


1198 MATTEO ROCCA

function f : X → Y with X and Y finite-dimensional, enjoy well posedness proper-
ties (see. eg. [23]).
When functions f : X → R with X infinite-dimensional are considered, it is known
that convexity does not guarantee well-posedness (see e.g. [6]). In this case it is
interesting to investigate density properties of well-posed optimization problems.
A stronger version of these results leads to find classes of functions for which the
subset of well-posed optimization problems is “big” in the sense of Baire category,
i.e. contains a dense Gδ set (see e.g. [16], [21] and references therein).
The aim of this paper is to extend these results, called genericity results, to vector
optimization problems with objective function f : X → Y where X and Y are
Banach spaces. In our investigation we will focus on the pointwise well-posedness
notion for vector functions due to Dentcheva and Helbig [5].
The outline of the paper is the following. In Section 2 we introduce the notations
and we recall some preliminary notions. In Section 3 we recall some scalar and
vector well-posedness notions. In Section 4 we give results concerning density of
well-posed vector optimization problems, without convexity assumptions. Section
5 is devoted to genericity results under cone-convexity assumptions.

2. Preliminaries

In the following X and Y are Banach spaces. We consider a function f : X → Y
(results in this paper hold true also when f : A ⊆ X → Y where A is closed). Let
C ⊆ Y a closed, convex, pointed cone with nonempty interior, endowing Y with a
partial order in the following way

y1 ≤C y2 ⇐⇒ y2 − y1 ∈ C

y1 <C y2 ⇐⇒ y2 − y1 ∈ intC
(2.1)

For a set A ⊆ X we denote by diamA the diameter of A, i.e.

diamA = sup{∥x− y∥ : x, y ∈ A}

We denote by B the closed unit ball both in X and Y (from the context it will be
clear to which space we refer), by Y ∗ the topological dual space of Y and by C∗ the
positive polar cone of C, i.e.

C∗ = {ξ ∈ Y ∗ : ⟨ξ, c⟩ ≥ 0, ∀c ∈ C}

Consider the vector optimization problem

(X, f) min f(x), x ∈ X.

A point x̄ ∈ X is called an efficient solution for problem (X, f) when

(f(X)− f(x̄)) ∩ (−C) = {0}

We denote by Eff (X, f) the set of all efficient solutions for problem (X, f). A point
x̄ ∈ X is called a weakly efficient solution for problem (X, f) when

(f(X)− f(x̄)) ∩ (−intC) = ∅.
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We denote by WEff (X, f) the set of weakly efficient solutions for problem (X, f).
We recall (see e.g. [3]) that a point x̄ ∈ X is said to be a strictly efficient solution
for problem (X, f) when, for every ε > 0, there exists δ > 0 such that

(2.2) (f(X)− f(x̄)) ∩ (δB − C) ⊆ εB

We denote by StEff(X, f) the set of strictly efficient solutions for problem (X, f).
Clearly StEff(X, f) ⊆ Eff (X, f) ⊆ WEff(X, f).

Definition 2.1 ([20]). A function f : X → Y , is said to be C−convex if ∀x, z ∈ X
and t ∈ [0, 1] it holds

f(tx+ (1− t)z) ∈ tf(x) + (1− t)f(z)− C

Proposition 2.2 ([20]). f : X → Y is C-convex if and only if functions gξ(x) =
⟨ξ, f(x)⟩ are convex for every ξ ∈ C∗.

We recall also that a function f : X → Y is said to be ∗-quasiconvex when
functions gξ(x) = ⟨ξ, f(x)⟩ are quasiconvex for every ξ ∈ C∗ (see e.g. [18]).

For y ∈ Y we denote by LC
f (y) := {x ∈ X : f(x) ∈ y − C} the corresponding

sublevel set. We say that f : X → Y is C-lower semicontinuous (C-lsc for short)
when LC

f (y) is closed for every y ∈ Y [20].
Now, we recall, the notion of oriented distance between a point y ∈ Y and a set
A ⊆ Y , denoted by DA(y).

Definition 2.3. For a set A ⊆ Y the oriented distance is the function DA : Y →
R ∪ {±∞} defined as

(2.3) DA(y) = dA(y)− dY \A(y)

with d∅(y) = +∞.

Function DA was introduced in [12], [13] to analyze the geometry of nonsmooth
optimization problems and obtain necessary optimality conditions. The next result
summarizes some basic properties of function DA.

