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Assume that {xn}∞n=0 ⊂ X, {rn}∞n=0 ⊂ (0,∞) satisfies

∞∑
n=0

rn < ∞

and that

ρ(xn+1, Axn) ≤ rn, n = 0, 1, . . . .

Then the sequence {xn}∞n=1 converges to a fixed point of A in (X, ρ).

Theorem 1.1 found interesting applications and is an important ingredient in
superiorization and perturbation resilience of algorithms. See [2,4,6,7,10,11,17,21]
and the references mentioned therein. The superiorization methodology works by
taking an iterative algorithm, investigating its perturbation resilience, and then
using proactively such perturbations in order to ”force” the perturbed algorithm
to do in addition to its original task something useful. This methodology can be
explained by the following result on convergence of inexact iterates.

Assume that (X, ∥ · ∥) is a Banach space, ρ(x, y) = ∥x − y∥ for all x, y ∈ X, a
mapping A : X → X satisfies (1.1) and that for each x ∈ X, the sequence {Anx}∞n=1

converges in the norm topology. x0 ∈ X, {βk}∞k=0 is a sequence of positive numbers
satisfying

(1.2)
∞∑
k=0

βk < ∞,

{vk}∞k=0 ⊂ X is a norm bounded sequence and that for any integer k ≥ 0,

(1.3) xk+1 = A(xk + βkvk).

Then it follows from Theorem 1.1 that the sequence {xk}∞k=0 converges in the norm
topology of X and its limit is a fixed point of A. In this case the mapping A is called
bounded perturbations resilient (see [6] and Definition 10 of [10]). In other words,
if exact iterates of a nonexpansive mapping converge, then its inexact iterates with
bounded summable perturbations converge too.

Now assume that x0 ∈ X and the sequence {βk}∞k=0 satisfying (1.2) are given
and we need to find an approximate fixed point of A. In order to meet this goal we
construct a sequence {xk}∞k=1 defined by (1.3). Under an appropriate choice of the
bounded sequence {vk}∞k=0, the sequence {xk}∞k=1 possesses some useful property.
For example, the sequence {f(xk)}∞k=1 can be decreasing, where f is a given function.
This superiorization methodology was used in [11] in order to study a constrained
minimization problem with a convex objective function and with a feasible region,
which is the intersection of finitely many closed convex constraint sets. In [11] it
was used a projected normalized subgradient method combined with a dynamic
string-averaging projection method, with variable strings and variable weights, as
a feasibility-seeking algorithm, which was introduced in [8]. It is shown that any
sequence, generated by the superiorized version of a dynamic string-averaging pro-
jection algorithm, not only converges to a feasible point but, additionally, also
either its limit point solves the constrained minimization problem or the sequence
is strictly Fejér monotone with respect to a subset of the solution set. It should be
mentioned that in [11] it was used a projected normalized subgradient method. It
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means that for any iteration a subgradient should be normalized. In [30] we showed
that the main result of [11] is also true without normalization of subgradients if
the objective function is Lipschitz. Of course, this makes our computations much
easier. In the present paper we use the superiorization technique in order to obtain
an analogous result for a game with a finite number of players.

Let (X, ⟨·, ·⟩) be a Hilbert space with a inner product ⟨·, ·⟩ which induces a com-
plete norm ∥ · ∥.

For each x ∈ X and each nonempty set E ⊂ X put

d(x,E) = inf{∥x− y∥ : y ∈ E}.
For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ∥x− y∥ ≤ r}.
In the sequel we use the following well-known proposition [10].

Proposition 1.2. Let D be a nonempty closed convex subset of X. Then for each
x ∈ X there is a unique point PD(x) ∈ D satisfying

∥x− PD(x)∥ = inf{∥x− y∥ : y ∈ D}.
Moreover,

∥PD(x)− PD(y)∥ ≤ ∥x− y∥ for all x, y ∈ X

and for each x ∈ X and each z ∈ D,

⟨z − PD(x), x− PD(x)⟩ ≤ 0

and
∥z − PD(x)∥2 + ∥x− PD(x)∥2 ≤ ∥z − x∥2.

