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indeed results in an easier problem surprisingly lies at the heart of probabilistically
checkable proofs.

Of course, polynomial optimization has evolved as an important field both from
the theoretical side and concerning algorithmic solutions of problem classes. Here,
we are interested in the structural complexity theory of such problems, in particular
the concept of verifying solvability of instances. Moreover, we consider related
problems under an algorithmic approach that is more algebraically oriented. We
deal with reals as input data and consider the real number model of computation by
Blum, Shub, and Smale, briefly BSS model [12]. It treats real numbers as underlying
entities and allows the basic arithmetic operations being performed exactly and with
unit cost. A short introduction into complexity theory for this model is given below.

We now briefly outline what our focus is when considering the above problems.
Let us concentrate on the PSS decision problem, which in fact is representative for a
huge class of similar problems. This is captured by the notion of NPR-completeness,
see below. In its general form, the decision problem seems to be difficult, and even
designing algorithms deciding solvability of polynomial systems without taking com-
plexity issues into account is far from being easily doable. Tarski [29] was the first
who showed that such algorithms exist, and improving the complexity of his algo-
rithm has been (and still is) an important task in research, see [16,18,26]. However,
the problem has a specific structure which makes verification of solvability easy.
If, by what reason ever, one has a guess about a solution y ∈ Rn of the system,
then one can easily evaluate the defining polynomials in y and accept in case y is a
zero for all of them. In a computational model which allows to perform basic arith-
metic operations and an equality test (or inequality in case of inequality systems)
exactly the verification is easily doable within a number of steps that is bounded
in the size of the data instance (the given polynomials) by a polynomial. Such a
time bound in complexity theory is, by good reasons, considered to characterize
efficient algorithms. Though of course there is no hint how to find a suitable y
in case it exists, and so there is no direct algorithmic use of the fast verification
feature, this structural property is shared by many important problems and has led
to the definition of the important class NPR of decision problems. The class NPR
is a real number analogue of NP in the Turing model of computation dealing with
discrete problems. It pinpoints the intuitive difference of proof verification versus
proof finding. The above guess y ∈ Rn can be seen as a proof certificate that the
system is solvable. However, computing such a y or another proof of solvability
efficiently from the given data in case it exists is a widely open task. The class NPR
formalizes the conjectured difference between proof verification and proof finding - a
fundamental mathematical question. And since efficient verification of a given proof
seems easier than finding it efficiently by oneself, it is reasonable to conjecture that
the two notions capture different problem classes, the famous PR 6= NPR conjecture
in a real number version.

Here, we shall focus on such verification procedures, but under a different point
of view. In the above example it is obvious that the outlined verification which
evaluates given polynomial systems in potential solutions y in general has to in-
spect all components of y in order to give the correct answer for this certificate.
For any potential verification strategy that does exclude inspection of a component
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of y, one can design a system such that the strategy gives a false answer when
using y as proof. This leads to a fundamental question. Of course, a verification
procedure for PSS might use completely different ideas than starting from a poten-
tial solution of the system and evaluating all polynomials. So the question is: Are
there verification procedures for which it is sufficient to inspect only a fraction of
the certificate, nevertheless yielding the correct result? Or, more exaggerated: Is it
possible to rewrite proofs (more precisely: for instances of NPR problems) in such
a way that verifying its correctness can be done without inspecting major parts of
the proof? This fundamental question has led to some of the most influential areas
and results in theoretical computer science in the last three decades, culminating in
the famous PCP-theorem [2,3]. It had tremendous impact, including results about
(non-)approximability of important combinatorial optimization problems. The lat-
ter are similar to the above mentioned MAX-PPS problem. A moment of reflection
makes evident that we have to make precise what we require from a verification
procedure if a proof certificate is not entirely inspected; clearly, if a part that is
not inspected is changed the verifier cannot realize it. This naturally leads to the
introduction of randomization and the analysis of failure probabilities. Even then,
the statement of the PCP-theorem is extremely surprising since it shows that the
part of a suitably encoded proof that has to be inspected is constant and thus
independent of the length of the underlying statement.

After this brief introduction into the world of probabilistically checkable proofs we
outline the structure of this survey. The classical PCP-theorem for discrete Turing
complexity theory has been developed around the 1990ies. There are dozens of
surveys and we only point to the original proof [2, 3], a significantly different proof
by Dinur [13], and the textbook [1] as starting point for further studies. In this
paper, we report on own work done in recent years when studying related questions
in the Blum-Shub-Smale computational model over the real numbers. Section 2
briefly presents the model description, the definition of basic complexity classes and
the concepts around probabilistically checkable proof PCPR’s, property testers and
PCPR’s of proximity in the real number setting. The subsequent sections describe
PCPR results having been obtained for the BSS setting. Since most of the proofs
behind the statements are quite technical we only explain one easier result (property
testers for linear real functions) in more detail to give the reader a first intuition
about the format of the verification proofs necessary to obtain PCPR results. Proofs
of the main results in the area are then described conceptually.

The paper is written for readers who have not heard much about the treated
concepts so far. We mainly aim for raising interest for the discussed problems in-
stead of being complete in the mathematical description of proofs. Nevertheless,
we try to describe the main proof ideas as well as pointing to the differences and
difficulties when studying the concepts in the real number framework in comparison
to classical (discrete) complexity theory formalized by the Turing model. Notation-
ally, whenever we refer to probabilistically checkable proofs or similar concepts in
the BSS framework, we add an index R and write PCPR.
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2. Blum-Shub-Smale model over R, complexity classes, and concepts
of proof verification

2.1. The computational model and basic complexity classes. In the BSS-
model of computation real numbers are considered as entities. An input instance
x of a computational problem is a finite sequence of real numbers, i.e., x stems
from the set R∞ :=

⊔
i≥1Ri. Algorithms in the model are allowed to perform

the basic arithmetic operations {+,−, •, :} as well as a test: ’is a ≥ b’ for real
numbers a, b that have been computed already or are parts of the input. These
operations are performed exactly, so the model abstracts from round-off errors.
Data is stored in registers each containing a real number; there are countably many
registers available, but at every specific point in time only finitely many registers
contain relevant data. In order to deal with uniform algorithms that handle input
instances of larger and larger size, copy instructions allow to shift data between
specific registers. A BSS-program M is given by a flowchart of such instructions.
A specific starting state determines the beginning of a computation and in which
registers the input is stored. A halting state marks the end of a computation if
ever reached. Then, the result can be found in some pre-determined registers. For
computational arithmetic operations, the next instruction is uniquely determined
by the flowchart, for a test instruction the program can branch according to its
outcome. All instructions have unit cost and the running time TM (x) of M on
input x ∈ R∞ is the number of operations performed until M halts and ∞ if M
computes forever. For studying complexity of algorithms it is important to analyse
the asymptotic behavior of TM in dependence of the size of instances. In view of
the model’s abstraction to consider reals as basic entities it is consequent to define

Definition 2.1. a) Let x ∈ Rn ⊂ R∞. The (algebraic) size of x, denoted by
sizeR(x), is defined as sizeR(x) = n.

b) Let t : N → N and M be a BSS algorithm. M is t-time bounded if ∀x ∈
R∞ : TM (x) ≤ t(sizeR(x)).

c) If M is time-bounded by a polynomial we say that M runs in polynomial
time.

d) Conversely, a function f : I ⊆ R∞ → R∞ is polynomial time computable,
if there is a BSS algorithm M computing f and being polynomial time
bounded. The class of all such functions is denoted by FPR.