Proposition 2.4 ([8], [27]). If the set A is nonempty and A ̸= Y , then

1. DA is real valued;
2. DA is 1-Lipschitzian;
3. DA(y) < 0 for every y ∈ intA, DA(y) = 0 for every y ∈ ∂A and DA(y) > 0

for every y ∈ int (Y \A) (∂A denotes the boundary of the set A);
4. if A is closed, then it holds A = {y : DA(y) ≤ 0};
5. if A is convex, then DA is convex;
6. if A is a cone, then DA is positively homogeneouos;
7. if A is a closed convex cone, then DA is nonincreasing with respect to the

ordering relation induced on Y , i.e. the following is true: if y1, y2 ∈ Y
then y1 − y2 ∈ A ⇒ DA(y1) ≤ DA(y2); if A has nonempty interior, then
y1 − y2 ∈ intA ⇒ DA(y1) < DA(y2):

8. It holds

(2.4) DA(y) = max
ξ∈C∗∩∂B

⟨ξ, y⟩
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Theorem 2.5 ([23]). If f : X → Y is C-convex, then for every y ∈ Y , function
D−C(f(x)− y) is convex.

Let x̄ ∈ X. We associate to problem (X, f) the scalar problem

(X,D−C) minD−C(f(x)− f(x̄)) , x ∈ X

The relations of the solutions of this problem with those of problem (X, f) are
investigated in [8], [23], [27]. For the convenience of the reader, we quote the char-
acterization of efficient points and weakly efficient points.

Theorem 2.6 ([8], [23], [27] ). Let f : X → Y .

1. x̄ ∈ WEff (X, f) if and only if x̄ is a solution of problem (X,D−C).
2. If x̄ is the unique solution of problem (X,D−C), then x̄ ∈ Eff (X, f).

3. Well-posedness for scalar and vector optimization problems

3.1. Well-posedness for scalar optimization problems. In this section we re-
call the notion of well-posednsess for functions f : X → R introduced by Tykhonov
[26]. For a complete treatment of this notion and of its generalizations one can refer
to [6], [21]. Clearly in this case problem (X, f) reduces to a scalar minimization
problem.

Definition 3.1. Let f : X → R. Problem (X, f) is said to be Tykhonov well-posed
(T-wp for short) if:

1. there exists a unique x̄ ∈ X such that f(x̄) ≤ f(x), ∀x ∈ X;
2. every sequence xn such that f(xn) → infX f is such that xn → x̄.

Next proposition provides a useful characterization of Tykhonov well-posedness.
It is called the Furi-Vignoli criterion [7].

Proposition 3.2. Let f : X → R be lower semicontinuous (lsc). Then problem
(X, f) is T-wp if and only if infa>infXf diam Lf (a) = 0, where Lf (a) = {x ∈ X :
f(x) ≤ a}.

The following result concerning well-posedness of convex functions defined on a
finite-dimensional space is well-known.

Theorem 3.3 (see e.g. [6]). Let X be finite-dimensional and f : X → R be a convex
function with a unique minimizer. Then problem (X, f) is T-wp.

Theorem 3.3 does not hold when X is infinite-dimensional as the following ex-
ample shows (see e.g. [6]).

Example 3.4. Let X be a separable Hilbert space with orthonormal basis {en, n ∈
N}. Let f(x) =

∑+∞
n=1

⟨x,en⟩2
n2 . Then f is continuous, convex and has x̄ = 0 as

unique minimizer, but problem (X, f) is not T-wp. Indeed the sequence
√
nen is

an unbounded minimizing sequence.

Consider now the space

Γ := {f : X → R : f is convex and lsc} .
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We endow Γ with a distance compatible with the uniform convergenge on bounded
sets (see e.g. [21]). Let θ ∈ X be fixed and for any two functions f, g ∈ Γ and for
every i ∈ N set

∥f − g∥i = sup
∥x−θ∥≤i

|f(x)− g(x)|.

If ∥f − g∥i = ∞ for some i, then set d(f, g) = 1, otherwise

d(f, g) =

∞∑
i=1

2−i ∥f − g∥i
1 + ∥f − g∥i

.