Suppose that C1, . . . , Cm are nonempty closed convex subsets of X where m is a
natural number. Set

C = ∩m
i=1Ci.

We suppose that C ̸= ∅. For i = 1, . . . ,m set

Pi = PCi .

By an index vector, we a mean a vector t = (t1, . . . , tq) such that ti ∈ {1, . . . ,m}
for all i = 1, . . . , q.

For an index vector t = (t1, . . . , tq) set

p(t) = q, P [t] = Ptq · · ·Pt1 .

A finite set Ω of index vectors is called fit if for each i ∈ {1, . . . ,m}, there exists
t = (t1, . . . , tq) ∈ Ω such that ts = i for some s ∈ {1, . . . , q}.

It is easy to see that for each index vector t

∥P [t](x)− P [t](y)∥ ≤ ∥x− y∥ for all x, y ∈ X,

P [t](x) = x for all x ∈ C.

Denote by M the collection of all pairs (Ω, w), where Ω is a fit finite set of index
vectors and

w : Ω → (0,∞) be such that
∑
t∈Ω

w(t) = 1.
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Let (Ω, w) ∈ M. Define

PΩ,w(x) =
∑
t∈Ω

w(t)P [t](x), x ∈ X.

It is easy to see that

∥PΩ,w(x)− PΩ,w(y)∥ ≤ ∥x− y∥ for all x, y ∈ X,

PΩ,w(x) = x for all x ∈ C.

We use the following assumption.
(A) For each ϵ > 0 and each M > 0 there exists δ = δ(ϵ,M) > 0 such that for

each x ∈ B(0,M) satisfying d(x,Ci) ≤ δ, i = 1, . . . ,m the inequality d(x,C) ≤ ϵ
holds.

Note that if the space X is finite-dimensional, then assumption (A) always holds
[10]. It means that if a point is closed to any set Ci, i = 1, . . . ,m, then it is close
to their intersection C.

In the sequel we assume that Assumption (A) holds. Fix a number

∆ ∈ (0,m−1)

and an integer

q̄ ≥ m.

Denote by M∗ the set of all (Ω, w) ∈ M such that

p(t) ≤ q̄ for all t ∈ Ω,

w(t) ≥ ∆ for all t ∈ Ω.

The following result was obtained in [10].

Theorem 1.3. Let {βk}∞k=0 be a sequence of nonnegative numbers such that
∑∞

k=0 βk <
∞, {vk}∞k=0 ⊂ X be a norm bounded sequence, {(Ωi, wi)}∞i=1 ⊂ M∗, x0 ∈ X, and let
for any integer k ≥ 0,

xk+1 = PΩk+1,wk+1
(xk + βkvk).

Then the sequence {xk}∞k=0 converges in the norm topology of X and its limit belongs
to C.

In the proof of this result assumption (A) is used.

2. The main result

Assume that m is a natural number and that for each i = 1, . . . ,m, mi is a
natural number and (Xi, ⟨·, ·⟩) is a Hilbert space equipped with an inner product
⟨·, ·⟩ which induces a complete norm. Assume that for each i ∈ {1, . . . ,m},

Ui ⊂ Xi

is an open convex set,

Ci,j ⊂ Ui, j = 1, . . . ,mi

are nonempty, closed, convex sets,

Ci = ∩mi
j=1Ci,j ̸= ∅
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and that

fi :

m∏
j=1

Uj → R1

is a continuous function which represents the criterion of i-th player. For each
i ∈ {1, . . . ,m}, each x = (x1, . . . , xm) ∈

∏m
j=1Xj and each ξ ∈ Xi set

(x−i, ξ) = y = (y1, . . . , ym) ∈
m∏
j=1

Xj

such that

yj = xj , j ∈ {1, . . . ,m} \ {i}, yi = ξ.