Of special interest in complexity theory are decision problems. Here, for a set
L ⊆ R∞ the question is to decide algorithmically whether an input x ∈ R∞ belongs
to L or not, i.e., to compute the characteristic function χL of L in R∞. 1

Definition 2.2. The class PR of polynomial-time decidable real number decision
problems consists of all L ⊆ R∞ such that χL ∈ FPR.

1For many problems it makes sense to restrict the set of inputs to a subset I ⊂ R∞ and then
decide L in I. For example, below we often consider as input families of polynomials. Then, in a
first step an algorithm should check whether an input coding has the desired form. Since this is an
easy task for all problems considered here, i.e., deciding I in R∞ is a problem in PR, we disregard
this technical detail and always consider inputs from R∞.
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Example 2.3. A decision problem in PR is the question for solvability of linear
equation systems. It is straightforward that Gaussian elimination is a polynomial
time real number algorithm in the algebraic size of a system (A, b), which is n(m+1)
for systems with m equations in n variables. This is actually easier to show than the
corresponding result in the Turing model since we do not have to take the bit-size of
growing intermediate results into account. Another problem in PR is the question,
whether a univariate polynomial f : R → R of degree d, given by its d+1 coefficients,
has a real zero. Sturm’s algorithm [8] provides an efficient decision algorithm. In
contrast, the algebraic complexity of Linear Programming as real number decision
problem: Given A ∈ Rm×n, b ∈ Rm, is there an x ∈ Rn s.t. Ax ≤ b is a major
open problem in optimization theory. Well-known polynomial time algorithms in
the Turing framework like interior-point or the ellipsoid method are not efficient
(so-called strongly polynomial time) algorithms in the algebraic setting (see [30])
and it is unclear, whether the latter exist, see also [28].

The following problems will be crucial throughout the rest of the paper.

Definition 2.4 (Quadratic Polynomial Systems QPS).

a) The decision problem QPS is defined as follows. Input: Integers s, n ∈ N,
and for 1 ≤ i ≤ s polynomials fi : Rn → R of degree at most 2. In addition,
each fi only depends on at most 3 among the variables. Question: Is there
a y ∈ Rn such that fi(y) = 0 ∀1 ≤ i ≤ s?

b) The MAX-QPS problem is the following optimization problem. Input: In-
tegers s, n, polynomials f1, . . . , fs as above. Question: What is the maximal
number of polynomials among the fi that have a common real zero?

If above in addition to the fi we also provide a y ∈ Rn and ask, whether y is a
common zero, then the resulting decision problem easily is seen to be in PR (the
interested reader should specify the input size and the complexity of the obvious
decision algorithm). The aspect which makes the problems most likely difficult is
asking for the existence of such a y in the uncountable search space Rn. Clearly,
MAX-QPS is at least as difficult as QPS, since MAX-QPS ∈ FPR would imply QPS
∈ PR.

A natural size for a QPS instance is the sum of the number of coefficients for all
fi. Since every fi depends on at most 3 variables there are 10 coefficients, thus the
size is O(s). Note that n ≥ s/3 if the system depends on all variables, a reasonable
requirement. Therefore, without loss of generality below we take n as the size of
such an instance. Deciding existence of a common real zero seems to be a difficult
problem, justified by its status of being NPR-complete, see below. However, if we
guess a solution y∗, it is quite easy to verify whether it actually is one; just evaluate
all fi in y

∗ and check whether fi(y
∗) = 0. Obviously, the corresponding verification

algorithm runs in polynomial time in the size of the system (actually, in linear
time). This structural property is present in many important real number decision
problems and is formalized in the following definition.

Definition 2.5 (Class NPR,NPR-completeness). a) A decision problem L ⊆
R∞ is in NPR (verifiable in non-deterministic polynomial time over R) iff
there exist a polynomial p and a real BSS machine M working on inputs
(x, y) ∈ R∞ × R∞ such that
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(i) ∀x ∈ R∞, y ∈ R∞ : ΦM (x, y) ∈ {0, 1}.
(ii) ∀x ∈ R∞, y ∈ R∞ : ΦM (x, y) = 1 =⇒ x ∈ L
(iii) ∀x ∈ L ∃y ∈ R∞ : ΦM (x, y) = 1 and TM (x, y) ≤ p(sizeR(x))

b) A problem A in NPR is NPR-complete iff every other problem in NPR can be
reduced to it in polynomial time. Polynomial time reducibility from problem
B to problem A means: There is a polynomial time computable function
f : R∞ → R∞, f ∈ FPR which satisfies ∀x ∈ R∞ : x ∈ B ⇔ f(x) ∈ A.

Note that in part a) above the dependence of TM (x, y) on n := sizeR(x) only
implies that only certificates y of size polynomially bounded in that of x are of
interest. So the ’search space’ for correct proofs is Rp(n). Any y will be rejected if
x 6∈ L, for x ∈ L at least one easily verifiable proof must exist. Just as in classical
complexity theory the most important open question in our framework is whether
PR 6= NPR. The relation PR ⊆ NPR is obvious. Now NPR-complete problems
capture the difficulty of NPR in the sense that PR = NPR iff there exists an NPR-
complete problem in PR. This can easily be seen by noticing that the composition of
a polynomial time reduction from any problem A ∈ NPR to an NPR-complete one
L with a potential efficient algorithm for L results in a polynomial time algorithm
for A.

The following theorem summarizes two fundamental results in real number com-
plexity theory. Part a) is due to [12], part b) had a long history starting with
the work of Tarski [29] on quantifier elimination and the existential theory of the
reals in particular. The complexity bound stated is far from trivial and has been
established in various different forms independently by [16,18,26].

Theorem 2.6. a) The QPS problem is NPR-complete.
b) Every decision problem in NPR can be decided by a BSS algorithm whose

running time is bounded by a single-exponential function of the input size.

NPR-completeness is the justification why below we can concentrate on the QPS
problem. Note that the approach can literally be transformed to a model of compu-
tation over the complex numbers where, as only difference, only equality tests are
allowed. Then complexity classes are defined similarly and the previous theorem
holds analogously. This in fact holds as well for the results presented below, but
we shall only concentrate on the reals as underlying structure. Note that a discrete
version of QPS denoted by 0-1-QPS considers quadratic polynomials over Z2 and
asks for a common zero x ∈ {0, 1}n. It is well known to be NP-complete in the clas-
sical Turing-sense. Actually, here already the question of 0-1 solvability of linear
systems with rational data is NP-complete [20].

2.2. Probabilistically checkable proofs and related concepts. As already
indicated, our focus now changes. We shall from now on be interested in how
much of a certificate has to be read by a verification algorithm still getting a result
being true with high probability. Clearly, if we consider QPS and the most natural
verification algorithm guessing a potenial common root y, each component of y
has to be inspected, when the verification should be a uniform algorithm working
for all QPS instances and certificates in the same way. But is it possible to read
a significantly smaller part of y only? Clearly, the certificate then has to code
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something else than a common zero, or has to code such a zero in a significantly
different form. Similarly, as soon as parts of the proof are not read there is a chance
of errors; just suppose a correct proof is changed at one component, then with high
probability this component is not seen by the verifier if it only inspects a small
fraction of a certificate. The concept of probabilistically checkable proofs, PCPs for
short, formalizes such ideas as follows.

