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In his seminal 1950 paper, Nash proposed four properties that such a bargaining
solution should satisfy: Pareto optimality, scale transformation covariance, symme-
try, and contraction independence.1 Pareto optimality means that it should not
be possible to give one player more without giving the other player less; hence, the
bargaining solution should pick a point on the north-east boundary of the set S (see
again Figure 1). Scale transformation covariance means that the solution should
not depend on the units in which the payoffs are measured: if all first coordinates of
the points of S are multiplied by some positive number α and all second coordinates
by some positive β, then the solution payoffs should be multiplied by these numbers
as well. The usual interpretation is that payoffs are von Neumann-Morgenstern ex-
pected utilities, which represent underlying preferences up to some positive scalar
(e.g., Herstein and Milnor, 1953); and the solution should not depend on this par-
ticular representation. Symmetry means that if S is a symmetric set (i.e., invariant
under reflection with respect to the 45-degree line), thus reflecting symmetry of the
players, then these players should obtain the same payoff. The final property, con-
traction independence, is also the most debated one (e.g., Kalai and Smorodinsky,
1975). It says that if S shrinks to a set S′ but the solution of S is still available in
S′, then it should not change (see Figure 1, right panel).

Nash (1950) showed that there is a unique bargaining solution satisfying these
four properties: it assigns to a bargaining problem S the (unique) point where the
product of the coordinates (often called the ‘Nash product’) is maximized. The
proof of this is both simple and elegant. (See Figure 2.) By scale transformation
covariance we may assume that the point where the product of the coordinates is
maximized is the point (1, 1), and a simple computation then shows that there is a
supporting line of S at (1, 1) with slope −1. In turn, this means that S is a subset
of the triangle T with vertices (0, 0), (2, 0), and (0, 2). To T the solution assigns the
point (1, 1): this follows from symmetry and Pareto optimality. Finally, contraction
independence then implies that (1, 1) is also the point assigned to S by the solution.

Figure 2. Illustration of the proof of Nash (1950)

De Koster et al (1983) showed that if symmetry is dropped from Nash’s prop-
erties, then, for each 0 < α < 1, maximizing the product xα1x

1−α
2 (often called

1In this Introduction and later in the paper, some assumptions we make and names we use may
be different from what is used in related literature, but the differences are not essential.
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‘nonsymmetric Nash product’) also yields a bargaining solution satisfying the re-
maining three properties; for α = 1

2 the (symmetric) Nash bargaining solution is
retrieved. Moreover, first maximizing the payoff for player 1 and next player 2, or
the other way around, results in two more solutions with the remaining three prop-
erties (resulting in the points a and b, respectively, in the left panel of Figure 1).
These are, indeed, all solutions satisfying Pareto optimality, scale transformation
covariance, and contraction independence, for the case of two players.

In the present paper, which is ultimately based on preliminary versions in Peters
(1983, 1992), we extend this to the case of more than two players. We impose the
conditions of Pareto optimality, scale transformation covariance, and contraction
independence on an n-person bargaining solution, and, additionally, require the
solution to be consistent in the following sense. Suppose there are two different
bargaining problems S and S′, and we fix the payoffs for a subset of the players
in S and in S′, according to the solution. Suppose that then in both S and S′,
the possible payoff sets for the remaining players turn out to be identical. Then
consistency requires that these players obtain the same payoffs according to the
solution. For the two-person case, this condition is automatically fulfilled by Pareto
optimality, but it turns out that this is not the case if there are more than two
players.

In our main result (Theorem 2.4), we show that a solution satisfies Pareto opti-
mality, scale transformation covariance, contraction independence, and consistency,
if and only if it is a so-called hierarchical Nash solution. Such a solution works as
follows. There is an ordered partition of the set of players, and for each element of
this partition, called class, there is a positive weight vector of which the coordinates
(corresponding to the players in the class) sum up to one. For a given problem S,
we start with the first class and maximize the product

∏
i x

ωi
i over x ∈ S, where the

players i are from the first class and have weights ωi. On the set of maximizers, we
then repeat the procedure for those players in the second class who have possibly
a positive payoff. And so on and so forth; we stop when there is a unique maxi-
mizer left (which happens after the last class at the latest), which is then the payoff
vector assigned by the solution. In a nutshell, hierarchical Nash solutions arise by
successively maximizing ‘Nash products’.2 The two-person case described earlier,
is a special case. Some illustrative instances of the three-person case are given in
Figure 3.

The rest of the paper is organized as follows. Section 2 presents the model and
main result. Subsections deal with the two-person case, and with the requirement
that every player obtains a positive payoff – both are consequences of our main
result. We also show that the conditions in our main result are logically independent.
Section 3 is completely devoted to the proof of the main result.

