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the minimum in-degree, δ+(D) = minx∈V (D) d
+(x) the minimum out-degree, and

δ0(D) = min{δ−(D), δ+(D)} the minimum semi-degree of D.
For a positive integer c, a c-partite tournament D is an orientation of a complete

c-partite graph, which is to say V (D) can be decomposed into c pairwise disjoint,
non-empty, independent subsets V1, . . . , Vc – called partite sets of D – such that
two vertices of distinct partite sets are connected by exactly one arc. If there is at
least one arc between vertices of distinct partite sets, we call the considered digraph
semicomplete c-partite. We then define the function

p = pD : V (D) → {1, . . . , c}, x 7→ i, if and only if x ∈ Vi

that assigns each vertex the index of its partite set. The class of multipartite tour-
naments contains all c-partite tournaments for all positive integers c. Semicomplete
multipartite digraphs are defined analogously. We call a semicomplete multipartite
digraph proper (rich, respectively), if at least one (each, respectively) of its par-
tite sets contains at least two vertices. A tournament is a multipartite tournament
whose every partite set contains exactly one vertex.

As a first result, we consider the following decomposition of the vertex set of mul-
tipartite tournaments, due to Tewes and Volkmann, which will play an important
role in the proofs to come.

Theorem 1.1 (Tewes and Volkmann [12], 1999). Let D be a non-strong, c-partite
tournament with partite sets V1, . . . , Vc. Then there exists a unique decomposition
of V (D) into pairwise disjoint subsets X1, . . . , Xr, where Xi is the vertex set of a
strong component of D or Xi ⊆ Vℓ for some ℓ ∈ {1, . . . , c} such that Xi ⇒ Xj for
1 ≤ i < j ≤ r and there are xi ∈ Xi and yi ∈ Xi+1 such that xi → yi for 1 ≤ i < r.

We call X1, . . . , Xr the multipartite decomposition of the multipartite tournament
D.

Moon’s theorem, arguably one of the most central results on tournaments, states
that every vertex of a strong tournament on n vertices is contained in an ℓ-cycle of
length ℓ for all ℓ ∈ {3, . . . , n}, a property which we call vertex-pancyclicity.

Theorem 1.2 (Moon [11], 1966). Every strong tournament is vertex-pancyclic.

However, Moon’s theorem does not hold for strong multipartite tournaments, at
least not in the specific formulation given in Theorem 1.2. This is known since at
least 1976, when Bondy [3] showed the existence of strong c-partite tournaments
on n > c vertices without ℓ-cycles for all ℓ > c (cf. Figure 1). Challenged by
this obstacle, researchers considered competing concepts to capture the essence of
Moon’s theorem in a result that would extend to multipartite tournaments.

Figure 1. A strong 4-partite tournament without ℓ-cycles for all
ℓ > 4.
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2. Generalizations of Moon’s theorem

In this section, we give a short overview of some known generalizations of Moon’s
theorem (Theorem 1.2) for multipartite tournaments and introduce a new one. In
the literature the term quasi-pancyclicity has been used in this context to express
varying concepts. To avoid confusion, we therefore introduce the terms quasi x-
pancyclicity, where x ∈ {p, o, nl, l}, whose meanings will become apparent in the
following paragraphs.

We begin with an approach by Goddard and Oellermann. Instead of counting
each vertex of a cycle, they would count the number of partite sets represented
in said path or cycle. A quasi p-k-cycle in a semicomplete multipartite digraph is
then a cycle which contains vertices from exactly k different partite sets. Since
every partite set of a tournament contains exactly one vertex, in a tournament both
concepts are equal. Now, a vertex in a semicomplete c-partite digraph is called
quasi p-pancyclic, if it belongs to a quasi p-k-cycle for each k ∈ {3, . . . , c}. Again, in
tournaments, quasi p-pancyclicity equals the common concept of pancyclicity. Their
efforts resulted in the following generalization of Moon’s theorem. Note that it is
stated only for strong multipartite tournaments, but, since every strong semicom-
plete multipartite digraph contains a strong multipartite tournament on the same
vertex set, the result also holds for the larger class.

