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more frequent than “optimization”). Kortanek was also one of the authors of the
first seven papers on SIP (more precisely on LSIP) published between 1965 and
1973, co-authored by Charnes, Cooper or Gustafson. Regarding nonlinear SIP
(NLSIP), the first two papers were published in 1976 and 1978 by Hoffmann and
Klostermair and by Hettich and Jongen [42], respectively. The latter paper has
been very influential in numerical SIP as it provided the theoretical tools for the
(finite) local reduction approach based on suitable optimality conditions involving
finitely many constraints. Kortanek, Hettich and Jongen, all of them authors of up
to 20 publications including the term “semi-infinite” in their titles, are generally
considered the founding fathers of SIP.

All SIP problems considered in the literature have been of scalar nature until the
publication by Todorov of 4 papers on multiobjective LSIP at the end of the 1980s
([86], [87], [88], [89]). It is worth observing that the adjective “multiobjective” for
these SIP problems became progressively more frequent than “vector”: to be precise,
“multiobjective” is twice more frequent in the titles than “vector” in the more than
90 papers published up to now on nonscalar SIP. In contrast with the literature on
scalar SIP, where most papers deal with numerical methods, most works published
on multiobjective SIP are focused on theoretical aspects as optimality conditions
(the majority), duality, and stability of the different sets of solutions, while they
seldom deal with numerical methods, probably because these problems are usually
solved in practice via scalarization, that is, reducing them to a parametric family
of scalar SIP problems providing different types of optimal solutions. This could be
the reason why, to the best of our knowledge, this is the first survey paper dealing
with multiobjective SIP, while scalar SIP has been reviewed many times, the first
one by Hettich and Kortanek in a famous survey on all types of scalar SIP problems
published in 1993 [43]. The surveys published after [66] (2007) deal with particular
types of scalar SIP problems: generalized SIP ([85], 2012), LSIP ([31], 2018), and
NCSIP ([20], 2021).

The paper is organized as follows. In Section 2 we show some motivating ex-
amples of multiobjective CSIP and discuss the linearization of multiobjective CSIP
problems. Section 3 analyzes the scalarization of multiobjective CSIP problems and
reviews contributions to scalar CSIP numerical methods dated after 2007. Section
4 compares the main constraint qualifications (CQs in short) in CSIP allowing to
characterize, in Section 5, different types of solutions. Finally, Sections 6 and 7
discuss duality and stability issues.

2. Preliminaries

We consider in this paper multiobjective optimization problems of the form

(2.1) (CSIP ) “minx∈Rn ” f(x) := (f1(x), . . . , fp(x)) s.t. g(t, x) ≤ 0, t ∈ T,

where T is infinite, fi : Rn −→ R is a real-valued convex function for all i ∈ I :=
{1, . . . , p} and gt : Rn −→ R = R∪{+∞} is a convex lower semicontinuous (lsc in
brief) proper function for all t ∈ T. One can aggregate to (CSIP ) a set constraint
x ∈ C, where C ⊂ Rn is a given closed and convex set, by adding to (2.1) the
constraint δC(x) ≤ 0, with δC : Rn −→ R being the indicator function of C (i.e.,
δC(x) = 0 if x ∈ C and δC(x) = +∞ otherwise). We also assume along the paper
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that the (closed and convex) feasible set of (CSIP ) is non-empty, that is,

X := {x ∈ Rn : gt (x) ≤ 0, ∀t ∈ T} 6= ∅.

We also consider the subfamily of multiobjective linear SIP problems, that can
be formulated as

(2.2) (LSIP ) “minx∈Rn ” f(x) :=
(
c′1x, . . . , c

′
px
)
s.t. a′tx ≤ bt, t ∈ T,

whose data are the vectors ci, i ∈ I, and at, t ∈ T, and the scalars bt, t ∈ T, and
where c′ix represents the scalar product of ci by x.

The task “min ” in (CSIP ) and (LSIP ) consists in finding solutions whose
definitions involve three partial orderings on Rp. Given x, y ∈ Rp, we write x ≦
y (resp. x < y) when xi ≤ yi (resp. xi < yi) for all i ∈ I. Moreover, we write x ≤ y
if x ≦ y and x 6= y. We only consider here four types of solutions for (CSIP ) :

• x̂ ∈ X is a weak efficient solution of (CSIP ) if it does not exist x ∈ X such
that f(x) < f(x̂).
• x̂ ∈ X is an efficient solution (or Pareto minimizer) of (CSIP ) if it does
not exist x ∈ X such that f(x) ≤ f(x̂).
• x̂ ∈ X is a (Geoffrion) proper efficient solution of (CSIP ) if there exists
M > 0 such that for all i ∈ I and x ∈ S with fi (x) < fi (x̂), there exists
j ∈ {1, ..., p} such that

fj (x) > fj (x̂) and
fi (x̂)− fi (x)
fj (x)− fj (x̂)

< M.