2. Model and main result

Let n ∈ N and N = {1, . . . , n}. For x, y ∈ RN , x ≥ y means xi ≥ yi for all
i ∈ N , and x > y means xi > yi for all i ∈ N ; x ≤ y and x < y are defined

2Successively maximizing Nash products also occurs in Peters and Vermeulen (2012), but there
nonconvex bargaining problems are allowed.



1186 HANS PETERS

Figure 3. The solution with class {1, 2, 3} and weights
(1/3, 1/3, 1/3) assigns to both games (left and right) the payoff vec-
tor (2, 2, 2): at this point the product 3

√
x1x2x3 is maximal. The

solution with classes ({1, 2}, {3}) and weights ((1/2, 1/2), 1) assigns
to both games the payoff vector (3, 3, 0). Finally, the solution with
classes ({3}, {1, 2}) assigns the payoff vector (1, 1, 4) to the left hand
game, and the payoff vector (2, 0, 4) to the right hand game

similarly. Further, RN
+ = {x ∈ RN | x ≥ 0} and RN

++ = {x ∈ RN | x > 0}, where
0 = (0, . . . , 0) ∈ RN . A set S ⊆ RN

+ is comprehensive if for all x ∈ S and y ∈ RN
+ ,

y ≤ x implies y ∈ S.
An (n-person) bargaining problem is a comprehensive, convex and compact set

S ⊆ RN
+ containing 0 and some x ∈ RN with x > 0. Elements of N are also called

players, elements of S feasible points, and 0 is called the disagreement point. By BN

we denote the set of all bargaining problems.
For S ∈ BN , P (S) = {x ∈ S | for all y ∈ S, y ≥ x implies y = x} is the Pareto

optimal subset of S. For a ∈ RN
++ and x ∈ RN we write ax = (a1x1, . . . , anxn), and

for S ∈ BN we write aS = {ax | x ∈ S}. Observe that aS ∈ BN .
An (n-person) bargaining solution is a map φ : BN → RN such that φ(S) ∈ S for

every S ∈ BN . We write φ(S) = (φ1(S), . . . , φn(S)) – for every i ∈ N , φi(S) is the
payoff to player i if φ is applied as a bargaining solution.

We are especially interested in four possible properties of φ. The first property
says that it should no be possible to give some player(s) a higher payoff without
lowering the payoff of some other player(s).

Pareto Optimality (PO): φ(S) ∈ P (S) for every S ∈ BN .

The second property can be interpreted as saying that the payoffs should not
depend on the units in which they are measured.

Scale Transformation Covariance (STC): φ(aS) = aφ(S) for every S ∈ BN and
a ∈ RN

++.

The third property says that shrinking the set of feasible points while the assigned
payoffs are still possible, should not affect those payoffs.

Contraction Independence (CI): φ(S) = φ(T ) for all S, T ∈ BN such that S ⊆ T
and φ(T ) ∈ S.
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These three properties basically coincide with three of the four properties im-
posed by Nash (1950). In order to motivate the fourth property we first consider
an example. Some additional notation: for a set X ⊆ RN

+ , conv(X) denotes the
convex hull of X, and comv(X) denotes the comprehensive convex hull of X, i.e.,
comv(X) = {y ∈ RN

+ | y ≤ x for some x ∈ conv(X)}.

Example 2.1. Let n = 4 and let φ : BN → RN be defined as follows. For S ∈ BN ,
let φ4(S) = max{x4 | x ∈ S}. Let Z = {(x1, x2, x3) ∈ R3 | (x1, x2, x3, φ4(S)) ∈ S}.
If z > (0, 0, 0) for some z ∈ Z, then let (φ1S, φ2(S), φ3(S)) maximize the product
3
√
x1x2x3 on Z; otherwise, let (φ1S, φ2(S), φ3(S)) be the lexicographic maximum

point of Z.3 It is not difficult to verify that φ is well-defined and satisfies PO, STC,
and CI.

Now let S′, S′′ ∈ BN be the sets S′ = comv{(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)}
and S′′ = comv{(1, 0, 0, 0), (0, 23 , 0, 1), (0, 0,

2
3 , 1)}. Then φ(S′) = (13 ,

1
3 ,

1
3 , 1) and

φ(S′′) = (0, 23 , 0, 1). If we fix player 1’s payoff at φ1(S
′) = 1

3 in S′, then the
remaining ‘slice’ for the other players is the set

{(x2, x3, x4) | (φ1(S
′), x2, x3, x4) ∈ S′} = comv{(2

3
, 0, 1), (0,

2

3
, 1)}.

