suitable hypotheses, the existence and Lipschitz continuity of such
proximal mappings were proved. They employed the concept of J7-proximal map-
ping and proposed some iterative algorithms for finding approximate solutions of
classes of generalized multivalued nonlinear variational-like inequality problems in
the Banach space setting. Besides, they studied the convergence analysis of the se-
quences generated by their iterative algorithms under some appropriate conditions.

Since the appearance of the theory of fixed points in the beginning of 20’s with the
admired Banach fixed point theorem, it has been revealed as a major, important and
interesting tool in the study of nonlinear phenomena and can be applied in various
disciplines of mathematics and mathematical sciences like economics, optimization
theory, approximation theory, etc. Because of the existence of a strong connection
between solving various kinds of mathematical problems and fixed point problems,
there is no doubt that nowadays fixed point theory is one of the most powerful
tools of modern mathematics. Indeed, in a wide range of mathematical problems
the existence of a solution is equivalent to the existence of a fixed point for a
suitable mapping. This is the reason why this topic has grown very rapidly and
has influenced some other branches of mathematics such as differential equations,
topology, game theory, optimal control, functional analysis, and so forth. In view of
the fact that the variational inequality problems and the fixed point problems are
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very closely related, the investigation on the problem of finding a common point
that lies in the solution set of a variational inequality problem and the set of fixed
points of a given mapping is being the focus of attention of researchers in recent
years. We refer the reader to [1,3,7,8,11-13,35,36,41,43,46,47] for more details
and further information.

On the other hand, the study of nonexpansive mapping, which its origin dates
back to the sixties, is a very interesting research area in fixed point theory. It
is worthwhile to stress that the study of monotone and accretive operators, two
classes of operators which arise naturally in the theory of differential equations has
led to the emergence of nonexpansive mappings. In recent decades, the important
role and many diverse applications of nonexpansive mapping in the theory of fixed
points was a strong motivation for many researchers to extend and generalize it in
different contexts. For instance, in 1972, Goebel and Kirk [27] introduced a class of
generalized nonexpansive mappings the so-called asymptotically nonexpansive map-
pings. Another successfully effort was made by Sahu [38] in 2005 and the class of
nearly asymptotically nonexpansive mappings as a generalization of asymptotically
nonexpansive mappings was introduced. The attempts have been continued and
one year later another important class of generalized nonexpansive mappings the
so-called total asymptotically nonexpansive mappings, which is essentially broader
than the classes of nearly asymptotically nonexpansive mappings and asymptoti-
cally nonexpansive mappings, was introduced by Alber et al. [6]. They studied the
approximation methods of fixed points for this kind of mappings. Further general-
izations of nonexpansive mappings along with relevant commentaries can be found
in [6,10,14,16,27,38,39,42] and the references contained therein.

Motivated by these advances, this paper is devoted to the investigation of the
problem of finding a point in the intersection of the solutions set of a system of
generalized nonlinear variational-like inequalities (for short, SGNVLI) and the fixed
points set of a total asymptotically nonexpansive mapping. Under suitable hypothe-
ses imposed on the parameters and mappings, the existence of a unique solution for
the SGNVLI is proved and using the concept of P-n-proximal mapping, a proximal
iterative algorithm is constructed. Finally, the strong convergence of the sequence
generated by our proposed iterative algorithm to a common element of the set of
fixed points of the total asymptotically nonexpansive mapping and the set of solu-
tions of the SGNVLI is demonstrated.

2. NOTATION, BASIC DEFINITIONS AND FUNDAMENTAL PROPERTIES

Let X be a real Banach space with its dual space X* and (., .) be the dual pairing
between X and X*. With slight abuse of notation we will use the same symbol ||.||
for the norm in X and X*. As usual, w* will stand for the weak star topology in
X*.

For any given function f: X — RU {£o0}, dom f = {z € X : f(z) < +o0} is
called the effective domain of f. Such a function is said to be proper if its effective
domain is nonempty and it is real-valued on its effective domain, what is equivalent,
f is properif f(z) > —oo for all z € X and f(z) < 400 for at least one z € X.

We say that a function f : X — R U {400} is lower semicontinuous at xy €
X, provided that f(xz¢) < liminf, f(z,), for every sequence {z,} C X satisfying
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lim, x,, = x¢. If the property holds for every point x¢g € X we say that f is lower
semicontinuous on X.

Definition 2.1. The function f : X x X — RU{+o0} is called lower semicontinuous
in the second argument on X if for each x € X, the function f(z,.) : X — RU{+o0}
is lower semicontinuous on X.

Similarly, one can define the lower semicontinuity of the function f in the first
argument.
Recall that the function f: X — RU {400} is said to be convex if the inequality

fOz+ (1 =Ny) <Af(z)+ (1 =N f(y)

holds for every A € [0,1] and all z,y € X, for which the right-hand side is mean-
ingful.

Definition 2.2 ([48]). An extended real-valued functional f : (z,y) € X x X —
f(z,y) € RU{£o0} is said to be 0-diagonally quasi-concave (in short, 0-DQCYV)

(i) in the first argument (or with respect to z), if for any finite subset
{z1,22,..., 2y} of X and any & € Co({x1,x2,...,2,}), we have
. A <
lrgnignf(xl,x) <0,
where for any given set A C X, Co(A) denotes the closed convex hull of
A consisting of all vectors of the form > 7" | Aju; with u; € A;, \; € Ry =
[0,+00) and Y ;" A = 1;
(ii) in the second argument (or with respect to y), if for any finite subset
{v1,v2,...,yn} of X and any ¢ € Co({y1,v2,...,yn}), we have
in f(9,y;) <0.
min f(5,y:) <0
Lemma 2.3 ([21]). Let D be a nonempty convex subset of a topological vector space
and let f: D x D — RU{£o0} be an extended real-valued functional such that

(i) f is lower semicontinuous in the second argument on every nonempty com-
pact subset of D;
(ii) f s 0-DQCV in the first argument;
(iii) there exists a nonempty compact convexr subset Dy of D and a nonempty
compact subset K of D such that for eachy € D\K, there is an x € Co(DyU
{u}) satisfying f(z,y) > 0.

Then there exists y € K such that f(z,9) <0 for all x € D.

In 2000, Lee et al. [32] and Ding and Luo [20] independently introduced the notion
of n-subdifferential in a more general setting than that given in [45] as follows.

Definition 2.4 ([20,32]). For a given vector-valued mapping n: X x X — X, the
proper functional ¢ : X — R U {+o0} is said to be n-subdifferentiable at a point
x € X if there exists a point z* € X* such that

(", n(y,2)) < oy) — d(x), VyeX.



PROXIMAL ITERATIVE ALGORITHM FOR VARIATIONAL-LIKE INEQUALITIES 1243

Such a point x* is called n-subgradient of ¢ at x. The set of all n-subgradients of
¢ at x is denoted by O,¢(x). We can associate with each ¢ the n-subdifferential
mapping J,¢ defined by

Ond(x) = { éf“* € X*: (2", n(y, 7)) < o(y) — ¢(2),Vy € X}, ’ ; 32$ j;

For x € dom ¢, 0,¢(x) is called the n-subdifferential of ¢ at x.

It is significant to emphasize that in the definition of n-subdifferential in the
sense of Yang and Craven [45], the function ¢ needs to be local Lipschitz and
cannot take the value +o00. The following new example illustrates that the concept
of n-subdifferential introduced in [20,32] is more general than that given in [45].

Example 2.5. Let X be the set of all real numbers endowed with the Euclidean
norm ||.|| = |.| and let the mappings ¢ : X - RU{+oo} and n: X x X — X be
defined, respectively, by

k=1
o(z) = { AMaPlz| + 3,2 an " R/zlz]) + 6, <0,

00, x>0,

and
k—1 k—1

PR PN
n(z,y) = s(@lz + D an *Walz]) + CWPlyl+ Y an " Vylyl), Yo,y € X,
n=1 n=1
where k and p are arbitrary but fixed odd natural numbers, and X, ¢,&,a, > 0
(n=1,2,..., %) and 6 € R are arbitrary constants. We now show that for given

z € dom ¢, Opo(z) = [%, +00). For this end, take x € dom ¢ arbitrarily but fixed.
Then, we have

-1
p(z) = 2P |z| + ian Y zlz]) +0 and a <O0.
If w € Oyé(x), then we get -
5 =
w(s(Plyl + D an R ylyl) + (P l2) + > an >/ xl2]))
n=1 . n=1
< d(y) — MaP|z| + i an *R/xlz]) — 0, Vye X,
n=1

Owing to the fact that ¢(y) = +oo for all y > 0, we deduce that

k—1 k—1

w(s(Wlyl + > an " R/ylyl) + ¢(aPlx] + Y an R/ xlz]))

(21) n=1 n=1

k—1
2

SAWPlyl = 2Pl + > an (R ylyl = R 2l])), Wy <0.
n=1
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If x = 0, then utilizing (2.1), it follows that

ko1 k=1
2 2

we (Pl + > an *ylyl) < A@Plyl+ D an Rylyl), Yy <0,
n=1 n=1

from which yields w > % For the case when x < 0, relying on the fact that

k—1 k—1
2 2

S(PlYl + > an W ylyl) + C(aP)a] + ) an R/ zla]) <0,
n=1 n=1

recalling (2.1), we derive that for all y <0,

k=1
AyPlyl = 2Plz| + 30,21 an (P R/ylyl = *R/zl2]))

S(wPlyl + o021 an " N/ylyl) + C(2Pla] + 32,21 an R/ zlz])
Passing to the limit for y — —oo in (2.2), it follows that w > % Thus, in any

case, we note that w > % and so Ono(z) C [%,—l—oo) for all z < 0. To prove

Ono(x) = [%, +00), it is sufficient to show that [%, +00) C Oyo(z) for all < 0. Take

w € [%, +00) arbitrarily but fixed and assume, on the contrary, that w ¢ 0,¢(xo)
for some xg < 0. Then there exists yg < 0 such that

k—1 k-1
2 2
w(s(Whlvol + > an "V yolyol) + ¢ (xhlol + D an "/ wolzo]))
(23) n=1 . n=1

N
> A(whlvol — aBlzol + D an( R/ volyol — 3/ xolzol)).-
n=1

Evidently, the case where o = yg = 0 cannot happen. If zp = 0 and yg < 0, then
making use of (2.3) we conclude that w < %, which is a contradiction. For the case

when zyp < 0 and yg = 0, then utilizing (2.3) it follows that w < —%, which leads to
a contradiction. Finally, if o, yo < 0, then using (2.3) and in virtue of the fact that

k=1 k=1
2 2
s(vhlyol + Z an "/ yolyol) + ¢ (zhlzo| + Zan R/ wolwol) <0,
n=1 n=1
we obtain
k—1
A we Awolyol — xplzol + 32,21 an(*/yolyol = *"/xolzol))
— b
S

k-1 k—1
s(whlyol + X021 an 2 V/yolyol) + ¢ (ahlxo| + 0,21 an "R/ xolz0])

which implies that

k-1

(2.4) AC+ <) (2hlol + > an >/ wolxol) > 0.
n=1

Since A, ¢, ¢ > 0, and k, p are odd natural numbers, from (2.4) it follows that z¢ > 0
which is also a contradiction. In the light of the arguments mentioned above, we
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inferothat [%,4—00) C Opp(x), for all x < 0. Therefore, Oyp(z) = [%,+oo) for all
x <0.