Theorem 2.1 (Goddard and Oellermann [4], 1991). Every vertex of a strong c-
partite tournament, where c ≥ 3, is quasi p-pancyclic.

Furthermore, Guo and Volkmann found that the cycles considered in Theorem
2.1 can be particularly chosen.

Theorem 2.2 (Guo and Volkmann [9], 2004). Every vertex of a strong semicomplete
c-partite digraph D, where c ≥ 3, belongs to a quasi p-k-cycle Ck for each k ∈
{3, . . . , c} such that V (C3) ⊂ . . . ⊂ V (Cc).

In 1999, Guo introduced the concept of an outpath of a vertex x in a digraph
as a path starting at x such that x dominates the endvertex of the path only if
the endvertex also dominates x. In tournaments, the start- and endvertex of every
path are connected by exactly one arc and thus, the outpaths of length ℓ − 1 of
a tournament are exactly its cycles of length ℓ. We therefore call a vertex in a
semicomplete c-partite digraph quasi o-pancyclic, if it has an outpath of length ℓ−1
for each ℓ ∈ {3, . . . , c}. Consequently, the following result also includes Moon’s
theorem.

Theorem 2.3 (Guo [5], 1999). Every vertex of a strong c-partite tournament, where
c ≥ 3, is quasi o-pancyclic.

We also notice that Moon’s theorem may be equivalently expressed as follows:
For every strong tournament D of order c, we have

nl(D) := min
v∈V (D)

|{ℓ ≥ 3 | v lies on an ℓ-cycle in D}| = c− 2.

Attempts to extend this concept to multipartite tournaments have been stifled in
part by the following result.
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Theorem 2.4 (Guo, Pinkernell, and Volkmann [6], 1997). If D is a strong c-partite
tournament, where c ≥ 3, and v an arbitrary vertex of D, then v is contained in an
ℓ- or (ℓ+ 1)-cycle for all ℓ ∈ {3, . . . , c}.

Since it is best possible, at first glance, Theorem 2.4 suggests that nl(D) would
be approximately of size c/2−1 for general strong c-partite tournaments. In order to
disprove this notion, we consider the following result due to Tewes and Volkmann,
which, as Theorem 2.1, also holds for strong semicomplete c-partite digraphs.

Theorem 2.5 (Tewes and Volkmann [12], 1999). If D is a strong c-partite tour-
nament, where c ≥ 4, then there are two distinct vertices u1, u2 ∈ V (D) such that
D − ui is strong for i ∈ {1, 2}.

We now state a new generalization of Moon’s theorem for semicomplete multipar-
tite digraphs, which is meant to provide a new point of view on the original result
and to inspire further work on pancyclicity in semicomplete multipartite digraphs
in the same vein.

Theorem 2.6. Every vertex of a strong semicomplete c-partite digraph D, where
c ≥ 3, belongs to c− 2 cycles whose lengths are at least 3 and are pairwise distinct.

Proof. Let v be an arbitrary vertex of D. From Theorem 2.1, we see that v belongs
to a quasi p-c-cycle Cc.

Let k ∈ {3, . . . , c}. Suppose that we have found quasi p-i-cycles Ci that contain

v for all i ∈ {k, . . . , c} such that V (Ck) ⊊ . . . ⊊ V (Cc). If k = 3, then C3, . . . , Cc

are obviously c − 2 cycles with the desired properties. Otherwise, D[V (Ck)] is a
strong semicomplete k-partite digraph, where k ≥ 4, and therefore contains a vertex
u 6= v such that D[V (Ck)]−u is strong, by Theorem 2.5. D[V (Ck)]−u has at least
k−1 ≥ 3 partite sets and thus, by Theorem 2.1, there is a quasi p-(k−1)-cycle Ck−1

in D[V (Ck)] − u that contains v. V (Ck−1) ⊊ V (Ck) ⊊ . . . ⊊ V (Cc) is an obvious
consequence and the result follows by induction. □

Since Theorem 2.6 is aleady implied by Theorem 2.2, we note two things. First,
the short independent proof of Theorem 2.6 is included here, since the proof of
Theorem 2.2 was omitted in [9]. Second, we mainly state Theorem 2.6 not for the
result itself, but as motivation for the following definition.