Assume that L ≥ 1 and that for each i ∈ {1, . . . ,m} and each x = (x1, . . . , xm) ∈∏m
j=1 Uj the function

fi(x
−i, ·) : Ui → R1

is convex, satisfies for each y1, y2 ∈ Ui

(2.1) |fi(x−i, y1)− fi(x
−i, y2)| ≤ L∥y1 − y2∥

and has a point of minimum on Ci. For each i ∈ {1, . . . ,m} and each j ∈ {1, . . . ,mi}
set

(2.2) Pi,j = PCi,j : Xi → Ci,j .

Let i ∈ {1, . . . ,m}. By an (i)-index vector, we a mean a vector t = (t1, . . . , tq) such
that tj ∈ {1, . . . ,mi} for all j = 1, . . . , q.

For an (i)-index vector t = (t1, . . . , tq) set

(2.3) p(t) = q, P [t] = Pi,tq · · ·Pi,t1 .

A finite set Ω of (i)-index vectors is called (i)-fit if for each j ∈ {1, . . . ,mi}, there
exists t = (t1, . . . , tq) ∈ Ω such that ts = j for some s ∈ {1, . . . , q}. Denote by M(i)

the collection of all pairs (Ω, w), where Ω is an (i)-fit finite set of index vectors and

(2.4) w : Ω → (0,∞) be such that
∑
t∈Ω

w(t) = 1.

Let (Ω, w) ∈ M(i). Define

(2.5) PΩ,w(x) =
∑
t∈Ω

w(t)P [t](x), x ∈ Xi.

It is easy to see that

(2.6) ∥PΩ,w(x)− PΩ,w(y)∥ ≤ ∥x− y∥ for all x, y ∈ Xi,

(2.7) PΩ,w(x) = x for all x ∈ Ci.

We assume that for each i ∈ {1, . . . ,m} the following assumption holds.
(A) For each ϵ > 0 and each M > 0 there exists δ = δ(ϵ,M) > 0 such that for

each x ∈ Xi satisfying ∥x∥ ≤ M and d(x,Ci,j) ≤ δ, j = 1, . . . ,mi the inequality
d(x,Ci) ≤ ϵ holds.
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Note that if the space X is finite-dimensional, then assumption (A) always holds
[10]. It means that if a point is closed to any set Ci,j , j = 1, . . . ,mi, then it is close
to their intersection Ci.

Let i ∈ {1, . . . ,m}. Fix a number

(2.8) ∆i ∈ (0,m−1
i )

and an integer

(2.9) q̄i ≥ mi.

Denote by M(i)
∗ the set of all (Ω, w) ∈ M(i) such that

(2.10) p(t) ≤ q̄i for all t ∈ Ω,

(2.11) w(t) ≥ ∆i for all t ∈ Ω.

For each x = (x1, . . . , xm) ∈
∏m

j=1 Uj define

(∂fi/∂xi)(x) = {l ∈ Xi :

(2.12) fi(x
−i, ξ)− fi(x) ≥ ⟨l, ξ − xi⟩ for each ξ ∈ Ui}.

Now we describe our algorithm.
Suppose that for each i ∈ {1, . . . ,m},

{(Ωi,k, wi,k)}∞k=1 ⊂ M(i)
∗ ,

N is a natural number, Nk ∈ {1, . . . , N} for each integer k ≥ 0,

(2.13) α
(i)
k,j ∈ (0, 1] for all integers, k ≥ 0 and j ∈ {1, . . . , Nk},

(2.14)

∞∑
k=0

Nk∑
j=1

α
(i)
k,j < ∞,

x0 = (x
(1)
0 , . . . , x

(m)
0 ),

x
(i)
0 ∈ Ui, i = 1, . . . ,m.