When X is infinite-dimensional, it can be shown that the set of functions f ∈ Γ
such that problem (X, f) is T-wp is “big” in the sense that contains a dense Gδ set
(see e.g. [21])

Theorem 3.5 ([21]). Let X be a Banach space and consider the set Γ, equipped
with the topology of uniform convergence. Then the set of functions f ∈ Γ such that
problem (X, f) is T-wp contains a dense Gδ set .

If the convexity assumption in Γ is dropped, weaker variants of Theorem 3.5 hold,
in which density of the class of functions f ∈ Γ such that problem (X, f) is T-wp is
proven. We recall e.g. the following result [21].

Theorem 3.6. Consider the set

Γ̃ := {f : X → R : f is positive and lsc} .

equipped with the topology of uniform convergence. Then the set of functions f ∈ Γ̃
such that problem (X, f) is T-wp is dense.

Next results (see e.g. [21]) will be useful in the following.

Proposition 3.7. Let f : X → R, assume f has a minimum point x̄ ∈ X and let
g(x) = f(x) + a∥x− x̄∥ with a > 0. Then problem (X, g) is T-wp.

Theorem 3.8. (Ekeland’s Variational Principle) Let f : X → R be a lsc, lower
bounded function. Let ε > 0, r > 0 and x̄ ∈ X be such that f(x̄) < infX f + rε.
Then, there exists x̂ ∈ X enjoying the following properties:

1. ∥x̂− x̄∥ < r;
2. f(x̂) < f(x̄)− ε∥x̄− x̂∥;
3. Problem (X, g) with g(x) = f(x) + ε∥x− x̂∥ is T-wp.

3.2. Well-posedness for vector optimization problems. Several generaliza-
tions of the well-posedness notion to vector optimization problems have been pro-
posed. We refer to [23] for a survey on the topic and a study of the relations among
different well-posedness concepts. In that paper vector well-posedness notions have
been divided in two classes: pointwise and global notions. Notions in the first class
define the well-posedness of a vector problem with respect to a fixed efficient so-
lution, while in the global notions the set of efficient solutions or weakly efficient
solutions is considered as a whole.
In this paper we focus on the notion of well-posedness due to Dentcheva and Hel-
big [5] (DH-well-posedness) which is a pointwise notion according to [23].
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Definition 3.9. Let f : X → R. Problem (X, f) is said to be DH-well-posed
(DH-wp for short) at x̄ ∈ Eff (X, f) if

inf
α>0

diamLC
f (f(x̄) + αc) = 0, ∀c ∈ C,

where LC
f (f(x̄) + αc) = {x ∈ X : f(x) ∈ f(x̄) + αc− C}.

In [23] it has been proven that DH- well-posedness is the strongest among the
pointwise well-posedness notions, that is if problem (X, f) is DH-wp at x̄ ∈ X then it
is well-posed at x̄ according to the other pointwise well-posedness notions known in
the literature. The next result gives a useful characterization of DH–well-posedness.

Theorem 3.10 ([10], [23]). Problem (X, f) is DH-wp at x̄ ∈ Eff (X, f) if and only
if problem (X,D−C) is T-wp.

The following theorem (see [23]) gives a generalization of Theorem 3.3.

Theorem 3.11. Let X and Y be finite-dimensional. Assume f : X → Y is a
C-convex function, x̄ ∈ Eff (X, f) and f−1(f(x̄)) = {x̄}. Then problem (X, f) is
DH-wp at x̄.

DH-well-posedness imposes some restrictions on the set Eff (X, f). Indeed, if
problem (X, f) is DH-well-posed at x̄ ∈ Eff (X, f) then x̄ ∈ StEff (X, f). This prop-
erty is typical of the vector case and shows that most of the vector well-posedness
notions require implicitly stronger properties than the simple good behavior of min-
imizing sequences.

Theorem 3.12 ([23]). If f : X → Y is continuous and problem (X, f) is DH-wp
at x̄ ∈ Eff (X, f), then x̄ ∈ StMin (X, f).

4. Density of DH-well-posed functions

The first result in this section shows that if the set of functions

H = {f : X → Y : Eff (X, f) ̸= ∅}
is endowed with the topology of uniform convergence on bounded sets, then the set
of functions g ∈ H enjoying DH-well-posedness properties is dense in H.

Theorem 4.1. Let f ∈ H. Then, for every x̄ ∈ Eff (X, f), there exists a sequence
of functions fn : X → Y such that fn → f in the uniform convergence on bounded
sets, x̄ ∈ Eff (X, fn) for every n and problem (X, fn) is DH-wp at x̄. Further, if f
is continuous then x̄ ∈ StEff (X, fn) for every n.