Definition 2.6 ([2,30]). Let : X x X — X be a vector-valued mapping, ¢ : X —
R U {+o0} be an n-subdifferentiable (not necessarily convex) proper functional and
P : X — X* be a single-valued mapping. If for any given point z* € X* and p > 0,
there exists a unique point x € X satisfying

(P(x) — 2", n(y, ) + pp(y) — po(z) >0, Vye X,

then the mapping x* — z, denoted by Ri”lf , is called P-n-proximal mapping of ¢.
Clearly, in the light of Definition 2.4, we have z* — P(z) € pd,¢(x) and then it
follows that

x = RS (2*) = (P + pdyo) ™ («*).

Definition 2.7. Let P: X — X* and n : X x X — X be the mappings. We say
that the mapping P is

(i) k-strongly m-monotone if there exists a constant k£ > 0 such that
<P($)—P(y)>77($>y)> Zk”qj_ynz? Vx,yGX;
(ii) p-Lipschitz continuous if there exists a constant p > 0 such that
[1P(z) = P(y)l| < plle—yll, Vz,yeX.

Definition 2.8. The vector-valued mapping n : X x X — X is said to be 7-Lipschitz
continuous if there exists a constant 7 > 0 such that ||n(z,y)| < 7|z — y||, for all
z,y € X.

In view of the aforementioned arguments, a natural question to ask is whether
for given mappings n : X x X — X and P : X — X*, an n-subdifferentiable (not
necessarily convex) proper functional ¢ : X — R U {+o0} and an arbitrary real
constant p > 0, the P-n-proximal mapping associated with the mappings P, 7, ¢
and the constant p is well defined necessarily? Answering this question is not a
trivial matter. The answer provided by Ahmad et al. [2] and Kazmi et al. [30] reads
as follows.

Theorem 2.9 ([2,30]). Let X be a reflexive Banach space, n: X x X — X be a
T-Lipschitz continuous mapping such that n(z,y)+n(y,x) =0 for all z,y € X, and
P: X — X* be a y-strongly n-monotone continuous mapping. Suppose that for any
given x* € X*, the function h : (y,z) € X x X — h(y,z) = (z* — P(x),n(y,z)) €
R U {400} is 0-DQCV in the first argument. Furthermore, let ¢ : X — R U {400}
be a lower semicontinuous n-subdifferentiable proper functional on X, which may
not be convex. Then for any given p > 0 and x* € X*, there exists a unique point
x € X such that

(P(x) — 2%, n(y,2)) > pop(x) — po(y), Vye X,

that is, x = Rij’ﬁ(ac*) and so the P-n-proximal mapping associated with ¢, P,n and
p > 0 is well defined.
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By a careful reading the proof of Theorem 3.1 in [30], we found that there are
some errors in its proof and context. Firstly, in the light of the proof of [30, Theorem
3.1] and comparing it with the hypotheses appeared in its context, we inferred that
the mapping n must be 7-Lipschitz continuous. In fact, the continuity condition
of the mapping 7 in the context of [30, Theorem 3.1] must be replaced by the
7-Lipschitz continuity condition, as we have done in the context of Theorem 2.9.
Secondly, there is an error on page 171, line 1 of [30] which must be resolved. In
the proof of Theorem 3.1 of [30], the authors employed proof by contradiction and
concluded that for any given P : X — X* p> 0,2 € X* and ¢ : X - RU {40},
the functional f: X x X — RU {400} defined, for all (y,u) € X x X, by

fly, ) = (x — P(u),n(y,u)) + pd(u) — po(y)

satisfies Lemma 2.3(ii). In the process of achieving a contradiction, but there is
an error. In fact, they assumed, on the contrary, that there exist a finite set
{yi,v2,...,ym} € X and wy = >/% Niys with A; > 0 and Y /", Ay = 1 such
that

(2.5)  (x — P(uo),n(yi,u0)) + pd(uo) — pp(yi) >0, i=1,2,...,m.

Using property of n-subdifferentiability of ¢ at ug € X, they deduced the existence
of a point f* € X* satisfying the following relation:

Making use of (2.5) and (2.6), then they derived the following inequality:
(27) <$_P(U0)—Pf*a77(yz>uo)> >07 i:1>2>"'am'

Finally, applying (2.7) and taking into account that the functional h : (y,up) €
X x X = h(y,uo) = (x — P(ug) — pf*,n(y,u0)) € RU{+0o0} is 0-DQCV in y (in
the first argument) and 7(ug, ug) = 0, they obtained a contradiction as follows:

0< > Ai{z — P(ug) — pf*,n(yi, uo))
=1

= (¥ — P(uo) — pf*,n(uo, uo)) = 0.

In virtue of (2.8) and using the fact that > ", n(vi,uo) = (> it yi,u0) =
n(ug, up) = 0, that is, the property of linearity of 7, they got the required contra-
diction. But, in view of the assumptions mentioned in the context of [30, Theorem
3.1], n is not linear necessarily and so ", (s, uo) = n(>_ivq Yi, uo) does not hold
necessarily. A correct proof in order to achieving a contradiction can be found on
page 300 of [2].

We now provide a new example in which the existence of the two mappings
n:XxX — X and P: X — X* satisfying all the conditions of Theorem 2.9 is
shown.

(2.8)

Example 2.10. Let X be the set of all real numbers endowed with the Euclidean
norm ||.|| = |.| and let the mappings n : X x X — X and P : X — X* be defined,
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respectively, by

p(|lzyPLn(0 + |zy|9) + 1) (z —y),  if lzy| <s,
n(z,y) =4 ollzy* — cLogm|zyl)(x — y), if s < |ay| <t,
(s T 0)(@ = y), if t < |ay,

and P(z) = &z for all x,y € X, where p,0,v,0,5,&,k,1,p,q, 3 are arbitrary con-
stants that are strictly bigger than zero, and 6, s,t,«a,m are arbitrary real con-
stants such that 8 > 1 and 0 < s <t < 1 < a,m. It can be easily seen that
n(z,y) +n(y,z) =0 for all z,y € X.

For all z,y € X, we have

p(|zyP Ln(0 + |xy|?) + 1)z — yl, if |zy| < s,
In(z,y)| =< o(layl* — cLogm|zy|)|z — yl, if s < |oy| <t,
(fepfapmn + )|z =yl if t < |ayl.

Taking into account that § > 1 and ¢ > 0, it follows that Ln(6 + |zy|?) > 0 and so
for all z,y € X with |zy| < s, we have

(2.9) 1 < |zylPLn(0 + |zy|?) + 1 < sPLn(0 + kP) + 1.

The fact that 0 < s < ¢t < 1 implies that for all z,y € X with s < |zy| < ¢,
(2.10) 0 < s* — cLogmt < |zy|* — cLogm|zy| < t* — ¢Logms.

Since [, 3,v,0 > 0 and « > 1, for all z,y € X with |zy| > ¢, we yield

il b

T <
(2.11) o< g llaPe] +o0 < T

+o,.

Making use of (2.9)—(2.11) and in view of the fact that u, o > 0, we deduce that for
all z,y € X,

g
In(z,y)| < max {M(San(9 + k) + 1), 0(t" — sLogms), v U}!w —yl,

which means that 7 is max {,u(san(9+ kP)+1), o(t* —cLogms), o +G}—Lipschitz
continuous.

Let us now define, associated with each z € X, a correspondence h, : X x X —
R U {400} for each (y,x) € X x X by

hz(y,z) = (z = P(z),n(y, z)) = (z = P(z))n(y, ).

We claim that the function h, is 0-DQCYV in the first argument. In order to prove
our claim, suppose, on the contrary, that there exist a finite set {y1,y2,...,yn} and
w=y_1 1 \y; with \; >0 and > | A\; = 1 such that for each i € {1,2,...,n},

n(z = Eu)(lyaulPLn(6 + |yul?) + 1)(yi —w), if |yu| <,
0 < ha(yiu) = {0z = &u)(Jyiul* — cLogm|yiul) (yi — u), if s < [ysul <t,
(2 = &u) (e + ) (i — ), if t < [yiul.
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In the light of this fact we conclude that for each i € {1,2,...,n}, (z—&u)(y;—u) >0
and so

0<Y N(z—&uw)(yi —u) = (=)D Nigi — Y _ M)
i=1 =1 =1
= (z—&u)(u—u) =0,

which leads to a contradiction. Therefore, for any given z € X, the function h, is
0-DQCYV in the first argument. In virtue of the facts that for all x,y € X,

pE(|lzyPLn(0 + |xy|?) + 1)|z — y|2, if |xy| < s,
(P(z) = P(y),n(z,y)) = q 0&(lzy|* = sLogmlwy|)|z — yf*, if s < |ay| < t,
5(%""0’)@_1”27 if t < |zy|,

|zyl!
0>1,0<s<t<1l<a,m,and g,k ,0,7,5,0,p,q, 1 >0, we deduce that

(P(z) — P(y),n(z,y)) > pélz —y|*, Va,y € X with |zy| € [0,s),

(P(z) — P(y),n(z,y)) > 0&(s" — cLogmt)|x — y|?, Vz,y € X with |vy| € [s,t)
and
(P(z) — P(y),n(z,y)) > éolz —y|*, Va,y € X with |zy| € [t,+00).

Hence,
(P(x) = P(y),n(z,)) = min { u€, 0€(s" = cLogmt), €0 Ho — 2, Va,y € X,

which means that P is a min { pé, 0€(s* — cLogmt), fa}—strongly n-monotone map-

ping. Thereby, the mappings n and P are satisfied all the conditions of Theorem
2.9.

We now close this section by the following theorem due to Ahmad et al. [2] and
Kazmi and Bhat [30] in which the suitable conditions for the P-n-proximal mapping

Ri?ﬁ associated with the mappings ¢, P, and the constant p > 0 to be Lipschitz
continuous are stated and an estimate of its Lipschitz constant is computed.

Theorem 2.11 ([2,30]). Let X be a reflexive Banach space with the dual space X*,
n: X x X — X be a 7-Lipschitz continuous mapping such that n(z,y)+n(y,z) =0
for all z,y € X, and let P : X — X* be a ~y-strongly n-monotone continuous
mapping. Suppose that for any given x* € X*, the function h : (y,z) € X X
X = h(y,z) = (z* — P(z),n(y,x)) € RU{+00} is 0-DQCV in the first argument,
¢: X > RU{+o0} is a lower semicontinuous n-subdifferentiable proper functional
on X and p > 0 is an arbitrary real constant. Then, the P-n-prorimal mapping

Ri"lf : X* — X associated with ¢, P, n and p > 0 is %—Lipschitz continuous, i.e.,

O 0, T
IR~ Ryp )l < Tt =o'l Vet e X
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3. FORMULATION OF THE PROBLEM AND EXISTENCE THEOREM OF SOLUTION

Fori=1,2,...,p, let X; be real Banach spaces with the dual spaces X/, and (., .);
be the dual pairing between X; and its dual space X;. Let for ¢ = 1,2,...,p, T; :

?:1 X; =X F:X; = X/, g X; = Xjand n; : X; xX; — X; be the mappings.
Suppose further that for i = 1,2,...,p, v; : X; x X; =& RU {400} are extended
real-valued bifunctions such that for each fixed z; € X, ¢;i(.,2) : Xi = RU {400}
is a proper, lower semicontinuous and n;-subdifferentiable functional on X; with
gi(X;) N'dom Oy, pi(., z;) # 0. We consider the problem of finding (z1,z2,...,xp) €
Hﬁ.’:l X such that g;(z;) € dom 0y, p;i(.,x;) for each i € {1,2,...,p} and

(Ti(z1, @2, .., 3p) — Fi(@i), ni(yi, 9i(@i))s
> i(gi(zi), Ti) — pilyi, xi), Yy € Xy,
which is called a system of generalized monlinear wvariational-like inequalities
(SGNVLI).

