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efficiency of an efficient DMU0 is preserved, appeared in Neralić [18]. More details
on sensitivity in data envelopment analysis for simultaneous perturbations of all
data for the additive model can be found in Neralić [22] and for the CCR model
in Neralić [21]. Another approach to sensitivity analysis of DEA models for the
simultaneous changes in all the data for the percentage change case and for the
absolute change case was studied in Seiford and Zhu [26].

Pareto-Koopmans efficiency in Data Envelopment Analysis can be defined in the
following way: “A DMU is fully efficient if and only if it is not possible to improve
any input or output without worsening some other input or output”. (See Definition
3.3 in the book [14], p. 45, which recognizes the contributions of the economists
Vilfredo Paretto and Tjalling Koopmans.) “Improving” in the definition means
decrease for inputs and increase for outputs, and “worsening” means increase for
inputs and decrease for outputs.

There is also the other definition of a Pareto-efficient (minimum) point for a finite
set of functions. Namely, a Pareto-efficient (or Pareto-Koopmans efficient) point of
functions g1(x), g2(x), . . . , gk(x) is a point x⋆ such that there is no other point x in
the domain of these functions such that

gk(x) ≤ gk(x
⋆), k = 1, 2, . . . , p

with at least one strict inequality. Charnes and Cooper [2], Chapter IX, showed that
x⋆ is a Pareto-efficient if and only if x⋆ is an optimal solution to the mathematical
(goal) program

min
x

p∑
k=1

gk(x), gk(x) ≤ gk(x
⋆), k = 1, 2, . . . , p.

The major DEA models are really the Charnes-Cooper test for vector optimality
of a multiple-objective program. For efficient production we wish to maximize on
outputs while minimizing on inputs. Details on testing an empirical input-output
point X0, Y0 for Pareto-Koopmans efficiency in the case of the additive model can
be found in Charnes et al. [4], pp. 96-97.

Efficient points are very important in multi-objective optimization (see, for exam-
ple, Wendell and Lee [27]). Namely, for a subset X of a finite dimensional Euclidean
space and p functions gk : X → R, k = 1, 2, . . . , p, we consider vector minimization
problem

min g(x), x ∈ X

with g(x) = [g1(x) g2(x) . . . gp(x)]
T . Let an auxiliary problem P (x̄) be

h(x̄) ≡ inf

p∑
k=1

gk(x), g(x) ≤ g(x̄), x ∈ X

where x̄ is any point in X. It can be shown that x0 ∈ X is efficient if and only
if h(x0) =

∑p
k=1 gk(x

0). Let x⋆ ∈ X be an optimal solution to auxiliary problem
P (x̄). Then x⋆ is efficient and g(x⋆) ≤ g(x̄), with at least one strong inequality sign
<. For details, see Theorem 1 and Theorem 2 with proofs in Wendell and Lee [27],
pp. 406-407.
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The paper is organized as follows. Sensitivity analysis of the proportionate change
of outputs and/or of inputs in the additive model is studied in Section 2. Subsection
2.1 contains some preliminaries for the additive model. The proportionate change
of outputs, of inputs and of outputs and inputs simultaneously is considered in
Subsections 2.2, 2.3 and 2.4 respectively.

The case with different coefficients of proportionality for outputs and inputs is
studied in Subsection 2.5 and the case of discretionary outputs and/or inputs is
considered in Subsection 2.6. Similar cases for the CCR model are studied in Sec-
tion 3. Some preliminaries for the CCR model are contained in Subsection 3.1.
Simultaneous proportionate changes of inputs and of outputs are considered for the
CCR model in Subsection 3.2. Subsection 3.3 contains a sensitivity analysis of the
proportionate change of a subset of inputs and/or of outputs. Conclusions and some
suggestions for further research are presented in the last section.

2. Sensitivity analysis of the proportionate change of outputs
and/or of inputs in the Additive model

2.1. Preliminaries. Let us suppose that there are nDecision Making Units (DMUs)
with m inputs and s outputs. Let xij be the observed amount of the ith type
of input of the jth DMU ( xij > 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n) and let yrj
be the observed amount of output of the rth type for the jth DMU (yrj > 0,
r = 1, 2, . . . , s, j = 1, 2, . . . , n). Let Yj , Xj be the observed vectors of outputs and
inputs of the DMUj , respectively, j = 1, 2, . . . , n. Let e be the column vector of
ones and let T as a superscript denote the transpose. In order to see if the DMUj0 =
DMU0 is Pareto-Koopmans efficient according to the additive model, the following
linear programming problem should be solved:

min 0λ1 + · · ·+ 0λ0 + · · ·+ 0λn − eT s+ − eT s−

subject to

(2.1)

Y1λ1 + · · ·+ Y0λ0 + · · ·+ Ynλn − s+ = Y0
−X1λ1 − · · · −X0λ0 − · · · −Xnλn − s− = −X0

λ1 + · · ·+ λ0 + · · ·+ λn = 1
λ1, . . . , λ0, . . . , λn, s+, s− ≥ 0,

where Y0 = Yj0 , X0 = Xj0 , λ0 = λj0 . DMU0 is Pareto - Koopmans efficient if and
only if for the optimal solution (λ∗, s+∗, s−∗) of the linear programming problem
(2.1) min(−eT s+ − eT s−) = −eT s+∗ − eT s−∗ = 0 holds (for details, see Charnes
and Cooper [3]).

We are interested in variations of all outputs and/or inputs of a Pareto-Koopmans
efficient DMU0 preserving its efficiency. An increase of any output cannot worsen an
already achieved efficiency rating. Upward variations of outputs are not possible in
the efficiency rating for an efficient DMU0. Hence we can pay attention to downward
variations of outputs which can be written as

(2.2) ŷr0 = yr0 − αr > 0, αr ≥ 0, r = 1, 2, . . . , s.

Similarly, a decrease of any input cannot worsen an already achieved efficiency
rating. Downward variations of inputs are not possible in the efficiency rating for
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an efficient DMU0. Hence we can restrict attention to upward variations of inputs
of an efficient DMU0 which can be written as

(2.3) x̂i0 = xi0 + βi, βi ≥ 0, i = 1, 2, . . . ,m.

For a Pareto-Koopmans efficient DMU0 there is a basic optimal solution (λ∗, s+∗, s−∗)
of the linear programming problem (2.1) with λ∗

0 = 1, λ∗
j = 0, j ̸= j0, j =

1, 2, . . . , n, s+∗ = s−∗ = 0 and the corresponding optimal basis matrix

B =

 YB −I+B 0
−XB 0 −I−B

eT 0 0

 .