Definition 2.7. Let r, q : N 7→ N be two functions. An (r(n), q(n))-restricted
verifier V in the BSS model over R is a randomized BSS algorithm working as
follows. For an input x ∈ R∞ of algebraic size n and another vector y ∈ R∞

representing a potential membership proof of x in a certain set L ⊆ R∞, the verifier
in a first phase generates non-adaptively a sequence of O(r(n)) many random bits

(under the uniform distribution on {0, 1}O(r(n))). Given x and these O(r(n)) many
random bits V in the next phase computes in a deterministic manner the indices of
O(q(n)) many components of y. This again is done non-adaptively, i.e., the choice
of components does not depend on previously seen values of other components.
Finally, in the decision phase V uses the input x together with the random string
and the values of the chosen components of y in order to perform a deterministic
polynomial time algorithm in the BSS model. At the end of this algorithm V either
accepts (result 1) or rejects (result 0) the pair (x, y). For an input x, a guess y and
a sequence of random bits ρ we denote by V (x, y, ρ) ∈ {0, 1} the result of V in case
the random sequence generated for (x, y) was ρ.

The time used by the verifier in the decision phase is also called its decision time.
It has to be polynomially bounded in the size of x.

Remark 2.8. Concerning the running time of a verifier the following has to be
pointed out. In general, generating a random bit is assumed to take one time unit,
and the same applies when the verifier asks for the value of a proof component.
Below, in relation to long transparent proofs we need more than polynomially many
random bits. In such a situation the time for generating a random string would be
superpolynomial. We then assume that the entire random string can be generated
at unit cost. Note, however, that this is of no concern since the existence of long
transparent proofs will be used in the proof of the full PCPR-theorem only for
instances of constant size and thus the number of random bits is constant as well.
We comment on this point once more after Theorem 3.1 below.

Using the above notion of a verifier it is immediate to define the languages ac-
cepted by verifiers.

Definition 2.9. (PCPR-classes) Let r, q : N 7→ N; a decision problem L ⊆ R∞ is in
class PCPR(r(n), q(n)) iff there exists an (r(n), q(n))-restricted verifier V such that
conditions a) and b) below hold:

a) For all x ∈ L there exists a y ∈ R∞ such that for all randomly gener-

ated strings ρ ∈ {0, 1}O(r(sizeR(x))) the verifier accepts. In other words:
Pr
ρ
{V (x, y, ρ) = 1} = 1.

b) If x 6∈ L, then for all y ∈ R∞ : Pr
ρ
{V (x, y, ρ) = 0} ≥ 3

4 .
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In both cases the probability is chosen uniformly over all strings
ρ ∈ {0, 1}O(r(sizeR(x))).

In classical complexity theory the famous PCP-theorem, proved in the 1990ies
by several authors, states the surprising fact that for all problems in class NP a
verification is possible which uses a logarithmic amount of randomness and only
inspects a constant number of proof components:

Theorem 2.10 ( [2, 3]). PCP(log n, 1) = NP.

The theorem has been given an alternative proof by Dinur [13]. Below, we shall
outline how both proofs can be adapted to show the analogue in the BSS model:

Theorem 2.11 ( [5, 6]). PCPR(log n, 1) = NPR.

Example 2.12. Usually, the design of verifiers for interesting problems having
small resource parameters is far from trivial. We therefore just present one easy
example of such a construction in a very special situation related to the MAX-QPS
problem already mentioned before. As we shall later explain, this example is much
closer related to the PCPR-theorem than one might expect at a first glance. It
serves as a starting point for the second proof of Theorem 2.11, adapting the ideas
of Dinur to the real number world. For ϵ > 0 let GAP-QPS(ϵ) be a subclass of QPS
instances defined as follows: We only consider systems {f1, . . . , fs} as above, which
in addition either have a common zero or, otherwise, at most a fraction of 1 − ϵ
polynomials among the fi have a common zero. Thus, in this case for each y ∈ Rn

at least ϵs many fi satisfy fi(y) 6= 0. Now we show GAP-QPS(ϵ) ∈ PCPR(log n, 1):
The verifier V independently repeats O(1/ϵ) rounds the following. It randomly picks
one fi using log s = O(log n) bits to code index i. Then, it interprets the certificate
y as a potential zero (just as in the ’natural’ verification proof) and checks whether
fi(y) = 0. If at least one equality test fails V rejects. Now in the special situation
of instances from GAP-QPS(ϵ) this verifier needs the restricted resources from the
theorem. First, if {f1, . . . , fs} has a common zero y∗, V will clearly accept it with
probability 1 since each round shows fi(y

∗) = 0 for the chosen i. Secondly, suppose
the system has no common zero. Then for every certificate y the chosen fi satisfies
fi(y) 6= 0 with probability ≥ ϵ, thus implying rejection. The probability of not
detecting an error in k independent rounds thus is at most (1 − ϵ)k, which (for
small enough ϵ) is at most 1

4 for k = O(1/ϵ). Since ϵ is a fixed constant in the
above reasoning it follows that V in k = O(1) rounds uses O(log n) random bits.
Furthermore, since each fi in the instance only depends on at most 3 variables, in
each round V only inspects 3 components of the certificate. It follows that V is
(log n, 1)-restricted.

The example is not very interesting unless we get a feeling for how strict the
restriction to the subclass GAP-QPS(ϵ) is from a complexity theoretic point of
view. The easier the restricted problem is, the less interesting is the design of
a good verifier (note that PCPR(0, 0) = PR). And contrary, if we were able to
show that GAP-QPS(ϵ) is an NPR-complete problem, then the above verifier, when
composed with a polynomial time reduction from any problem A ∈ NPR to GAP-
QPS(ϵ), would establish Theorem 2.11. This is the starting point for one of the
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proofs of Theorem 2.11 below: Show, that there is a polynomial time reduction
from the complete QPS problem to GAP-QPS(ϵ) for a fixed ϵ (or, more precisely,
suitable variants of those problems). This also shows that the question of computing
efficiently good approximations to MAX-QPS instances lies at the heart of the
PCPR-theorem, see Theorem 3.9.

In the mentioned classical proofs further concepts varying PCPs and called prop-
erty testing and PCPs of proximity play an important role. Especially, property
testing has become an own branch of complexity theory, see [15]. As before, these
concepts can easily be formalized in the BSS setting as well. On an intuitive level,
they deal with a kind of approximate decision making for real number decision
problems.

Definition 2.13. a) A property tester for a decision problem L ⊆ R∞ is a
randomized algorithm V as above, which we again call verifier. Given an
input x and an error bound ϵ > 0, the verification should confirm with
probability 1 if x ∈ L; and if x is ϵ-far away from elements in L (where
distance is measured by the number of different components), V rejects with
probability at least 3

4 . Here, V accesses x via oracle calls, i.e., it queries a
black box for components of x.

b) Let ϵ > 0 be fixed. A verifier is a PCPR of proximity (with respect to ϵ) for
L, if it accesses both x and an additional certificate y via oracle calls. For
x ∈ L there should exist a y such that V (x, y) =’accept’ with probability
1. And if x has distance at least ϵ to L, then V rejects (x, y) for all y with
probability at least 3

4 .

Below we shall outline how to design a property test for linear real valued func-
tions on a finite subset of Rn and a PCPR of proximity for various kinds of polyno-
mials defined on finite domains and suitably small values of ϵ. It is then of major
importance how much randomization V needs and what its query complexity to the
oracle is. Both constructions are ingredients of showing the PCPR-theorem.

3. Proofs of the real number PCP-theorem

In this section we shall describe two ways how to establish Theorem 2.11. Since
both existing proofs conceptually take their starting point from the famous discrete
counterparts, i.e., [6] follows [2,3] and [5] follows [13], we shall in particular elaborate
where new difficulties arise when moving from discrete computations over binary
strings and the Turing model to the BSS model over R.