If p=1, X1 = H is a real Hilbert space, Th =T, A1 = A, m1 =1, g1 = g and
©1 = ¢, then the problem (3.1) collapses to the problem of finding = € H such that
g(x) € dom Oyp(.,x) and

(T'(z) — A(x),n(y,9(x))) = p(g(z),z) — p(y,z), Yy € H,

which was introduced and studied by Ding and Luo [20].

The following conclusion that tells the problem (3.1) is equivalent to a fixed point
problem provides us a characterization of its solution and plays a crucial role in the
sequel.

(3.1)

Lemma 3.1. Assume that X;,T;, Ai, pi,ni,g; (i = 1,2,...,p) are the same as in
the SGNVLI (3.1) such that for each i € {1,2,...,p}, X; is reflexive and n; is
a 7;-Lipschitz continuous mapping with n;(z},yi) + ni(y., xt) = 0 for all x},y; €
Xi. Let for each i € {1,2,...,p}, P; : X; — X be a v;-strongly n;-monotone
continuous mapping such that g;(X;) Ndom(P;) # 0. For each i € {1,2,...,p} and
for any xF € X}, suppose that the function h; : (y,,z}) € X; x X; — hi(y.,x}) =

(xF — Pi(h),mi(yl,«}))i € RU {+o0} is 0-DQCV in the first argument. Then,

)

(x1,22,...,2p) € H§:1 X is a solution of the SGNVLI (3.1) if and only if g(x;) €
dom(P;) for each i € {1,2,...,p} and
O, i (4
gi(zi) = Rgfé e )[(Pi 0 gi)(wi) — Ni(Ti(x1, 22, .. ., p) — Fi(z:))],
where for i = 1,2,...,p, \; > 0 are constants, P; o g; denotes P; composition g;,
and R(z?’éi("xi) = (P, + \iOy, 0i(., ;)1 is P;-n;-prozimal mapping of pi(.,x;).

Proof. Utilizing Definitions 2.4 and 2.6, we deduce that (z1,z2,...,2)) € H§:1 X;
is a solution of the SGNVLI (3.1) if and only if for i = 1,2,...,p,

©i(Yis i) — @i(9i(z:), xi) > (—(Ti(x1, @2, ..., xp) — Fi(x5)),mi(ys, 9i(24)))ir Yy € X5,
& —(Ti(x1, 22, ..., mp) — Fi(2i)) € On,pi(9i (i), i)

& (Piogi)(xi) — Mi(Ti(z1, 22, .. xp) — Fi(x;)) € (P + N0y, pi(-, 1)) (9i(i))

& gilwi) = RO (Pro g) (@) — MTi(wy, wa, . 1p) — Fila))],
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where for i = 1,2,...,p, Rijféi("zi) = (P + N0y, 0i (-, ;)L O

Before turning to the main results of this paper, let us recall some needed concepts
and an efficient and useful lemma.

Recall that a normed space X is called strictly convex if Sx, the unit sphere in
X, is strictly convex, that is, the inequality ||z + y|| < 2 holds for all distinct unit
vectors  and y in X. It is said to be smooth if, for every vector x in By, the unit
ball in X, there exists a unique z* € X* such that ||z*|| = z*(z) = 1. It is known
that X is smooth if X™* is strictly convex, and that X is strictly convex if X* is
smooth.

Definition 3.2. A normed space X is said to be

(i) uniformly convex if for any given € > 0, there exists § > 0 such that for all
x,y € By with ||z — y|| > & the inequality ||z + | < 2(1 — &) holds;

(ii) uniformly smooth if for any given £ > 0 there exists 7 > 0 such that for all
x,y € By with ||z — y|| < 27, the inequality |z + y|| > 2(1 — e7) holds.

The functions § : [0,2] — [0,1] and px : [0,4+00) — [0,400) defined by the
formulae

. T+
dx(e) = inf{l — H2y” 2,y € By, |lz -yl > €}

and
1
px (1) =sup{g (o + 7yl + llo = 7y[) =1: 2,y € Bx}
are called the modulus of convexity and smoothness of X, respectively.

Remark 3.3. It should be pointed out that

(i) in the definition of dx () we can as well take the infimum over all vectors
z,y € Sx with ||z — y|| = ¢, see for example [17];

(i) in the definition of px (7), we can as well take the supremum over all vectors
T,y € SXa

(iii) the functions dx and px are continuous and increasing on the intervals [0, 2]
and [0, +00), respectively, and dx(0) = px(0) = 0. In addition, px is a
convex function on the interval [0, +00) and px(7) < 7 for all 7 > 0;

(iv) in the light of definitions of the functions dx and px, a normed space X
is uniformly convex if and only if dx(e) > 0 for every ¢ € (0,2], and is
uniformly smooth if and only if lim,_,q % =0;

(v) any uniformly convex and any uniformly smooth Banach space is reflexive;

(vi) a Banach space X is uniformly convex (resp., uniformly smooth) if and only
if X* is uniformly smooth (resp., uniformly convex);

(vii) the spaces [P, LP and W}, 1 < p < oo, m € N, are uniformly convex as
well as uniformly smooth, see [19,28,33]. At the same time, the modulus of
convexity and smoothness of a Hilbert space and the spaces [P, LP and W},
1 <p< oo, méeN can be found in [19,28,33].

The function J : X — 2% defined by the formula
J(x) = {a" € X7 : (", 2) = |l2" |, [[27]] = |l=[[}, V2 e X,
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is called the normalized duality mapping from X into X*. We observe immediately
that if X = H, a Hilbert space, then J is the identity mapping on H. In the
meanwhile, it is an immediate consequence of the Hahn-Banach theorem that J(z)
is nonempty for each z € X.

Definition 3.4. For i =1,2,...,p, let X; be real Banach spaces with the topolog-
ical dual spaces X. The mapping T; : H§:1 X; — X[ is said to be p; j-Lipschitz
continuous in the jth argument if, there exists a constant p; ; > 0 such that

||T%(£E1,$2,...,xj,1,$j,$j+1,...,CL‘p)—T‘Z‘("El,l‘g,...,l‘jfl,xg-,l‘jurl,...,CEp)”i

Definition 3.5. Let X be a real uniformly smooth Banach space with the dual
space X*, and J be the normalized duality mapping from X into X*. A mapping
g : X — X is said to be k-strongly accretive if there exists a constant & > 0 such
that

(J(x—y),gx)—g)) > kl|lz—y|? VzyeX

Lemma 3.6 ([15]). Let X be a real uniformly smooth Banach space with the dual
space X* and J be the normalized duality mapping from X into X*. Then for all
z,y € X, we have

@) llz +yl? < ll2] + 2(J(z + y), )

. T— z||12 2
(i) (J(2) = J(y), 2 — y) < 2d%(z,y)px (G4L), where d(z,y) = /I IE for
all z,y € X.

It should be remarked that in the original version of the above lemma, d is used
instead of d(z,y). But, taking into account that for any given z,y € X, d depends
on z and y, it must be replaced by d(z,y), as we have done in part (ii) of Lemma
3.6.

We are now in a position to prove the existence of a unique solution for the
problem (3.1). The sufficient conditions which guarantee the existence of a unique
solution for the SGNVLI (3.1) are stated in the next theorem.

Theorem 3.7. Suppose that, for each i € I' ={1,2,...,p}, X; is a real uniformly
smooth Banach space with the dual space X} and px,(t) < C;t? for some C; > 0,
and (.,.); is the dual pair between X; and X[. Let for each i € T, the mapping
gi + X; = X; be a kij-strongly accretive and d;-Lipschtiz continuous mapping, F; :
Xi — X be g;-Lipschitz continuous and the mapping Tj : H§:1 X; — X[ be o0 -
Lipschitz continuous in the jth argument (j € T',i # j). Assume that for each
i€, ni: X; x X; — X; is a7-Lipschitz continuous mapping such that n;(x},y}) +
ni(yi, ) = 0 for all i,y € X;, and P; : X; — X[ is a ~;-strongly n;-monotone
and p;-Lipschitz continuous mapping such that g;(X;) C dom(F;). For each i € T
and for any xf € XF, let the function h; : (y.,z}) € X; x X; — hi(y,,x}) =
(xF — Pi(h),mi(y,x}))i € RU {+o0} be 0-DQCV in the first argument. Suppose
that for each i € T, p; : X; x X; = RU{+0o0} is an extended real-valued bifunction
such that for each fized point z; € X;, pi(.,z;) : Xi = RU{+00} is a proper, lower
semicontinuous and 1;-subdifferentiable functional on X; with g;(X;) N0y, i(., 2i) #
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(0. Furthermore, let for each i € ', there exist constants &, \; > 0 such that

(3:2) [
for all u;,v;,w; € X; and

\/1 — 2k +64C;02 + & + T(0idi + Aici)

+ D ker gy B0k < 1, 2k < 1+ 64C;07.
Then, the SGNVLI (3.1

Proof. For given \; >0 (i =1,2,...,
f:l Xj— H?:l X by

O, i (i On,; i (-vi
R () — R ()| < &llui — vl

(3.3)

) has a unique solution.

and M)\L)\Q’m’/\p :

(34) Ny (w1,2,....2p) = 25 — gils) + Ry [(P 0 gi) (1)
—Ni(Ti(x1, 22, . ..
and
(3.5) My pgon, (T2, 2p) = (NAl(ml,...,xp),
Ny (21,5 2p), .., Ny (21, -

for all (z1,22,...,2p) € [[/_; Xj.

Applying (3.2), (3.4) and Theorem 2.11, for any given (z1, x2, . ..

p) € [1}—, X; and for each i € I', we obtain

p), define the mappings Ny,

: H?:l Xj — X;

s Tp) — Fi(z;))]

7xp))7

7:Cp)7 (%17%/25 ey

| Ny, (z1,22,...,2p) — Ny, (T1,Z2, ..., Zp)|s
= llai — gilw:) + Ry 5 (P o ) ()
—Ni(Ti(z1, 22, . .., xp) — Fi(z4))]
— (& — gi(@) + Ry o g) (30)
= N(Ti(F1, T2, - .., Tp) — Fi(T))]) |l
< i — & — (gi(s) — gs(@)l
IR, 0 i) (25) = M(Tilan, o, ., p) — Fia))]
— R ECE (P o g) @) — MTi(E1, T, ., ) — Fi@))li
< lwi — 25 — (gi(xi) — 96(T4)) ||s
+ IR (B0 i) (25) — M(Tilan, s, ) — Fi(a))]
Rfjj}i“ (B0 gi)(@i) — NTi(w1, @3, - .., 1) — Fi(wi)]ll
+IRYEST(P 0 ) (25) = N(Ti(@r, o, . ) — Filai))]

- Ri?fé“"“””[(a 0 i) (@) —
(gi(zs) — gi(T3)) i + &l
+ %(H(PZ- o gi)(x:) — (P o ) (@)

<||z; —Z; — — Zil|i

NTi(Z1, T, ..., Tp) — Fi(T

Nl
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+ )\iHTi($171'2, ceey xp) - Ti(?ﬁb?ﬁ% ceey 5517)”1

(3.6) + A’HF(xi) — F(@)|l:)
< sz — T — (gi(zi) — gi(@:))|li + &illws — 74 l;
(H P; o gi)(xi) — (Piogi) (7))
(||T L1, T ey Tim 1y Tiy T 1y« -+ 5 Tp)

—Ti(xl,xg,...,xi,l,xi,xi+1,...,$p)||i
+ | Ti(Z1, @2, - -, i1, Tiy Tig1, - - -, Tp)
—Ti(Z1, T2y oo, Tie1, Tiy Tt 1y - - Tp) ||
+ -+ (@1, Ty oo Tie1, Ty Tig 1y - -+ Tp—1, Tp)
—Ti(fl,fg,...,%i_l,fi,fi+1,...,5p_1,5p)\\,-)
+ Al Fi(wi) — Fi(@:) i)
= || — zi — (9i(@s) — gi(@) i + &illzs — @i
+ (IR0 ) (@) = (Pro i) (@)