Let the inverse of the matrix B be

B−1 =
[
b−1
ij

]
, i, j = 1, 2, . . . , s+m.

Let Pj , j = 1, 2, . . . , n+ s+m+ 1 be the columns of the matrix and let P0 be the
right-hand side of the linear programming problem (2.1). We will use the following
notations:

Γj = B−1Pj , j = 0, 1, . . . , n+ s+m+ 1,

ωT = cTBB
−1,

zj = cTBB
−1Pj

= ωTPj , j = 0, 1, . . . , n+ s+m+ 1.

The simultaneous change of outputs (2.2) and change of inputs (2.3) leads to the
following change of the optimal basis matrix B

(2.4) B̂ = B +D

with

(2.5) D =



k
↓

0 · · · 0 −α1 0 · · · 0
0 · · · 0 −α2 0 · · · 0
...

...
...

...
...

0 · · · 0 −αs 0 · · · 0
0 · · · 0 −β1 0 · · · 0
0 · · · 0 −β2 0 · · · 0
...

...
...

...
...

0 · · · 0 −βm 0 · · · 0
0 · · · 0 0 0 · · · 0


,

and the following change of the right-hand side vector

(2.6) P̂0 = P0 + [−α1 − α2 . . .− αs − β1 − β2 . . .− βm 0 ]T ,

where index k corresponds to the optimal basic variable λ∗
0 = λ∗

k = 1. It is easy to
show that for matrices B−1 and D the following holds:

(2.7) B−1DB−1D = pB−1D,
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where

(2.8) p = −(

s∑
t=1

b−1
k,tαt +

m∑
t=1

b−1
k,s+tβt).

Theorem 2.1. Let us suppose that DMU0 is Pareto-Koopmans efficient and that
for p in (2.8) 1 + p ̸= 0 holds. Then conditions

(2.9)
1

1 + p
ωTDΓj ≥ zj − cj , j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the simultaneous change of
outputs (2.2) and change of inputs (2.3). If 1 + p > 0, conditions (2.9) can be
written as the following system of inequalities

(2.10)

s∑
t=1

(b−1
k,t c̄j − ωtΓkj)αt +

m∑
t=1

(b−1
k,s+tc̄j − ωs+tΓkj)βt ≥ c̄j ,

j an index of nonbasic variables,

with c̄j = zj − cj. If 1 + p < 0 holds, the inequality sign ≥ in (2.10) should be
changed to ≤.

For the proof and details, see Charnes and Neralić [10], Theorem 2 and Remark
3.

Using Theorem 2.1 we can get the following two corollaries:

Corollary 2.2. Let us suppose that we are interested only in the change (2.2) of
outputs of a Pareto-Koopmans efficient DMU0, which means that we have to put
β1 = β2 = . . . = βm = 0 in (2.3), (2.5), (2.6) and (2.8). In that case, if

(2.11) 1 + p1 = 1−
s∑

t=1

b−1
k,tαt > 0,

conditions

(2.12)
s∑

t=1

(b−1
k,t c̄j − ωtΓkj)αt ≥ c̄j , j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the change (2.2) of outputs. If
1+p1 < 0 in (2.11) holds, the inequality sign ≥ in (2.12) should be changed into ≤.

Corollary 2.3. Let us suppose that we are interested only in the change (2.3) of
inputs of a Pareto-Koopmans efficient DMU0, which means that we have to put
α1 = α2 = . . . = αs = 0 in (2.2), (2.5), (2.6) and (2.8). In that case, if

(2.13) 1 + p2 = 1−
m∑
t=1

b−1
k,s+tβt > 0,

conditions

(2.14)
m∑
t=1

(b−1
k,s+tc̄j − ωs+tΓkj)βt ≥ c̄j , j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the change (2.3) of inputs. If
1+p2 < 0 in (2.13) holds, the inequality sign ≥ in (2.14) should be changed into ≤.
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2.2. Proportionate change of outputs. For fixed inputs, we are interested in
the proportionate change (decrease) of all outputs of a Pareto-Koopmans efficient
DMU0

(2.15) ŷr0 = α̂yr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s,

preserving efficiency. We want to find the sufficient conditions for DMU0 to pre-
serve efficiency and the minimal value α̂⋆ of α̂ for which the efficiency of DMU0 is
preserved after the proportionate change (2.15) of outputs.

Theorem 2.4. Let us suppose that DMU0 is Pareto-Koopmans efficient and let
(2.11) hold with αt = (1− α̂)yt0, t = 1, 2, . . . , s. Let

(2.16) a1 =
s∑

t=1

b−1
kt yt0, a2 =

s∑
t=1

ωtyt0,

(2.17) dj = −a2Γkj + a1c̄j , j = 1, 2, . . . , n+ s+m+ 1.

Conditions

(2.18) α̂dj ≤ dj − c̄j , j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the proportionate change (2.15)
of outputs.

Proof. If we put

(2.19) α̂ = 1− α, 0 ≤ α < 1,

and

(2.20) αr = αyr0, αr ≥ 0, r = 1, 2, . . . , s,

we can write (2.15) as

ŷr0 = yr0 − αyr0

= yr0 − αr > 0, αr ≥ 0, r = 1, 2, . . . , s.(2.21)

This means that the proportionate change (2.15) of outputs is the special case of
the change (2.2) of outputs, with αr, r = 1, 2, . . . , s in (2.20) and α in (2.19).

Let us suppose that conditions (2.18) are satisfied. Then, using (2.16), (2.17) and
(2.19) it is easy to show that conditions (2.18) are equivalent to conditions (2.12).
Therefore, in accordance to Corollary 2.2, it follows that conditions (2.12) and also
(2.18) are sufficient for DMU0 to continue to be efficient after the proportionate
change (2.15) of outputs, which completes the proof. □

Remark 2.5. For

J1 = {j | dj < 0, j an index of nonbasic variables }

using (2.15) and (2.18) it follows

(2.22) 1−min{ c̄j
dj

| jεJ1} ≤ α̂ ≤ 1.
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The minimal value α̂⋆ of α̂ for which the efficiency of DMU0 is preserved after the
change (2.15) according to (2.22) is

(2.23) α̂⋆ = 1−min{ c̄j
dj

| jεJ1}.

The maximal percentage of decrease of all outputs preserving the efficiency of DMU0

after the change (2.15) is α⋆100% = (1− α̂⋆)100%.

