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x, y, z ∈ S and s, t ∈ R the following seven conditions are satisfied.

(x+ y) + z = x+ (y + z),(S1)

x+ y = y + x,(S2)

x+ 0S = x,(S3)

1x = x,(S4)

0Rx = 0S ,(S5)

s(tx) = (st)x,(S6)

tx+ ty = t(x+ y).(S7)

An element x ∈ S is called convex if sx+ tx = (s+ t)x, for all s, t > 0. Notice that
by (S7) the element x is convex if and only if (−1)x is convex.
Let us define t+ := max {t, 0} and t− := max {−t, 0} for t ∈ R. Then t = t+ − t−

and we observe that

s+ + t+ =
s + |s|

2
+

t + |t|
2

=
s+ t + |s+ t|

2

+
|s|+ |t| − |s+ t|

2
= (s+ t)+ +

|s|+ |t| − |s+ t|
2

.(2.1)

Since t− = (−t)+ from the formula (1) we obtain

s− + t− = (s+ t)− +
|s|+ |t| − |s+ t|

2
.(2.2)

Also for prelinear S and any x ∈ S we have

tx = t+x+ t−(−1)x.(2.3)

Proposition 2.1. (Quasidistributive law) Let S be a prelinear space. Then an
element x ∈ S is convex if and only if for all s, t ∈ R we have

sx+ tx = (s+ t)x+
|s|+ |t| − |s+ t|

2

(
x+ (−1)x

)
.

Proof. Assuming convexity of x an applying formulas (2.1), (2.2) and (2.3) we obtain
sx+ tx = s+x+ s−(−1)x+ t+x+ t−(−1)x = (s+ + t+)x+ (s− + t−)(−1)x

=
(
(s+ t)+ +

|s|+ |t| − |s+ t|
2

)
x+

(
(s+ t)− +

|s|+ |t| − |s+ t|
2

)
(−1)x

= (s+ t)+x+ (s+ t)−(−1)x+
|s|+ |t| − |s+ t|

2

(
x+ (−1)x

)
= (s+ t)x+

|s|+ |t| − |s+ t|
2

(x+ (−1)x). □

Remark 2.2. Let S be a prelinear space. If all elements of S are convex then S
is, by definition, a quasilinear space in the sense of Mayer [11,13].

Proposition 2.3. Let S be a quasilinear space. Then S is a linear space if and
only if x+ (−1)x = 0 for all x ∈ S.

Proof. If x + (−1)x = 0 for all x ∈ S, then S with addition is a group. Also, by
Proposition 2.1, we obtain the second distributive law, i.e. sx + tx = (s + t)x for
x ∈ S, s, t ∈ R. □
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The family A(X) of all nonempty subsets of a vector space X with an algebraic
addition A+B := {a+ b | a ∈ A, b ∈ B} and multiplication tA := {ta | a ∈ A, t ∈ R}
is an important example of prelinear space. The next corollary follows directly from
Proposition 2.1.

Corollary 2.4. Let A ∈ A(X). Then A is a convex set if and only if for all s, t ∈ R
we have

sA+ tA = (s+ t)A+
|s|+ |t| − |s+ t|

2
(A+ (−1)A).

Convexity of the set A in the sense of convex analysis, and also as an element of
a prelinear space A(X) coincide.

The formula from Corollary 2.4 allows for a simple proof of Theorem 2.5, i.e.
second distributive law in the Minkowski–R̊adström–Hörmander space. The formula
is also useful in non-smooth analysis.

Let X be a topological vector space, K(X) ⊂ A(X) be a family of all nonempty
compact convex subsets of X. The relation ’∼’ between pairs (A,B) and (C,D)
belonging to K2(X) is defined by condition A + D = B + C. Due to cancellation
law, i.e. A + B = C + B =⇒ A = C, the relation ’∼’ is a relation of equivalence.

By [A,B] we denote a quotient class of the pair (A,B). We denote X̃ := K2(X)/∼.
The cancellation law was studied among others in [9, 18, 20] and extended to

cornets as R̊adström cancellation theorem in [14].

In X̃ we define the addition and multiplication by real numbers:

x̃+ ỹ : = [A+ C,B +D],

t · [A,B] : = [t+A+ t−B, t+B + t−A]

for x̃ = [A,B], ỹ = [C,D] ∈ X̃ and t ∈ R. The quotient space (X̃,+, ·) is called the
Minkowski–R̊adström–Hörmander space over X [5].