Similarly, fixing player 1’s payoff at φ1(S
′′) = 0 in S′′, the remaining ‘slice’ for the

other players is the set

{(x2, x3, x4) | (φ1(S
′′), x2, x3, x4) ∈ S′′} = comv{(2

3
, 0, 1), (0,

2

3
, 1)}.

Thus, given player 1’s payoffs in S′ and S′′, the sets of feasible points for the other
players are equal, but nevertheless, (φ2(S

′), φ3(S
′), φ4(S

′)) = (13 ,
1
3 , 1) ̸= (23 , 0, 1) =

(φ2(S
′′), φ3(S

′′), φ4(S
′′)). ◁

The fourth property excludes a situation as in Example 2.1. In order to define
this property, some additional notation is required. For x ∈ RN , X ⊆ RN , and
∅ ̸= M ⊆ N , we denote xM = (xi)i∈M and XM = {xM | x ∈ X}. For a bargaining
solution φ and S ∈ BN , we write φM (S) instead of φ(S)M .

Consistency (CONS): φM (S) = φM (T ) for all S, T ∈ BN and every ∅ ̸= M ⊊ N
such that {xM | (xM , φN\M (S)) ∈ S} = {xM | (xM , φN\M (T )) ∈ T}.

The consistency property is closely related to stability and consistency conditions
in Lensberg (1987, 1988), Thomson and Lensberg (1989), and Chun (2002), which
are usually defined for a variable population. See also, much earlier, Harsanyi (1959)
and, recently, Thomson (2020).

The key result of this paper is a characterization of all bargaining solutions sat-
isfying PO, STC, CI, and CONS. We start with the following definition.

Definition 2.2. A weighted hierarchy H of N is an ordered (k + 1)-tuple of the
form

H = ⟨N1, . . . , Nk, ω⟩

3Thus, obtained by first maximizing the first coordinate, conditionally on this maximizing the
second coordinate, and conditionally on this maximizing the third coordinate.
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where k ∈ N, (N1, . . . , Nk) is a(n ordered) partition of N , and ω ∈ RN
++ with∑

i∈Nℓ ωi = 1 for every ℓ = 1, . . . , k. The set N ℓ is the ℓth class of H. The family

of all weighted hierarchies of N is denoted by HN .

With each weighted hierarchy of N we will associate a bargaining solution. We
need again some additional notation and an observation. For a set X ⊆ RN and a
function f : X → R,

argmax{f(x) | x ∈ X} = {x ∈ X | f(x) ≥ f(y) for all y ∈ X}.

Let ∅ ̸= M ⊆ N , ω ∈ RN
++, and let X ⊆ RN

+ . Then we denote M(X) = {i ∈ M |
xi > 0 for some x ∈ X}. If X is compact and convex, then it is not hard to verify
that argmax{

∏
i∈M(X) x

ωi
i | x ∈ X} ̸= ∅ and, moreover, that x̂M(X) = ŷM(X) for all

x̂, ŷ in this set.

Definition 2.3. LetH = ⟨N1, . . . , Nk, ω⟩ ∈ HN and S ∈ BN . The sets S0, S1, . . . , Sk

are defined, recursively, as follows. Let S0 = S. For ℓ = 1, . . . , k,

Sℓ =

{
argmax{

∏
i∈Nℓ(Sℓ−1) x

ωℓ
i

i | x ∈ Sℓ−1} if N ℓ(Sℓ−1) ̸= ∅,
Sℓ−1 otherwise.

By the observation preceding Definition 2.3 it follows that for every ℓ = 1, . . . , k
and all x, y ∈ Sℓ we have x∪ℓ

j=1N
j = y∪ℓ

j=1N
j . In particular, this implies that

|Sk| = 1. We define the bargaining solution φH by assigning to each S ∈ BN the
unique element of Sk, and call this a hierarchical Nash solution.

The definition of φH looks technical, but the basic idea is simple. On a given
bargaining problem, we first maximize the product

∏
i∈N1 x

ωi
i . Thus, we obtain the

set S1, and by N2(S1) we denote the subset of the agents in N2 that can have a
positive payoff on S1. We next maximize the product

∏
i∈N2(S1) x

ωi
i on S1, and call

the set of maximizers S2; and so on and so forth, until we end up with a single
point, which is then φH(S). One ‘extreme’ case is where k = 1, hence N = N1,
in which case we only maximize once to obtain a single point. For n = 2 and
ω = (12 ,

1
2), this results in the original Nash (1950) bargaining solution. Another

‘extreme’ case is where each class of H consists of only one player, and then φH(S)
is the lexicographic maximum point of S in the order given by N1, . . . , Nn.

The key result of this paper is the following theorem.

Theorem 2.4. A bargaining solution satisfies PO, STC, CI, and CONS, if and
only if it is a hierarchical Nash solution.

The proof of Theorem 2.4 will be given in Section 3. Here, we continue with a
few consequences of the theorem.