Remark 2.6. The value 1 − α̂⋆ is a measure of the stability of efficiency for an
efficient DMU0. If for an efficient DMU1 and DMU2 1− α̂⋆

1 > 1− α̂⋆
2 holds, it can be

said that DMU1 is more stable than DMU2. In other words, DMU1 is less sensitive
to the proportionate change of outputs preserving efficiency than DMU2.

2.3. Proportionate change of inputs. For fixed outputs let us consider the si-
multaneous proportionate change (increase) of all inputs

(2.24) x̂i0 = β̂xi0, β̂ ≥ 1, i = 1, 2, . . . ,m,

of a Pareto-Koopmans efficient DMU0 preserving efficiency. We are interested in
sufficient conditions for DMU0 to preserve efficiency after the proportionate change

(2.24) of inputs. We also want to find the maximal value β̂⋆ of β̂ for which the
efficiency of DMU0 is preserved after the proportionate change (2.24) of inputs.

Theorem 2.7. Let us suppose that DMU0 is Pareto-Koopmans efficient and let

(2.13) hold with βt = (β̂ − 1)xt0, t = 1, 2, . . . ,m. Let

(2.25) b1 =
m∑
t=1

b−1
k,s+txt0, b2 =

m∑
t=1

ωs+txt0,

(2.26) ej = b1c̄j − b2Γkj , j = 1, 2, . . . , n+ s+m+ 1.

Conditions

(2.27) β̂ej ≥ ej + ĉj , j an index of nonbasic variables,

are sufficient for DMU0 to continue to be efficient after the proportionate change
(2.24) of inputs.

Proof. Using the substitutions

(2.28) β̂ = 1 + β, β ≥ 0,

and

(2.29) βi = βxi0, βi ≥ 0, i = 1, 2, . . . ,m,

we can write (2.24) as

x̂i0 = xi0 + βxi0

= xi0 + βi, βi ≥ 0, i = 1, 2, . . . ,m.(2.30)

This means that the proportionate change (2.24) of inputs is the special case of the
change (2.3) of inputs with βi, i = 1, 2, . . . ,m in (2.29) and β in (2.28).

Let us suppose that conditions (2.27) are satisfied. Then using (2.25), (2.26)
and (2.28) it follows that conditions (2.27) are equivalent to conditions (2.14). This
means that according to Corollary 2.3, conditions (2.14) and also (2.27) are sufficient
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for DMU0 to preserve efficiency after the proportionate change (2.24) of inputs which
completes the proof. □

Remark 2.8. For

J2 = {j | ej < 0, j an index of nonbasic variables},

it follows from (2.24) and (2.27) that

(2.31) 1 ≤ β̂ ≤ 1 + min{ c̄j
ej

| jεJ2}.

This means that the maximal value β̂⋆ of β̂ for which the efficiency of DMU0 is
preserved after the change (2.24) according to (2.31) is

(2.32) β̂⋆ = 1 +min{ c̄j
ej

| jεJ2}.

The maximal percentage of increase of all inputs preserving the efficiency of DMU0

after the change (2.24) is β⋆ 100% = (β̂⋆ − 1)100%.

Remark 2.9. The value β̂⋆−1 is a measure of stability of efficiency for an efficient

DMU0. If for efficient DMU1 and DMU2 β̂⋆
1 − 1 > β̂⋆

2 − 1 holds, it can be said that
DMU1 is more stable than DMU2. In other words, DMU1 is less sensitive to the
proportionate change of outputs preserving efficiency than DMU2.

2.4. Simultaneous proportionate change of outputs and of inputs. Let us
consider the simultaneous proportionate change (decrease) (2.15)

ŷr0 = α̂yr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s,

of outputs and proportionate change (increase) (2.24)

x̂i0 = β̂xi0, β̂ ≥ 1, i = 1, 2, . . . ,m,

of inputs. We are interested in sufficient conditions for DMU0 to preserve efficiency
after the simultaneous changes (2.15) and (2.24). We are also interested in the

region Â0 which is the solution set of the corresponding system of inequalities in

α̂ and β̂ in the coordinate system α̂Ôβ̂. The area of that region is a measure of
stability of efficiency for DMU0.

Theorem 2.10. Let us suppose that DMU0 is Pareto-Koopmans efficient. Let for

p in (2.8) with αt = (1− α̂)yt0, t = 1, 2, . . . , s and βt = (β̂ − 1)xt0, t = 1, 2, . . . ,m
holds

(2.33) 1 + p = 1−
[
(1− α̂)a1 + (β̂ − 1)b1

]
> 0,

with a1 in (2.16) and b1 in (2.25). Then conditions

(2.34) (1− α̂)dj + (β̂ − 1)ej ≥ c̄j , j an index of nonbasic variables

with dj in (2.17), ej in (2.26), c̄j = zj − cj, are sufficient for DMU0 to continue
to be efficient after the simultaneous proportionate change (2.15) of outputs and
proportionate change (2.24) of inputs.
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Proof. Using substitutions and arguments in the proof of Theorem 3.1 and in the
proof of Theorem 3.5, it is easy to show that for the special case of the simultane-
ous proportionate change (2.15) of outputs and the proportionate change (2.24) of
inputs, conditions (2.34) are equivalent to conditions (2.10) in Theorem 2.1. This
means that conditions (2.34) are sufficient for DMU0 to preserve efficiency after
changes (2.15) and (2.24) and completes the proof. □
Remark 2.11. The system of inequalities (2.34) together with conditions (2.15),

(2.24) and (2.33) for α̂ and β̂ gives the region Â0 in the plane with the coordinate

system α̂Ôβ̂. For each point (α̂, β̂) in the region Â0, the efficiency of DMU0 will
be preserved after the simultaneous proportionate change (2.15) of outputs and the
proportionate change (2.24) of inputs.

Remark 2.12. The area of the region Â0 is a measure of stability of efficiency for

an efficient DMU0. If for an efficient DMU1 and DMU2 Â1 > Â2 holds, it can be
said that DMU1 is more stable than DMU2. In other words, DMU1 is less sensitive
to the simultaneous proportionate change of outputs and the proportionate change
of inputs preserving efficiency than DMU2. The measure of stability of efficiency
among efficient DMUs can also be based on the proportionate change of inputs (or
outputs) (see Remark 2.6 and Remark 2.9).

2.5. Proportionate change of inputs and outputs with different coeffi-
cients of proportionality. Let us consider the simultaneous proportionate change
(increase) of all inputs

(2.35) x̂i0 = β̂ixi0, β̂i ≥ 1, i = 1, 2, . . . ,m,

and the proportionate change (decrease) of all outputs

(2.36) ŷr0 = α̂ryr0, 0 < α̂r ≤ 1, r = 1, 2, . . . , s,

of an efficient DMU0 preserving efficiency. We are interested in the sufficient con-
ditions for DMU0 to preserve efficiency after the simultaneous changes (2.35) and
(2.36).