Define
{x(i)k }∞k=0 ⊂ Ui, i = 1, . . . ,m,

{l(i)k,j : k = 0, 1, . . . , j ∈ {1, . . . , Nk}} ⊂ Xi, i =, . . . ,m,

{x(i)k,j : k = 0, 1, . . . , j ∈ {1, . . . , Nk}} ⊂ Ui, i = 1, . . . ,m

and
xk,j−1 = (x

(1)
k,j−1, . . . , x

(m)
k,j−1), k = 0, 1, . . . , j = 1, . . . , Nk

as follows: for each integer k ≥ 1 and each i ∈ {1, . . . ,m},

(2.15) x
(i)
k−1,0 = x

(i)
k−1,

and for each integer j ∈ {1, . . . , Nk},

(2.16) l
(i)
k−1,j ∈ (∂fi/∂xi)(xk−1,j−1),

(2.17) x
(i)
k−1,j = x

(i)
k−1,j−1 − α

(i)
k−1,je

(i)
k−1,j ,
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(2.18) x
(i)
k = x

(i)
k,Nk

= PΩi,k,wi,k
(x

(i)
k−1, Nk).

We prove the following result.

Theorem 2.1. For each i ∈ {1, . . . ,m}, the sequence {x(i)k }∞k=0 converges in the

norm topology of Xi to x
(i)
∗ ∈ Ci,

x∗ = (x
(1)
∗ , . . . , x

(m)
∗ )

and at least one of the following assertions holds:
(a)

fi(x
(1)
∗ , . . . , x

(m)
∗ ) ≤ fi(x

−i
∗ , ξ) for each ξ ∈ Ci;

(b) if

fi(x
(1)
∗ , . . . , x

(m)
∗ ) > inf{fi(x−i

∗ , ξ) : ξ ∈ Ci}
and

Ci
min = {ξ ∈ Ci : fi(x

−i
∗ , ξ) ≤ fi(x

−i
∗ , η) for each η ∈ Ci},

then there exist a natural number k0 and ∆0 ∈ (0, 1), such that for each ξ ∈ Ci
min

and each integer k ≥ k0,

∥x(i)k − ξ∥2 ≤ ∥x(i)k−1 − ξ∥2 −∆0

Nk∑
p=1

α
(i)
k−1,p.

3. Auxiliary result

Lemma 3.1. Let i ∈ {1, . . . ,m}, x(j)∗ ∈ Uj, j = 1, . . . ,m, x∗ = (x
(1)
∗ , . . . , x

(m)
∗ ),

(3.1) x̄ ∈ Ci, α ∈ (0, 1], ∆ > 0, x̂ ∈ Ci,

(3.2) fi(x
−i
∗ , x̂) ≥ fi(x

−i
∗ , x̄) + ∆,

(3.3) v ∈ (∂fi/∂xi)(x
−i
∗ , x̂),

(3.4) (Ω, w) ∈ M(i)
∗ ,

(3.5) y − PΩ,w(x̂− αv).

Then
∥x̂− αv − x̄∥2 ≤ ∥x̂− x̄∥2 + α2L2 − 2α∆

and
∥y − x̄∥2 ≤ ∥x̂− x̄∥2 + α2L2 − 2α∆.

Proof. By (2.1) and (3.3),

(3.6) ∥v∥ ≤ L,

(3.7) ⟨v, x̄− x̂⟩ ≤ fi(x
−i
∗ , x̄)− fi(x

−i
∗ , x̂⟩.

By (2.7), (3.4)-(3.7) and the inclusion x̄ ∈ Ci,

∥y − x̄∥2 = ∥PΩ,w(x̂− αx)− x̄∥2

≤ ∥x̂− αv − x̄∥2

= ∥x̂− x̄∥2 + α2∥v∥2 − 2α⟨v, x̂− x̄⟩
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≤ ∥x̂− x̄|2 + α2L2 + 2α(fi(x
−i
∗ , x̄)− fi(x

−i
∗ , x̂))

≤ ∥x− x̂∥2 + α2L2 − 2α∆.

The relation above implies

∥x̂− αv − x̄∥2 ≤ ∥x− x̄∥2 + α2L2 − 2α∆.