2.1. The case n = 2. Observe that for N = {1, 2}, consistency is implied by Pareto
optimality. Thus, we obtain the following consequence of Theorem 2.4.

Corollary 2.5. A 2-person bargaining solution satisfies PO, STC, and CI, if and
only if if it is a hierarchical Nash solution.



HIERARCHICAL NASH SOLUTIONS 1189

Corollary 2.5 was first proved in de Koster et al (1983). If H = ⟨{1, 2}, (α, 1−α)⟩
for some 0 < α < 1, then for every S ∈ B{1,2}, φH(S) is the feasible point where the
product xα1x

1−α
2 is maximized on S. For α = 1

2 , φ
H is the Nash bargaining solution

(Nash, 1950). For H = ⟨{1}, {2}, 1, 1⟩, φH(S) is obtained by first maximizing x1
and on the set of maximizers maximizing x2. Similarly, for H = ⟨{2}, {1}, 1, 1⟩,
φH(S) is obtained by first maximizing x2 and on the set of maximizers maximizing
x1.

The bargaining solutions φH for H = ⟨{1, 2}, (α, 1 − α)⟩ for some 0 < α < 1,
were first considered in Harsanyi and Selten (1972).

2.2. Strong Individual Rationality. Consider the following possible property of
a bargaining solution φ:

Strong Individual Rationality (SIR): φ(S) > 0 for every S ∈ BN .

This condition reflects that every player should profit from reaching an agreement.
Let H = ⟨N1, . . . , Nk, ω⟩, and consider the bargaining problem S = {x ∈ RN

+ |∑
i∈N xi ≤ 1}. Then, clearly, φH(S) > 0 if and only if k = 1, in which case

φH(S) = ω. Thus, we obtain:

Lemma 2.6. Let H = ⟨N1, . . . , Nk, ω⟩ ∈ HN . Then φH satisfies SIR if and only
if k = 1.

The following lemma shows that adding SIR is quite powerful in our model.

Lemma 2.7. Let bargaining solution φ satisfy SIR, STC, and CI. Then φ satisfies
CONS and PO.

Proof. In order to prove consistency, let S, T , and M be as in its definition,
i.e., S, T ∈ BN and ∅ ̸= M ⊆ N such that {xM | (xM , φN\M (S)) ∈ S} =

{xM | (xM , φN\M (T )) ∈ T}. Let a ∈ RN
++ with ai = 1 for all i ∈ M and

ai = φi(S)/φi(T ) for all i ∈ N \ M (observe that φi(T ) > 0 for all i ∈ N by
SIR). Then {xM | (xM , φN\M (S)) ∈ S} = {xM | (xM , φN\M (S)) ∈ aT}. Define

S′ = {s ∈ RN
+ | s ≤ (xM , φN\M (S)) for some (xM , φN\M (S)) ∈ S} and T ′ = {t ∈

RN
+ | t ≤ (xM , φN\M (S)) for some (xM , φN\M (S)) ∈ aT}, then S′, T ′ ∈ BN and

S′ = T ′. By CI applied twice, φ(S) = φ(S′) = φ(T ′) = φ(aT ), hence by STI,
φM (S) = φM (aT ) = φM (T ). This proves consistency.

For PO, suppose that S ∈ BN and φ(S) /∈ P (S). By SIR, φ(S) > 0. By CI,
φ((α, . . . , α)S) = φ(S) where 0 < α < 1 such that φ(S) ∈ P ((α, . . . , α)S). Hence,
by STC, φ(S) = (α, . . . , α)φ(S), a contradiction. This proves PO. □

The fact that PO is implied by SIR, STC, and CI, was already observed by Roth
(1977). Theorem 2.4 and Lemmas 2.6 and 2.7 imply the following result (see also
Theorem 3 in Roth, 1979).

Corollary 2.8. A bargaining solution φ satisfies SIR, STC, and CI, if and only if
there is an H = ⟨N,ω⟩ ∈ HN such that φ = φH .
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2.3. Independence of the properties. We show that none of the four properties
in Theorem 2.4 can be left out, by means of examples.