We call a vertex in a semicomplete c-partite digraph quasi nl-pancyclic when it
belongs to c − 2 cycles whose lengths are at least 3 and are pairwise distinct. We
may then express Theorem 2.6 as: Every vertex of a strong semicomplete c-partite
digraph, where c ≥ 3, is quasi nl-pancyclic.

Since quasi nl-pancyclicity does not require the inclusion of vertices from a cer-
tain number of partite sets, it is a new and independent view on pancyclicity in
semicomplete multipartite digraphs. Therefore, other results on pancyclicity in
tournaments that are proven not to hold for semicomplete multipartite digraphs
using quasi p-pancyclicity, might very well hold for quasi nl-pancyclicity.

In 1994, Guo and Volkmann went yet another route to generalize Moon’s theorem.
In their terminology, a vertex of a semicomplete c-partite digraph is quasi l-pancyclic,
if it belongs to a cycle of length ℓ for all ℓ ∈ {3, . . . , c}, which, by Bondy [3], is
the best one can hope for in a general strong semicomplete multipartite digraph.
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Still, not every vertex of a strong multipartite tournament can be guaranteed to
be quasi l-pancyclic. However, Guo and Volkmann could prove that every partite
set of a strong multipartite tournament contains at least one quasi l-pancyclic ver-
tex, which, again, also holds for strong semicomplete multipartite digraphs and
generalizes Moon’s theorem.

Theorem 2.7 (Guo and Volkmann [7], 1994). Every partite set of a strong c-partite
tournament, where c ≥ 3, contains a quasi l-pancyclic vertex.

The question whether this bound is sharp – i.e., whether there exist proper c-
partite tournaments with exactly c quasi l-pancyclic vertices which we call minimum
quasi l-pancyclic – remained an open problem until 2013, when Auclair [1] was able
to construct some examples of such digraphs in his master’s thesis. Figure 2 depicts
one example he found, where the vertices of the upper row are quasi l-pancyclic
while those of the lower row are not. In the following section, we extend his results
by giving an infinite family of minimum quasi l-pancyclic multipartite tournaments
and characterize all minimum quasi l-pancyclic 3-partite tournaments.

Figure 2. A minimum quasi l-pancyclic 4-partite tournament.

3. Minimum quasi l-pancyclic multipartite tournaments

We begin this section with the definition of a particular digraph, denoted by Qc,
that Las Vergnas [10] proved to be the unique strong tournament on c vertices with
exactly two vertices whose removal leaves the tournament still strong (cf. Theorem
2.5). Qc has been shown to play an important role in previous results on cycles in
multipartite tournaments – e.g., in the characterization of all rich strong c-partite
tournaments without a (c+ 1)-cycle (see [8]) – and will appear as a subdigraph in
the subsequent definitions of minimum quasi l-pancyclic multipartite tournaments.

Definition 3.1. Let c ≥ 3 be an integer. We define the strong tournament Qc =
(V,A) through V := {x1, . . . , xc} and

A := {xixi+1 | i ∈ {1, . . . , c− 1}} ∪ {xjxi | c ≥ j ≥ i+ 2 ≥ 3}.

We now define an infinite family of multipartite tournaments which we will prove
to be minimum quasi l-pancyclic.

Definition 3.2. A c-partite tournament D, where c ≥ 3, is contained in the class
Rc

3, if and only if the following conditions are met. D is rich and V (D) can be
decomposed into disjoint vertex sets:

X = {x1, . . . , xc} such that D[X] = Qc, as given in Definition 3.1,
Y + = {y ∈ Vp(xc) ∪ Vp(xc−1) | y ⇒ X},
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Y − = {y ∈ Vp(x1) ∪ Vp(x2) | X ⇒ y}, and
Y ±
j = {y ∈ Vp(xj) | {xj+1, . . . , xc} → y → {x1, . . . , xj−1}}

for j ∈ {2, . . . , c− 1}.
Furthermore, D−X can be decomposed into c−1 bipartite tournamentsD1, . . . , Dc−1

(where we allow Dj = (∅, ∅) for some of them) such that the following holds:

(a) Y + ⊆ V (Dc−1) ⊆ Y + ∪ Y ±
c−1.