Theorem 2.5. Let X be a topological vector space. Then the space (X̃,+, ·) is the
smallest up to isomorphism real vector space containing isomorphic copy of the cone
K(X).

Proof. The triple (X̃,+, ·) is a prelinear space. The proof of it was presented in [20].
Here, we are going to prove only the second distributive law. For any s, t ⩾ 0 and

x̃ = [A,B] ∈ X̃ we have sx̃+tx̃ = [sA, sB]+[tA, tB] = [(s+t)A, (s+t)B] = (s+t)x̃.

We have just proved that all elements of prelinear space X̃ are convex. Then by

Proposition 2.1 for all s, t ∈ R we obtain sx̃+ tx̃ = (s+ t)x̃+
|s|+ |t| − |s+ t|

2

(
x̃+

(−1)x̃
)
. Since x̃ + (−1)x̃ = [A,B] + (−1)[A,B] = [A + B,B + A] = 0̃, we have

sx̃+ tx̃ = (s+ t)x̃. □

Remark 2.6. If in X̃ we define the multiplication by real numbers t ∗ [A,B] : =

[tA, tB] for x̃ = [A,B] ∈ X̃ and t ∈ R. Then the space (X̃,+, ∗) is an example of
so called quasivector or q-linear space. A q-linear space (see [11], Definition 2.2,
also [12]) is a commutative group with multiplication by real numbers satisfying
conditions (S 6-7), having only convex elements.
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An interesting example is a prelinear space (X̃,+, ∗) given in [2], where X̃ :=
C(X)×K(X)/∼ with C(X) being the family of all nonempty closed convex subsets

of X. The space X̃ is not a group or a quasivector space.

Notice that every element x̃ ∈ X̃ is convex and the quasidistributive law has a
form

s ∗ x̃+ t ∗ x̃ = (s+ t) ∗ x̃+
|s|+ |t| − |s+ t|

2

(
x̃+ (−1) ∗ x̃

)
for all s, t ∈ R.

Let st < 0 then
|s|+ |t| − |s+ t|

2
= min{|s|, |t|} and we have

s ∗ x̃+ t ∗ x̃ = (s+ t) ∗ x̃+min{|s|, |t|}
(
x̃+ (−1) ∗ x̃

)
for all s, t ∈ R.

If |s| > |t| we get s∗ x̃+t∗ x̃ = (s+t)∗ x̃+t∗ x̃+(−1)t∗ x̃. Since (X̃,+) is a group,
(s+t)∗x̃ = s∗x̃−(−1)t∗x̃. Similarly for |t| > |s| we have (s+t)∗x̃ = −(−1)s∗x̃+t∗x̃.

3. Convex pairs of sets

A pair (A,B) of nonempty closed convex subsets of a topological vector space is
a convex pair if the union A∪B is a convex set. By A∨B we denote a convex hull
of the union A ∪ B. We say that a set S separates A and B if every segment with
endpoints in A and B intersects the set S.

In this section we present characterization of convex pairs in Propositions 3.1,
3.4, 3.5 and Corollaries 3.6 and 3.7. We apply properties of convex pairs to show
how to convexify any pair of convex sets in Theorem 3.2 and how to reduce certain
pairs of sets in Propositions 3.8 and 3.10 and in Lemma 3.12.

Proposition 3.1. (Theorem 1.1 in [7]) Let X be a topological vector space and
A,B ⊂ X be nonempty bounded closed convex sets. The following statements are
equivalent :
(a) The set A ∪B is convex.
(b) The set A ∩B separates the sets A and B.
(c) The set cl (A ∨B) is a summand of the set cl (A+B).
(d) cl (A+B) = cl (A ∨B +A ∩B).
Moreover, if one of the sets A or B is compact, the last two conditions take the
following form:
(c) The set A ∨B is a summand of the sum A+B.
(d) A+B = A ∨B +A ∩B.

The following fact shows that every pair in a given quotient class [A,B] can be
’convexified’ by adding to both sets the convex hull A ∨ B. Hence each quotient
class [A,B] contains convex pairs. This fact is mentioned without proof in the proof
of Theorem 6.3.4 in [8].

Theorem 3.2. Let A,B,C,D ∈ K(X) and (A,B) ∼ (C,D). Then (C+A∨B,D+
A∨B) is a convex pair equivalent to the pair (A,B). Moreover, (C+A∨B)∩ (D+
A ∨B) = A+D = B + C.