Let us start with the more algebraic proof [6]. The original discrete proof consists
of three different major parts. As explained above, a verifier better suited with
respect to the parameters addressed in the PCP-theorem than the natural one must
code a suitable certificate proving solvability of a 0-1-QPS instance in a completely
different way than just taking a zero as certificate. Towards this aim, the following
verifiers are designed: a property tester for linear Boolean functions given via a
function value table, and a PCP of proximity for algebraic polynomials of a certain
’low’ degree over suitable finite fields. Whereas the former property tester uses too
a high amount of randomness, but inspects only a constant number of values in the
table, the PCP of proximity for algebraic polynomials has logarithmic randomness,
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but inspects polylogarithmically many components of the certificate. The final
step towards proving Theorem 2.10 was to compose such verifiers by using a newly
developed technique to obtain a new verifier sharing the better parameter bounds of
the involved verifiers. For this composition to work it is important that the initial
verifiers have a special segmented structure, see below.

Especially the design of a segmented PCP of proximity for polynomials on finite
fields, the perhaps hardest part in the entire proof, uses a lot of algebraic tech-
niques. Given NPR-completeness of QPS, a problem of quite an algebraic flavour,
it might seem reasonable to expect an algebraic proof to work as well for showing
the PCPR-theorem. However, it turns out that in our algebraic setting performing
an algebraically oriented proof seems to be much harder than following the more
combinatorial proof ideas from [13].

We now first describe the algebraic approach and point out, at which places
severe differences and difficulties arise. Note that the PCPR-classes are closed under
deterministic polynomial time reductions, so in the sequel it is justified to consider
the NPR-complete problem QPS solely.

3.1. (Very) Long transparent proofs. As a first step we describe the design
of a verifier for QPS which only inspects a constant number of proof components,
but from a (very) large proof certificate. The latter is related to a high amount
of randomness the verifier uses. We describe the construction in more detail than
the remaining ones in order to give the reader a good idea of how the verifiers to
be constructed later on for QPS that are crucial to prove the PCPR-theorem might
look like. Since all these constructions use a lot of technical details, later on we just
give an outline of the underlying ideas.

Let (n, s, f1, . . . , fs) be a QPS instance. The idea for designing a verifier reading
much less of a proof certificate is to code a potential common zero a ∈ Rn via the
linear function A : x→ aT ·x generated by a. The function is provided by a table fA
of its values for a suitable finite domain DA. Then the idea of verifying whether a is

a zero of the polynomials is as follows: Consider the function F (a, r) :=
s∑

i=1
fi(a) · ri

for a ∈ Rn, r ∈ {0, 1}s. This is a first easy step introducing randomization. For
a fixed a and an r chosen uniformly by random it is F (a, r) = 0 with probability
1 in case a is a common zero and if not, then Prr(F (a, r) = 0) ≤ 1

2 . Of course,
evaluating F (a, r) in a direct way does not help us since one still would have to
access a entirely. Here, another way of expressing F helps. In fact, it is not hard
to see that F can be decomposed in the form

(∗) F (a, r) = E(r) +A (La(r)) +B (LB(r)) ,

where E : {0, 1}s → R, LA : {0, 1}s → Rn, LB : {0, 1}s → Rn2
are linear maps

that can be deterministically computed from the QPS instance, i.e., from the
given polynomials fi. The interested reader might compute this representation
for an easy example of few polynomials. Consequently, E,LA and LB can be effi-
ciently and deterministically evaluated in arguments r. The function A : Rn → R
is the above introduced scalar product generated by a potential common zero

a,B : Rn2 → R is as well generated by a being the linear function given by
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B(y11, y12, . . . , ynn) =
n∑

i=1

n∑
j=1

aiajyij for all y = (y11, y12, . . . , ynn) ∈ Rn2
. What

is the advantage of representing the evaluation of F (a, r) in this seemingly much
more involved format? Recall that our goal is not to inspect a in total. Formula (∗)
instead says: F (a, r) for a random r can be computed by computing (determinis-
tically) E(r), LA(r), and LB(r) and then querying a single value from the function
value table for A (namely the one in argument LA(r)) and another value from the
table for B (in argument LB(r)). This is structurally precisely what we want. If
the proof certificate consists of two tables, one for A and one for B, for a single
evaluation of F (a, r) in a random r only two components of the proof are read.
Repeating this a constant number of times still requires O(1) queries into the cer-
tificate only. And the probability to detect an error if a is not a common zero can
be pushed arbitrarily close to 1 (with constant distance depending on the number
of independent repetitions). Though in principle this describes a verifier which has
much better query complexity, the problems only start now. The alternative way
to do an evaluation introduces two additional tasks to be settled by the verifier
within the allowed resources. The first of these new problems is the same as in
the Turing model; both functions A and B are given via tables fA, fB of function
values. But starting from those tables the verifier has to test that the given tables
indeed represent linear functions and that both functions are consistent, i.e., the
tables arise from one particular a ∈ Rn in the manner described above. This first
task (except verifying consistency) leads to property testing for linear functions. In
the Turing framework for functions from Zn

2 → Z2 this has been done in [11]. Here,
a natural idea is to pick random x, y in the domain Zn

2 and compare the three values
of fA at the positions for x, y, and x + y. It can be shown that by repeating the
test whether fA(x) + fA(y) = fA(x+ y) a constant number of times the conditions
of being a property tester for linear Boolean functions are met. Note that the size
of the domain Zn

2 is 2n, so the table fA has exponential size in the size O(n) of
the 0-1-QPS instance and the amount of randomization needed to address points
in the domain is polynomial instead of logarithmic in n. In this sense the table fA
provides (parts of) a long proof. The main new difficulty when following this idea
in the BSS setting is the question, on which domain A should be defined as a real
number function. Whereas Zn

2 as domain has the structure of a vector space, if we
look for a suitable finite set DA on which the table fA should provide the values of
A, we do not even have closeness of addition and scalar multiplication. Also, for
the latter it is far from obvious which scalars should be considered; since the table
fA is the input of the verification task it has to be finite and so has the set of real
scalars for which the linearity condition might be checked. Beside this, DA clearly
must satisfy the following elementary properties: If the values on DA correspond
to a linear function, it must be unique. So DA should contain a basis of Rn. And
in order to evaluate (∗) for random r all points LA(r), r ∈ Zs

2 have to be in DA.
Similar conditions must be met by the domain DB considered for fB.

We now describe the idea behind defining DA and how then linearity can be
verified. First, define a finite set A0 ⊂ Rn which contains Zn

2 (and thus a basis
of Rn as real vectors space), all values in the range of LA(Zs

2) together with some
additional elements of no concern for outlining the basic idea. The cardinality of
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A0 will be of order O(nn). Similarly, define a set Λ0 of real scalars with cardinality
of order O(n). The goal is to perform a test which with high probability figures
out whether the function value table fA on A0 with scalars from Λ0 is a linear
function.This is basically done using tests of the form: pick x, y, λ randomly from
A0 × A0 and Λ0, respectively, and check whether fA(x) + fA(y) = fA(x + y) and
fA(λx) = λfA(x). The test should figure out with high probability if fA in a certain
sense is far away from a function satisfying linearity on A0 with respect to scalars
from Λ0. The major problem is that sums of elements in A0 as well as multiplication
with λ ∈ Λ0 in general does not give a point in A0. We therefore extend the ’safe’
domain A0 to a much larger ’test’ domain A1 of double exponential size in n in such
a way that A1 is almost close under addition with points from A0 and under scalar
multiplication with λ ∈ Λ0. And similarly, Λ0 is enlarged to some Λ1 such that
the latter is almost closed under multiplication with scalars from Λ0. The domain
DA on which the verifier would like fA to be given then is DA := {x + y|x, y ∈
A1}∪{α ·x|α ∈ Λ1, x ∈ A1} and as well has a size being double exponential in that
of the input system. Now the verifier for property testing linearity on A0 works as
follows. It expects a table fA of real values on A1. Then it performs O(1) rounds
the following: Pick random x, y ∈ A1 and random α, β ∈ Λ1 and check whether
fA(x+ y) = fA(α ·x)/α+A(β · y)/β. The verifier accepts fA if all arising equalities
in all rounds are satisfied, otherwise it rejects.