Theorem 2.13. Let us suppose that DMU0 is Pareto-Koopmans efficient according
to the additive model (2.1). Let

(2.37) 1 + p = 1−
s∑

t=1

b−1
kt yt0(1− α̂t)−

m∑
t=1

b−1
k,s+txt0(β̂t − 1) > 0.

Then the conditions[
−

s∑
t=1

ωtyt0(1− α̂t)−
m∑
t=1

ωs+txt0(β̂t − 1)

]
Γkj +(2.38)

+

[
s∑

t=1

b−1
kt yt0(1− α̂t) +

m∑
t=1

b−1
k,s+txt0(β̂t − 1)

]
c̄j ≥ c̄j ,(2.39)

j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the changes (2.35) and (2.36).
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Proof. The proof, based on Theorem 2.1, is omitted because it is similar to the
proof of Theorem 2 in Charnes and Neralić [11]. □

2.6. Simultaneous proportionate change of discretionary outputs and in-
puts in the additive model. Let us consider the simultaneous proportionate
change (decrease) of discretionary outputs

(2.40) ŷr0 = α̂yr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s̄,

with no change of non-discretionary outputs

(2.41) ŷr0 = yr0, r = s̄+ 1, s̄+ 2, . . . , s,

and proportionate change (increase) of discretionary inputs

(2.42) x̂i0 = β̂xi0, β̂ ≥ 1, i = 1, 2, . . . ,m,

with no change of non-discretionary inputs

(2.43) x̂i0 = xi0, i = m+ 1,m+ 2, . . . ,m,

of Pareto-Koopmans efficient DMU0 preserving efficiency. We are interested in
sufficient conditions for DMU0 to preserve efficiency after the simultaneous propor-
tionate change (2.40) of discretionary outputs and proportionate change (2.42) of
discretionary inputs.

Theorem 2.14. Let us suppose that DMU0 is Pareto-Koopmans efficient. Let

(2.44) a1 =

s̄∑
t=1

b−1
kt yt0, a2 =

s̄∑
t=1

ωtyt0,

(2.45) b1 =
m∑
t=1

b−1
k,s+txt0, b2 =

m∑
t=1

ωs+txt0,

(2.46) dj = −a2Γkj + a1c̄j , ej = b1c̄j − b2Γkj , j = 1, 2, . . . , n+ s+m+ 1,

with c̄j = zj − cj. Let for p in (2.9) with αt = (1 − α̂)yt0, t = 1, 2, . . . , s̄ and

βt = (β̂ − 1)xt0, t = 1, 2, . . . ,m holds

(2.47) 1 + p = 1−
[
(1− α̂)a1 + (β̂ − 1)b1

]
> 0.

Then, conditions

(2.48) (1− α̂)dj + (β̂ − 1)ej ≥ c̄j , j an index of nonbasic variables,

are sufficient for DMU0 to continue to be efficient after the simultaneous propor-
tionate change (2.40) of discretionary outputs and the proportionate change (2.42)
of discretionary inputs.

Proof. The proof is omitted because it is similar to the proof of Theorem 2 in
Charnes and Neralić [11] for the CCR model. □
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Remark 2.15. The system of inequalities (2.48) together with conditions (2.40),

(2.42) and (2.47) for α̂ and β̂ gives the region Â0 in the plane with the coordinate

system α̂Ôβ̂. For each point (α̂, β̂) in the region Â0, the efficiency of DMU0 will
be preserved after the simultaneous proportionate change (2.40) of discretionary
outputs and the proportionate change (2.42) of discretionary inputs. The area of
the corresponding region about the efficient point DMU0 within which perturbations
(2.40) and (2.42) keep it efficient is a measure of the stability of efficiency at DMU0.

Remark 2.16. If we are interested in the proportionate change (2.40) of discre-
tionary outputs of DMU0 only preserving its efficiency, we can get from Theorem
2.14 sufficient conditions for that case. Using

J1 = {j | dj < 0, j an index of nonbasic variables}

it is easy to show that the minimal value α̂⋆ of α̂ for which the efficiency of DMU0

is preserved after the change (2.40) is

α̂⋆ = 1−min{ c̄j
dj

| jεJ1}.

The maximal percentage of decrease of all discretionary outputs preserving efficiency
of DMU0 after the change (2.40) is α⋆100% = (1− α̂⋆)100%. For each α̂ such that
α̂⋆ ≤ α̂ ≤ 1, the efficiency of DMU0 will be preserved after the proportionate change
(2.40) of discretionary outputs. For the corresponding outputs ŷ⋆r0 ≤ ŷr0 ≤ yr0, r =
1, 2, . . . , s̄ holds. The volume of the region

s̄∏
r=1

[ŷ⋆r0, yr0]

is a measure of stability of efficiency of DMU0 at the proportionate change (2.40)
of discretionary outputs.

A similar result holds for the case of the proportionate change (2.42) of discre-
tionary inputs only.

3. Sensitivity analysis of the proportionate change of outputs
and/or of inputs in the CCR model

3.1. Preliminaries. Let us suppose that there are nDecision Making Units (DMUs)
with m inputs and s outputs. Let xij be the observed amount of the ith type
of input of the jth DMU ( xij > 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n) and let yrj
be the observed amount of output of the rth type for the jth DMU (yrj > 0,
r = 1, 2, . . . , s, j = 1, 2, . . . , n). Let Yj , Xj be the observed vectors of outputs
and inputs of the DMUj , respectively, j = 1, 2, . . . , n. Let e be the column vec-
tor of ones and let T as a superscript denote the transpose. In order to see if the
DMUj0 = DMU0 is efficient according to the CCR ratio model, the following linear
programming problem should be solved:

min 0λ1 + · · ·+ 0λ0 + · · ·+ 0λn − εeT s+ − εeT s− + θ
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subject to

(3.1)
Y1λ1 + · · ·+ Y0λ0 + · · ·+ Ynλn − s+ = Y0

−X1λ1 − · · · −X0λ0 − · · · −Xnλn − s− + X0θ = 0
λ1, . . . , λ0, . . . , λn, s+, s− ≥ 0,

with Y0 = Yj0 , X0 = Xj0 , λ0 = λj0 and θ unconstrained. The symbol ε represents
the infinitesimal we use to generate the non-Archimedean ordered extension field
we shall use. In this extension field ε is less than every positive number in our
base field, but greater than zero. DMU0 is DEA efficient if and only if for the
optimal solution (λ∗, s+∗, s−∗, θ∗) of the linear programming problem (3.1) both of
the following are satisfied (for details, see Charnes and Cooper [3]):

(3.2)
min θ = θ∗ = 1

s+∗ = s−∗ = 0, in all alternative optima.