Example 2.9. The bargaining solution φ defined by φ(S) = 0 for every S ∈ BN

satisfies STC, CI, and CONS, but not PO. ◁
Example 2.10. The lexicographic egalitarian bargaining solution φ satisfies PO,
CI, and CONS, but not STC. This solution is obtained as folllows. First take the
maximal point of S ∈ BN with equal coordinates; if this is not Pareto optimal then
continue with those coordinates for which equal increase is still possible and take
again the maximal point of S for which these coordinates are equal; repeat this
procedure until a Pareto optimal point is reached. ◁
Example 2.11. Let N = {1, 2, 3} and define the bargaining solution φ as fol-
lows. For S ∈ BN such that aS = comv{(32 ,

3
2 , 0), (1, 1, 1)} for some a ∈ RN

++

let φ(S) = (a−1
1 , a−1

2 , a−1
3 )(54 ,

5
4 ,

1
2). For every other S ∈ BN let φ(S) = φH(S),

where H = ⟨N, (13 ,
1
3 ,

1
3)⟩. Then φ satisfies PO, STC, and CONS. Take S =

comv{(3, 0, 0), (0, 3, 0), (0, 0, 3)}, then φ(S) = (1, 1, 1), but φ(comv{(32 ,
3
2 , 0), (1, 1, 1)}) =

(54 ,
5
4 ,

1
2), which is a violation of CI. (This example is based on Lensberg (1988), p.

339.) ◁
Example 2.12. Example 2.1 defines a bargaining solution which satisfies PO, STC,
and CI, but not CONS. In this example, n = 4. An analogous example is easily
defined for any n > 4. For n = 2, Corollary 2.5 implies that CONS is implied by the
other three properties. For the remaining case, n = 3, it is still an open problem if
CONS is implied by PO, STC, and CI. ◁

3. Proof of Theorem 2.4

We first introduce some additional notation. Let ∅ ̸= L ⊆ M ⊆ N . By eL ∈ RM

we denote the vector with eLi = 1 if i ∈ L and eLi = 0 if i ∈ M \ L. Instead of

e{i} we write ei, so this is the i-th unit vector in RM . For x ∈ RL, we denote by
OM (x) ∈ RM the vector with OM (x)i = xi if i ∈ L and OM (x)i = 0 if i ∈ M \L; and
by EM (x) ∈ RM the vector with EM (x)i = xi if i ∈ L and EM (x)i = 1 if i ∈ M \L.
For S ⊆ RL, OM (S) = {OM (x) | x ∈ S} and EM (S) = {EM (x) | x ∈ S}. For
X ⊆ RM and y ∈ RM , X + y = y +X = {x+ y | x ∈ X}.

We start with the if-direction of the theorem.

Proposition 3.1. Let H = ⟨N1, . . . , Nk, ω⟩ ∈ HN . Then φH satisfies PO, STC,
CI, and CONS.

Proof. The proof of PO, STC, and CI of φH is left to the reader. In order to prove
consistency of φH , let S, T ∈ BN and ∅ ̸= M ⊊ N such that {xM | (xM , φH

L (S)) ∈
S} = {xM | (xM , φH

L (T )) ∈ T}, where L = N \M . We have to show that

(3.1) φH
M (S) = φH

M (T ).

Let Z = ON ({xM | (xM , φH
L (S)) ∈ S}) = ON ({xM | (xM , φH

L (T )) ∈ T}), i.e., Z is
the ‘slice’ for the players of M at the solution outcome, embedded in RN by adding
zeros for the players outside M . By the definition of φH we may assume without
loss of generality that there is an (xM , 0L) ∈ Z with xM > 0 (otherwise restrict
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attention to {x ∈ S | xi = 0} and {x ∈ T | xi = 0} for those i ∈ M with zi = 0 for
all z ∈ Z).

Let L1 = {i ∈ L | φH
i (S) = 0} and L2 = L\L1. Similarly, L3 = {i ∈ L | φH

i (T ) =
0} and L4 = L \ L3. By STC we may assume:

(3.2) L2 = {i ∈ L | φH
i (S) = 1} and L4 = {i ∈ L | φH

i (T ) = 1}.

Now let V = comv((Z ∪ {αeL1}) + eL
2
) and W = comv((Z ∪ {βeL3}) + eL

4
) where

eL
1
, . . . , eL

4 ∈ RN , and α, β > 0 are chosen such that αeL
1 ∈ S and βeL

3 ∈ T . Then,

by (3.2), eL
2
= ON (φH

L2(S)) and eL
4
= ON (φH

L4(T )), so that V ⊆ S and W ⊆ T .

Since V,W ∈ BN , φH(S) ∈ V , and φH(T ) ∈ W , CI of φH implies φH(S) = φH(V )
and φH(T ) = φH(W ). Since both φH(V ) and φH(W ) only depend on Z, we have
that φH

M (V ) = φH
M (W ), and hence (3.1) follows. □

In order to prove the converse of Proposition 3.1, i.e., the only-if direction of
Theorem 2.4, we need some more definitions and lemmas.

For ∅ ̸= M ⊆ N , denote ∆M =comv{ei ∈ RM | i ∈ M} and ∆̄M =comv(EN (∆M )).
The set ∆̄M is called the standard bargaining game for M ⊆ N . As we will see,
a bargaining solution with the four properties in Theorem 2.4 is completely deter-
mined by the outcomes it assigns to standard bargaining games. Before formally
defining what this means, we consider a few examples.