Proof. Denote A1 := C +A∨B, B1 := D+A∨B. Then A1 ∨B1 = (C +A∨B)∨
(D + A ∨ B) = C ∨ D + A ∨ B. Notice that C + A ∨ B = (A + C) ∨ (B + C) =
(A+ C) ∨ (A+D) = A+ C ∨D. On the other hand, we have A1 +B1 = C +A ∨
B +D+A ∨B = A+C ∨D+D+A ∨B = A1 ∨B1 +A+D. Hence A1 ∨B1 is a
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Figure 1. Sets described in Example 3.3

summand of A1 + B1, and by Proposition 3.1(c) the pair (C + A ∨ B,D + A ∨ B)
is convex.

Notice that A1+B1 = A1∨B1+A+D. By Proposition 3.1(d) and the cancellation
law we obtain A1 ∩B1 = A+D = B + C. □

The following example illustrates Theorem 3.2 in the case of (A,B) = (C,D).

Example 3.3. Let A,B ∈ K(R2), A := (0, 0)∨ (1, 1), B := (1,−1)∨ (2,−1). Then
A∨B = (0, 0)∨(1, 1)∨(2,−1)∨(1,−1). By Theorem 3.2 the pair (A+A∨B,B+A∨B)
is convex. Moreover (A+A∨B)∩(B+A∨B) = A+B. The sets from this example
are illustrated in Figure 1.

Let A ∈ K(Rn) and u ∈ Rn. The support function hA of the set A is a function
defined by hA(u) := max

x∈A
⟨x, u⟩. The set A(u) := {x ∈ A | ⟨a, u⟩ = hA(u)} is called

a support set of A in the direction of the vector u. Let u = (u1, ..., uk) ∈ (Rn)k,
and vectors u1, ..., uk be pairwise orthogonal. The set A(u) = A(u1, ..., uk) :=(
A(u1, ...uk−1)

)
(uk) is called an iterated support set of A in the directions u1, ..., uk.

The following criterion of convexity of a pair of convex sets was given in [8].

Proposition 3.4. (Proposition 2 in [8]) Let A,B ∈ K(Rn), n ⩾ 2. A∪B is convex
if and only if for all u ∈ Rn we have (A ∨B)(u) ⊂ A(u) ∪B(u).

Criterion of convexity of a pair of convex sets can be expressed it terms of k-
iterated support sets or iterated support sets that are segments contained in the
boundary of A ∨B.

Proposition 3.5. Let A,B ∈ K(Rn), n ⩾ 2. A ∪B is convex if and only if for all
u = (u1, ..., uk) ∈ (Rn)k such that vectors u1, ..., uk are pairwise orthogonal we have
(A ∨B)(u) ⊂ A(u) ∪B(u).

Proof. Applying Proposition 3.4 we obtain that A ∪ B is convex if and only if for
all u1 ∈ Rn we have (A ∨ B)(u1) ⊂ A(u1) ∪ B(u1). If for a fixed u1 we have
hA(u1) > hB(u1) then (A ∨ B)(u1) = A(u1). Hence for all u2 ∈ Rn we have
(A∨B)(u1, u2) = A(u1, u2) ⊂ A(u1, u2)∪B(u1, u2). If for another fixed u1 we have
hA(u1) = hB(u1) then A(u1) ∨ B(u1) = (A ∨ B)(u1) ⊂ A(u1) ∪ B(u1). Hence a
pair (A(u1), B(u1)) is convex. Thus by Proposition 3.4 we have (A ∨ B)(u1, u2) ⊂
A(u1, u2) ∪ B(u1, u2) for all u2 orthogonal with u1. Therefore, the set A ∪ B is
convex if and only if for all u1, u2 ∈ Rn such that u1, u2 are orthogonal we have
(A ∨B)(u1, u2) ⊂ A(u1, u2) ∪B(u1, u2). Repeating the resoning k times we obtain
our proposition. □
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Corollary 3.6. (Criterion of convexity of a pair of convex sets) Let A,B ∈ K(Rn),
n ⩾ 2. The union A∪B is convex if and only if for all u = (u1, ..., un−1) ∈ (Rn)n−1

such that (A ∨B)(u) is a segment we have (A ∨B)(u) ⊂ A(u) ∪B(u).