We are interested in variations of all inputs and all outputs of an efficient DMU0

preserving efficiency. A decrease of any input cannot worsen an already achieved
efficiency rating. Downward variations of inputs are not possible in the efficiency
rating for an efficient DMU0 . Hence we can restrict attention to upward variations
of inputs of an efficient DMU0 which can be written as

(3.3) x̂i0 = xi0 + βi, βi ≥ 0, i = 1, 2, . . . ,m.

Similarly, an increase of any output cannot worsen an already achieved efficiency
rating. Upward variations of outputs are not possible in the efficiency rating for an
efficient DMU0. Hence we can restrict attention to downward variations of outputs
which can be written as

(3.4) ŷr0 = yr0 − αr > 0, αr ≥ 0, r = 1, 2, . . . , s.

For an efficient DMU0 because of (3.2), vectors [ Y0 −X0 ]T and [ 0 X0 ]T must
occur in some optimal basis, which means that there is a basic optimal solution to
(3.1) with λ∗

0 = 1 and θ∗ = 1. Changes (3.3) and (3.4) are then accompanied by
alterations in the inverse B−1 of the optimal basis matrix

(3.5) B =

[
YB −I+B 0 0

−XB 0 −I−B X0

]
,

which corresponds to the optimal solution (λ∗, s+∗, s−∗, θ∗) of (2.1) with λ∗
0 = 1 and

θ∗ = 1. Let

B−1 =
[
b−1
ij

]
, i, j = 1, 2, . . . , s+m,

be the inverse of the optimal basis B in (3.5). Let Pj , j = 1, 2, . . . , n+s+m+1 be the
columns of the matrix and let P0 be the right-hand side of the linear programming
problem (3.1). The simultaneous change of outputs (3.3) and inputs (3.4) leads to
the following change of the optimal basis matrix B

(3.6) B̂ = B +△B
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with

(3.7) △B =



k
↓

s+m
↓

0 · · · 0 −α1 0 · · · 0
0 · · · 0 −α2 0 · · · 0
...

...
...

...
...

0 · · · 0 −αs 0 · · · 0
0 · · · 0 −β1 0 · · · β1
0 · · · 0 −β2 0 · · · β2
...

...
...

...
...

0 · · · 0 −βm 0 · · · βm


and the following change of the right-hand side vector

(3.8) P̂0 = P0 + [−α1 − α2 . . .− αs 0 . . . 0 ]T ,

where indexes k and s + m correspond to the optimal basic variables λ∗
0 = 1 and

θ∗ = 1 respectively. Using matrices

(3.9) U(s+m)×2 =



α1 α1

α2 α2
...

...
αs αs

β1 0
β2 0
...

...
βm 0


and

(3.10) V T
2×(s+m) =

( k
↓

s+m
↓

0 · · · 0 −1 0 · · · 0 1
0 · · · 0 0 0 · · · 0 −1

)
we can write the perturbation matrix (3.7) as △B = UV T . Let us use the abbrevi-
ation

M = I + V TB−1U,

where matrix M is nonsingular, with

det M = 1−
s∑

t=1

b−1
k,tαt +

m∑
t=1

(−b−1
k,s+t + b−1

s+m,s+t)βt +

+ (
s∑

t=1

b−1
s+m,tαt)(

m∑
t=1

b−1
k,s+tβt)− (

s∑
t=1

b−1
k,tαt)(

m∑
t=1

b−1
s+m,s+tβt),(3.11)

and

(3.12) D = UM−1V T .
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Theorem 3.1. Conditions

(3.13) ωTDΓj ≥ zj − cj , j an index of nonbasic variables,

are sufficient for DMU0 to be efficient after the simultaneous changes of inputs (3.3)
and of outputs (3.4). If detM > 0, conditions (3.13) can be written in the following
way

(3.14) γkΓkj + γs+mΓs+m,j ≥ (zj − cj)det M,

with

γk = −(1 +

m∑
t=1

b−1
s+m,s+tβt)(

s∑
t=1

ωtαt) + (−1 +

s∑
t=1

b−1
s+m,tαt)(

m∑
t=1

ωs+tβt),

and

γs+m = (
m∑
t=1

b−1
k,s+tβt)(

s∑
t=1

ωtαt) + (1−
s∑

t=1

b−1
k,tαt)(

m∑
t=1

ωs+tβt).

For the proof and details see, Charnes and Neralić [8], Theorem 1 and Remark 1.

3.2. Simultaneous proportionate change of inputs and outputs in the
CCR model. Let us consider the simultaneous proportionate change (increase)
of all inputs

(3.15) x̂i0 = β̂xi0, β̂ ≥ 1, i = 1, 2, . . . ,m,

and the proportionate change (decrease) of all outputs

(3.16) ŷr0 = α̂yr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s,

of an efficient DMU0 preserving efficiency. We are interested in sufficient conditions
for DMU0 to preserve efficiency after the simultaneous changes (3.15) and (3.16).

Theorem 3.2. Let us suppose that DMU0 is efficient and let

(3.17) det M = 1−a1(1− α̂)+(−b1+ b2)(β̂−1)+(a2b1−a1b2)(1− α̂)(β̂−1) > 0,

with
(3.18)

a1 =

s∑
t=1

b−1
kt yt0, a2 =

s∑
t=1

b−1
s+m,tyt0, b1 =

m∑
t=1

b−1
k,s+txt0, b2 =

m∑
t=1

b−1
s+m,s+txt0.

Let

(3.19) a3 =
s∑

t=1

ωtyt0, b3 =
m∑
t=1

ωs+txt0,

(3.20) dj = −a3Γkj + a1c̄j , ej = −b3(Γkj − Γs+m,j)−(−b1 + b2)c̄j ,

(3.21) fj = (a2b3 − a3b2)Γkj + (a3b1 − a1b3)Γs+m,j − (a2b1 − a1b2)c̄j ,

j = 1, 2, . . . , n+ s+m+ 1,

with c̄j = zj − cj. Then, the conditions

(3.22) dj(1− α̂) + ej(β̂ − 1) + fj(1− α̂)(β̂ − 1) ≥ c̄j ,
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j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the simultaneous proportionate
changes of inputs (3.15) and of outputs (3.16).