The initial component of the multipartite decomposition of Dc−1 is either a
subset of Y ±

c−1 or said component is strong and contains at least one vertex

of Y ±
c−1.

(b) Y − ⊆ V (D1) ⊆ Y − ∪ Y ±
2 .

The terminal component of the multipartite decomposition of D1 is either
a subset of Y ±

2 or said component is strong and contains at least one vertex
of Y ±

2 .
(c) V (Dj) ⊆ Y ±

j ∪ Y ±
j+1 for all j ∈ {2, . . . , c− 2}.

(d) V (Dj) ⇒ V (Di) in D for all 1 ≤ i < j ≤ c− 1.

Figure 3. A digraph contained in R4
3.

In fact, we can prove a stronger result.

Theorem 3.3. Let c ≥ 3 be an integer and D ∈ Rc
3. Then D is a rich strong

c-partite tournament with exactly c vertices that lie on a 3-cycle.

Proof. D is rich by definition. Since D[X] = Qc is a strong tournament of order c,
each of its vertices is contained in a 3-cycle, by Theorem 1.2. All that remains to be
shown is that no vertex of V (D−X) lies on a 3-cycle. The decomposition of V (D)
into the vertex sets X, Y +, Y −, and Y ±

j obviously prevents 3-cycles that contain

exactly one vertex of V (D −X) and two vertices of X.
Suppose that there is a 3-cycle yy′xy in D with y, y′ ∈ V (D − X) and x ∈ X.

y → y′ combined with Definition 3.2 (d) implies that y ∈ V (Dj) and y′ ∈ V (Di)
for some 1 ≤ i ≤ j ≤ c − 1. If i < j, then y ∈ Y ±

j′ and y′ ∈ Y ±
i′ with i′ < j′. If

i = j, then y, y′ ∈ Y ±
i ∪ Y ±

i+1. In both cases, y ⇒ x for all x ∈ X such that y′ → x,
a contradiction.

Finally, Definition 3.2 (a) and (d) guarantee, that there is a path from X to every
vertex of V (D − X) and Definition 3.2 (b) and (d) guarantee the converse. Since
D[X] = Qc is strong, so is D. □
Corollary 3.4. Let c ≥ 3 be an integer and D ∈ Rc

3. Then D is minimum quasi l-
pancyclic.
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As an easy implication, we obtain the existence of minimum quasi l-pancyclic
multipartite tournaments with partite sets of all sizes.

Corollary 3.5. Let s1, . . . , sc ≥ 2 be a sequence of integers, where c ≥ 4. Then
there exists a c-partite tournament D ∈ Rc

3 with partite sets V1, . . . , Vc such that
|Vi| = si for all i ∈ {1, . . . , c}.

Proof. We construct a multipartite tournament D ∈ Rc
3 with the desired properties.

Let V (D) := X ∪ Y1 ∪ . . . ∪ Yc, where X := {x1, . . . , xc} and Yi = {y1i , . . . , y
si−1
i }

such that Vp(xi) = {xi} ∪ Yi for all i ∈ {1, . . . , c}. Let D[X] := Qc, Y
+ := Yc,

Y − := Y1, and Y ± := Yi for all i ∈ {2, . . . , c− 1} in accordance with the conditions
of Definition 3.2. Furthermore, let D1 := D[Y − ∪Y2] and Dc−1 := D[Yc−1 ∪Y +] be
bipartite tournaments such that Y − → Y2 and Yc−1 → Y +, let D2 = Dc−2 := (∅, ∅),
and let Di := D[Yi] consist of isolated vertices for all i ∈ {3, . . . , c−3}. We complete
D to a multipartite tournament in Rc

3 by adding arcs such that V (Dj) → V (Di)
for all 1 ≤ i < j ≤ c− 1, which concludes the proof. □

Corollary 3.6 (Auclair [1], 2013). Let s1, . . . , sc be a sequence of positive integers,
where c ≥ 4. Then there exists a minimum quasi l-pancyclic c-partite tournament
with partite sets V1, . . . , Vc such that |Vi| = si for all i ∈ {1, . . . , c}.