Proof. The corollary follows from the fact that (n − 1)-iterated support sets are
segments or singletons. If (A∨B)(u) is a singleton then the inclusion (A∨B)(u) ⊂
A(u) ∪B(u) always hold true. □

Another corollary from Proposition 3.5 characterizes convex pairs of polytopes
(convex polyhedra).

Corollary 3.7. (Criterion of convexity a pair polytopes) Let A,B ∈ K(Rn), n ⩾ 2
be two polytopes. The union A∪B is convex if and only if for all u ∈ (Rn)n−1 such
that (A ∨B)(u) is a segment we have (A ∨B)(u) ⊂ A(u) ∪B(u).

Proof. The corollary follows from the fact that any iterated support set of a polytope
is also a support set in the usual sense. □

In some important cases convexity of A ∪ B allows us to reduce easily a pair
(A,B).

Proposition 3.8. Let A,A0, B,B0, P, I ∈ K(X), A0∩P = B0∩P = I, A = A0∪P
and B = B0 ∪ P . Then (A,B) ∼ (A0, B0).

Proof. The pairs (A0, P ) and (B0, P ) are convex (see Figure 2a). Then by Propo-
sition 3.1(d) we obtain A0 + P = A+ I and B + I = B0 + P . After adding sides of
equations and applying the cancellation law we get A0 +B = A+B0. □
Lemma 3.9. Let A,B,C ∈ K(X). If A ∪ B is convex, then (A+ C) ∩ (B + C) =
A ∩B + C.

Proof. Obviously the pair (A+C,B+C) is convex. By Proposition 3.1(d) we obtain
(A+ C) ∪ (B + C) = A ∪B + C. Then (A+ C) ∪ (B + C) + (A+ C) ∩ (B + C) =
A+C +B+C = (A∪B+C)+ (A∩B+C). Applying the cancellation law we get
(A+ C) ∩ (B + C) = A ∩B + C. □

The next proposition, illustated in Figure 2b), follows from Proposition 3.8.

Proposition 3.10. Let A,B,C,D,A1, B1, C1, D1, P, P1, P2 = P1+x ∈ K(X), A1 =
A∪P,B1 = A∪P1, C1 = C∪P,D1 = C∪P2, B = A1∪B1,A = A1∩B1,D = C1∪D1

and C = C1 ∩D1. Then (A1, B1) ∼ (C1, D1) and (A,B) ∼ (C,D).

Proof. By Proposition 3.8 we obtain (A1, C1) ∼ (A,C). Similarly, (B1, D1 − x) ∼
(A,C − x). Then (B1, D1) ∼ (A,C). Hence (A1, C1) ∼ (B1, D1) which implies
(A1, B1) ∼ (C1, D1).

Now, A1∨B1+C1 = (A1+C1)∨(B1+C1) = (A1+C1)∨(A1+D1) = C1∨D1+A1.
Similarly, A1 ∨ B1 + D1 = C1 ∨ D1 + B1. Since the pairs (A1, B1), (C1, D1) are
convex, by Lemma 3.9 we have A1∨B1+C1∩D1 = (A1∨B1+C1)∩(A1∨B1+D1) =
(C1 ∨D1 +A1)∩ (C1 ∨D1 +B1) = C1 ∨D1 +A1 ∩B1. Hence B +C = D+A, and
(A,B) ∼ (C,D). □
Example 3.11. Let A1, B1 be unions of a regular octahedron and regular tetrahe-
dron illustrated in Figure 3. Let A1∩B1 be the common octahedron and A1∪B1 be a
rhombohedron. Similarly, let C1, D1 be unions of an elongated octahedron and regu-
lar tetrahedron. By Proposition 3.10 we obtain equivalent pairs (A1, B1) ∼ (C1, D1)
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Figure 2. Illustrations to Propositions 3.8 and 3.10.

Figure 3. The sets described in Example 3.11

and (A1 ∪B1, A1 ∩B1) ∼ (C1 ∪D1, C1 ∩D1). In fact the pairs (A1 ∪B1, A1 ∩B1)
and (C1∪D1, C1∩D1) were first example of equivalent minimal pairs not connected
by translation [6].

The following lemma is used in the proof of Proposition 4.11.

Lemma 3.12. Let (A,B), (C,D) be convex pairs. Then a pair ((A + D) ∨ (B +
C), B+D) is convex and (A+D)∨ (B+C)∨ (B+D) = (B+C ∨D)∨ (D+A∨B)
and ((A+D) ∨ (B + C)) ∩ (B +D) = (B + C ∩D) ∨ (D +A ∩B).