If a table fA passes this test it can be shown that with high probability one can
extract from fA a function A which is linear on A0 with scalars from Λ0. With
high probability means that each particular value of A can be computed correctly
with high probability using values in the table fA. Note that even if fA passes
the above test, if we want to evaluate A in one specific point (because we want to
evaluate (∗)), it might still be the case that fA gives a false value in this point.
The previous remark indicates that there is a way around this problem, called self-
correction, which allows even in such a case to compute the correct value with
high probability. Doing the same for the linear function B and designing a verifier
checking consistency of A and B (this is much easier) this gives a way to verify
whether the given QPS instance is satisfiable by checking constantly many proof
components only. More precisely, we arrive at the following theorem originally
proved in [22]; our above representation is close to [4]:

Theorem 3.1. For every problem L ∈ NPR there is a verifier working as follows:
Given an instance x of size n the verifier expects a proof of double exponential size in
n. The verifier generates uniformly a finite number of random strings. Using those
strings it computes the addresses of finitely many proof-components it wants to read.
This computation is done without reading the input x, i.e., the components to be seen
only depend on the random strings generated. In its decision phase the verifier uses
input x together with the finitely many components and accepts L according to the
requirements of Definition 2.7. It has a decision time that is polynomially bounded
in the input size n. The verifier does not use any additional (real) constants.

Let us add a more technical comment on the theorem in view of Remark 2.8 above.
Recall that the size of DA in our proof is double exponential in the input size n.
Therefore, the random strings used in the proof above are exponential in length. In
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the verification procedure they are used to compute the proof-components which the
verifier wants to see. In contrast to Definition 2.7 these components are computed
independently of the concrete input x (but dependent on n). The reason to require
this is that we want to forbid the verifier to potentially use exponential time in the
query phase in order to decide the input. After having read the values of the finitely
many components the verifier uses the input and the values of those components
(and not any longer the random string) in order to make its decision after a running
time being polynomial in the size of the input. The verifier constructed above thus
is more restricted than general verifiers because it is limited with respect to how
it computes the components to be seen. Note, however, that the decisive point
behind Theorem 3.1 is the structure of the verification proof. In the next section
we shall see that for the PCPR-theorem the transparent (very) long proofs from
Theorem 3.1 are invoked in a situation where inputs are of constant size. In this
situation of course also the length of each random string remains constant. Then the
structure of the verification procedure is more important than the parameter values;
the latter automatically are constant. Therefore, when used in the framework of
the full PCPR-theorem the verifier in Theorem 3.1 can again be chosen according
to Definition 2.7.

3.2. PCPs of proximity for trigonometric polynomials. The verifier from
Theorem 3.1 of course does not realize the resource requirements stated in the
PCPR-theorem. Its certificates are (far) too long and so the necessary randomization
is too high. The first proof of the classical PCP-theorem proceeds as follows. It
constructs a second verifier for 0-1-QPS which has (better) O(log n) randomness,
but reads polylog(n) positions in the certificate. This proof is based on the use of
(algebraic) polynomials having a moderate degree and defined on large finite fields.
Such a ’low-degree’ polynomial is coding a potential zero of a 0-1-QPS instance
similarly as we did it above for linear functions. However, the test procedure for
verifying that a function represented by a table of values is close to such a polynomial
is much more involved both from the conceptual and the technical side. Beside the
table of values the certificate contains further information about the ideally coded
polynomial, among other things information about univariate restrictions of the
coded polynomial. This leads to the task of designing a PCP of proximity for
polynomials in the Turing setting. The third important step in the original proof
is to compose the verifiers constructed in the first two steps in a clever way. The
underlying technique has been developed as well in relation with the proof; an
important property of verifier composition is that it inherits in a precise sense the
better parameters of the verifiers involved in the composition. In order to obtain the
parameters of the PCP-theorem, the low-degree verifier is composed once with itself
and the resulting verifier then is composed with the long transparent one resulting
from property testing linearity. One important structural feature to apply verifier
composition is segmentation of the involved verifiers. Segmentation requires that a
verifier reads the information from the certificate in a very structured form.

Definition 3.2. Let r, q : N → N be two resource functions. A real probabilistic
(r(n), q(n))-restricted verifier V (both of a PCPR or a PCPR of proximity) is called
segmented if the queries are structured such that V asks O(1) many segments of
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length at most O(q(n)) from the certificate (in case of a PCPR) or both from the
instance and the certificate (in case of a PCPR of proximity). Here, a segment of a
certificate from R∞ is a consecutive block of components.

Let us sketch the importance of segmentation in relation with the technique of
verifier composition. Suppose we have two verifiers V1, V2 for QPS using different
resources concerning randomization and query complexity. Suppose V1 during its
computation on an input of size n and certificate y1 wants to inspect q1(n) many
components of y1. It reads the components and then performs in its decision phase
a deterministic polynomial time computation to finally accept or reject. Starting
point of verifier composition is to consider this final deterministic decision phase as
verification task of another problem; the decision phase of V1 can be seen as PR-
problem with instance being the string v1 composed of the q1(n) many components
V1 wants to see from certificate y1. As a PR-problem it is as well in NPR. So instead
of letting V1 perform the deterministic computation on v1 one can use the second
verifier V2 to probabilistically verify whether v1 satisfies the PR-condition. This
way, in principle the ’outer’ verifier V1 can be composed with the ’inner’ verifier
V2 to obtain a new one V . The randomization V uses is r1(n) + r2(q1(n)), since it
starts with simulating V1 and then replaces V1’s decision phase by simulation of V2
on inputs of length q1(n). And its query complexity is that of V2, again on inputs
of size q1(n). So ideally, V inherits the better parameters from both V1 and V2,
depending on which outer and inner verifiers are chosen. However, this very short
description once more hides major technical problems behind composition. Take
as example the previously explained long transparent verifier as V2. A satisfying
assignment (i.e., v1 above as satisfying assignment for a PR-property) is encoded as
a linear function on a special domain. When V1 is running several rounds it might
be the case that it wants to see several times same components from its certificate,
but in different contexts. Then, V has to guarantee that the encodings used by V2
for instances sharing identical components of y1 are consistent. Achieving this is
obviously heavily depending on which encodings are used to code an assignment. It
is here where segmentation together with using suitable encodings plays a crucial
role. Verifiers just inspecting O(1) many components automatically are segmented.
But for the mentioned PCPs of proximity for low-degree polynomials it was a major
difficult task to achieve the segmented form.