Proof. For the proof and details, see Charnes and Neralić [11]. □

Remark 3.3. The system of inequalities (3.22) together with conditions (3.15),

(3.16) and (3.17) for α̂ and β̂ gives the region Â0 in the plane with the coordinate

system α̂Ôβ̂. For each point (α̂, β̂) in the region Â0, the efficiency of DMU0 will be
preserved after the simultaneous proportionate changes of inputs (3.15) and outputs
(3.16).

Remark 3.4. The area of the region Â0 is a measure of stability of efficiency for

an efficient DMU0. For example, if for efficient DMU1 and DMU2 Â1 > Â2 holds, it
can be said that “DMU1 is relatively more stable than DMU2” because DMU1 is less
sensitive to the simultaneous proportionate change of inputs and outputs preserving
efficiency than DMU2. The measure of stability of efficiency among efficient DMUs
can also be based on the proportionate change of inputs (or outputs) as it was
suggested in Banker and Gifford [1] and used in Charnes and Neralić [9].

3.3. Sensitivity analysis of the proportionate change of a subset of inputs
and/or of outputs. We are interested in the proportionate change of a subset of
inputs and/or of a subset of outputs of an efficient DMU0 preserving efficiency. An
increase of any output cannot worsen an already achieved efficiency rating. Up-
ward variations of outputs are not possible in the efficiency rating for an efficient
DMU0. Hence, without loss of generality, we can focus attention on the propor-
tionate decrease of the subset of the first s̄ (s̄ < s) outputs which can be written
as

(3.23) ŷr0 = α̂yr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s̄,

with the last s− s̄ outputs fixed

(3.24) ŷr0 = yr0, r = s̄+ 1, s̄+ 2, . . . , s.

Similarly, a decrease of any input cannot worsen an already achieved efficiency
rating. Downward variations of inputs are not possible in the efficiency rating for an
efficient DMU0 . Hence we can focus attention on the upward variations of inputs
of an efficient DMU0. Without loss of generality, let us consider the proportionate
increase of the subset of the first m (m < m) inputs, with the last m − m inputs
fixed. It can be written as

(3.25) x̂i0 = β̂xi0, β̂ ≥ 1, i = 1, 2, . . . ,m,

and

(3.26) x̂i0 = xi0, i = m+ 1,m+ 2, . . . ,m.

Let us introduce the following substitution

(3.27) α̂ = 1− α, 0 ≤ α < 1.
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Using (3.27) in (3.23), we have

(3.28) ŷr0 = yr0 − αr > 0, r = 1, 2, . . . , s̄,

with

(3.29) αr = αyr0, αr ≥ 0, r = 1, 2, . . . , s̄.

Because of (3.24), we have

(3.30) αr = 0, r = s̄+ 1, s̄+ 2, . . . , s.

Let us also introduce the substitution

(3.31) β̂ = 1 + β, β ≥ 0.

Using (3.31) in (3.25) we have

(3.32) x̂i0 = xi0 + βi, i = 1, 2, . . . ,m,

with

(3.33) βi = βxi0, βi ≥ 0, i = 1, 2, . . . ,m.

Because of (3.26), we have

(3.34) βi = 0, i = m+ 1,m+ 2, . . . ,m.

This means that the proportionate change of a subset of outputs (3.23), with the
other outputs fixed (3.24), can be considered as the additive change (3.28), with αr

in (3.29) and (3.30). Similarly, the proportionate change of a subset of inputs (3.25),
with the other inputs fixed (3.26), can be considered as the additive change (3.32)
with βi in (3.33) and (3.34). Therefore, we will consider the additive changes (3.28)
of outputs together with (3.30) and/or additive changes (3.32) of inputs together
with (3.34).

For an efficient DMU0 because of (3.2), vectors [ Y0 −X0 ]T and [ 0 X0 ]T must
occur in some optimal basis, which means that there is a basic optimal solution to
(3.1) with λ∗

0 = 1 and θ∗ = 1. Similarly as in Charnes and Neralić [8], simultaneous
changes (3.28), together with (3.30), and changes (3.32), together with (3.34), are
then accompanied by alterations in the inverse B−1 of the optimal basis matrix

(3.35) B =

[
YB −I+B 0 0

−XB 0 −I−B X0

]
,

which corresponds to the optimal solution (λ∗, s+∗, s−∗, θ∗) of (3.1) with λ∗
0 = 1 and

θ∗ = 1. Let

B−1 =
[
b−1
ij

]
, i, j = 1, 2, . . . , s+m,

be the inverse of the optimal basis B in (3.35). Let Pj , j = 1, 2, . . . , n + s +m +
1 be the columns of the matrix and let P0 be the right-hand side of the linear
programming problem (3.1).

The simultaneous change of outputs (3.28) together with (3.30) and of inputs
(3.32) together with (3.34) leads to the following change of the optimal basis matrix
B

(3.36) B̂ = B +△B
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with

(3.37) △B =



k
↓

s+m
↓

0 · · · 0 −α1 0 · · · 0
...

...
...

...
...

0 · · · 0 −αs̄ 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 −β1 0 · · · β1
...

...
...

...
...

0 · · · 0 −βm 0 · · · βm
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0


and the following change of the right-hand side vector

(3.38) P̂0 = P0 + [−α1 − α2 . . .− αs̄ 0 . . . 0 ]T ,

where indexes k and s+m correspond to the optimal basic variables λ∗
0 = 1 and θ∗ =

1 respectively. Similarly as in subsection 3.1 above we can use the corresponding
matrices U(s+m)×2 and V T

2×(s+m) in order to write the perturbation matrix (3.37) as

(3.39) △B = UV T .

As in Charnes and Neralić [8], because of (3.36) and (3.39) we can use the Sherman-
Morrison-Woodbury formula (see, for example, Golub and Loan [15], p. 3) to get
the following perturbed basis inverse

(B̂)−1 = (B + UV T )−1

= B−1 −B−1U(I + V TB−1U)−1V TB−1.(3.40)

Using the abbreviation

(3.41) D = U(I + V TB−1U)−1V T

we can write (3.40) as

(B̂)−1 = B−1 −B−1DB−1

= B−1(I −DB−1)

= (I −B−1D)B−1.(3.42)

Also, using matrices U and V T we can get V TB−1U and

(3.43) M = I + V TB−1U

with detM, M−1 and matrix

(3.44) D = UM−1V T
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with elements

dt,k = − 1

detM
(1 +

m∑
t=1

b−1
s+m,s+tβt)αt, t = 1, 2, . . . , s̄,(3.45)

ds+t,k =
1

detM
(−1 +

s̄∑
t=1

b−1
s+m,tαt)βt, t = 1, 2, . . . ,m,(3.46)

dt,s+m =
1

detM
(

m∑
t=1

b−1
k,s+tβt)αt, t = 1, 2, . . . , s̄,(3.47)

ds+t,s+m =
1

detM
(1−

s̄∑
t=1

b−1
k,tαt)βt, t = 1, 2, . . . ,m.(3.48)

Now we can prove the following

Theorem 3.5. Let us suppose that DMU0 is efficient. Conditions

(3.49) ωTDΓj ≥ zj − cj , j an index of nonbasic variables,

are sufficient for DMU0 to continue to be efficient after the simultaneous propor-
tionate changes of a subset of outputs (3.23) and of a subset of inputs (3.25).