Proof. Let E = (A+D)∨(B+C) and F = B+D. Then E∨F = (A+D)∨(B+D)∨
(B+C) = (A+D)∨(B+D∨C) = (A∨B+D)∨(B+C) = (A∨B+D)∨(B+D∨C).
Now we have E+F = (A+D)∨ (B+C)+B+D = (A+B+2D)∨ (C+D+2B) =
(D+A∨B+A∩B+D)∨ (B+C ∨D+C ∩D+B) ⊂ (B+C ∨D)∨ (D+A∨B)+
(B +C ∩D) ∨ (D+A ∩B). Since (B +C ∩D) ∨ (D+A ∩B) ⊂ E ∩ F , we obtain
that E + F = E ∨ F + E ∩ F where E ∩ F = (B + C ∩D) ∨ (D +A ∩B). □

The Minkowski–R̊adström–Hörmander space X̃ = K2(X)/∼ is a lattice with an
ordering [A,B] ⩽ [C,D] :⇐⇒ A + D ⊂ B + C. Let us notice that for any two
classes [A,B] and [C,D] we have sup{[A,B], [C,D]} = [(A+D)∨ (B+C), B+D].
By Lemma 3.12 convexity of pairs (A,B) and (C,D) implies convexity of the pair
((A+D)∨ (B+C), B+D) which is a natural representation of sup{[A,B], [C,D]}.
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Analogous result to Lemma 3.12 holds true for inf{[A,B], [C,D]} = [A + C, (A +
D) ∨ (B + C)].

4. Convex classes of pairs of sets

A convex class is an element of Minkowski–R̊adström–Hörmander space X̃ =
K2(X)/∼ such that all pairs of sets belonging to this class are convex pairs. The
following sufficient condition for a convex class was given in [8].

Proposition 4.1. (Theorem 1 in [8], Theorem 6.4.4 in [16]) Let A,B ∈ K(Rn),
n ⩾ 2. If for all u ∈ Rn we have (A∨B)(u) = A(u) or (A∨B)(u) = B(u) then the
class [A,B] is convex.

Remark 4.2. Applying Proposition 4.1 to the pair (A1, B1) from Example 3.11 we
observe that the class [A1, B1] is convex.

The following proposition strengthens Proposition 4.1.

Proposition 4.3. Let A,B ∈ K(Rn), n ⩾ 2. If for all u ∈ Rn we have (A∨B)(u) =
A(u) or (A∨B)(u) = B(u) or the class [A(u), B(u)] is convex then the class [A,B]
is convex.

Proof. Assume that the class [A,B] is not convex. Then there exists a pair (C,D) ∈
[A,B] which is not convex. By Proposition 3.4 we have (C∨D)(u) ̸⊂ C(u)∪D(u) for
some u. Then (C∨D)(u) = C(u)∨D(u). We observe that the equality A+D = B+C
implies that A(u)+D(u) = (A+D)(u) = (B+C)(u) = B(u)+C(u). Hence the pairs(
A(u), B(u)

)
and

(
C(u), D(u)

)
are equivalent. Since A∨B+C = (A+C)∨(B+C) =

(A+C)∨ (A+D) = C ∨D+A, we obtain that (A∨B,C ∨D) ∼ (A,C) ∼ (B,D).
Thus

(
(A∨B)(u), (C ∨D)(u)

)
∼

(
A(u), C(u)

)
∼

(
B(u), D(u)

)
. By assumption the

set (A ∨ B)(u) is equal to A(u) or B(u) or the class [A(u), B(u)] is convex. First
two cases imply that the set (C ∨ D)(u) is equal, respectively, to C(u) or D(u).
If the class [A(u), B(u)] is convex then the pair

(
C(u), D(u)

)
is convex. Hence

(C ∨D)(u) = C(u) ∨D(u) ⊂ C(u) ∪D(u), a contradiction. □
Proposition 4.4. Let A,B ∈ K(Rn), n ⩾ 2. For all u = (u1, ..., uk) ∈ (Rn)k, such
that vectors u1, . . . , uk are pairwise orthogonal, let the following disjunction hold
true: (A ∨B)(u) = A(u) or (A ∨B)(u) = B(u) or the class [A(u), B(u)] is convex.
Then the class [A,B] is convex.

Proof. (1) The proposition follows from Proposition 4.3 by applying mathematical
induction.