Proof. We replace all elements si = 1 by 2 and construct a c-partite tournament
D ∈ Rc

3 as in the proof of Corollary 3.5. Suppose that si = 1 for some i ∈ {1, . . . , c}.
If we delete Yi from the digraph D to produce a c-partite tournament such that
|Vi| = si = 1, then the vertices of X remain quasi l-pancyclic, since D[X] = Qc is a
strong tournament and the vertices of V (D) \X are still not contained in a 3-cycle.
Thus, D− Yi is still minimum quasi l-pancyclic, as long as it is strong. It is easy to
see that this is the case, unless we delete Y2 while Y1 = Y − 6= ∅ or we delete Yc−1

while Yc = Y + 6= ∅. Therefore, to guarantee that D − Yi remains strong, before we
begin the construction of D, we just have to rearrange the sequence s1, . . . , sc in
such a way that s2 and sc−1 are its largest elements. The result follows by Corollary
3.4. □

To realize that there exist minimum quasi l-pancyclic multipartite tournaments
with arbitrarily large minimum semi-degree δ0, let us consider the bipartite tour-
nament Bik (cf. Figure 4).

Definition 3.7. Let k ≥ 2 be an integer. We define the bipartite tournament
Bik = (V,A) through V := {x0, . . . , x2k−1} ∪ {y0, . . . , y2k−1} and

A := {xiyi+j mod 2k , yixi+j+1 mod 2k | 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ 2k−1 − 1}.

Obviously, for every vertex x ∈ V (Bik), we have δ
+(x) = δ−(x) = 2k−1 and thus,

δ0(Bik) = 2k−1.



1100 Y. GUO AND M. SURMACS

Figure 4. The bipartite tournament Bi2.

Corollary 3.8. Let c, d ≥ 3 be integers. Then there exists a D ∈ Rc
3 with δ0(D) ≥

d.

Proof. Let k be an integer with 2k−1 ≥ d. We construct a c-partite tournament D on
the vertex set V := X ∪{x′i, y′i, x∗i , y∗i | i ∈ {0, . . . , 2k−1}}, where X := {x1, . . . , xc}
such that Vp(x1) := {x1, x′i | 0 ≤ i ≤ 2k − 1}, Vp(x2) := {x2, y′i | 0 ≤ i ≤ 2k − 1},
Vp(xc−1) := {xc−1, x

∗
i | 0 ≤ i ≤ 2k − 1}, and Vp(xc) := {xc, y∗i | 0 ≤ i ≤ 2k − 1}.

Furthermore, let D1 := D[{x′i, y′i | 0 ≤ i ≤ 2k − 1}] and Dc−1 := D[{x∗i , y∗i | 0 ≤ i ≤
2k − 1}] equal two disjoint copies of Bik with V [Dc−1] ⇒ V [D1] and D[X] = Qc.
To complete D to a digraph adhering to the conditions of Definition 3.2, we set
Y + := V (Dc−1) \ {x∗0}, Y − := V (D1) \ {y′0}, Y

±
2 := {y′0}, and Y ±

c−1 := {x∗0}. Thus,
D ∈ Rc

3. Since δ0(D) ≥ 2k−1 ≥ d by Definition 3.7, the result follows. □
Corollary 3.9 (Auclair [1], 2013). Let c, d ≥ 3 be integers. Then there exists a
minimum quasi l-pancyclic c-partite tournament D with δ0(D) ≥ d.

Since the structure of general minimum quasi l-pancyclic multipartite tourna-
ments seems too complex to be characterized in one fell swoop, we restrict our
remaining considerations to 3-partite tournaments. We start with those that are
not rich and define the following class of digraphs.

Definition 3.10. A 3-partite tournament D is contained in the class B3, if and
only if the following conditions are met. V (D) can be decomposed into five disjoint
vertex sets:

X = {x1, x2, x3} such that x1x2x3x1 is a 3-cycle in D,
Y + = {y ∈ Vp(x1) ∪ Vp(x2) | y ⇒ X},
Y − = {y ∈ Vp(x1) ∪ Vp(x2) | X ⇒ y},
Y ±
1 = {y ∈ Vp(x1) | x2 → y → x3}, and

Y ±
2 = {y ∈ Vp(x2) | x3 → y → x1}.