+ >\Z Z HE(%L§27 R 5j*lvmja Ljt1s--- 7xi717§ia$i+17 R l‘p)
Jer\{i}
— E(fl,gg, e ,5]',1,%3‘,56]'4&, Ceey l‘ifl,?fi,:ﬂlurl, e ,.Ip)”i
+ Xl Fi(@i) — Fy(@)]:)-
Taking into account that for each ¢ € I'; the mappings P;, F; and g; are Lipschitz
continuous with constants g;,; and d;, respectively, and the mapping T; is oy ;-

Lipschitz continuous in the jth argument (j € I',j # i), it follows that for each
iel,

(3.7) 1 Fi (i) — Fs(Za) i < sillvi — @ills,
(3.8) (P 0 gi)(wi) — (P ogi)(@)lls < 0idillzi — z4l;
and

|Ti(Z1, T2y o ety Ty Tty - - v s Tim1s Ty T 1y - - > Tp)
(3.9) —Ti(T1, T2, o o Tty Ty Ty e oy Tie 15 Ty Tig 1y - - > Tp) |l
< oiglleg — ;-
Since for each ¢ € I, the mapping g; is k;-strongly accretive and §;-Lipschitz con-
tinuous, and X; is a uniformly smooth Banach space with py,(t) < C;t? for some
C; > 0, by Lemma 3.6, yields
i = Zi = (gi(w:) — g:(@))|1?
< s — @ll7 + 2(Ji (@i — T — (giws) — 95(T)), —(gi(2s) — 95(Ti)))s
= Nz = &llf — 2Ji(xi — T2), 9i(xi) — 9i(T2))i
+ 2(Ji(ws — Ti — (9i(w:) — 9i(%4))) — Jilwi — T4), —(gi(xi) — 9i(73)))s
<lwi = Zill? = 2killas — Tulli + 47 (2 — T — (gi(@) — i(T)), @i — T)
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XPXi(

di(xi — zy — (9i(xs) — 9i(T4)), x5 — T

4lgi(wi) — gi(T) |ls )
)

where for each ¢ € I, J; is the normalized duality mapping from X; into X.
The last inequality implies that for each i € T,

(3.10)  lmi — & — (gi(xs) — 95(Z))||s < \/1 — 2k; 4 64C;02 ||z — T ;.
Substituting (3.7)—(3.10) into (3.6), we derive for each i € I' that
HN/\Z,(.’L'l,{EQ, e ,:I}p) — N)\i(fliv‘l,:fg, ceey fp)|’1

< (\/1 — 2k; 4+ 64C;02 + & + %(Qidi + Xib)) @i — %5

TiNi ~
(3.11) + == Y oijlley — Tl
" jen\{i}
~ TiNi ~
= Oilles — Tilli+ == > ol — Tl
' jer\{i}

where for each 7 € T,

.
(2
Let us now define a norm ||.||, on [[}_; X; by

p p

(312) (w12, mp)lle =D lailli, V(z1,22,...,2) € [[ X
=1 =1

It can be easily seen that ([T?_; Xi,|.]|+) is a Banach space. Then, recalling (3.6)
and (3.11), we conclude that

I My dgyeoong (T1y o Tp) — Mg xg, 0, (T1, T2y, Tp) [

p
= Z HN)\Z.(IL'l,xQ,.. . ,wp) — N)\i(fl,fg,...,fp)ui
=1

P
(3.13) <3 @illzi — @i+ 20 oigllay - Tll)

i=1 " jen\{i}

p
=W+ —For)llz — T

.
I

TEA ~
+ (P2 + Z 2 op0) |0 — Fall2
ker\ {2}
p—1

T AL _
ot O+ Y o)z — Tyl
el Yk
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p
<O i — Tlli = Oll (21, 22, .. 2p) — (1, T, - Tp) |,
=1

where

Hzmax{ﬁi—f— Z Tk—)\kaki:izlﬂ,...,p}.
ke \{3}

Evidently, (3.3) ensures that 0 < 6 < 1 and so from (3.2) it follows that My, x,,...x,
is a contraction mapping. The Banach fixed point theorem guarantees the existence
of a unique point (Z1, Za, ..., Zp) € [[7_; X; such that

MAl,AQ,...,Ap('i.l? To, ... ,.f‘p) = (i’l,i‘g, - ,.f'p).

Then, making use of (3.4) and (3.5), we infer that for i =1,2,...,p,
_ O . i (T4 _ _ _ _ _
9i(@:) = R\'p, CI(P o i) (@) — M(Ti(@1, 2o, .., 7p) — Fi(®2)).

Now, Lemma 3.1 implies that (%1, Za,...,%p) € [[}-; X; is a unique solution of the
SGNVLI (3.1). This completes the proof. O

It is known that nonexpansive mapping is that which has Lipschitz’s constant
equal to 1. In other words, for a given real normed space X with a norm |.|, a
mapping T : X — X is called nonezpansive if | T(x) — T(y)| < ||z — y]|| for all
z,y € X. As we know, fixed point theory is an immensely active area of research
due to its applications in multiple fields. In fact, it consists of many fields of math-
ematics such as mathematical analysis, general topology and functional analysis.
Since 1965 considerable efforts have been aimed to study the fixed point theory for
nonexpansive mappings in the setting of different spaces. At the same time, because
of the existence of a strong connection between the classes of monotone and accre-
tive mappings, and the class of nonexpansive mappings, the theory of nonexpansive
mappings has increasingly received much attentions, and has been greatly extended
and generalized in different contexts. For example, in 1972, Goebel and Kirk [27]
succeeded to introduce the class of asymptotically nonexpansive mappings as an
interesting generalization of the class of nonexpansive mappings as follows.

Definition 3.8 ([27]). The mapping 7' : X — X is said to be asymptotically
nonexpansive if, there exists a sequence {a,} C (0,+00) with lim,_,~ a, = 0 such
that for each n € N,

177 (x) = T"(W)Il < (1 + an)llz —yll, Vo,ye X.

Equivalently, we say that T is asymptotically nonexpansive if there exists a sequence
{kn} C [1,+00) with lim,,_, k, = 1 such that for each n € N,

177 (x) = T"(W)Il < knlle —yll,  Va,y € X.

The introduction of the notion of total asymptotically nonexpansive mapping was
first made by Alber et al. [6] in 2006 in order to present a unifying framework for
generalized nonexpansive mappings existing in the literature and to prove a general
convergence theorem applicable to all these classes of mappings as follows.
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Definition 3.9 ([6]). A mapping 7' : X — X is said to be total asymptotically
nonexpansive (also referred to as ({an}, {bn}, ¢)-total asymptotically nonexpansive)
if, there exist nonnegative real sequences {a,} and {b,} with a,,b, — 0 as n — oo
and a strictly increasing continuous function ¢ : RT™ — R* with ¢(0) = 0 such that
for all x,y € X,

1T (z) = T" (W)l < lz = yll + and(llz — yl[) +bn, Yn €N,

It is important to emphasize that under some suitable conditions and using a
modified Mann iteration process, the iterative approximation of fixed points of total
asymptotically nonexpansive mappings is also studied in [6]. It is noteworthy that,
in particular, every asymptotically nonexpansive mapping is total asymptotically
nonexpansive with b, = 0 (or equivalently b, = 0 and a,, = k,, — 1) for all n € N
and ¢(t) =t for all t > 0, but the converse need not be true. The following example
shows that the class of total asymptotically nonexpansive mappings is broader than
the class of asymptotically nonexpansive mappings.

Example 3.10. For 1 < p < o0, consider the classical space

oo
P ={z={2p}tnen: Z |zn|P < 00,2, € F =R or C},

n=1

consisting of all p-power summable sequences, with the p-norm ||.||, defined on it
by

3=

Izl = O lenP)?, Vo = {zp}nen € 1.
n=1

Suppose further that B denote the closed unit ball in the Banach space [P and
consider X := [0,¢] x B, where ¢ € (0,1] is an arbitrary real constant. Furthermore,
let the mapping T : X — X be defined by

_ ) (w,@),  ifuel0,9),
T(u,x) = { (0,77), if u=cg,
where
T =(0,0,... ,O,a|m1\/\1,0,asinq1 ]a;2|,0,04|:cg,|)‘2,O,azsinq2 |4/,
—_———
m times

Ak+1 . Gk+1

alzk] T, 0,asin T @], 0, e, 0, Ty, - .. ),

a,7 € (0,1) are arbitrary constants, k is an arbitrary but fixed odd natural number,
and m > k+1and A;,¢; € N\{1} (i = 1,2,..., 1) are arbitrary but fixed natural
numbers. In fact, * = {7, }°°, where z; = 0 for all 1 < i < m, ZTy42; = 0 for all
1 €N,
Ad o
~ ) alw T, 1f2€{25—1|s:1,2,...,%},
Tm+42i—1 = . g . k41
asin' 2 |z, ifi € {2s]s =1,2,..., %=},

and Ty, 10,1 = ax; for all ¢ > k+2. Tt is plain that the mapping T is discontinuous
at the points (¢, ) for all z € B. This fact implies that T is not Lipschitzian and so
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it is not an asymptotically nonexpansive mapping. For all (u, z), (v,y) € [0,5) X B,
we obtain

17w, 2) = T(0,9)llx = 7 (v —v,7 = §)llx

= ||/7(u -0, (0707 cee 307 a(‘$1|>\1 - |y1‘>\1)70704(8inq1 |$2| — sin? |y2|)7 07
H,—/
m times
. ) A A
o3| — [ys|*2), 0, a(sin® x| — sin® [ya]), ..., 0, a(jze| 5 — [y *5),0,
. Gk+1 . k41
a(sin = |zppr| —sin 2 |yrp]), 0, a(@rre — Yrta), 0, a(Trps — Ykaa)s---))lIx

L
=7(Ju —v[+ (a ZHM 1A

(3.14)
kb1
2 1
+aP > | sin® |zg;] — sin® [y |” + o Z |z —yil”)7)
=1 1=k+2
5o
<lu—v[+o Z Z a1 [N i1 )P wai1 — y2ia P
kil
2 qi i
YO Il o) i — il + Z |z — yil?) 7 )
i=1 r=1 i=k+2

Since x,y € B, it follows that 0 < \xzz‘_ﬂ’\i*j,\y%—ﬂjfl < 1 for each j €
{1,2,..., 0N}, and 0 < |29i|% ", |y2i|"™! < 1 for each r € {1,2,...,¢;} and i €
{1,2,..., 5} These facts imply that 0 < Z;‘;l |z9i 1M yai a7t < A and
0 < 20 2o " |ya;|""t < g; for each i € {1,2,..., 5}, Then, making use of
(3.14) we conclude that for all (u,z), (v,y) € [0,5) X B,

1T (u, ) = T(v, y)llx

A
<|u—wv|+ a(max{(z i1 [N i )P,
j=1
S qi—r r—1\p ; k + 1 7’ v
(OO lwail Ty )P 1 i = 1, }Zm yil?) ¥
r=1
A
(315) = |’LL — 7)| + amax{z |LE2¢,1|>\i_]|y2i,1P_1,
j=1
& k —|— 1 1
D ol Tyl i =1,2, Zm yilP)?
r=1
s

= |u — ’U’ + aamax { Z ‘:L'Qi_ﬂ)\i_j’y%—l’j_la
j=1



1258 JAVAD BALOOEE

qi
_ _ . k:+1
S a1 i =12, e =yl

If u € [0,¢) and v = ¢, then in a similar fashion to the preceding analysis, in virtue
of the fact that 0 < |u —v| < ¢ <1, one can show that

1T, ) = T(v, y)llx = v (w, ) = (0,79)lx = ~[(w, T = 9)]x

A
<y (Jul + omax ) |wai 1 [N [y [
=1
k:+ 1
Z i %"y 1 ol = yllp)
>\/L . .
= 7(u+ amax { Z i1 | i
j=1
2 . I k: + 1
Z\milq’ Mlyadl "1 =12, ., ——}|z —yllp)
(3.16) - N
<v(14 amax{ Z |wai1 [Ny,
j=1
i . ‘ k: 1
Z |2 Ty L i = 1,2, + —— Hlz = yllp)
< |Ju — v + emax { Z i1 [Ny a P
j=1

- - _ . k+1
S leal Tyl i = 1,2, T e =yl .