Next, we outline new problems arising when one tries to follow a similar approach
in the BSS framework. Given that QPS is an NPR-complete problem dealing with
a fundamental question about polynomial system solving it seems natural that the
algebraic approach of the proofs in [2, 3] is as well suitable to show the PCPR-
theorem. So the next step could be to code a common zero y ∈ Rn of a QPS
instance via a table of function values fA(y) on a suitable finite domain A(y) ⊂ Rn

depending on y. Then, one would have to design a PCPR of proximity for verifying
that fA(y) on A is close enough to a unique low-degree polynomial on Rn. And in a
second step the verifier should manage to use the information given in this PCPR
of proximity to evaluate with high probability correctly the given QPS instance
in y. This outline corresponds to the steps we made in the previous subsection in
relation with using linear maps as codes, but this time giving a PCPR with resource
parameters (log n, polylog(n)). A verifier proving QPS ∈ PCPR(log n, polylog(n))
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based on the use of real algebraic polynomials as codes actually was designed already
in [23]. However, as a major drawback it lacks segmentation and thus could not
be used in the composition framework. In the Turing model, algebraic polynomials
of arity k = O( logn

log log n) and low degree O(log n) are considered on a finite field

F of suitable size. A polynomial p is given via its table of values on Fk and a
PCP of proximity is designed that uses as certificate information about univariate
restrictions of p along all lines through Fk. Then (very briefly) closeness of the
function represented by the value table to a polynomial is verified by comparing
in randomly chosen points the value in the table with that of certain univariate
restrictions. Beside the considerable technical difficulties that have to be managed
to follow this approach, one important feature is the advantage of working over a
finite field as very structured domain. This in particular implies that the restrictions
to one-dimensional lines again are low-degree polynomials defined on F.

We have seen above the serious problems arising in the real number setting al-
ready when defining a suitable domain for encoding a potential zero of a QPS
instance as a linear map. When we try to extend these ideas to multivariate poly-
nomials on some finite domain A ⊂ Rn problems become even harder. The structure
of being a finite field as domain is lost. Moreover, it is neither clear which directions
of lines to which a polynomial is restricted one should consider (there are uncount-
ably many), nor are such lines in general defined on the set A. As consequence, an
idea similar to that of Section 3.1 defining a polynomial on a larger test domain and
choosing only a finite set of lines on which restrictions are considered seems not to
work. In [6] therefore other coding objects are taken. The idea is to somehow com-
bine the structural advantage of using finite fields as domains with the real number
objects that are encoded. The set Fq := {0, 1, . . . , q− 1} with large enough prime q

is considered together with trigonometric polynomials mapping Fk
q to R.

Definition 3.3. Let Fq be a finite field as above. For k, d ∈ N a trigonomet-

ric polynomial f : Fk
q 7→ R of max-degree d is given as f(x1, . . . , xk) =

∑
t
ct ·

exp(2πiq

k∑
j=1

xjtj), where the sum is taken over all t := (t1, . . . , tk) ∈ Zk with

|t1| ≤ d, . . . , |tk| ≤ d and ct ∈ C satisfy ct = c−t for all such t.

Periodicity of trigonometric polynomials allows to use Fq as a finite field; in
particular, lines can be considered being still defined on Fq. This partially reduces
the problems mentioned above for algebraic polynomials. However, new difficulties
occur by the following reason. When a trigonometric polynomial of maximal degree
d is restricted to a straight line given as t→ u+t·v, u, v,∈ Fk

q , t ∈ Fq the degree of the
resulting univariate polynomial depends on the components defining the directional
vector v. In a PCPR of proximity for trigonometric polynomials the certificate will
contain such restrictions in an explicit form, therefore the size of certificates depends
on the degree of such restrictions. This leads to the problem that we cannot use all
univariate restrictions along lines in Fk

q to design a PCPR of proximity. A major
part of the mathematical work in [6] is devoted to characterizing polynomials on
Fk
q via univariate polynomials defined on a suitable small set of lines through Fk

q .
In principle, one would like to work with a randomly chosen such line; due to the
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problems described above, one tries to approach such a random line by a random
walk using only a restricted set of lines defined by sufficiently small components.

This investigation leads to the following

Theorem 3.4. (PCPR of proximity for trigonometric polynomials) Let d ∈ N,
h := 1015, k ≥ 3

2(2h+1), d̃ := 2hkd, and let Fq be a finite field with q being a prime

number larger than 104(2hkd + 1)3. Let f : Fk
q → R be a function given by a table

of its values.

a) There exists a probabilistic verification algorithm in the BSS-model of com-
putation over the reals with the following properties:
i) The verifier as input gets the table for f together with a proof string

consisting of at most q2k segments. Each segment has at most 2hkd+
k+1 many real components. The verifier uniformly generates O(k log q)
random bits and has a running time that is polynomially bounded in the
quantity k log q, i.e., polylogarithmic in the input size O(qk).

ii) For every table representing a trigonometric max-degree d polynomial
on Fk

q there exists a proof such that the verifier accepts with probability
1.

iii) For any 0 < ϵ < 10−19 and for every function value table whose distance

to a closest max-degree d̃ := 2hkd trigonometric polynomial is at least
2ϵ, the probability that the verifier rejects is at least ϵ, no matter which
proof is given.

b) Suppose the verifier under a) has accepted f and the closest trigonometric

polynomial of max-degree ≤ d̃ is f̃ with a distance at most δ for arbitrary
fixed and small enough δ > 0. There exists another segmented verifier work-
ing as follows:
i) It gets as input the table for f , a point x ∈ Fk

q and an additional

proof certificate with at most O(
√
qk−1) segments of length 2

√
qkd + 1

each. The verifier uniformly generates O(k log q) random bits and has
a running time that is polynomially bounded in the quantity k

√
qd.

ii) If f ≡ f̃ is a trigonometric max-degree d polynomial, there is a certifi-
cate such that the verifier accepts with probability 1.

iii) If f(x) 6= f̃(x), the verifier rejects every certificate with probability ≥ 3
4 .

The above result is one of two main building blocks to design a
(log n, polylog(n))-restricted and segmented verifier for QPS. The second important
ingredient is to evaluate a given QPS instance by another segmented verifier in the
point y ∈ Rn that is coded as a low-degree trigonometric polynomial. To do so, the
verifier expects a potential zero y of a QPS instance depending on n variables to be
coded via a k-variate trigonometric polynomial ty of max-degree O(log n) on a large

enough finite field Fq. Here, k is taken as d logn
log log ne to guarantee, that ty can code

more than n reals. The components of point y then can be found among the values
of ty. Similarly as it was the case in Section 3.1 with equation (∗), the requirement
that y is a zero of the polynomials defining the QPS instance is expressed as a
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condition of the form

(∗∗)
⌊logn⌋∑

z1,...,zk=0

g(z1, . . . , zk) = 0.

Here, g is a k-variate trigonometric polynomial of degree O(log n) defined by means
of the input polynomials of the QPS instance. The problem is that (∗∗) is a sum with
too many (exponential in log n) terms. Since evaluation of a single term requires to
read components in the table for ty, a straightforward evaluation of the sum leads
to too a high query complexity. This problem in the discrete framework has been
solved in [21] by a so-called randomized sum-check algorithm. Though the principle
ideas can be used, an additional new difficulty in the BSS model again is due to the
requirement of segmenting this sum-check. The use of trigonometric polynomials
does not allow a direct application of the discrete proof. We abstain from explaining
the technical solution of this since it does not increase an overall understanding of
ideas. This way it can be shown

Theorem 3.5. For every problem L ∈ NPR there is a (log n, poly log n)-restricted
real verifier accepting L. The verifier is segmented, i.e., it reads O(1) many blocks
of length poly log n from the proof certificate.