Proof. Let k0 ∈ intC be fixed and consider the sequence of functions

fn(x) = f(x) +
1

n
∥x− x̄∥k0

Since x̄ ∈ Eff (X, f), it holds

(4.1) f(x)− f(x̄) ̸∈ −C, ∀x ∈ X, x ̸= x̄

Hence

f(x)− fn(x̄) = f(x)− f(x̄) +
1

n
∥x− x̄∥k0 ̸∈ −C, ∀x ∈ X, x ̸= x̄
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since (4.1) holds. This entails x̄ ∈ Eff (X, fn) ∀n. Since Eff (X, fn) ⊆ WEff (X, fn),
Theorem 2.6 implies

D−C(fn(x)− fn(x̄)) ≥ D−C(fn(x̄)− fn(x̄)) = 0

for every x ∈ X. Now we prove problem (X, fn) is DH-wp at x̄ for every n. From
Theorem 3.10 we know that problem (X, f) is DH-wp at x̄ ∈ X if and only if
the scalar problem (X,D−C) is T-wp. Since intC ̸= ∅, C∗ has a closed convex
weak∗-compact base

(4.2) G = {ξ ∈ C∗ : ⟨ξ, k0⟩ = 1}

(see e.g. [17]). According to [23] there exists a constant α > 0 such that

D−C(fn(x)− f(x̄)) ≥ αmax
ξ∈G

⟨ξ, fn(x)− fn(x̄)⟩

= αmax
ξ∈G

⟨ξ, f(x)− f(x̄) +
1

n
∥x− x̄∥k0⟩

= αmax
ξ∈G

⟨ξ, f(x)− f(x̄)⟩+ 1

n
∥x− x̄∥

For a fixed n, let xk be a minimizing sequence for D−C(fn(x) − fn(x̄)), that is
D−C(fn(xk)− fn(x̄)) → 0. If xk ̸→ x̄ we get

D−C(fn(xk)− fn(x̄)) ≥ αmax
ξ∈G

⟨ξ, f(xk)− f(x̄)⟩+ 1

n
∥xk − x̄∥

≥ inf
k∈N

1

n
∥xk − x̄∥ > 0

which contradicts to xk minimizing sequence for D−C(fn(x) − fn(x̄)) (the last in-
equality follows since x̄ ∈ Eff (X, f) implies maxξ∈G⟨ξ, f(xk)− f(x̄)⟩ ≥ 0 ∀x ∈ X).
Hence xk → x̄ and problem (X, fn) is DH-wp at x̄. Finally, we get the desired
result observing that fn → f in the uniform convergence on bounded sets. If f is
continuous, fn is continuous and apply Theorem 3.12 to conclude the proof. □

To prove the second density result in this section we need the following definition
and the next lemma.

Definition 4.2 ( [10]). We say that f : X → Y is C-bounded from below by
ξ ∈ C∗\{0} when infx∈X⟨ξ, f(x)⟩ > −∞.

Let x̄ ∈ Eff (X, f), consider function

hξ̄(x) = ⟨ξ̄, f(x)⟩

and the associated scalar minimization problem

(X,hξ̄) minhξ̄(x) , x ∈ X

Lemma 4.3. Assume there exists ξ̄ ∈ C∗\{0} such that problem (X,hξ̄) is T-wp.

Then there exists a point x̄ ∈ X such that problem (X, f) is DH-wp at x̄.
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Proof. Without loss of generality let ξ̄ ∈ C∗ ∩ ∂B. Since problem (X,hξ̄) is T-wp
it follows the exixtence of a point x̄ ∈ X such that x̄ is the unique minimum point
for hξ̄ over X and hence

hξ̄(x)− hξ̄(x̄) = ⟨ξ̄, f(x)− f(x̄)⟩ > 0 ∀x ∈ X\{x̄}

Since, by Proposition 2.4

D−C(f(x)− f(x̄)) = max
ξ∈C∗∩∂B

⟨ξ, f(x)− f(x̄)⟩

it follows

(4.3) D−C(f(x)− f(x̄)) ≥ ⟨ξ̄, f(x)− f(x̄)⟩ = hξ̄(x)− hξ̄(x̄) > 0 ∀x ∈ X\{x̄}

By Theorem 2.6, x̄ ∈ Eff (X, f). Assume problem (X, f) is not DH-wp at x̄. Since
x̄ ∈ Eff (X, f) ⊆ WEff(X, f), by Theorem 2.6 it holds