If w = v = ¢, then by the same arguments as used in (3.14)-(3.16), it follows that
for all x € B,

1T (u, x) = T(v,y)|x = 1(0,77) = (0,79)lx = ~[(0,7 - y)|x

A
= yamax { Z |332i—1’/\i_]’y2i—1‘j_17
j=1
G k:+ 1
D ol Ty i = 1,2, =l =yl
(3.17) —
Ai . .
< Ju — v| + amax { Z i1 [Ny [
j=1

qi

_ _ ) k+ 1
S el gl i = 1,2 T e =yl .
r=1
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Making use of (3.15)-(3.17), for all (u,x), (v,y) € X, we yield

s
IT(u, ) = T(v,9) | x < |u—v|+amax { Y [ws 1[N |y2i a7
j=1
k:+ 1
Z 2%y L i = 1,2, =z =yl +
s _ A
< |u—v|+ ||z — yll, + amax { Z i1 [Ny [,
j=1
& qi—T r—1 ; k+1
Z’w2z| ‘ |y21’ 711217277?}(IU_U‘+Hx_pr)

+ 7.
For all n > 2 and (u,z) € [0,5) X B, we have

T"(u,x) :fy”(u,( 0,0,...,0 ,a"]ac1|’\1, 0,0,...,0,a"sin® |z, 0,0,...,0,
~—— ~—— S——

(2n—1)m times (27—1) times (27—1) times
o™z, 0,0,...,0 , ™ sin® |z, . .. ]:):k\ , 0,0,...,0,
N—— [ SRR
(27—1) times (27—1) times
. 9kt
n ktl n n
asin % |zpga], 0,0,...,0, 0" Tpq0, 0,0,...,0 0" Tpys,...)).
N—— N——
(27—1) times (2n—1) times

Then, for all (u,x), (v,y) € [0,¢) x B and n > 2, by using the same arguments as
for (3.14) and (3.15), one can prove that

Ai
7 (uy2) = T (0, )llx < Ju— o] + " max { S foasmt N7 yia
(3.18) 7=l
k:+ 1
Z!@“z |5 oL oyl -
If u e [0,¢) and v = g, then for each x € B and n > 2, we have T"(u, z) = y"(u, &)
and T"(v,z) = (0,7"2) = ~"(0, &), where

&=(0,0,...,0 ,a"|z(|™, 0,0,...,0,a"sin® |z|, 0,0,...,0,
S—— SN—— S———

(27 —1)m times (27—1) times (27—1) times
n bY n . k+1
a’zg|™2, 0,0,...,0,a"sin® |zy|,...,a"|zk| 2, 0,0,...,0,
S—— S——
(27—1) times (27—1) times
. Qk+1
n kil n n
asin "2 |xgyql, 0,0,...,0,a"xEs0, 0,0,...,0 0" K s, ... ).
——— ———

(27—1) times (27—1) times
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Thanks to the fact that 0 < |u — v| < ¢ < 1, by an argument analogous to the
previous one, for all n > 2 and x,y € B, one can show that

1T (u, 2) = T (v, 9)l| x

A
<" (Jul + o™ max { > i1 My 1P
=1
= qi—r r—1 : k + 1
Z|$2i|l o 1i =12, .., ——}z —yllp)
r=1
A
<A™ (s + o max { > fagi | [yl
=1
= q;i—r r—1 ; k + 1
S ol Tyl i = 1,2, S = Y yl,)
(3.19) -
A
<A1+ " max { D fagi | |y
=1
= q;—r r—1 ; k + 1
S syl i = 1,2, S Y e — )
r=1
A
<fu—vf+ammax{} |waialMyaial T,
=1
k +1
Z!wazlq’ lyai "1 o ———Hz = yllp + 4™

For the case when u = v = ¢, for all z € B and n > 2, we have T"(u, ) = T"(v,y) =
(0,y™z) = 4™(0,2) and

A
T (u, ) = T™ (v, y)l|x < y"0" max { Y w1 yaia [,
=1
= qi—T r—1 ; k+ 1
> w5y i = 1,2, e =yl
r=1
A
(3.20) < u—vf+a"max { Y |wgi 1M I yzi 1,
j=1
S qi—T r—1 ; k+ 1
D ol Tyl i = 1,2, Yz — yll,
A

< |u—v] + " max { Z |21 [ |y P
=1
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ai
_ _ . k+1

Z |‘T2i‘ql T‘y2i|r 17 l:ii= ]-727 LR T}Hx - y”p +’7n

r=1
Relying on the fact that 0 < v < 1, using (3.18)-(3.20), we deduce that for all
(u,z), (v,y) € X and n > 2,

1T (u, x) = T" (v, y)l x

As
< |u —v| 4+ o™ max { Z w251 My P
j=1
% e - ‘ k+1 n
Z‘in’Z ’Z/Qz‘ 71:1:1727"'7 2 }Hx_pr—i_’y
(3.21) =t N
< Ju— o] + ||z — ylp + o™ max {3 oo 1N yoi 1
j=1
x qi—T r—1 ; k+1
> a1 i = 1,2, == H(lu =l
r=1

+lz = yllp) +"

Employing (3.18) and (3.21) and taking into account that for each i € {1,2,..., k—;l},
0< Z?;l |z9i— 1Y I y2i—1 [ < A and 0 < 3% gy |47 |y "L < g, it follows
that for all (u,z), (v,y) € X and n € N,

177 (u, ) = T" (v, )|l x

A
< Ju— ]+ flz — yllp + " max { 3 fosis gl
(322) =t
- - . . k+1
Z 20| %" yas| 1 i = 1,2, ?}(\U =+ ||z —yllp) +9"
r=1

< l(w,2) = (v, y)l[x + "0 (u, 2) = (v, y)l|x +",

where 6 = max{\;,q; : i = 1,2,...,%}. Taking p, = o™ and b, = " for each
n € N, we have by, p,, = 0 as n — oo because «a,v € (0,1).

Let us now define the mapping ¢ : [0,+00) — [0,+00) as ¢(t) = 0t for all
t € [0,400). Then, using (3.22), for all (u,x), (v,y) € X and n € N, we obtain

177 (w, ) = T™ (v, y)llx < [[(u, 2) = (v, 9) | x + pnd(([(u, 2) = (0,9)|[x) + bn,
which means that 7" is an ({a"}, {y"}, ¢)-total asymptotically nonexpansive map-
ping.

Lemma 3.11. Let, for each i € {1,2...,p}, X; be a real Banach space with a
norm ||.||;, and let S; : X; — X; be an ({an,i}j‘f:l, {bni}ooq, qﬁi) -total asymptotically
nonezpansive mapping. Suppose further that Q and ¢ are self-mappings of [[t_, Xi
and RT, respectively, defined by

(3.23) Q(.%’l, T2y ... ,ZL‘p> = (Slxl, SQZEQ, e ,prp),
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for all (z1,x9,...,2p) € [[1_; X; and
(3.24) o(t) = max{p;(t) :i=1,2,...,p}, VteRT.

Then Q is a ({30 1 ani}oly, {3201 bni}o2y, @) -total asymptotically nonezpan-
sive mapping.

Proof. Since for each i € {1, 2,.. l} S; is an ({am}n 0 {bnitosq, <Z5z) total asymp-
totically nonexpansive mapping and ¢; : RT — RT is a strictly increasing function,
for all (z1,z2,...,2p), (y1,¥2, ---,Yp) € [[1-; X; and n € N, yields

1Q" (1, w2, ., xp) — Q" (Y1, Y2, - -, Yp) I+
= [|(S721, S3wa, ., Syap) = (ST1, 552, -5 Sy yp) |«
15721 = STy1, Sy w2 — S3ya, - Spap — Sy 4p) |«

p
Z 157" z; — S yills

1

~.

p

< Z (sz Yilli + anidi(lzs — yills) + bn z)
(3.25) ; P
< Z ;= yilli + Z%M(Hﬂh —yilla) + D b
=1 =1 i=1
p p
< Z lzi — illi + Zan i® Z 5 — y;ll;) + Zb n,i
= 1=1
|| L1, L2y ..., X p)_(ylay27"->yp)H*
p
+ Zan,iQS(H(xlvx% s 7xp> - (yl?y% v 7yp)H*) + an,ia
i=1 =1

where ||.||« is a norm on [[?_; X; defined by (3.12). Clearly, (3.25) gives the desired
result. O

4. ITERATIVE ALGORITHM AND CONVERGENCE THEOREM

For each i € I' = {1,2,...,p}, let X; be a real reflexive Banach space with the
norm ||.||; and dual space X, and S; : X; — X; be an ({an i }02 1, {bn,i}o2,, ¢;)-total
asymptotically nonexpansive mapping. Assume further that @) is a self-mapping of
[T7_, X; defined by (3.23). Denote by Fix(S;) (i = 1,2,...,p) and Fix(Q), respec-
tively, the sets of all the fixed points of S; (i = 1,2,...,p) and Q. Furthermore,
denote the set of all the solutions of SGNVLI (3.1) by ®sanvrr- Then, using (3.23),
we deduce that for any (z1,22,...,2p) € H§:1 X, (x1,22,...,2p) € Fix(Q) if and
only if z; € Fix(S;) foreach i € I, i.e., Fix(Q) = Fix(S1, Sa, - .., Sp) = [1b_; Fix(S;).
If (21, Z2,...,%p) € Fix(Q)NPsgnvLi, then from Lemma 3.1 it follows that for each
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n €N,
i'z' = SZn.f'Z = [Ez gz(xl) + R msol( )[<]Dz (e) gz)(jz)
— Xi(T; (xl,xz,--- wp) — Fi(7;))]
O, 0 _
— P (% — gi(z:) + Ry LT ((Pro gi) ()
= ANi(Ti(21, T2, . ... wp) — Fy(:))]).