The final step towards obtaining Theorem 2.11 now is following the discrete
roadmap. Since the verifier from the previous theorem is segmented, verifier com-
position can be applied using it both as outer and inner verifier. For the resulting
verifier we apply composition for a second time, again with the verifier from The-
orem 3.5 as inner one.2 A third composition then uses the verifier from Theorem
3.1 as inner one; since its input size has been reduced by the first two compositions
far enough, the obtained composed verifier is (log n,O(1))-restricted, thus proving
Theorem 2.11.

3.3. The second proof. In [13] Dinur presented a new proof of the discrete PCP-
theorem. It is based on an close relation between PCPs and gap-producing reduc-
tions for so-called Constraint-Satisfaction-Problems CSP. The latter generalizes the
well known satisfiability problem 3SAT for propositional formulas in conjunctive
normal form. In this problem, an instance consists of a finite collection of clauses
which are disjunctions of at most three literals per clause. A literal is a Boolean
variable xi or its negation x̄i. Now the question is to decide whether there exists
an assignment x∗ ∈ {0, 1}n for the involved propositional variables which makes
all clauses true. Note that each such instance easily can be transformed into an
(with respect to satisfiability) equivalent 0-1-QPS instance, the reason why the lat-
ter is NP-complete as well. A CSP problem now considers general finite alphabets
as variable domains (not only the Boolean {0, 1}) and a collection of more general
constraints than just clauses. To each such CSP decision problem there corresponds
a MAX-CSP optimization problem, similar to the above Example 2.12 for MAX-
QPS. It has been well known that if one succeeds in constructing a gap-creating

2This additional round is necessary because of parameter reduction. Since the domain for the
verifier checking linearity is larger than exponential, we first have to reduce randomization of the
outer verifier so far that even a double exponential size of the certificate does not harm.
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polynomial time reduction between CSP instances of one particular NP-complete
CSP problem, the PCP-theorem would follow. Dinur’s ingenious work was pre-
cisely doing that. The decisive steps are twofold. In several alternating rounds
(not too many) there are amplification steps that significantly increase the gap, i.e.,
the fraction of unsatisfiable constraints in case a CSP instance is not satisfiable in
total. These steps are done at the expense of increasing the cardinality of the un-
derlying finite alphabet of the CSP considered. This cardinality would become too
large if amplification is applied sufficiently many times to reach a constant-fraction
gap. Therefore, after each amplification step a so-called alphabet reduction step is
performed. It worsens respectively decreases the gap a bit, but reduces the alpha-
bet size back to an absolute constant. Alphabet reduction involves the (discrete
original of) long transparent proofs that was used to show NP = PCP(poly(n), 1).
The mathematics of Dinur’s proof at a first glance seems tailored for the discrete
framework. Especially, the amplification step applies combinatorial mathematics
with heavy use of so-called expander graphs, a class of well-structured graphs with
a lot of applications especially in complexity theory. Moreover, the cardinalities of
the finite(!) domains underlying the different CSPs play a crucial role. From all
this, it seems unclear whether the techniques could be used to deal with real num-
ber problems like QPS. Here, the underlying alphabet is the fixed and uncountable
set R. Nevertheless, it turned out that this first impression is false and a proof of
Theorem 2.11 along Dinur’s ideas is at least easier than the algebraically oriented
one outlined in the previous subsection. A key observation is that in order to bet-
ter adapt the techniques from [13] a more detailed view of the structure of QPS
instances is beneficial. This refers to a more subtle way to group equations and
variables in polynomial equation systems. In particular, a (single) constraint now
can be a collection of polynomial equations that all have to be satisfied in order to
fulfill the constraint.

Definition 3.6. Let m, k, q, s ∈ N. An instance of problem QPS(m, k, q, s) is a
set of m constraints. Each constraint consists of at most k polynomial equations
each of degree at most two. The polynomials in a single constraint depend on at
most q variable arrays which have dimension s, i.e., an array ranges over Rs and
the polynomials are maps from Rqs → R.

Hence, a single constraint in a QPS(m, k, q, s) instance depends on at most qs
variables in R. So if there are m constraints the whole instance contains at most qm
arrays and at most qsm variables. And the previous QPS problem corresponds to
QPS(m, 1, 3, 1) seeing each variable as its own array. For what follows parameters q
and s are most important; q will be chosen to be 2, i.e., each constraint will depend
on 2 variable arrays. Controlling s so that it remains bounded by a constant is a
crucial goal during the different design steps of the gap reduction. Note that the
problem is NPR-complete for most values of (q, s), for example if q ≥ 2, s ≥ 3.

Definition 3.7. A QPS(m, k, q, s) instance ϕ is satisfiable if there exists an as-
signment in Rmqs which satisfies all of its constraints. A constraint is satisfied by
an assignment if all polynomials occurring in it evaluate to zero. The minimum
fraction of unsatisfied constraints, where the minimum is taken over all possible
assignments, is denoted by UNSAT(ϕ).



PROOF VERIFICATION IN REAL NUMBER COMPLEXITY 1153

With a gap reduction we mean an algorithm which in polynomial time transforms
a QPS(m, k, q, s) instance ϕ into a QPS(m′, k′, q, s) instance ψ such that there exists
a fixed constant ϵ > 0 and

• if ϕ is satisfiable, then ψ is satisfiable and
• if ϕ is not satisfiable, then UNSAT(ψ) ≥ ϵ.

Thus, either all constraints in the output instance ψ are satisfiable or at least an
ϵ-fraction is violated, no matter which values are assigned to the variables. Most
importantly, ϵ is a fixed constant not depending on the size of the given instances.

The following can be established like Example 2.12 and shows the importance of
gap-reductions for the PCPR-theorem:

Lemma 3.8. Suppose there exists a gap reduction for an NPR-completeQPS(m, k, q, s)
with a fixed ϵ > 0. Then the PCPR-theorem follows.

We now sketch how the PCPR-theorem in [5] is proved by designing such a gap
reduction. It turns out that the dimension s of variable arrays in QPS(m, k, q, s)
instances can play the same role as the alphabet size in discrete CSPs. Thus, after
a preprocessing step, a gap reduction once again is obtained by alternating amplifi-
cation steps with steps decreasing the value of the array dimension. Starting from
a QPS(m, k, 2, s) instance ψin with parameters that constitute an NPR-complete
problem, the single steps produce instances of various other such problems by vary-
ing the involved parameters. These problems very roughly are obtained as follows.
Instances involving q = 2 variable arrays per constraint canonically define a con-
straint graph in which vertices correspond to variable arrays and edges indicate that
the two incident arrays participate in the same constraint. The initial instance ψ
obtained after preprocessing has a very special constraint graph being a so-called
expander, in which a regularity parameter d ∈ N is important. Using the properties
of expanders amplification constructs another QPS instance ψ̃(t) (with different pa-

rameters) such that UNSAT (ψ̃(t)) ≥ c(t) · UNSAT (ψin) for a suitable c > 1 and
an additional parameter t ∈ N that can be chosen (relatively) arbitrarily. Basic

ingredient of the construction of instance ψ̃(t) is the use of random walks in the
expander graph defined by ψin, just as this is done in [13] using graphs attached to
CSP instances. Random walks here are used to define new constraints of a larger
dimension depending on the chosen t and the regularity parameter d. Satisfiable
initial instances are mapped to satisfiable new ones. More difficult, the structure
of expanders guarantees that whenever an unsatisfiable constraint in ψin is violated
under a specific assignment, in the new instance a significantly larger amount of
constraints are violated under any assignment. Whereas classically the new CSP
instance is defined over alphabets of a larger cardinality, here ψ̃(t) uses variable
arrays of larger size than the s we started with. Since the dimension of the new
instance grows with t this amplification step cannot be applied arbitrarily often in
a row. The dimension in the end is related to the query complexity of the ver-
ifier behind Lemma 3.8 and thus has to remain constant. So in a next round a
reduction of the dimension has to be achieved. Analogously to the ongoing in the
discrete setting, the (very) long transparent proofs from Section 3.1 can be used to
reach this goal. Then, a next round is applied until finally (after logm rounds) an
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instance ψ is obtained whose UNSAT-value is above a given constant. The PCPR-
theorem follows once again, given the above remarks concerning its relation to gap
reductions.