D−C(f(x)− f(x̄)) ≥ 0, ∀x ∈ X

and by Theorem 3.10 problem (X,D−C) is not T-wp. Then there exists a sequence
xn ∈ X such that D−C(f(xn)−f(x̄)) → 0 but xn ̸→ x̄. From D−C(f(xn)−f(x̄)) →
0, by (4.3) it follows hξ̄(xn) → hξ̄(x̄) which contradicts problem (X,hξ̄) is T-wp since
xn ̸→ x̄. □

In the next result we drop the asumption Eff (x, f) ̸= ∅ of Theorem 4.1 and we
show that if the set of functions

H′ = {f : X → Y : ∃ ξ ∈ C∗\{0} such that f is C − bounded from below by ξ}

is endowed with the topology of uniform convergence on bounded sets, then the set
of functions g ∈ H′ enjoying DH-wp properties is dense in H′. We endow H′ with a
distance compatible with the uniform convergenge on bounded sets (see e.g. [21]).
Fix θ ∈ X and for any two functions f, g ∈ H′ and i ∈ N, set

∥f − g∥i = sup
∥x−θ∥≤i

∥f(x)− g(x)∥ .

If ∥f − g∥i = ∞ for some i, then set d(f, g) = 1, otherwise

(4.4) d(f, g) =
∞∑
i=1

2−i ∥f − g∥i
1 + ∥f − g∥i

.

Theorem 4.4. Assume there exists ξ̄ ∈ C∗\{0} such that f : X → Y is C-bounded
from below by ξ̄ and ⟨ξ̄, f(x)⟩ is lsc with respect to x ∈ X. Then, there exists
a sequence of functions fn : X → Y uniformly converging to f on the bounded
sets, such that Eff (X, fn) ̸= ∅ for every n and problem (X, fn) is DH-wp at some
x̄n ∈ Eff (X, fn).

Proof. Let k0 ∈ intC be such that ⟨ξ̄, k0⟩ = 1. Fix σ > 0 and take j so large that
setting

(4.5) g(x) = f(x) +
1

j
∥x− θ∥k0
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it holds d(f, g) < σ
2 . Now set

(4.6) gξ̄(x) = ⟨ξ̄, g(x)⟩ = ⟨ξ̄, f(x)⟩+ 1

j
∥x− θ∥

and observe that ⟨ξ̄, f(x)⟩ is lower bounded by Definition 4.2. Hence, for any δ > 0
we can find M > 0 such that

{x ∈ X : gξ̄(x) ≤ inf
x∈X

gξ̄(x) + δ} ⊆ B(θ,M)

where B(θ,M) is the ball centered at θ with radiusM . Let s =
∑+∞

k=0
1
2k
(k+M)∥k0∥

and apply Theorem 3.8 with ε = σ
2s and arbitrary r to find a point x̄ = x̄σ ∈ X

such that ∥x̄− θ∥ ≤ M , x̄ is the unique minimizer of

hξ̄(x) = ⟨ξ̄, g(x)⟩+ ε∥x− x̄∥

and problem (X,hξ̄) is T-wp. Let

h(x) = g(x) + ε∥x− x̄∥k0

and observe that since x̄ minimizes hξ̄(x), it holds

hξ̄(x)− hξ̄(x̄) = ⟨ξ̄, h(x)− h(x̄)⟩ > 0, ∀x ∈ X\{x̄}

which implies

D−C(h(x)− h(x̄)) = max
ξ∈C∗∩∂B

⟨ξ, h(x)− h(x̄)⟩

≥ ⟨ξ̄, h(x)− h(x̄)⟩ > 0, ∀x ∈ X\{x̄}
Hence, Theorem 2.6 implies x̄ ∈ Eff (X,h). Combining Theorem 2.6 and Lemma
4.3, we obtain that problem

(X,h) minh(x) , x ∈ X

is DH-wp at x̄. Now observe that

∥h(x)− g(x)∥i ≤ ε∥k0∥(i+M)

It follows d(h, g) ≤ εs = σ
2 and then d(f, h) < σ. Take now σ = 1

n , n = 1, 2, . . . and
set x̄n = x̄σ to complete the proof. □

Remark 4.5. The lower semicontinuity hypothesis on ⟨ξ̄, f(x)⟩ is satisfied when
functions in H′ are assumed to be C− lsc. Indeed, in this case all functions ⟨ξ, f(x)⟩
with ξ ∈ C∗ are lsc.