In the light of the fixed point formulation (4.1), we are able to construct the following
perturbed g-step iterative algorithm with mixed errors for finding a common element
of the two sets of Fix(Q) = Fix(S1, S2,...,Sp) and ®sgnvL

(4.1)

Algorithm 4.1. Let X;, F;,T;, i, mi, Pi,gi,hi (i = 1,2,...,p) be the same as in
Lemma 3.1 such that for each i € I', g;(X;) C dom(F;). Assume further that
for each i € ', S; + X; — X is an ({an,i}o2g, {bn,i}oep, ¢i)-total asymptotically

nonexpansive mapping. For any given (z1,%0.2,..., Zop) € [[7_; X;, define the
iterative sequence {(zn,1,Zn2, .., Tnp) oo, in [[7_; X; by the iterative schemes
1
Tn41,i (1—0471 l)xnz“‘an 1Sn{znl _gz( ( ))

82 . ())
RGN, 20 2T

+an 1 e(l)—l—r() 1=1,2,....p,

n,’
27(1.7,2) = (]- Qo ]+1)$n i+ an ]+1Sn{z(j+ ) g(zf’i:”l))
. g z@l( (J 1)) 1 1 +1
(*2) +R,'p, Gi(=7Y, 2050, 20
+an7j+1e(J+l) 4 T(]Jrl)’ j=1,2,...,q—2,
Zfr(g;l) — (1 — Op, q)xn7i + O[n7qSi {xnﬂ; — gz(l‘n7z)

17 i n,i
+R>\:]j}fz (-, )[Gi(xn,l, Tn2y--- ,xn,p)]}
L —i—an,qeg + rffg, 1=1,2,...,p,

where for i = 1,2,...,p; 7 =1,2,...,q— 1 and for all n € NU {0},

Gi(z9),29), ... 20)) = (Pyo gi) (V) = M(Ti(29), 29, ..., 20)) — Fa(=U))),
Gi(xn,laxn,% .. xn,p) (P o gz)(l‘n z) - )\i(Ti(l‘n,la Tn2y--- aSUn,p) - E(xn,z))a

Ai >0 (i=1,2,...p) are p constants, {a, j}o>, (j =1,2,...,q) are ¢ sequences in
[0, 1] such that Zn ol1j=1 an,j = oo, and {ej) & 0 {rn ©o =12 p;j=

i In=0
1,2,...,q) are 2pq sequences to take into account a pos&ble inexact computation
Of the proximal-point mapping point satlsfylng the following conditions: For j =
1,2,....,4q, {(eq(qi)l,eg)z, . .,eg%) ° o and {( nl, 7(3)2, e ,7“7(,,],2,) ©,are2gin [P X;
such that for alln >0,i=1,2,. ..,pandj—l 2,.
) — (J) +e ()

nz nz’

limy, o G el =0,

(4.3) - H/(/]) ()2 ])p)H
S el en ) e ,p>||
52 19, r9) ) <
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If for each i € I', S; = I;, the identity mapping on X;, g = 1, egz €nyir T 7(111) =Tngi
and a1 = ay, for all n > 0, then Algorithm 4.1 collapses to the following iterative
algorithm.

Algorithm 4.2. Let X;, F;,T;, i, ni, Pi,gi,hi (i = 1,2,...,p) be the same as in
Lemma 3.1 such that for each i € I', g;(X;) € dom(F;). For any given (z¢,1, %02, ...,Z0p) €
[1%_, Xi, compute the iterative sequence {(zn,1,Zn 2, -, Tnp) toog in [[7_; X; in the
following way:

Tn+li = (1 - an)xn,i + an{xn,i - gi(xn,i)

9 )
+ R):j]f:( zn’l)[Gi(l‘n’l, Tn,2y - ,LL‘n’p)]}

+anen,z+rn,ia 7;:1727--'apa

where n =0,1,2,...; ,; >0 (i =1,2,...,p) are p constants, {a,}7> is a sequence
in [0,1] such that Z "0 O = 00, and for each ¢ € T, {em} ° o and {r,;}5°, are
two sequences in X;, to take into account a possible inexact computation of the
proximal-point mapping point satisfying the following conditions:

En,i = ;L’L + e;/L 29

hmn—>oo H( n17 ;;27 cet

Zn OH( n,l» n27"

Zn 0 H(Tnlarn%---

Before dealing with the convergence analysis of Algorithm 4.1 for computation

of a common element of the two sets of Fix(Q) and ®ggnvri, we need to recall the
following lemma.

%,p)H* =0,
Pl <
»)

||*<OO

?
l/

n
n

Lemma 4.3. Let {a,}, {b,} and {c,} be three nonnegative real sequences satisfying
the following conditions: there exists a natural number ng such that

ant1 < (1 —ty)an + bptn + cny, Y0 > nyg,

where t, € [0,1], Y 0% 1ty = 00, limy 00 by, =0 and Y 07 ¢p < 0.
Then lim,,_sso an, = 0.

Proof. The proof follows directly from Lemma 2 in [34]. O

Theorem 4.4. Let X;, F;,T;, Pi, i, ni,9i,hi (i = 1,2,...,p) be the same as in
Theorem 3.7 and let all the conditions of Theorem 8.7 hold. Suppose that for each i €
L, S Xi — X s an ({an,i}o2g, {bn,i}o, ¢i)-total asymptotically nonexpansive
mapping and Q is a self-mapping of [[_; X; defined by (3.23) such that Fix(Q) N
DsanvLr # O. Moreover, let there exists a constant o > 0 such that H?Zl Qpj 2«
for alln € NU{0}. Then, the iterative sequence {(n 1,Zn2;--.,%Tnp) ory generated
by Algorithm 4.1 converges strongly to the only element (Z1,Z2,...,Zp) of Fix(Q)N
PsGNVLI-

Proof. In view of the fact that all the conditions of Theorem 3.7 hold, the existence
of a unique solution (Z1,Zs2,...,7p) € [[f_; X; for the SGNVLI (3.1) ensures by
Theorem 3.7. Then from Lemma 3.1 it follows that for ¢ = 1,2, ..., p,

% = 7 — gi(@) + Ry e " ((P o gi) (@)

(4.4
) —)\( (a;l,xg,...,:f:p)—ﬂ(i:i))].
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Since ®ganvrr is a singleton set and Fix(Q) N ®sgnvrr # 0, we deduce that z; €

Fix(S;) for i = 1,2,...,p. In the light of this fact, (4.4) can be written as follows:
Zi = (1= anj)Ti + an; S7{ 2 — (%)

(45) On; 902( z;) S =

+ R G (F, By Tp)]

where for j =1,2,...,q, the sequences {a, ;}>2, are the same as in Algorithm 4.1
and for i =1,2,...,p,

Gi(Z1,%2,...,%p) = (P o gi)(Z;) — Ni(Ti(Z1, T2, ..., Tp) — Fi(Z;)).

Making use of (4.2), (4.5), Theorem 2.11 and the assumptions, for each ¢ € I" and
n > 0, yields

lnsri = Zalli = 10 = an)zns + ana {0 = gi(z1)
;e ,(LIZ) 1 1
+ R Gi(=, 28, 2O
)4 7"( ) —((1 = an,1)Zi + an1S;{Ti — 9i(T:)
On. 0i (., T; _ _
+R)\jj;:i( )[Gz(l‘l,iIfQ,,xp)]})”z
< (1= an)l#ni — Flls + ana S0 - i (=)

n,t

"‘Oénle

Dnspi(20) 1)
+ RA:],PZ (€ (Z’SL ia L%a - 727(11;)9)]}
8 k3 'L -_— — —
- S {xl 9i(Z;) + Ry n’go (-2 )[Gi(xl,l‘g, ... ,xp)]}Hi
+ Oén,lHen,in‘ + H%,in‘

_ 1 1
< (1= ann)llzn — Elli + ana (128 — i)

i (21)) e
+ R}, Gi(=, 2800, 2]

n,1? Zn,2

(4.6)
— (@ = gi(@) + By Giwn 3w

Fanidi(a) = ) + B G0, 20 )
— (@i — gi(@) + By Gi(@, 2 )
+ bg) + anallel i + I
< (1= an)[@ns — Zills + an (128 = 25 — (9:(=1)) — gi(@)) |l
IR ECR G, 0 )
~ R G @ 3
+anadi (28] — 70 — (i) — gi (@)
FIRSE G A A0

10) Z'SO'L(~7 ’L) — — —
- RAZPZ. [Gi(l‘l,i‘g, .. 71"p)”| ) + bn l) + an 1”677,1”1 + ||Tnz”'b
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_ 1 _ _
< (1= ap1)llng — Tlli + ana (124 — 2 — (g:(2\) — gi(@:) s
1 z( 7(112) On; 0i (T4
+ IRy G 20, 20 2] = RO 0, 2 0 2

i T4 1 1 On. pi(,T; _ _ _
+] ;r;s;< L A R (VA CHC I N )
+andi (28] — & — (g:(=()) — gi(@)ls
0, i (1) -0 (.,T4
4 HR mSD (25 2)[Gi(75(li, 2(1%7 o Z(l))} o Rinzlfi G )[Gi(znl,%v 2217%7 o 27(L172)D)”|Z

81’ z(-vji 1 1 81 i(L,T5) _ _
+ ||R>\?in )[Gi(zi’l,zq(m, 2] — R)\Zlf ( (Gi(Z1, T2, . . . ,xp)]||l-)

+ i) +ana (e N+ llen ll) +

/-\
—

n,iHZ

< (1= an)llen — Zlli + ana (128 — 2 — (9i(24) — gi(@)):

+£Z-||zﬁz—@ui+ Gt 2o+ 250) = G, T2y B)l
+ am@(nz&? — 2 — (=) — gi(@))lls + &ill =) — @il
HG( 220 A) — Gil@n s 7))
+ bm) + amalle i+ len Dl + Il
< (1= an)l|zng — Tilli + ann (128 — 2 — (0:(2\) — g(@)l
el = w10 )G — (Pro )@l
+ Xl Ta(, S%,...,z;%p — Ti(@1, T2, -, Tp) i + AillFi(20)) — Fil@a)lls)
+ am@(nzm — 2~ (gi(={) — gu@))lls + &l12Y) - il
(H(P 0 gi) (2} ! ’) (P o gi) (@)

1 1 _ _ _
+Az!\T( 200 D)~ Ti(@ 2 )
1 1
D+ 11l i+ 1l

+AEED) = E@)l)) + b
< (1= an)l|zng — Eilli + an (128 — 7 - <gz~<z53,2> — gi(@)|s
_ T _
+ &2 — @il + (G 1) (2) = (P 0 g1) (20) i

1 1 _ 1
(T EN 20, 2z 2 2

n17 n27 n,p
= (1) (1) (1) 1
71‘%(%1’ n27 "azn7i_1ax’iazn7i+1a"'? 7(1,])7)HZ
1) o = 1
+ || Ti(z1, 2 Zp 2 Zp i1 Tin B i e e - ,z,(M)J)

@ = 1)

_ﬂ(xlaxZa"'7Zn7i_1)xivznyi+1,'"aZ'r(z{;)))Hi

oo | T(@ 1 Toy o B, By Bt - - Tpe1, 25)

= T5(Z1, s - - -, Tim1, Tiy Tig1s - - -, Tp—1, Tp)|[s)

A EED) — F@)lls) + anadi (128 — 25 — (i) — ga(@)) I
+&ll28) - lli + %(H(Pi 0 gi)(2\)) — (P o gi) (@) s
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1 1 _
+)‘(HT( 17 r(L%v-“? fm) l,xz,zfm)ﬂ,...,zg},)

- (1) n L ) 1
— Ti(z, Zndse s Znio 1 Tis Zp s 7(1,;);)”1
¢ L - (1) 1
T Ti(@1, 225 -5 215 Ty Ziges - - - ,z,(L},)
- L L Q) 1
_T‘i(xlal‘%"'7Zn,i—1’xi’zn,i+1""’Z’SlaI)J)Hi

oo | T@ L T2y B, By B - - Tpe1, 25)

— T5(Z1, s - -, Tim1, Tiy Tig1s - - - Tp—1, Tp)|[3)

+ XF(24) = Fi(@)|i) + bai) el + lenlls + 151l
— (1= an1)|ns — @Hi +ana (128 = & — (gi(21)) — gi(@)l

+ &l — @il + (H(P 0 g1) (=) — (P o gi) (@)l

= = = @) = 1) 1
+Az Z ‘|E(xl)$25"'7xj—17zn7j)zn’j+1a”'7Zn7i_17xivzn7i+17"')2:51,,1);)

Jer\{s}

— Ti(:fl, T2y -y Tj—1,Tj, 27(11’])-_1_1, ... ,27(11’2_1, x;, Z7(11’2+1, - 721(11,;)7)||%
1 _ 1 _ 1 _

FNE D) = Fi@) ) anidi (1) — 25 — (9:(=8)) — gu(@) s

_ T _
+ &2 — @l + ([0 0 g1)(=4)) = (P o g1)(@)li

)

o _ ¢! 1 _
+ N Z HTi(‘Tl,lTZ,‘--7«1’5]‘—172’7(113'727(13_,_1,”-72,,(172_17«731‘727(172_’_17”-, ,(le)))
jer\{i}
1) o L)

_T(m & = m FONP
ﬂ(xl,xg,...,x]_l,x],zn’jﬂ,...,zn’i_l,xz,zn’iﬂ,... np)”z

+AIEEDD) = Fi@)l)) + bas) DN+ 1er P+ 1.