Note that, except for X, we allow for some or all of the sets to be empty.
Furthermore, D −X can be decomposed into two bipartite tournaments D′ and

D′′ (where we allow D′ = (∅, ∅) and/or D′′ = (∅, ∅)) such that the following holds:

(a) V (D′) = Y + ∪ Y ±
1 .
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If V (D′) 6= ∅, then the initial component of the multipartite decomposition
of D′ is either a subset of Y ±

1 or it is strong and contains at least one vertex
of Y ±

1 .
(b) V (D′′) = Y − ∪ Y ±

2 .
If V (D′′) 6= ∅, then the terminal component of the multipartite decomposi-
tion of D′′ is either a subset of Y ±

2 or it is strong and contains at least one
vertex of Y ±

2 .
(c) V (D′) ⇒ V (D′′) in D.

Figure 5. A 3-partite tournament contained in B3.

The following lemma shows that B3 contains exactly the non-rich minimum
quasi l-pancyclic 3-partite tournaments.

Lemma 3.11. A non-rich 3-partite tournament D is minimum quasi l-pancyclic, if
and only if D ∈ B3.

Proof. A non-rich minimum quasi l-pancyclic 3-partite tournament D contains a 3-
cycle x1x2x3x1 such that Vp(x3) = {x3}. D ∈ B3 contains such a cycle by definition.

Let X = {x1, x2, x3}. The decomposition of V (D − X) into vertex sets Y +, Y −,
Y ±
1 , and Y ±

2 , as given in Definition 3.10, is a necessary and sufficient condition to
prevent 3-cycles of the form x3x1yx3 and x3yx2x3 with y ∈ V (D−X). Furthermore,
Y + ∪ Y ±

1 ⇒ Y − ∪ Y ±
2 is necessary and sufficient to prevent 3-cycles of the form

x3yy
′x3 in D with y, y′ ∈ V (D − X). Since D − x3 is bipartite, there are no

other possible 3-cycles in D containing a vertex of V (D − X). We now consider
D′ = D[Y + ∪ Y ±

1 ] and D′′ = D[Y − ∪ Y ±
2 ]. Since Y + ⇒ V (D) \ Y ±

1 , condition 3.10
(a) is necessary to guarantee that D is strong, as is condition 3.10 (b), by symmetry.
Together, conditions 3.10 (a) and (b) are sufficient. □

We complete our characterization, by proving that R3
3 actually contains all rich

minimum quasi l-pancyclic 3-partite tournaments.

Lemma 3.12. A rich 3-partite tournament D is minimum quasi l-pancyclic, if and
only if D ∈ R3

3.
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Proof. Let D be a rich minimum quasi l-pancyclic 3-partite tournament. By Corol-
lary 3.4, we only need to prove D ∈ R3

3.
Let X = {x1, x2, x3} be the set of quasi l-pancyclic vertices that form the unique

3-cycle x1x2x3x1 in D. Furthermore, let Yi := V (D) ∩ Vp(xi) \ {xi} for i ∈ {1, 2, 3}.
Note, that Yi 6= ∅ for all i ∈ {1, 2, 3}, since D is rich.

(1) Suppose that two of the sets Y1, Y2, Y3 each contain a vertex that is domi-
nated by a vertex in X and dominates another vertex in X.

Without loss of generality, we may assume that there are such vertices y1 ∈ Y1 and
y2 ∈ Y2 – i.e., x2 → y1 → x3 and x3 → y2 → x1, since neither y1 nor y2 is contained
in a 3-cycle. y1 → y2 follows for the same reason. Particularly, we find the 4-cycle
C = y1y2x1x2y1. We now consider a vertex y3 ∈ Y3. If D[{y3}∪V (C)] were strong,
y3 would be contained in a 3-cycle, by Theorem 2.7. Thus, either y3 ⇒ V (C) or
V (C) ⇒ y3 holds.

Suppose that V (C) ⇒ y3. Since D is strong, there is a shortest path P from y3 to
a vertex in {x3} ∪ V (C). If that vertex is not x3, again, we find at least one vertex
from Y3 that is contained in a 3-cycle in D[{y3} ∪ V (P ) ∪ V (C)], a contradiction.
Thus, P ends in x3. Now C ′ = y3Px3y2x1y3 is a cycle that contains vertices from
three partite sets but not x2 and hence, there is at least one vertex from Y2 that
lies on a 3-cycle in the induced subdigraph D[V (C ′)], another contradiction.