The next result shows that under some hypotheses, the assumptions in Theorem
4.4 are weaker than those in Theorem 4.1. We recall the following result.

Theorem 4.6 (Sion’s Minimax Theorem [24], [25]). Let Z be a compact convex
subset of a linear topological space and W a convex subset of a linear topological
space. Let g be a real-valued function on Z ×W such that

i) g(·, w) is upper semicontinuous and quasi-concave on Z ∀w ∈ W ;
ii) g(z, ·) is lower semicontinuous and quasi-convex on W ∀z ∈ Z.

Then

supz∈Z infw∈W g(z, w) = infw∈W supz∈Zg(z, w)
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Proposition 4.7. Let f : X → Y be ∗-quasiconvex and C-lsc. Then, if Eff (X, f) ̸=
∅, there exists ξ̄ ∈ C∗\{0} such that f is C-bounded from below by ξ̄.

Proof. Assume Eff (X, f) ̸= ∅ and let x̄ ∈ Eff (X, f). Ab absurdo assume that for
every ξ ∈ C∗\{0} it holds

inf
x∈X

⟨ξ, f(x)⟩ = inf
x∈X

⟨ξ, f(x)− f(x̄)⟩ = −∞

Since intC ̸= ∅, C∗ has a weak∗-compact baseG. Function g(ξ, x) = ⟨ξ, f(x)−f(x̄)⟩,
ξ ∈ G, x ∈ X, is linear and continuous with respect to ξ and quasiconvex with
respect to x. Further, since f is C-lsc with respect to x ∈ X, g(ξ, x) is lsc with
respect to x ∈ X. Since x̄ ∈ Eff (X, f), it holds maxξ∈G⟨ξ, f(x)−f(x̄)⟩ ≥ 0 for every
x ∈ X. Apply Sion’s Minimax Theorem to get the following chain of equalities

−∞ = sup
ξ∈G

inf
x∈X

⟨ξ, f(x)− f(x̄)⟩ = inf
x∈X

sup
ξ∈G

⟨ξ, f(x)− f(x̄)⟩

which implies there exists x̃ ∈ X such that supξ∈G⟨ξ, f(x̃) − f(x̄)⟩ < 0. A contra-
diction to x̄ ∈ Eff (X, f). □

Generalized convexity assumptions in the previous reult cannot be removed as
the following example shows.

Example 4.8. Let X = R, Y = R2, C = C∗ = R2
+, f : X → Y defined as

f(x) = (x,−x3) is not ∗-quasiconvex. We have Eff(X, f) = R ̸= ∅ but for any
ξ ∈ C∗\{0} we have infx∈X⟨ξ, f(x)⟩ = −∞. Hence does not exist ξ ∈ C∗\{0} such
that ⟨ξ, f(x)⟩ is bounded from below.

5. Genericity of DH-well-posedness for C-convex functions

In this section we show that the set of C-convex and C-lsc functions f : X → Y
enjoying DH-well-posedness properties contains a dense Gδ set. To prove the main
theorem in this section we need some preliminary results.

Proposition 5.1. Let f : X → R a convex and lsc function, x̄ ∈ X and set

(5.1) g(x) = f(x) + a∥x− x̄∥α, a > 0, α ≥ 1

Then lim∥x∥→+∞ g(x) = +∞. Furthermore g(x) is lower bounded.

Proof. We prove that for every sequence xn ∈ X with ∥xn∥ → +∞ it holds
limn→+∞ g(xn) = +∞. Denote by X∗ the topological dual space of X. Since
f(x) is convex, the set ∂f (x̄) ⊆ X∗ of all subgradients of f at x̄ is nonempty and
by definition of subgradient [9], for every continuous linear functional v ∈ ∂f (x̄) it
holds f(x) ≥ f (x̄) + v(x− x̄), ∀x ∈ X. Hence,

lim
n→+∞

g (xn) = lim
n→+∞

[f (xn) + a ∥xn − x̄∥α]

≥ lim
n→+∞

(f (x̄) + v(xn − x̄) + a ∥xn − x̄∥α)