If n = 3 and φ(∆N ) = (12 ,
1
4 ,

1
4), then we will show that φ = φH with

H = ⟨N, (12 ,
1
4 ,

1
4)⟩. If n = 3 and φ(∆N ) = (12 ,

1
2 , 0), then we will show that

φ = φH with H = ⟨{1, 2}, {3}, (12 ,
1
2 , 1)⟩. Similarly, if n = 4, φ(∆N ) =

(12 , 0,
1
2 , 0), and φ(∆̄{2,4}) = (1, 14 , 1,

3
4), then we will show that φ = φH with

H = ⟨{1, 3}, {2, 4}, (12 ,
1
4 ,

1
2 ,

3
4)⟩.

Formally, we have the following definition.

Definition 3.2. Let φ be a bargaining solution and let H = ⟨N1, . . . , Nk, ω⟩ ∈ HN

be a weighted hierarchy. Then φ determines H (on standard bargaining games) if
φ(∆N ) = ON (ωN1) and for each ℓ = 2, . . . , n,

φ(∆̄∪k
j=ℓN

j

) = e∪
ℓ−1
j=1N

j

+ON (ωNℓ).

The following auxiliary result is standard, but we outline the proof for complete-
ness.

Lemma 3.3. Let ∅ ̸= M ⊆ N , let S be a nonempty compact and convex subset of
RM
+ such that x > 0 for some x ∈ S, and let ω ∈ RM

++. Then the product
∏

i∈M xωi
i

has a unique maximizer on S. Moreover, z ∈ S maximizes this product if and only
if the hyperplane with equation ∑

i∈M

ωixi
zi

=
∑
i∈M

ωizi
zi

supports S at z.

Proof. By convexity and compactness of S and strict quasiconcavity of the function
f(x) =

∏
i∈M xωi

i , f has a unique maximum point z > 0 on S. By the Minkowsky
separation theorem (Rockafellar, 1970, Section 11) the set S and the upper contour
set {x ∈ RM | f(x) ≥ f(z)} are separated by a unique hyperplane in RM , the
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equation of which, i.e., the formula in the lemma, follows by considering the gradient
of the function f at z. □

Using this result we obtain the next lemma.

Lemma 3.4. (i) For every H ∈ HN , φH determines H. (ii) If a bargaining solution
determines H and H ′ in HN , then H = H ′. (iii) Every Pareto optimal bargaining
solution determines some H ∈ HN .

Proof. (i) follows from repeated application of Lemma 3.3. (ii) follows directly from
Definition 3.2. To show (iii), let φ be a Pareto optimal bargaining solution. We
construct H as follows. Let N1 = {i ∈ N | φi(∆

N ) > 0}, and, for i ∈ N1, let

ωi = φi(∆
N ). If N ̸= N1, let N2 = {i ∈ N \N1 | φi(∆̄

N\N1
) > 0}, and for i ∈ N2,

let ωi = φi(∆̄
N\N1

); and so on and so forth. □

We now consider the two-player case. In fact, the following lemma is the only-if
direction of Corollary 2.5.

Lemma 3.5. Let N = {1, 2} and let bargaining solution φ satisfy PO, STC, and
CI. Then φ = φH for some H ∈ HN .

Proof. Let H be the unique weighted hierarchy determined by φ (cf. Lemma 3.4,
(ii) and (iii)).

IfH is of the form ⟨N,ω⟩ then for S ∈ BN , let z ∈ S maximize the product xω1
1 xω2

2
on S. Then z > 0 and by STC we may assume z = (ω1, ω2). Then by Lemma 3.3,

the fact that φ(∆{1,2}) = (ω1, ω2), and CI, it follows that φ(S) = z = φH(S).

If H = ⟨{1}, {2}, (1, 1)⟩, then φ(∆{1,2}) = (1, 0). Let S ∈ B{1,2} and suppose that
φ(S) ̸= φH(S). We derive a contradiction. Note that φH(S) is the point of S with
maximal second coordinate among the points with maximal first coordinate. By PO,
this implies that φ1(S) < φH

1 (S). In view of STC, it is without loss of generality to
assume that φH

1 (S) = 1 and φ1(S)+φ2(S) = 1. LetW = comv{(φH
1 (S), 0), φ(S)} =

comv{(1, 0), φ(S)}. Then W ∈ B, W ⊆ S, and φ(S) ∈ W . So by CI, φ(W ) = φ(S).

On the other hand, W ⊆ ∆{1,2} and φ(∆{1,2}) = (1, 0) ∈ W imply by CI that
φ(W ) = (1, 0) ̸= φ(S), which is the desired contradiction.