An immediate consequence of the tight relation between gap reductions and the
PCPR-theorem is the following negative result concerning the MAX-QPS (and thus
also the more general MAX-PSS) optimization problem discussed in the introduc-
tion. We mentioned already the easy observation that computing the maximum
number of polynomials in such a system that have a common zero is at least as
hard as solving NPR-complete decision problems. A consequence of the PCPR-
theorem shows that even approximating this maximal number arbitrarily well with
a polynomial time algorithm is likely impossible. More precisely it holds

Theorem 3.9. Given a set of real polynomials and an arbitrary ϵ > 0, unless PR =
NPR there is no real number algorithm running in polynomial time in the system’s
size which approximates the maximal number of polynomials having a common real
zero within a relative factor 1 + ϵ. The latter means that the ratio of the maximal
number of polynomials having a common zero and the algorithm’s output is at most
1 + ϵ.

The theorem follows from the existence of a gap reduction for the different vari-
ants of the QPS problem discussed above. If such an approximation algorithm
would exist, the NPR-complete version of QPS(m, k, q, s) used above could be de-
cided efficiently by computing a sufficiently good approximation of the maximum of
the related optimization version MAX-QPS(m, k, q, s). The interested reader might
fill in the details her-/himself.

4. Further research and open problems

We finish this survey by mentioning a few more results on related questions and
collecting some further problems that seem interesting to us for future investigations.

The algebraic proof of Theorem 2.11 as one major ingredient uses the design of a
PCPR of proximity for trigonometric polynomials. Of course, one could ask for a lot
of other objects in the BSS framework whether there exist property testers and/or
PCPR’s of proximity in the sense of Definition 2.13. For multivariate algebraic
polynomials defined on a finite subset of R this has been done recently:

Theorem 4.1 ( [24]). Let ϵ > 0 be fixed; let q be a prime and let q, k, d ∈ N be

such that q ∈ Ω(k
2d3

ϵ2
) and Fq := {0, 1, . . . , q− 1} ⊂ R. There is a (O(k log q), O(1))-

restricted PCPR of proximity for testing whether a given f : Fk
q 7→ R is an algebraic

polynomial of maximal degree d in each of its variables. The verifier gets as in-
put a table of the function values of f together with a proof certificate of length
O((kq)O(k)). Its running time is polynomial in kq.

There are several open questions with respect to the proofs of Theorem 2.11.
First, the constants hidden behind the different constructed verifiers, such as the
length of the required certificate, the amount of randomization and the constant
behind the O(1) query complexity of the PCPR-verifier are huge. Since proof details
(in both variants) are quite technical we do not see an obvious way to reduce theses
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constants significantly. This holds for both approaches. Another more structural
question is whether the use of trigonometric polynomials can be avoided by designing
a more direct proof using algebraic ones. Though Theorem 4.1 seems to indicate
that this is possible, it is not clear. Its proof heavily relies once again on the use of
trigonometric polynomials as coding objects being necessary to design the PCPR of
proximity. So it does not provide an alternative way to show the PCPR-theorem.
The nearby question then is: Does there exist a more ’direct’ PCPR of proximity
for real algebraic polynomials? Similarly, one can ask for the existence of property
testers for the two kind of polynomials, i.e., verifiers that only access a function value
table as oracle, but no additional certificate. For algebraic polynomials on certain
finite sets in the Turing setting such a test has been developed in [14], but with
non-constant query complexity. More generally, it seems interesting to find more
function classes or properties, respectively, for which property tests or PCPR’s of
proximity can be constructed in the BSS model. These problems are also closely
related to the field of software testing, i.e., the question of checking whether a given
BSS-program fulfills the computational task it was designed for, f.e., computing a
polynomial of a certain structure.

Coming back to the proofs of Theorem 2.11 and the question for easier verification
algorithms we remark that in the classical PCP literature, the important initial
role played by segmented verifiers has been subsumed by that of so-called robust
verifiers, see [9] and also [17]. Since the main technical problem to overcome is
segmentation, it is of course interesting to ask whether robust verifiers in the real-
number framework would lead to easier proofs as well, including a possibility to
avoid trigonometric polynomials. Another impact of classical robust verifiers is
to obtain property testers instead of PCPs of proximity. Once again we can ask
whether this would be possible both for algebraic and trigonometric polynomials?
We do not have an educated guess at the moment.

Theorem 3.9 reminds a class of problems that has been studied intensively in
discrete complexity theory, namely the approximation of (combinatorial) optimiza-
tion problems. Of course, in our setting there is an unusual mix of the uncountable
underlying alphabet R and a discrete value to optimize in form of the number
of commonly satisfiable constraints. Given the huge importance of approximating
combinatorial problems in classical complexity theory it might be interesting to
investigate whether a similar theory can be developed here.

As a final area related to the concepts presented here we mention a generaliza-
tion of PCPs. In the above setting, the verifier inspects a certificate presented to
it performing a randomized algorithm. As a more complex framework one can also
allow a kind of communication between the verifier and a so-called prover which is
assumed to have unlimited computational power. For a PCP, the prover would just
present the certificate to the verifier and then does not interfere further. In inter-
active proofs there are several rounds of communication and computation between
the verifier and the prover. As before, the verifier performs random computations
and generates questions for the prover which the latter then answers. The verifier
continues the computation using the given answers. The process is repeated until
finally the verifier has to decide whether it wants to accept this interactive communi-
cation as proof for a statement or not. Like for the PCPR-classes further conditions
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are imposed on the probabilities of accepting and rejecting computations. This
way, in the Turing model one obtains a class of decision problems denoted by IP
for interactive proofs and an analogue class IPR in the BSS model. The languages
that can be accepted by such a protocol most likely build a much larger class than
NP. A famous theorem by Shamir [27] characterizes IP as PSPACE, the class of
all decision problems decidable by a Turing algorithm that uses polynomial space.
The latter is conjectured to be much larger than NP. In the BSS setting the first
study of such interactive protocols was done in [19] for a restricted class of additive
BSS-algorithms. In [7] a class IPR for the (full) BSS model was studied and it was
shown that it contains a class of real number decision problems conjectured to be
much larger than NPR. Note, however, that space resources alone don’t make much
sense in the BSS setting due to certain easy fundamental coding abilities [25]. As
a consequence, in the real BSS model there are several (provably different) com-
plexity classes that can be seen as real number substitutes for the discrete class
PSPACE. The main result in [7] shows that the class IPR is strictly larger than
one of those classes and contained in another. One open question now is to find a
characterization of IPR by a natural other complexity class, a second is to figure
out whether IPR is closed under complementation, a property the discrete class IP
has as consequence of Shamir’s theorem.
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