= lim
n→+∞

[
f(x̄) + ∥xn − x̄∥α

(
v

(
xn − x̄

∥xn − x̄∥

)
∥xn − x̄∥1−α + a

)]
= +∞

(the last equality follows since a continuous linear functional is bounded). To prove
that g(x) is lower bounded observe that for every M ∈ R, there exists k > 0 such
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that g(x) > M for ∥x∥ > k. If we take A = {x ∈ X : ∥x∥ ≤ k}, g(x) is lower
bounded on the bounded set A (see e.g. [21]), which concludes the proof. □

Corollary 5.2. Let f : X → Y be a C-convex, C-lsc function and for ξ ∈ C∗\{0}
and a > 0, α ≥ 1 set

(5.2) gξ(x) = ⟨ξ, f(x)⟩+ a∥x− x0∥α

Then, lim∥x∥→+∞ gξ(x) = +∞ and g is lower bounded.

Proof. The proof follows from Proposition 5.1 since f C-convex and C-lsc implies
g convex and lsc for every ξ ∈ C∗\{0}. □

Let F be the set of C-convex and C-lsc functions f : X → Y . We endow F with
the distance defined by (4.4), compatible with the topology of uniform convergence
on bounded sets.

Theorem 5.3. Let F be the set of C-convex and C-lsc functions endowed with the
topology of uniform convergence on bounded sets and let F̃ be the set of functions
f ∈ F such that Eff (X, f) ̸= ∅ and problem (X, f) is DH-wp at some point x̄ ∈
Eff (X, f). Then F̃ contains a dense Gδ set .

Proof. The initial argument of the proof is inspired to that of Theorem 2.1 in [22].
If we fix k0 ∈ intC, we can find ξ̄ ∈ C∗ such that ⟨ξ̄, k0⟩ = 1. Consider the set

Z = {z : X → R such that z(x) = ⟨ξ̄, f(x)⟩, f ∈ F}

Since f is C-lsc, z is lsc. Endow Z with the topology of uniform convergence on
bounded sets and let S : F → Z be the map S(f) = z, with z defined as before.
Then S is a continuous map. Let

(5.3) An = {z ∈ Z : ∃a > inf
x∈X

z, diamLz(a) <
1

n
}

where Lz(a) = {x ∈ X : z(x) ≤ a}. Observe that Lz(a) are closed convex sets
since z is convex and lsc. It is known (see e.g. [21]) that if zn → z in the uniform
convergence, then diamLzn(a) → diamLz(a), which gives continuity of the diam
function. Hence An is an open set for all n and this implies S−1(An) is an open
set for all n. We claim that the set W of those functions h ∈ F such that problem
(X,S(h)) is T-wp is dense in F . Since

W =
+∞∩
n=1

S−1(An)

(see Proposition 3.2) then it is a Gδ set i.e. the countable intersection of open sets.
Let f ∈ F , σ > 0 and take j so large that setting

(5.4) g(x) = f(x) +
1

j
∥x− θ∥k0

it holds d(f, g) < σ
2 . Setting

(5.5) gξ̄(x) = ⟨ξ̄, g(x)⟩
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we have lim∥x∥→+∞ gξ̄(x) = +∞ and gξ̄ is lower bounded by Corollary 5.2. The
proof now follows along the lines of Theorem 4.4. For any δ > 0 we can find M > 0
such that

{x ∈ X : g(x) ≤ inf
x∈X

g(x) + δ} ⊆ B(θ,M)

Let h : X → Y be defined as

h(x) = g(x) + ε∥x− x̄∥k0

and let s =
∑+∞

k=0
1
2k
(k +M)∥k0∥. Apply Theorem 3.8 with ε = σ

2s and arbitrary r
to find a point x̄ = x̄σ ∈ X such that ∥x̄− θ∥ ≤ M , x̄ is the unique minimizer of

S(h)(x) = ⟨ξ̄, g(x)⟩+ ε∥x− x̄∥
and problem (X,S(h)) is T-wp. Hence h ∈ W . This implies that problem (X,h) is
DH-wp at x̄ by Lemma 4.3. Now observe that

∥h(x)− g(x)∥i ≤ ε∥k0∥(i+M)

It follows d(h, g) ≤ εs = σ
2 and then d(f, h) < σ. Hence F contains a dense Gδ set,

which concludes the proof. □

6. Concluding remarks

We conclude this paper recalling that in Chapter 9 of [28] the author considers
vector minimization problems with objective function mapping from a complete
metric space X to Rn. The space Rn is endowed with the Pareto order induced by
the cone Rn