(2) This proposition can be also proved by applying criterion of convexity of a
pair of sets from Proposition 3.5 and using a reasoning similar to the reasoning from
the proof of Proposition 4.3. □
Corollary 4.5. Let A,B ∈ K(Rn), n ⩾ 2. For all u = (u1, ..., un−1) ∈ (Rn)n−1,
such that vectors u1, . . . , un−1 are pairwise orthogonal, let the following disjunction
hold true: (A ∨ B)(u) = A(u) or (A ∨ B)(u) = B(u). Then the class [A,B] is
convex.

Proof. Notice that the sets A(u), B(u) and (A ∨ B)(u) are segments or singletons.
Then the class [A(u), B(u)] is convex if and only if A(u) ⊂ B(u) or B(u) ⊂ A(u). □
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Figure 4. The sets from Example 4.7

Corollary 4.6. Let A,B ∈ K(Rn), n ⩾ 2, be two polytopes. For all u ∈ Rn,
such that the set (A ∨ B)(u) is a segment, let the following disjunction hold true :
(A ∨B)(u) = A(u) or (A ∨B)(u) = B(u). Then the class [A,B] is convex.

Example 4.7. Let J := {0, 1}3 ⊂ R3, A := conv(J \ {(1, 1, 1), (0, 0, 1)}) and
B := conv(J \ {(0, 1, 0), (1, 0, 0)}). Notice that A ∪ B = convJ . Each edge of the
union A ∪ B is either an edge of A or of B. By Corollary 4.6 the class [A,B] is
convex. Notice that a square (A ∪ B)(u), u = (−1, 0, 0) is a union of two triangles
A(u) = conv{(0, 0, 0), (0, 0, 1),(0, 1, 1)} and B(u) = conv{(0, 0, 0), (0, 1, 0), (0, 1, 1)}.
Hence Proposition 4.1 is not sufficient to prove that the class [A,B] is convex. The
sets A and B are pictured in Figure 4

Proposition 4.8. Let A,B ∈ K(Rn), n ⩾ 2, be two polytopes. If the class [A,B] is
convex then for all u ∈ Rn, such that the set (A∨B)(u) is a segment, the following
disjunction holds true : (A ∨B)(u) = A(u) or (A ∨B)(u) = B(u).

Proof. Assume that for some u ∈ Rn the set (A∨B)(u) is a segment, (A∨B)(u) ̸=
A(u) and (A ∨ B)(u) ̸= B(u). If (A ∨ B)(u) ̸= A(u) ∪ B(u) then the pair (A,B)
is not convex, and, obviously, the class [A,B] is not convex. Now, assume that
(A ∨ B)(u) = A(u) ∪ B(u). Then both support sets A(u) and B(u) are segments
contained in a straight line. Let A(u) be a segment a1 ∨ a2 and B(u) := b1 ∨ b2.
Without loosing generality we may assume that b2 − b1 = t(a2 − a1) with t ⩾ 1
and b1 − a1 = s(a2 − a1) with s > 0. Let I be a (n − 2)-dimensional hypercube
contained in a (n − 2)-dimensional subspace of Rn perpendicular to the vectors u
and a2 − a1. Let x be a vector in Rn such that the set P := conv(A(u) + I) ∪ {x}
is a pyramid with P (u) = {x}. Denote Q := P + (b1 − a1) ∨ (b2 − a2). We may
choose x sufficiently close to the center of the set A(u)+ I that the pairs (A+ I, P )
and (B + I,Q) are convex. Notice that (A + I) ∩ P = (A + I)(u) = A(u) + I and
(B+I)∩Q = (B+I)(u) = B(u)+I. Then the pair (C,D) :=

(
(A+I)∪P, (B+I)∪Q

)
is equivalent to (A,B). Notice that C(u) = P (u) = {x} and D(u) = Q(u) =
x+(b1−a1)∨ (b2−a2). The equalities b2− b1 = t(a2−a1) and b1−a1 = s(a2−a1)
imply that b2−a2 = b1+t(a2−a1)−a2 = (b1−a1)+(t−1)(a2−a1) = (s+t−1)(a2−a1).
Hence 0 does not belong to (b1−a1)∨(b2−a2), and the set C(u)∪D(u) is not convex.
Therefore, the pair (C,D) is not convex, and the class [A,B] is not convex. □
Remark 4.9. If a pair of strictly convex sets A and B is convex then the class
[A,B] is convex.