Proof. The proof is omitted because it is similar to the proof of Theorem 1 in
Charnes and Neralić [8]. (See also the proof of Theorem 2.1 in Charnes and Neralić
[7].) □
Remark 3.6. In conditions (3.49) there is detM in the denominator of elements
of matrix D. Consequently in general, there are two possibilities, one for the case
of detM > 0 and the other for the case detM < 0. In either case, the condition on
detM , together with constraints (3.28) - (3.30) and (3.32) - (3.34), should be added
to conditions (3.49). The solution set of the corresponding system of inequalities Sj0

will be a set of points (α1, . . . , αs̄, 0, . . . , 0, β1, . . . , βm, 0, . . . , 0) in Rs×m. Because
of (3.29) and (3.33), we can get the corresponding system of inequalities in α, β
and the solution set S̄j0. Using substitutions (3.27) and (3.31) we can also get the

corresponding system of inequalities in α̂, β̂ and the solution set S∗
j0. For all points

(α̂, β̂) in the solution set S∗
j0 after the changes of outputs according to (3.23), (3.24)

and the changes of inputs according to (3.25) and (3.26), the efficiency of DMU0

will be preserved. The solution set S∗
j0 gives the region A∗

j0 in the plane with the

coordinate system α̂Ôβ̂.

Remark 3.7. Using points (α̂, β̂) from the set S∗
j0 in (3.23) and (3.25) with (3.24),

(3.26) we can get the corresponding region of efficiency Rj0 around DMUj0. The
volume of the region of efficiency around the efficient point, within which perturba-
tions (3.23) and (3.25) keep it efficient, is an important property of the (empirical)
efficient production function at this point. It is a measure of stability of efficiency
at that point. If R1 > R2 holds for an efficient DMU1 and DMU2, this means
that DMU1 is more stable that DMU2 in preserving efficiency at the simultaneous
proportionate changes (3.23)and (3.25).
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For the case with detM > 0 (see also Theorem 2 in Charnes and Neralić [11]), it
is easy to get from Theorem 3.2 the following

Corollary 3.8. Let us suppose that DMU0 is efficient and let

(3.50) det M = 1−a1(1− α̂)+(−b1+ b2)(β̂−1)+(a2b1−a1b2)(1− α̂)(β̂−1) > 0,

with
(3.51)

a1 =
s̄∑

t=1

b−1
kt yt0, a2 =

s̄∑
t=1

b−1
s+m,tyt0, b1 =

m∑
t=1

b−1
k,s+txt0, b2 =

m∑
t=1

b−1
s+m,s+txt0.

Let

(3.52) a3 =

s̄∑
t=1

ωtyt0, b3 =

m∑
t=1

ωs+txt0,

(3.53) dj = −a3Γkj + a1c̄j , ej = −b3(Γkj − Γs+m,j)− (−b1 + b2)c̄j ,

(3.54) fj = (a2b3 − a3b2)Γkj + (a3b1 − a1b3)Γs+m,j − (a2b1 − a1b2)c̄j ,

j = 1, 2, . . . , n+ s+m+ 1,

with c̄j = zj − cj. Then, the conditions

(3.55) dj(1− α̂) + ej(β̂ − 1) + fj(1− α̂)(β̂ − 1) ≥ c̄j ,

j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the simultaneous proportionate
changes of a subset of outputs (3.23) and of a subset of inputs (3.25).

For fixed inputs, we can consider the proportionate change (decrease) of a subset
of outputs (3.23) with the other outputs fixed (3.24). In that case, because of
β1 = β2 = . . . = βm = 0 in (3.32) and of (3.34), it is easy to get the corresponding
matrix D1 from the matrix D with elements in (3.45) - (3.48). With the matrix D1

instead of matrix D from Theorem 3.2, we have the following

Corollary 3.9. Conditions

(3.56) ωTD1Γj ≥ zj − cj , j an index of nonbasic variables,

are sufficient for DMU0 to be efficient after the proportionate changes of a subset
of outputs (3.23) with the other outputs and all inputs fixed.

For fixed outputs, we can consider the proportionate change (increase) of a subset
of inputs (3.25) with the other inputs fixed (3.26). In that case, because of α1 =
α2 = . . . = αs̄ = 0 in (3.28) and of (3.30), it is easy to get the corresponding matrix
D2 from the matrix D with elements in (3.45) - (3.48). With the matrix D2 instead
of matrix D from Theorem 3.2, we have the following

Corollary 3.10. Conditions

(3.57) ωTD2Γj ≥ zj − cj , j an index of nonbasic variables,

are sufficient for DMU0 to be efficient after the proportionate change of a subset of
inputs (3.25) with the other inputs and all outputs fixed.
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3.4. Sensitivity analysis of the proportionate change of inputs and out-
puts in the CCR model with different coefficients of proportionality. Let
us consider the simultaneous proportionate change (increase) of all inputs

(3.58) x̂i0 = β̂ixi0, β̂i ≥ 1, i = 1, 2, . . . ,m,

and the proportionate change (decrease) of all outputs

(3.59) ŷr0 = α̂ryr0, 0 < α̂r ≤ 1, r = 1, 2, . . . , s,

of an efficient DMU0 preserving efficiency. We are interested in sufficient conditions
for DMU0 to preserve efficiency after the simultaneous changes (3.58) and (3.59).

Let us also introduce the following notations:

(3.60) A1 =
s∑

t=1

b−1
kt yt0(1− α̂t), A2 =

s∑
t=1

b−1
s+m,tyt0(1− α̂t), A3 =

s∑
t=1

ωtyt0(1− α̂t),

(3.61)

B1 =

m∑
t=1

b−1
k,s+txt0(β̂t − 1), B2 =

m∑
t=1

b−1
s+m,s+txt0(β̂t − 1), B3 =

m∑
t=1

ωs+txt0(β̂t − 1),

Theorem 3.11. Let us suppose that DMU0 is efficient and let

(3.62) det M = 1−A1 −B1 +B2 +A2B1 −A1B2 > 0.