+, i.e. for y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ Rn, y ≤ z means yi ≤ zi,
i = 1, . . . , n. Denote by A the set of all functions f = (f1, . . . , fn) with fi : X → R,
i = 1, . . . , n, which are continuous and bounded from below, i.e. there exists a ∈ Rn

such that f(x) ≥ a, ∀x ∈ X. In [28] it is shown that when A is endowed with
a natural complete metric, then there exists a dense Gδ subset of A such that for
any element of this subset the set of efficient points of the corresponding vector
optimization problem is nonempty and compact. Similar generic properties are ob-
tained in [28] under lower semicontinuity assumptions.
Furthermore, in the above mentioned fremework, the author of [28] considers se-
quences which are minimizing according to the following definition. We denote by
f(X) the image of X through fiunction f and by clD the closure of the set D ⊆ Rn

and by Min (D) the set of Pareto minimal points of D, with respect to to the order
Rn
+, i.e. y ∈ Min (D) when does not exist any x ∈ D\{y} such that x ≤ y.

Definition 6.1. A sequence xn ∈ X is called minimizing when there exists a
sequence yn ∈ Min (cl f(X)) and a sequence αi ∈ (0,+∞) with αn → 0 and

(6.1) f(xn) ≤ yn + αne

where e = (1, . . . , 1) ∈ Rn.

Theorem 9.14 in [28] shows that there exists a dense Gδ subset F ofA such that for
f ∈ F every minimizing sequence admits a convergent subsequence. Minimizing se-
quences of the type considered in Definition 6.1 are related to global-well-posedness
(see e.g. [1], [2], [14], [15]).
The results in this paper (particularly Theorem 5.3) can be viewed as counterparts
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of the results in [28] under different settings and assumptions.
Indeed, in this paper we consider functions with values in a Banach space Y ordered
by a closed convex pointed cone C with nonepty interior and in Theorem 5.3 we
consider functions enjoing cone-convexity properties. Under these assumptions we
show that both existence of efficient points and pointwise well-posedness are generic
properties.
The mentioned results in [28] suggest that further research could investigate similar
properties considering global well-posedness notions.

References

[1] E. Bednarczuk, Well posedness of vector optimization problems, in J. Jahn and W. Krabs,
Recent Advances and Historical Development of Vector Optimization Problems, Lecture Notes
in Econom. and Math. Systems vol. 294, Springer Verlag, Berlin, 1987, pp. 51–61.

[2] E. Bednarczuk, An approach to well-posedness in vectoroOptimization: consequences to stabil-
ity, Control Cybern. 23 (1994), 107–122.

[3] E. Bednarczuck, A note on lower semicontinuity of minimal points, Nonlinear Anal. 50 (2002),
285–297.

[4] G. P. Crespi, D. Kuroiwa and M. Rocca, Convexity and global well-posedness in set-
optimization, Taiwanese J. Math. 18 (2014), 1897–1908.

[5] D. Dentcheva, D. and S. Helbig, On variational principles, level sets, well-posedness, and
ϵ−solutions in vector optimization, J. Optim. Theory Appl. 89 (1996), 325–349.

[6] A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, Lecture Notes in Math.
1543, Springer Verlag, Berlin, 1993.

[7] M. Furi and A. Vignoli, A characterization of well-posed minimun problems in a complete
metric space, J. Optim. Theory Appl. 5 (1970), 452–461.

[8] I. Ginchev, A. Guerraggio and M. Rocca, From scalar to vector optimization, Appl. Math. 51
(2006), 5–36.

[9] A. Gopfert, H. Riahi, C. Tammer and C. Zalinescu, Variational Methods in Partially ordered
spaces, Springer Verlag, New York, 2003.

[10] C. Gutiérrez, E. Miglierina, E. Molho and V. Novo, Pointwise well-posedness in set optimiza-
tion with cone proper sets, Nonlinear Anal. 75 (2012), 1822–1833.

[11] J. Hadamard, Sur les problemes aux derivees partielles et leur signification physique, Princeton
University Bulletin 13 (1902), 49–5.

[12] J. B. Hiriart-Urruty, New Concepts in Nondifferentiable Programming, Analyse non convexe
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