The following theorem is a direct corollary from Corollary 4.6 and Proposition
4.8.

Theorem 4.10. Let A,B ∈ K(Rn), n ⩾ 2, be two polytopes. Then the class [A,B]
is convex if and only if for all u ∈ Rn, such that the set (A ∨ B)(u) is a segment,
the following disjunction holds true : (A ∨B)(u) = A(u) or (A ∨B)(u) = B(u).
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Theorem 4.10 probably cannot be extended to all compact convex sets.
Notice that the family of all convex classes is not closed with respect to Minkowski

sum. For example take subsets of one-dimensional space R: A := [0, 1], B := {0},
C := {1} and D := [0, 1]. We obtain A+C = [1, 2] and B +D = [0, 1]. The classes
[A,B] and [C,D] are obviously convex. Yet the class [A + C,B + D] = [{1}, {0}]
is not convex. Also, if some class [A,B] is convex then [B,A] is convex, too. The
following Proposition shows that the family of all convex classes is closed with
respect to supremum and infimum.

Proposition 4.11. Let A,B,C,D be polytops in X = Rn or convex sets contained
in X = R2. If [A,B] and [C,D] are convex classes, then the classes sup([A,B], [C,D])
and inf([A,B], [C,D]) are also convex.

Proof. Notice that sup([A,B], [C,D]) = [(A+D)∨ (B+C), B+D]. By Proposition
4.8 for all u ∈ Rn if a support set (A∨B)(u) is a segment, then (A∨B)(u) = A(u)
or (A ∨ B)(u) = B(u) and if (C ∨ D)(u) is a segment, (C ∨ D)(u) = C(u) or
(C∨D)(u) = D(u). Consider ((A+D)∨ (B+C))(u) ⊂ (A∨B+C∨D)(u). Denote
E =

(
(A+D) ∨ (B + C)

)
∨ (B +D) and assume that E(u) is a segment.

If hA+D(u) > hB+C(u) then ((A + D) ∨ (B + C))(u) = (A + D)(u). Then
E(u) =

(
(A + D) ∨ (B + C) ∨ (B + D)

)
(u) = ((A + D) ∨ (B + D))(u) = ((A ∨

B) + D)(u) = (A ∨ B)(u) + D(u). Notice that the support set (A ∨ B)(u) is a
segment or a singleton. Moreover, the class [A,B] is convex. By Proposition 4.8
we have two possibilities. First, if (A ∨B)(u) = A(u), then E(u) = A(u) +D(u) =
(A + D)(u) = ((A + D) ∨ (B + C))(u). Second, if (A ∨ B)(u) = B(u), then
E(u) = B(u) +D(u) = (B +D)(u).

The case of hA+D(u) < hB+C(u) is similar.
Let us assume that hA+D(u) = hB+C(u). If hA+D(u) > hB+D(u), then E(u) =

((A + D) ∨ (B + C))(u). If hA+D(u) = hB+D(u), then hA(u) = hB(u), and also
hC(u) = hD(u). Then, by Lemma 3.12, we obtain E(u) = ((B + C ∨ D) ∨ (D +
A ∨ B))(u) = (B + C ∨ D)(u) ∨ (D + A ∨ B)(u). Hence support sets (A ∨ B)(u)
and (C ∨ D)(u) are segments or singletons. By convexity of classes [A,B], [C,D]
we obtain A(u) ⊂ B(u) or B(u) ⊂ A(u) and C(u) ⊂ D(u) or D(u) ⊂ C(u). If
A(u) ⊂ B(u) and C(u) ⊂ D(u), then E(u) = (B + D)(u). In the other case
B(u) ⊂ A(u) or D(u) ⊂ C(u), and (B +D)(u) ⊂ ((A +D) ∨ (B + C))(u). Hence
E(u) = A(u) +D(u) = ((A+D) ∨ (B + C))(u).

We have just proved the sufficient and necessary condition (Theorem 4.10) for
the convexity of the class [(A+D)∨ (B +C), B +D]. Similarly, one can prove the
convexity of the class [A+ C, (A+D) ∨ (B + C)] = inf([A,B], [C,D]). □

Let us notice that if a pair (A,B) is convex then min(hA, hB) = hA∩B is a convex
function. If a class [A,B] is convex and f = hA − hB, then for any representation
f = g − h as a difference of sublinear functions the function min(g, h) is convex.
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