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Theorem 2.1 (Necessary Condition for Zero-Derivative Point). Consider a compact
convex set K with non-empty interior in Euclidean space Rn. Take an interior point
x⋆ ∈ K. A continuously differentiable scalar function with Lipschitz derivative
f : K → R has zero derivative ∇f(x⋆) = 0 at x⋆ only if

| f(x)− f(x⋆) |≤ Λ || x− x⋆ ||2

for some Λ ≥ 0 and for every x ∈ K. Note that Λ = Λ(x).

Hence it follows that convergent methods for calculating zero-derivative points of
smooth, generally non-convex functions with Lipschitz derivative have a quadratic
rate of convergence, [2], [6].

This implies an alternative necessary condition for optimality [8], [9]:

Theorem 2.2 (Vacant Point Formulation of Necessary Condition for Local Op-
timality). Consider a continuously differentiable function f(x) in several variables
with Lipschitz derivative on a convex compact set K with nonempty interior. If an
interior point x⋆ of K is a local optimum of f then the ratio function

r(x) =| f(x)− f(x⋆) | / || x− x⋆ ||2

exists on K \ x⋆ with
r(x⋆) = 0/0

undetermined (undefined) at x⋆.

The above condition is called the vacant point of r(x) at x⋆. It was used in the
study of L’Hospital’s rule in [7] and optimality in [9].

Example 2.3. Consider f(x) = x on K = [−1, 1]. Is the point x⋆ = 0 a local
optimum of f? The answer is negative because the ratio r(x) =| x | /x2 is not
bounded on the set K \ 0.

Example 2.4. (Properties of Fixed Points Using Theorem 2.2) Consider f(x) = x3

on K = [−2, 2]. We obtain r(x) =| x |3 /x2 on K \ 0 and r(x⋆) = 0/0 at x⋆ = 0.
Similarly one finds properties of other fixed points y⋆ = 1 and z⋆ = −1.

3. Vacant point description of Banach fixed point in Euclidean space

We note that a contraction map T : Rn → Rn in Euclidean space is a vector
function. Consider the scalar function f(x) =|| T (x) − x ||2 on a convex compact
set K in Rn with an interior point x⋆. Assume that x⋆ is a Banach fixed point,
i.e., T (x⋆) = x⋆. Then f(x⋆) = 0. But f(x) ≥ 0 for every x ∈ K. This means
that x⋆ locally optimizes f on K. If, on the other hand, we assume that f(x) is
continuously differentiable with Lipschitz derivative on K then ∇f(x⋆) = 0. Using
Theorem 2.2 this yields

Theorem 3.1 (Banach Fixed Point Theorem Yields Vacant Points). Consider a
contraction map T : Rn → Rn in Euclidean space and its Banach fixed point x⋆.
Assume that x⋆ is an interior point of a compact convex set K. We also assume that
the scalar function f(x) =|| T (x)−x ||2 is continuously differentiable with Lipschitz
derivative on K. Then the ratio function

R(x) =|| T (x)− x ||2 / || x− x⋆ ||2
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exists on K \x⋆ with undetermined (undefined) R(x⋆) = 0/0 at x⋆. This means that
x⋆ is a vacant point of R(x).

Example 3.2. Contraction mapping can be described implicitly using iterative
methods such as Newton’s method for finding roots of a function g(x), i.e., xk+1 =
xk − g(xk)/g

′(xk). Consider the cubic x3 on K = [−2, 2] starting with x0 = 0.1 and
its fixed point x⋆, xk → x⋆ = 0. The map T is defined by a convergent sequence
{0.1, 0.09, . . .}. Here

R(x) = (x3 − x)2/x2

= (x2 − 1)2

≤ 9,

for x ∈ K \ 0 and R(x⋆) = 0/0 confirming that x⋆ = 0 is a vacant point. Similarly
for vector functions.

4. Conclusion

Consider a contraction map T in a Euclidean space. Banach fixed point theorem
says that T allows a unique fixed point x⋆. If x⋆ is an interior point of a compact
convex set then we give assumptions when x⋆ is a vacant point. The shape of R(x)
appears often in nature such as in pits and seeds of plants, where the pits correspond
to x⋆.
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