Suppose now that y3 ⇒ V (C) holds. By the same arguments as above, we
find that a shortest path from {x3} ∪ V (C) to y3 must start at x3. We obtain
another cycle C ′ = x3Py3x2y1x3 that contains vertices from three partite sets but
not x1, which implies the existence of a vertex from Y1 on a 3-cycle in the induced
subdigraph D[V (C ′)]. Consequently, all in all, there are no two partite sets with
the assumed properties.

(2) Suppose that there are three vertices y1 ∈ Y1, y2 ∈ Y2, y3 ∈ Y3 such that
X ⇒ {y1, y2, y3} or {y1, y2, y3} ⇒ X.

Without loss of generality, we may assume that X ⇒ {y1, y2, y3}. Otherwise, we
consider D−1. Since D[{y1, y2, y3}] cannot be a 3-cycle, we may further assume that
{y1, y2} → y3. Since D is strong, there is a shortest path P from y3 to a vertex
xi ∈ X. If i ∈ {1, 2}, then the vertex set of the cycle y3Pxiy3−iy3 induces a strong
3-partite subtournament of D − x3 and thus implies a vertex from Y3 on a 3-cycle,
a contradiction. Therefore, P ends in x3. If P contains vertices of all partite sets,
then y3Px3x1y3 analogously implies a vertex from Y2 on a 3-cycle. If P does not
contain any vertex in Yi for some i ∈ {1, 2}, then the cycle y3Px3yiy3 produces the
same result. Thus, in any case, we reach the contradiction that some y ∈ Y lies on
a 3-cycle.

(3) Suppose that two of the sets Y1, Y2, Y3 are dominated by X or two of them
dominate X.

Without loss of generality, we may assume that Y1 and Y2 are dominated by X.
Otherwise, we consider D−1 and/or rename the respective vertex sets. Let y1 ∈ Y1.
Since D is strong, there is a shortest path P from y1 to a vertex y3 ∈ Y3. By (2), we
know that X ⇏ y3. If y3 ↛ x2, then y3 is contained in the 3-cycle y3x1x2y3. Hence,
y3 → x2. Since P does not contain any vertices from X, the vertex set of the cycle
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y1Py3x2y1 induces a strong 3-partite tournament without x1, in contradiction to
the fact that no vertex from Y1 is contained in a 3-cycle in D.

(4) Suppose that y ⇒ X or X ⇒ y for all y ∈ Y := Y1 ∪ Y2 ∪ Y3.

Since D is strong, there are vertices y, y′ ∈ Y and x ∈ X from pairwise distinct
partite sets such that X ⇒ y, y → y′, and y′ ⇒ X. Thus, the 3-cycle xyy′x implies
a contradiction.

(5) Suppose that there are three vertices y1 ∈ Y1, y2 ∈ Y2, y3 ∈ Y3 such that
y1 ⇒ X, x3 → y2 → x1, and X ⇒ y3.

Let P be a shortest path from a vertex xi ∈ X to y1. If i = 3 (which is particularly
the case, if y2 → y1), then the vertex set of the cycle y1x2x3Py1 induces a 3-partite
subtournament of D − x1. If i = 2, then D[{x1} ∪ V (P ) ∪ {y2}] is strong. Let P ′

be a shortest path from y3 to a vertex in X ∪ V (P ) ∪ {y2}. If the endvertex of
P ′ is not x3, then D[{x1} ∪ V (P ) ∪ {y2} ∪ V (P ′)] is a strong 3-partite tournament
without x3. Otherwise, the vertex set of the closed walk y3P

′x3y2x1y3 induces a
strong 3-partite subtournament of D − x2. Finally, if i = 1, then the vertex set
of the closed walk y1x3y2x1Py1 induces a strong 3-partite tournament without x2
in D. In all cases, some vertex y ∈ Y lies on a 3-cycle in some strong 3-partite
subtournament, a contradiction.