Then the conditions

(A3 −B3 +A2B3 −A3B2)Γkj + (B3 +A3B1 −A1B3)Γs+m,j +

+ (A1 +B1 −B2 −A2B1 +A1B2)c̄j ≥ c̄j ,(3.63)

j an index of nonbasic variables,

with c̄j = zj − cj, are sufficient for DMU0 to preserve efficiency after the simulta-
neous proportionate changes of inputs (3.58) and of outputs (3.59).

Proof. It is easy to see that the proportionate change of inputs (3.58) is the special
case of the change

(3.64) x̂i0 = xi0 + βi, βi ≥ 0, i = 1, 2, . . . ,m

with

(3.65) βi = (β̂i − 1)xi0, β̂i ≥ 1, i = 1, 2, . . . ,m.

A similar result holds for the proportionate change of outputs (3.59) which is the
special case of the change

(3.66) ŷr0 = yr0 − αr > 0, 0 ≤ αr < yr0, r = 1, 2, . . . , s,

with

(3.67) αr = (1− α̂r)yr0, 0 < α̂r ≤ 1, r = 1, 2, . . . , s.

Let us suppose that conditions (3.63) are satisfied. Then using (3.64), (3.65) and
(3.62) it is easy to show that conditions (3.62) are equivalent to conditions (34)
in Guddat et al. [16], p. 196, for the case with βi, i = 1, 2, . . . ,m in (2.21) and
αr, r = 1, 2, . . . , s in (3.66). But conditions (34) in Guddat et al. [16] are sufficient
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for DMU0 to preserve efficiency after the simultaneous changes (3.63) and (3.65).
Thus, the statement of the theorem follows. □

Corollary 3.12. Let us suppose that DMU0 is efficient. Let β̂i = β̂, i = 1, 2, . . . ,m,
in (3.58) and let α̂r = α̂, r = 1, 2, . . . , s in (3.59). Let

(3.68) dj = −a3Γkj + a1c̄j , ej = −b3(Γkj − Γs+m,j)− (−b1 + b2)c̄j ,

(3.69) fj = (a2b3 − a3b2)Γkj + (a3b1 − a1b3)Γs+m,j − (a2b1 − a1b2)c̄j ,

j = 1, 2, . . . , n+ s+m+ 1,

with c̄j = zj − cj. Let

(3.70) det M = 1−a1(1− α̂)+(−b1+ b2)(β̂−1)+(a2b1−a1b2)(1− α̂)(β̂−1) > 0.

Then the conditions

(3.71) dj(1− α̂) + ej(β̂ − 1) + fj(1− α̂)(β̂ − 1) ≥ c̄j ,

j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the proportionate change of

inputs (3.58) with the same coefficient of proportionality β̂ for all inputs and the
proportionate change of outputs (3.59) with the same coefficient of proportionality
α̂ for all outputs.

Remark 3.13. For details about the case in Corollary 3.12, see Theorem 2 in
Neralić [21].

Corollary 3.14. Let us suppose that DMU0 is efficient and let β̂i = β̂, i = 1, 2, . . . ,m
in (3.58) and α̂r = 1, r = 1, 2, . . . , s in (3.59). Let

(3.72) detM = 1 + (−b1 + b2)(β̂ − 1) > 0.

Then the conditions

(3.73) (−b3(Γkj − Γs+m,j)− (−b1 + b2)c̄j)(β̂ − 1) ≥ c̄j),

j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the proportionate change (3.58)

of inputs only with the same coefficient of proportionality β̂ for all inputs.

Remark 3.15. For details about the case in Corollary 3.14, see Theorem 3.1 in
Charnes and Neralić [9].

Corollary 3.16. Let us suppose that DMU0 is efficient and let β̂i = 1, i = 1, 2, . . . ,m
in (3.58) and α̂r = α̂, r = 1, 2, . . . , s in (3.59). Let

(3.74) detM = 1− a1(1− α̂) > 0.

Then the conditions

(3.75) (−a3Γkj + a1c̄j)(1− α̂) ≥ c̄j ,

j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the proportionate change (3.59)
of outputs only with the same coefficient of proportionality α̂ for all outputs.
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Remark 3.17. For details about the case in Corollary 3.16, see Theorem 4.1 in
Charnes and Neralić [9].

4. Summary and conclusions

In this paper, sensitivity analysis of the proportionate change of outputs and/or
of inputs is considered for different cases in the additive model and in the CCR
model of DEA. Sufficient conditions for an efficient DMU0 to preserve efficiency are
reviewed for several cases of proportionate change of outputs and/or of inputs.

Sensitivity analysis of the proportionate change of outputs and/or of inputs in the
additive model is studied in Section 2. Subsection 2.1 contains some preliminaries for
the additive model. The proportionate change of outputs, of inputs and of outputs
and inputs simultaneously is considered in Subsections 2.2, 2.3 and 2.4 respectively.
The case with different coefficients of proportionality for outputs and inputs is
studied in Subsection 2.5 and the case of discretionary outputs and/or inputs is
considered in Subsection 2.6. Similar cases for the CCR model are studied in Section
3. Subsection 3.1 includes some preliminaries for the CCR model. Simultaneous
proportionate changes of inputs and of outputs are considered for the CCR model
in Subsection 3.2. Subsection 3.3 contains a sensitivity analysis of the proportionate
change of a subset of inputs and/or of outputs. In the case with two coefficients
of proportionality, one for outputs and the other for inputs, sufficiency conditions
give for each efficient DMU0 a region of efficiency and an area the size of which is a
measure of stability of efficiency at the proportionate change of a subset of inputs
and/or of a subset of outputs.

Because the conditions obtained are only sufficient, an open question remains
related to the form of necessary and sufficient conditions for an efficient DMU0 to
preserve efficiency after the proportionate changes of outputs and/or of inputs in the
additive, CCR and BCC models of DEA. The question remains about the efficiency
preservation of all efficient DMUs according to the CCR and the BCC model of DEA
under the proportionate changes of all data. The case of the proportionate change
of all data in the CCR model with preservation of the efficiency of all efficient and
the inefficiency of all inefficient DMUs seems to be interesting. An application of
the results based on the proportionate change of outputs and/or inputs using data
for a real world problem seems to be a challenge.
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