Lemma 3.1 is proved. □

4. Proof of Theorem 2.1

Let i ∈ {1, . . . ,m}. By (2.18), for each integer k ≥ 1,

(4.1) x
(i)
k = PΩi,k,wi,k

(x
(i)
k−1, Nk).

By (2.15) and (2.17), for each integer k ≥ 1 and each p ∈ {1, . . . , Nk},

(4.2)

∥x(i)k−1,p − x
(i)
k−1∥ = ∥

p∑
j=1

(x
(i)
k−1,j − x

(i)
k−1,j−1)∥

≤
Nk∑
j=1

∥x(i)k−1,j − x
(i)
k−1,j−1∥

≤
Nk∑
j=1

α
(i)
k−1,j∥l

(i)
k−1,j∥.

By (2.1), (2.16) and (4.2), for each integer k ≥ 1 and each p ∈ {1, . . . , Nk},

(4.3) ∥x(i)k−1,p − x
(i)
k−1∥ ≤ L

Nk∑
j=1

α
(i)
k−1,j

and in particular

(4.4) ∥x(i)k−1,Nk
− x

(i)
k−1∥ ≤ L

Nk∑
j=1

α
(i)
k−1,j .

In view of (2.14) and (4.3),

(4.5)
∞∑
k=1

∥∥x(i)k−1,Nk
− x

(i)
k−1∥ ≤ L

∞∑
k=1

Nk∑
j=1

α
(i)
k−1,j .

Theorem 1.3 and equations (4.1) and (4.5) imply that there exists

(4.6) x
(i)
∗ = lim

k→∞
x
(i)
k ∈ Ci

in the norm topology.

Let x∗ = (x
(1)
∗ , . . . , x

(m)
∗ ). Assume that i ∈ {1, . . . ,m} and that (a) does not hold.

Let

(4.7) x̂ ∈ Ci
min.

There is ∆0 > 0 such that

(4.8) fi(x
(1)
∗ , . . . , x

(m)
∗ ) > fi(x

−i
∗ , x̂) + 4∆0.
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By the continuity of fi and (2.14), (4.3), (4.6)-(4.8), there exists a natural number
k1 such that for each integer k ≥ k1 and each j ∈ {0, . . . , Nk},

(4.9) fi(xk,j) > fi(x
−i
k,j , x̂) + 3∆0

and

(4.10) α
(i)
k−1,jL

2 ≤ ∆0.

Let an integer k ≥ k1+1 and p ∈ {1, . . . , Nk}. Equations (2.16)-(2.18), (4.9), (4.10)
and Lemma 3.1 applied with

x̄ = x̂, x∗ = xk−1,p, v = l
(i)
k−1,p,

x̂ = x
(i)
k−1,p, x̄ = x̂, ∆ = 3∆0, α = α

(i)
k−1,p, y = x

(i)
k,p

imply that

∥x(i)k−1,p − x̂∥2 ≤ ∥x(i)k−1,p−1 − x̂∥2 − 6α
(i)
k−1,p∆0 + (α

(i)
k−1,p)

2L2

(4.11) ≤ ∥x(i)k−1,p−1 − x̂∥2 − α
(i)
k−1,p∆0.

By (2.15), (2.18) and (4.11),

∥x(i)k−1 − x̂∥2 − ∥x(i)k − x̂∥2 ≥ ∥x(i)k−1,0 − x̂∥2 − ∥x(i)k−1,Nk
− x̂∥2

=

Nk∑
p=1

(∥x(i)k−1,p−1 − x̂∥2 − ∥∥x(i)k−1,p − x̂∥2)

≥ ∆0

Nk∑
p=1

α
(i)
k−1,p

and

∥x(i)k − x̂∥2 ≤ ∥x(i)k−1 − x̂∥2 −∆0

Nk∑
p=1

α
(i)
k−1,p.

Theorem 2.1 is proved.
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