(6) By (1-5), we may assume that there are three vertices y1 ∈ Y1, y2 ∈ Y2, y3 ∈
Y3 such that X ⇒ y1, x3 → y2 → x1, and y3 ⇒ X. Suppose that a vertex
y′1 ∈ Y1 exists such that y′1 ⇒ X or that a vertex y′3 ∈ Y3 exists such that
X ⇒ y′3.

Without loss of generality, we may assume the existence of y′1 ∈ Y1 with y′1 ⇒
X. Otherwise, we consider D−1. By (1) and (5), we know then that Y3 ⇒ X.
Furthermore, for all y ∈ Y1 either y ⇒ X or X ⇒ y holds, by (1). Thus, every
vertex in V (D −X) that is dominated by a vertex in X, is also dominated by x3.
Consequently, there is a shortest path P from X to y′1 that starts in x3. Now,
the vertex set of the cycle x3Py′1x2x3 induces a strong 3-partite subtournament of
D−x1, which implies the existence of a vertex from Y1 on a 3-cycle, a contradiction.

Therefore, all in all, except for rotation of the cycle x1x2x3x1, we have X ⇒ Y1,
Y3 ⇒ X, Y3 ⇒ Y1, and x3 → y2 → x1 for at least one vertex y2 ∈ Y2, i.e., V (D) can
be decomposed into X, Y +, Y −, and Y ±

2 as in Definition 3.2.
Now, consider the multipartite decomposition Z1, . . . , Zr of D − X. Obviously,

any strong component must be bipartite to prevent 3-cycles in D − X. Let i0 ∈
{1, . . . , r} be maximal such that Zi0 ∩ Y + ∩ Y3 6= ∅. Let Z+

i0+1 := Zi0+1 ∩ Y +, if

Zi0+1 ⊆ Y2, and Z+
i0+1 := ∅, otherwise. Let Z−

i0+1 := Zi0+1 \ Z+
i0+1. We now define

D2 := D[
∪i0

i=1 Zi ∪Z+
i0+1] and D1 := D[Z−

i0+1 ∪
∪r

i=i0+2 Zi]. Then Definition 3.2 (d)

holds by the definition of a multipartite decomposition. Furthermore, Y + ∩ Y3 ⊆
V (D2) by the choice of i0.

Suppose that there is a vertex y ∈ Y +∩V (D1). We then have y ∈ Y2∩
∪r

i=i0+2 Zi

or D[Zi0 ] is strong and y ∈ Y2 ∩ Zi0 . Either case implies the existence of a vertex
y′ ∈ V (D1)∩Y1 such that y′ → y and thus, the 3-cycle y′yx3y

′ poses a contradiction.
Therefore, Y + ⊆ V (D2).
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Suppose now that there is a vertex y ∈ V (D2)∩Y −. If y ∈ Zi for an i < i0, then
there is a vertex y′ ∈ Zi0 ∩ Y + ∩ Y3 by the choice of i0 and y → y′ follows by the
structure of the multipartite decomposition. Hence, yy′x2y is a 3-cycle, if y ∈ Y1,
and yy′x1y one, if y ∈ Y2. If y ∈ Zi0 , then y → y′ for some y′ ∈ Zi0 ∩Y + ∩Y3, since
D[Zi0 ] is a strong bipartite subtournament and we reach the same contradiction.
Therefore, our assumption is wrong and conditions (a) and (b) from Definition 3.2
hold, where the statements on the initial and terminal components of D2 and D1,
respectively, are a direct consequence of the fact that D is strong. □

We combine our previous partial results to the following characterization of min-
imum quasi l-pancyclic 3-partite tournaments.

Theorem 3.13. A 3-partite tournament D is minimum quasi l-pancyclic, if and
only if D ∈ B3 ∪R3

3.

4. Open problems

Obviously, the ultimate goal of further research on minimum quasi l-pancyclic
multipartite tournaments would be a complete characterization.

Problem 4.1. Characterize all minimum quasi l-pancyclic multipartite tourna-
ments.

But the following problem would be a more manageable natural next step in this
direction.

Problem 4.2. Let c ≥ 4 be an integer. Characterize all minimum quasi l-pancyclic
c-partite tournaments.
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