By observing that the case H = ⟨{2}, {1}, (1, 1)⟩ is similar, the proof is complete.
□

The proof of the only-if direction of Theorem 2.4 will be based on Lemma 3.5
and the following induction hypothesis, in which we consider bargaining solutions
and weighted hierarchies for subsets of N :

For all 2 ≤ m < n, for allM ⊆ N with |M | = m and for allH ∈ HM ,
if the bargaining solution φ : BM → RM satisfies PO, STC, CI, and
CONS, and determines H ∈ HM , then φ = φH . (*)

For an n-person bargaining solution we define solutions for subsets of the player
set N , as follows.

Definition 3.6. Let φ : BN → RN be a bargaining solution and let ∅ ̸= M ⊆
N . Then Mφ : BM → RM is the bargaining solution defined by Mφ(S) =
φM (comv(EN (S))) for every S ∈ BM .
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The solutions Mφ inherit the relevant properties of φ;

Lemma 3.7. Let the bargaining solution φ : BN → RN satisfy PO, STC, CI, and
CONS, and let ∅ ̸= M ⊆ N . Then also Mφ has these properties.

Proof. We only show that Mφ is consistent, and leave verification of the other
properties to the reader. Let S, T ∈ BM and ∅ ̸= L ⊊ M such that {x ∈ RL |
(x,MφM\L(S)) ∈ S} = {x ∈ RL | (x,MφM\L(T )) ∈ T}. This implies {x ∈ RL |
(x, φM\L(comv(EN (S)))) ∈ S} = {x ∈ RL | (x, φM\L(comv(EN (T )))) ∈ T}, and
therefore we obtain

{x ∈ RL | (x, φN\L(comv(EN (S)))) ∈ comv(EN (S))} =

{x ∈ RL | (x, φN\L(comv(EN (T )))) ∈ comv(EN (T ))}.

Consistency of φ now implies that φi(comv(EN (S))) = φi(comv(EN (T ))) for all
i ∈ L, and thus Mφi(S) = Mφi(T ) for all i ∈ L, as was to be proved. □

The next lemma shows that the induced solution Mφ determines a corresponding
weighted hierarchy.

Lemma 3.8. Let the bargaining solution φ : BN → RN determine ⟨N1, . . . , Nk, ω⟩ ∈
HN , where k ≥ 2. Let M = N\N1. Then Mφ determines ⟨N2, . . . , Nk, ωM ⟩ ∈ HM .

Proof. Mφ(∆M ) = φM (∆̄M ) = OM (ωN2), Mφ(comv(EM (∆M\N2
))) =

φM (∆̄M\N2
) = φM (∆̄N\(N1∪N2)) = eN

2
+OM (ωN3); and so on and so forth. □

The following lemma treats the case in which the first class of a weighted hierarchy
consists of exactly one player.

Lemma 3.9. Let the bargaining solution φ : BN → RN satisfy PO, STC, CI, and
CONS, and let φ determine H = ⟨N1, . . . , Nk, ω⟩ ∈ HN with |N1| = 1. Let the
induction hypothesis (*) hold. Then φ = φH .

Proof. Without loss of generality let N1 = {1}. Let S ∈ BN .
We first prove that φ1(S) = φH

1 (S). In order to prove this, write u1 = φH
1 (S) =

max{x1 | x ∈ S} and suppose to the contrary that φ(S) = z ∈ P (S) with z1 < u1.
Take β > 0 large enough such that z ∈ V = comv{u1e1, βei ∈ RN | i = 2, . . . , n},
which is possible since z1 < u1. By STC and φ(∆N ) = e1, φ(V ) = u1e

1. By CI,
φ(V ∩ S) = u1e

1 as well as φ(V ∩ S) = z, a contradiction. In fact, we have proved:

(3.3) φ1(T ) = φH
1 (T ) for every T ∈ BN .

Next, let M = N \ {1} and let L = {i ∈ M | there is an x ∈ RM such that
(φ1(S), x) ∈ S and xi > 0}. Note that φi(S) = 0 for all i ∈ M \ L and that
in view of (3.3), {x ∈ RL | (x, φN\L(S)) ∈ S} = {x ∈ RL | (x, φN\L(comv

(eM\L + S))) ∈ comv(eM\L + S)}, so that by CONS, φL(S, d) = φL(e
M\L + S).

Consequently, it is without loss of generality to assume that M = L. In view of
STC we may assume that u1 = 1, so by CI: φ(S) = φ(comv(EN (W ))), where
W = {x ∈ RM | (φ1(S), x) ∈ S}. Hence, φM (S) = Mφ(W ) = φH

M (S), where the
last equality follows Lemmas 3.7 and 3.8 and the induction hypothesis (*). So we
have proved that φi(S) = φH

i (S) for all i ∈ N . □
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The next case is where the first class of a weighted hierarchy contains more than
one but not all players.