By the arguments similar to those of proofs of (3.7)—(3.10), with the help of the
assumptions and (4.6), one can prove that for each i € I" and n > 0,

_ _ 1 _
st — Zill < (1= ann)llzn — Zlli + g (Gill2L) — Zills

TiNi 1) - 1) -
+ 720N gl = F5lly 4 anidi (912 — 7l

)

(4.7) N Jer\{i}
1\g 1 _
+— > UmllZﬁ,])-—ﬂ?jllj) +bn,i)
' jer\{i}

1 1 1
+ anllef s + lent i + 1,

where for each i € T, ¥; is the same as in (3.10). Employing (4.7), for all n > 0 we
deduce that

[(Tnt1,05 Tnt1,2, -+ Tnt1p) — (T1, T2, -0, )|« = Z [Znt1,i — Zills
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P
< S~ an) leni — Filli + n (9125 — @il

=1
TiNi N N
+ 205 Gigllat) = 2l + anads (Vill2L) - @lls
Y ojer\{i}
TiN N
+ 25T Gigllet) = #ll5) + bn)
bojer\{i}

+ay, 1He:512||@- + e+ 1)

(19z‘||2£1,3 — Zil;

ME

(1_an1 ZHmnz xz”z"i_anl(

=1 i=1
TN 1 - L -
+ S oigllan) = E5ll) + D anadi (il — @il
' jer\{i} =1
TiAi 1 - -
+ == oiglleng — Zll) + D bn)
! J'GF\{'} =1

P
1 1
+an12 1 +Z 1P, +Z [

T)\k B
— Qn,l Zchm Zilli + an 191-1-2 ||z — 1|1

T TeA
+ W2t > o)A — zalla o+ (9 +Zﬂ% = Zpllp
kel'\{2} g
p
N TiNi N
+ 3 anigi(9ill2l) -zl + S m,juzéj—xjuj>+2bn,i)
i=1 ' jer\{‘} i=1

1 1 1
+ amz el + Z lent ) + Z [
< (1—any) Z |, — Zilli + an,lez 128 — &l:
=1 =1
P V4 (1) P
+an1 Z an,i(0 Z Hsz‘ = Zj[l;) + ana Z bni
2 = -
1 1 1
+ amz ler1l: + Z lent s + Z [P

=(1- an1)||(a:n1,mn,2,...,zn,p) — (acl,z:g, ces @) ||

1 _ _ _
+an0 (2, 28, 2 D) = (@1, 2, 2

1) 1 _ _
+an,lzan,i¢(9||(z(’ 1 78%7"'7 7(117])3) ('Ilaan"'?xp)H*)
i=1
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P
tant Y b+ anall (e, ey, et
(4.8) ; bz P
1 1
e e e O (1 e )L

where ¢ is a self—mapplng of R defined by (3.24) and 6 is the same as in (3.13).
By following a similar argument as in the proof of (4.8), for j = 1,2,...,q — 2,
we can show that

1 200,20 = @1, )

< (1*Oénj+1)||(l‘n 1L,Tn2,--- ZEnyp)*(J_?l,fQ,...,i‘p)H*
1 1 _ _ _
+an,]+1e||< b, 53* Vo 20ED) = (2, By )|

1 1 i _ _
(4.9) +am+1zam¢ 01, 2030, 20ED) = (31,7, B))

+1 (741
+am+12bm+am+1u< GO U0 el |,
=1
(541 1(j+1 +1 i+1
N e e A Y= Y PR (AR A N SCAS T

and
—1 — _ _
( qg, )727(Lq2 )7"-7Z£L?p1))_(1"171‘27'-"331))”*
< ( anq)”(xn 1,Tn,2y--- 7$n,p) - (Elvi‘Qa s ?jP)H*
+

aanH(mnl,:Eng, ces Znp) — (T1, T2, ., Tp) |«

(4.10) + ang Z ani (0] (Tn,1, Tn2s o Tnp) = (T1, T2, -, Tp) )
i=1

+anq2bm+anqu< D e e,

=1
(e, en® e+ (D D)
Applying (4.9) and (4.10), we conclude that for all n >0,

Iz, 20, 0 280) = @1, 22, )

= (1 - an,Q)”(-'En 1,Tn,2y- - 'a$n,p) - (jlaj% cee 7jp)||*

2 _ _ _
+an0) (22,200, 22) — (@1, 2, B

+ Qs Zan,z-<z><e||<z§i,z§;, o 2) = (21,2, Tp) )

) ) ).

2) 2
+an22bm+anzn< engs e
=1

1(2 2
e, e e )+ P B, @)

7

> (1 - an,Q)”(xn,ly Tn,2y -y xn,p) (fla Z2,... 7xp)H*
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+ an 29[(1 - O‘n3)||($n 1,Tn,2y .- ,l'n,p) - (jl’j%- . .,l‘p)H*

3 _ _
+an39||( D28 2B) = (21,7, B

3) _ _
+an3zanz¢ 9” Z n,1 7Zn27"'7z7(’31)7) - (1'1,1'2,...,1‘1))”*)
i=1

+an32bm+an3u< e e
=1
3 3 3
+EnD, en e O 1 )L

n,

(2) o _
+an22am¢ (0]|( z ,an,...,z,(LQ’I),) —(Z1, T2, ..., Tp)|+)

7

=1
2 2
+an22bnz+an2u( ;1(1)7 ;52)""7 ;g?P))H
1= 1

e, el e+ (P8, )

=(1- Oén72 + an,g(l — Oén’g) )H(xn,l,xn,g, .. ,xn,p) — (Z1, T2, . . ., :Z‘p)||*
3 3 _ _
+ anaangf? (25,28, .. 28) — (21,72, B

V4
+ an20n38 Y anidOll(z], 2, . 28) — (71,8, 7))

5

=1
+an22am¢ 01 (27,25, 22) — (31,59, 7))
=1
P
+ (Qn20n30 + an2) S b+ anzanadll (€, €, L @),
=1
+ s \(e:?f,e:i?;,...,eﬁ?,z)u*+an,zeu< "3, e, )],
2 2 3 3
+ e ;;R, ) O+ an b (B
(2 2)

+ 02 %)H*

IN

< (1 —Qp2+ Oén’g(l — Oén’g)e + Oén7204n73(1 — Oén74)02 =+ ...
q—2

+ [ ans(t = ang-1)0" ) (@n1, Tn2, - Tnp) — (F1, B2, -, Tyl
j—2

(¢—1 - I _
+H04n]9q 2|z (q 1, q ),...,zﬁgpl))—(wl,wg,...,xp)H*
=2

qg—1 P
_ —1 —1 _ _ _
+ [T ens0 Y anio(@ll(=L 1, 2950 28D) — (21,8, . )1
j=2 i=1
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4 Z q 2) q 2) -2 g -
+Han,j9q anz¢ '9” "727(3;) ))—(xl,l’g,...,l‘p)”*)
7j=2

+an2angezam¢ 0l|(=7) 20, 2P) = (21,72, ) )
=1

P
tan2 Y anid(6(2), 20, 2B) — (#1, B2, Ep))

)

q— q— P
+(Hand‘eqig""Han,j9q74+"‘+an72an,39+an,2)zbn,i
j= j= i=1

qg—1
_ 1(g—1 1(g—1 _
+ [T engte 21V, e% ), el ),
q—2
4 1(q—2 /(q—2
+ [ ens0 (el s,en% ™, e,
j=2
/(3 /(2
+- +anzangeu<n17eé£,---, AN e+ anall (€, e, @)
1 1 _
+Ham 013 (en ™, el L enam by,
2 2 _
+Hameq (D e L e,
"3 1m(2
+- +an29||< n%),...,e:ﬁ;’;’)H + (e, e e,
— _ -1 —1 _
+Han,jeq 3H<r531 ) %...,rfgplw*
j=2
q—3
_ -2 —2
+Haw-9q R[S R C b N
3 3 2
a0l e+ 12D )]
< (1—an72+an 2(1 an,g)ﬁ—l—an,gan,g(l—an,@& + ...
+ [ ni(@ = ang-1)0") [(@n1, Tnzs - - Tnp) — (21, T2, ., 3p)s
q—1
+ H n 0971 = )| (Tnts Tnos - s Tnp) — (T1, T2y - -, Tp)|
j=2

+ an,qu(Sﬂn,laSUn,2a cee 7xn,p) - (57175727 cee 71i'p)||*
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p
+ Qng Z an,z(b(eu (‘rn,la Tn,2y---

i=1

p
+ g Y b + angll(end el?

)

i 1

(e, ey, +||<rq%,r<q>,...

)

+Hamaq Zameu (Y, 2l

+Haw9q 4Zam¢> @472, 21957

+ - +an2an3ezanz¢ 9”(
i=1

p
+ ap2 Z an,i¢(9||(z(2 1> 7(L2%7 T

)

q—1 q—2
+ ( H Oémj@qig + H an7j9q74 +

/(q 1)

+Haw9q 3| (el

7j=2

4142 a-2) /
Hanz.]gq He7 9 nQ 7"'76

+ o+ apaan30)|(eF), &)

4 //q2 //(q 2)
+Han]9q [(eni™ ena™) ...

+- +an20u< m%e:;%’, y

B TL,Q"'

y 2

’TL2 P

nl’ n2""

1) 1
+Hozn]9q 3 (el ”q ,ng ).

JEnp) — (T1, T2, ..., Tp)|+)
e D).

SO

2 (3 )
D) (@7 )
1, S’%, . ,27(3])3) — (21, %2, Zp)|[«)

@) —(21,22,..., %

-+ an,Qan,Se + an,Q) Z bn,i
i=1

D),

T

n7p

2 2
LN e+ anzll (€, e, ... e
,era=Dy||,
,ena=2)|,

2
N + 11D, D, er@L,

» Cn.p
g3 (q 1) (a—1)
—|—HCkn7] H v Tpp )H
Jj=2
q—3
_ —2 2
Lot 5 ™ )

J=2

a2l ()

[ 1O B SRR AT
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= (1= ana + ana(l — an3)l + anoan 3(1 — ay4)6?

q—1
+Han] 1_anq 9(1 2+Han]9q )H(xn,laxn,%-"’xn,p)
Jj=2 j=2
_(-fla'er"aj:p)H*

(4.11)

q P
+ H O‘ndeq_2 Z ani @O (Tn,1, Tn, - - Tnp) — (T1, T2, ..., Tp)|[4)

+Ha”09q 3Za Z(b 9” (q l)a nq2 1)?"-727(1({;1))_(jl7j27~-'7ip>”*)

+Han,ﬂq 4Zam¢ @ (=72, 21957 D) — (2, 8y )

+an2an3azanl¢ 9”( Sia n%a"'vzq(qu);) - (flaf%---vjp)n*)
i=1

P
tanz Y anidO(z0) 20 2B) = (@122, ))

)

q q—1 P
+(Han,ﬂq”+Hanﬁq*g*”+an72an739+an72)zbnvi
J , i=1

! /
+Hameq l(en? ents ekl
qfl
-3 1(g—1 1(g—1 1
+ [T a0 2l ens ™, el )]
j=2
- (-2 1(g-2)
—4 (g— 1(g—
+ H an,jeq H(en,ql 7en,qQ Yty 67530 2))H
(3 1(2
+- +an2an30u<nl,eé;,...,eﬁ?gnr +anall(el?, ey, ... e

+Hameq 2)(enD, e D, ey,
1 1 _
+Han,ﬂ3u A LU T

2) 2 —
+Han]9q 4” //q 9 n(g ),...76;;53 2))H*+
7j=2

//3 "3 "2
+ 20| (e1D), n‘J,...,e;;(p)n TN (AR U]

1273
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+Han,ﬂq 21,9,

+Ham9q [ R Cl D) N
j=2
2
+Hameq e el e Dy,
Jj=2
3 2 2
oot 20| (r$), Sl%?---,rg%m*+\\<r£,i,r£,%,.--,r,?,;,)n*.