Lemma 3.10. Let the bargaining solution φ : BN → RN satisfy PO, STC, CI, and
CONS, and let φ determine ⟨N1, . . . , Nk, ω⟩ ∈ HN with 1 < |N1| < n. Let S ∈ BN

and z = φ(S). Then
∏

i∈N1 z
ωi
i ≥

∏
i∈N1 x

ωi
i for all x ∈ S.

Proof. Without loss of generality let N1 = {1, . . . , s} with 1 < s < n. Let M =
N \ N1 and q ∈ S with qM = 0 and

∏s
i=1 q

ωi
i ≥

∏s
i=1 x

ωi
i for all x ∈ S with

xM = 0. Lemma 3.3 implies that there is a hyperplane Y in RN1
supporting

{xN1 ∈ RN1 | x ∈ S, xM = 0} at qN1 with equation
∑s

i=1 ωiq
−1
i xi = 1. In view of

STC we may assume that qi = ωi for i = 1, . . . , s. Let z̄ = ON (zN1). We distinguish
three cases:

Case (i). zN1 = qN1 (= ωN1). Then
∏s

i=1 z
ωi
i =

∏s
i=1 q

ωi
i ≥

∏s
i=1 x

ωi
i for all x ∈ S

with xM = 0, hence
∏s

i=1 z
ωi
i ≥

∏s
i=1 x

ωi
i for all x ∈ S. So in this case the conclusion

of the lemma holds.

Case (ii). zN1 /∈ Y . Then zN1 is in the interior of ∆N1
, so z̄ is in the relative

interior of ON (∆N1
). Therefore there is δ > 0 large enough such that z ∈ V ,

where V = comv(ON (∆N1
) ∪ {δei | i ∈ M}) ∈ BN . By STC and the equalities

φ(∆N ) = ON (ωN1) = q, we have φ(V ) = q. Then by CI, φ(V ∩ S) = q and
φ(V ∩ S) = z. In particular this implies qN1 = zN1 and zN1 ∈ Y . From this
contradiction we conclude that case (ii) cannot occur.

Case (iii). zN1 ∈ Y , zN1 ̸= qN1 . In this case, let y ∈ S with yM = 0 and

yN1 = 1
2(zN1 + qN1). Then

∏s
i=1 y

ωi
i = max{

∏s
i=1 x

ωi
i | x ∈ a∆N1} where a ∈ RN1

++

is defined by ai = yiq
−1
i for i = 1, . . . , s. An elementary calculation then shows that

zN1 is in the interior of a∆N1
, so that z̄ is in the relative interior of ON (a∆N1

),
which is a case analogous to case (ii) above. Hence, also case (iii) cannot occur, and
the proof is complete. □

We can now prove the only-if direction of Theorem 2.4, that is, the following
proposition.

Proposition 3.11. Let bargaining solution φ : BN → RN satisfy PO, STC, CI,
and CONS. Then there is a weighted hierarchy H ∈ HN such that φ = φH .

Proof. Let H = ⟨N1, . . . , Nk⟩ ∈ HN be the weighted hierarchy determined by φ,
cf. Lemma 3.4. Let S ∈ BN .

If k = 1, then by STC we may assume without loss of generality that φH(S) = ω.
From Lemma 3.3 it follows that the hyperplane with equation

∑
i∈N xi = 1 supports

S at ω. Therefore, S ⊆ ∆N . Furthermore, since φ determines H, φ(∆N ) = ω. So
CI implies φ(S) = ω and, hence, φ(S) = φH(S). The rest of the proof is based on
this case and the induction hypothesis (*).

If k > 1 and |N1| = 1, then φ(S) = φH(S) by Lemma 3.9.
Finally, let k > 1 and |N1| > 1. Lemma 3.10 implies that φN1(S) = φH

N1(S). By
an argument similar to the one used in the proof of Lemma 3.9, which was based on
consistency, we may without loss of generality assume that there is (xM , φN1(S)) ∈
S with xi > 0 for every i ∈ M = N \ N1. In view of STC, we may further
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assume that φN1(S) = eN
1 ∈ RN1

. Hence, by CI, φ(S) = φ(comv(EN ({x ∈
RM | (xM , φN1(S)) ∈ S}))), so φM (S) = Mφ({x ∈ RM | (xM , φ(S)) ∈ S}) =
φH
N1(S)M , where the last equality follows from Lemmas 3.7 and 3.8 and the induction

hypothesis (*). We conclude that φ(S) = φH(S). □
Theorem 2.4 now follows from Propositions 3.1 and 3.11.
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