Using (4.8), (4.11) and in virtue of the fact that 0 < o < H§:1 apj, for all n €
NU {0}, we obtain

H(xn-i-Lla Tn4+1,2y--- 7xn+17p) - ('flﬂ T2, .. 7i’p)H*
<(1- an,l)(xn,hl'n,?a o Tnp) (1,22, . .. 73?17)”*

+ an,le[l —Qp2+ an72(1 — Oén73)9 + angan,?,(l — Ozn74)92 + ...

q
+ [T i = n )02 + [ cngb® ) (@n, 2nz, s 20p) = (@122, Bp)ls
, =2

q p
+ H ;6972 Zan’igb(en(:pn’l, Tnas--osTnp) — (T1, T2y Tp)ls)
+Ha”19q 3Zanz¢ 0” (- 17 7(zq217---72'7(3;1))—(51@27---,%)”*)

+Hameq 4Zam¢ O (=2, 20957 D) — (21, Ty ) )

ot an,zan,gezan,iqs(en(zi?%, A2 — (@1, Ty ) )
=1

) )

P
tan2 Y anid (O, 20, 2 B) — (T1, T2, Ep))

p

q q—1 q—2
+ ( H an 097 + H an 072+ [[ om0 + - + anpom 30 + an2) Y bni

i=1

q—1
! — 1(g—1 Hg—1 _
+Hanﬂq 21D, e+ T g2 e ey ey,

+H0‘n,19q (e, e anpangfll (6, e, D).
7j=2
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2
+anall(€, e, .. el +Hanﬂq 2|(er @, enD, ey,

n,p

1 1 _
+Han,ﬂq B (D, g™ L e,

7j=2
T gt 18,470, )

Jj=2
+- +an2eu< end e i;<§>,...,e:;<p>u +u< e, :;‘?,...,e;;(?)u

1
+Han,ﬂq (G AT +Ha [ S
2 _ 3

+Ham9q N2 a2 D) 4 4 an 8] (r ) B

Jj=2

1 _ _ _

2L ) +an12am¢ B2, 200, 2D = (@1, T2, Tp) 1)

=1

/1 /(1 (1
+an12bm+amu<e, e DY e, )LDy
=1
1 1
+ 11, O

= (1 — Qn1 + Qln, 1(1 — Qp 2)9 + an lan,2(1 - an,3)92 + an,lan,Qan,i’)(l - 0477,74)93 +...

+Han7j( Oénqﬁq 1—|—Hanj H(xnl,xng,...,wmp)—(fl,EQ,...,fp)||*
e e

+ Han]t?q Zamgb Ol (xn1s Tnos - - s Tnp) — (T1, T2, ., Ep)|4)

7j=1

- p
+ H 0172 and (O] (2D, 25 LA EDY (3,5, 7))
7=1 =1
= 3 (-2) _(¢-2)
+Hanngqigzami(ﬁ(ml(znq,l 7zn({2 ) gqp2))_('fla'f%"'ajp)u*)
=1 =1

p
3 3 _ _
ot Q200807 Y anid (0] (2] 20, 25) = (31,72, T
=1

p
+ an,lan,Qe Z an,i(ﬁ(HH(Z?(zQ%? 27(12,%7 AR 2£L2;2)) - (flﬂ Ty ... 7‘%17)“*)

i=1
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P
+ant Y anid(@(=, 20
=1

2Dy —

np (i’l,i’z,...

) )

q q—1 q—2
( H an,jQqA + H awﬂq’Q + H (Jén’j@qi:3 +

+ an10m20 + o 1) me+Hanﬂq len?, e,
=1 7j=1
q—1
_ —1 —1 _
+ [T gt 2,y
j=1
q—2
_ 1g—2 1(g—2 _
+ [T enge 21, e, ey,
j=2
3 3
+~~—|—anlangan392||(egl),652),...,eg?p))H*

2 1 1
+an1anzeu< nl,eiiz’,.--, D) e+ anall (e, ey
+Ham 071 (en D, en@ ... enay],

" 1 " 1
Han,ﬂq 2| (epamt) erem ) ey,
// 2 " 2 —
+Hameq 3 (end) en4) L ena D)),
7j=1
3 3
+~-+an1an292||<eii&>, :;%%..., |l + 16| (el
71
e, e, e ||*+Han 611 (rl), ), .
q—2
_ —1 1 _
+Han,j9q 2) D e,
2 _
+Haw€" [ U Cee Y S
7j=1
3 3
+an1an292u<r @ ,rﬁl,%,..wr;%;w*+an,1eu<r< 2.
1
N e MR OA N

= (1 —Qp1+ an,19 -

3
- an,lan,Qan,SanAe + -

TL727"'

»Zp)ll+)

2
<+ 10 200 30

el

el

//(2)

nl’ n27“‘

6”(2)) ||*

’ n,p

)|

)l

2 2 3
an,lan,Ze + an,lan,Qe - an,lan,Qan,Se + an,lan,2an,30

q—1 q—1
—2 —1
— H awﬂq + H an,jeq
j=1 7j=1

q
o I
Jj=1
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+Han] H xn17$n27"')$n7p)_(jl)jzw"uip)H*

+Han]9q 1Zanl¢ 9” xnl,an,...,:En’p)*(.’El,fg,...,fp)u*)
7j=1

q—1 k

k _ - _
3 L amst* 12“"” 0=, 250, 2By — (@1, Fa, B 1)

k=1j5=1

q t
+> T anso" lzmeHanﬂ e, end, el

t=1 j=1 i=1 j=1

q 1—1

1 |

+ZHOCTLJQZ ” nl’ n2""7e%;l9))H*

=2 j=1

q 1—1 ]
+ 3 [ st M0 D)

1=2 j=1

1 1

+ el e e+ (e, )L

2 2
= (1 —Qp1+ap1 — an,lan,29 + O4n,104n,29 - an,lan,2an,39 + an,lan,Qan,Se

q—1 q—1 q
3 —2 —2 —1
- an,lan,Qan,?)anAe +oe = H an,qu + H an,jeq - H aw@q
+Hanj H xnlymn%-“,xn,p)_("Ebj%"'v'@i’)”*

+ Hanjeq Zanzd) 9” Tn,lsTn,2; - - '7xn,p) - (jlai% cee wip)H*)

J=1 =
q—1 k D

3 [T ens®™ 1> anad@ll (20, 25, .. 28 — (21,72, ., 3) 1)
k=1j=1 i=1
q t

+> T angt' 1me+ZHan]0’ (e, e, e,
t=1 j=1 i=1 j=1

q J—
// ;
+Z n 0 (D, e, ey,
=2 j

q 1— ' '
+ZH g0 Dy )

=2 j=1
1R, eSO+ e )L

nl?n?’ ’ “n,p ,7n27 n,p
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Haweq +Han] M@ty Tnz, s Tnp) = (T1, T2, -« Tp)| 4

+Han39q lzanz¢ 01(Zn1, Tn2s - - s Tnp) — (T1, T2y, Tp)|ls)
7j=1
qg—1 k

+ 3" [ ons0™ 1Zan,¢ 0] (= nl, M,...,z;’f;)—(@1,@,...,@,,)”*)

kl]l

+2Ham9t Ianz+ZHamel el ends .. ekl
t=1 j=1 i=1 j=1
q i—1
+2Ha”7392 1” nl’ n27"'76'/r£5123))H*
=2 j=1
q i—1

+ 3 ] st tilC ri ,rw,...,rm*

1=2 j=1

e e e np>|| N (e MO N

’

( — 07 1 Han] || xnl’xn%"'?xn,p)_(jlvaa"'ajp)H*
j=1
q p
+ Oén,qu_l Z an,i¢(0”(~7;n,la Tn,2y--- 7xn,p) - (Ela ZTo,. .. wfp)H*)
j=1 i=1
qg—1 k
+) [ anst" 1Zam¢ oll(= np nza.--vzé’,“%)—(m,:@zw.@p)\l*)
k=1j=1 i=1
q t
, .
+> [ emit'™ ImeZHamw (e, e, e,
t=1 j=1 i=1 j=1
qg 1—1
"(1 ;
SN | T (AR L)
i=2 j=1
q 1—1 .
+ 3 T ans@ MG D)
i=2 j=1
(1 1 1
+ 1D, DO+ [, W)L
<(1-071(1-0 Ham 1(Znts Ty s Tnp) — (1, T2y - Tp) s
J=1

q
A
q—1c1 _ . n
+077(1-6) jlzll Qn,j G511 — O)a
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q 1—1
/I ;
+ 5 T st Hen?, ey, .. et
=2 j=1
q 1—1 ) '
+ 3 T st M@ D)
=2 j=1
(1
+ ey, n<2>,---,e;;$;>>u*
(4. 12)
1
N [ CI

where for each n € NU {0},

q p
Ap =T om0 "D anidO(Tn1, Tn2,- -, Tnp) = (T1, T2y Tp))

j=1 i=1
q—1 k
_ (k) o _
+ [ anst" Zan@ @10, 20, 2 — (@1, 2, ) )
k=1 j=1
3 [Tonst 1me+ZHanﬂ e e el
t=1 j=1 1=1 j=1
Obviously, (4.3) ensures that for each ¢ € T,
Tim fi(en? end o en Ol = Tim [, D) = 0.

Let us now take for each n > 0,

Gp = H(xnl,xng,... Tnp) — (Z1, T2, ..., Tp) ||,

H A
— q— 1 — — 771
0 1 an,j? n 9‘1_1(1 o 9)@7

q 1—1
| .
en = Lot e enss el
1=2 j=1
q i—1 ‘
+ZHan HZ lH nl’ n2""7r7(17/20)”*
=2 j=1
n(1) (1 1 1
+u< R M [ W SRRt ]
Since limy, oo H( nl, ;Eg, .. ‘7671717)“* = 0 and lim, o0 @p; = limy o0 by = 0 for
1 =12,...,p, we observe that all the conditions of Lemma 4.3 are satisfied and
so Lemma 4.3 and (4.12) imply that lim, oo (2n1, Tn2, .- ZTnp) = (T1, T2, ..., Tp).
Thus, the iterative sequence {(zn1,Zn2,-..,Tnp)}neo generated by Algorithm 4.1
converges strongly to the only element (Z1,Z2,...,Zp) of Fix(Q) N ®sanvrr. The
proof is finished. O

We obtain the following corollary as a direct consequence of the above theorem
immediately.
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Corollary 4.5. Suppose that X;, F;, T;, P, i, ni, gi, hi (1 =1,2,...,p) are the same
as i Theorem 8.7 and all the conditions of Theorem 3.7 hold. Then, the iterative
sequence {(Tn,1,Tn2,. .., Tnp)tory generated by Algorithm 4.2 converges strongly to
the unique solution (Z1,Z2,...,Tp) of the SGNVLI (3.1).
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