Observe that there are many notions of proper efficiency in the literature,
as those of Benson, Borwein and Henig, but all of them are equivalent to
the above one thanks to the convexity assumption (see, e.g., [21]).
• x̂ ∈ X is a sharp efficient solution (or isolated efficient solution) of (CSIP )
if there exists ν > 0 such that

maxi∈I{fi(x)− fi(x̂)} ≥ ν ‖x− x̂‖ , ∀x ∈ X,

where ‖.‖ denotes the Euclidean norm in Rn.

The corresponding sets of solutions are denoted by XW , XE , XP , and XS , re-
spectively. One has XS ⊂ XP ⊂ XE ⊂ XW . Moreover, X = XW whenever one
component of f is identically zero, and X = XP in the trivial case that f is the null
function. It is also known that f (XP ) is dense in f (XE) ([40]; see also [21, Theorem
3.17]). Due to the convexity of (CSIP ), XW is connected [21, Theorem 3.38]. If X
is bounded, then XE is connected, too [21, Theorem 3.40].

Roughly speaking, XW and XP are easily computable via scalarization, XE (the
so-called Pareto frontier of (CSIP )) is preferred by most users in most applications,
and XS is stable under Lipschitzian perturbations of the objective functions in the
following sense: if x̂ ∈ XS for (SIP ) , the same is true when f (x) is replaced by
f (x) + Cx, when the p× n matrix C is sufficiently small [29]. We do not consider
local solutions in this survey because, due to the convexity assumptions, local and
global concepts coincide in CSIP. When p = 1 (scalar SIP), XW = XE = XP is
the optimal set while XS is the set of sharp minima (also called strongly unique
solutions).
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2.1. Some examples. Let us now present some examples of multiobjective CSIP
problems.

Example 1 (Simultaneous Chebyshev best approximation). ([7], [37]) Let
{
ψ
(i)
j

}n

j=1
,

i = 1, . . . , p (p > 1), be p families of n real-valued continuous functions on the inter-

val [a, b]. Let ψ
(i)
0 , i ∈ I := {1, . . . , p} , be p given real valued continuous functions

on an interval [a, b]. For i ∈ I define the function

fi(x) :=

∥∥∥∥∥∥ψ(i)
0 −

n∑
j=1

xjψ
(i)
j

∥∥∥∥∥∥
∞

= maxt∈[a,b]

∣∣∣∣∣∣ψ(i)
0 (t)−

n∑
j=1

xjψ
(i)
j (t)

∣∣∣∣∣∣ ,
where ‖·‖∞ denotes the Chebyshev (or uniform) norm on the linear space C ([a, b])
of real-valued continuous functions on [a, b]. The simultaneous Chebyshev best
approximation problem consists in finding a solution x = (x1, . . . , xn) ∈ Rn of the
multiobjective non-differentiable optimization problem

(2.3) “min ” (f1(x), . . . , fp(x)) s.t. x ∈ C ⊂ Rn,

where C stands for some closed convex set. The epigraphical reformulation of (2.3)
yields the equivalent problem

“min(x,y)∈C×Rp ” (y1, . . . , yp) s.t.

∥∥∥∥∥∥ψ(i)
0 −

n∑
j=1

xjψ
(i)
j

∥∥∥∥∥∥
∞

≤ yi, i ∈ I,

which can be reformulated as

(CSIP ) “min(x,y)∈C×Rp ” (y1, . . . , yp)

s.t. ψ
(i)
0 (t)−

∑n
j=1 xjψ

(i)
j (t) ≤ yi, i ∈ I, t ∈ [a, b],

−ψ(i)
0 (t) +

∑n
j=1 xjψ

(i)
j (t) ≤ yi, i ∈ I, t ∈ [a, b],

where all the involved functions are linear in the variables x and y, except the hidden
constraint function, δC . So, (CSIP ) is a multiobjective nonlinear CSIP problem.

Example 2 (Multinorm one-sided best approximation). [26] Let ψ0, ψ1, ..., ψn be
continuous functions on an interval [a, b] and let {‖·‖i , i = 1, ..., p} be a given family
of norms on C ([a, b]) . Consider the problem consisting of computing a “good” ap-
proximation to ψ0 from above on [a, b] by means of linear combinations of ψ1, ..., ψn,
when it is not obvious how to measure the approximation error based on the norms

‖·‖i , i ∈ I. For each i ∈ I, we denote by fi(x) :=
∥∥∥ψ0 −

∑n
j=1 xjψj

∥∥∥
i
the error,

measured with ‖·‖i , corresponding to a decision x.We thus have the multiobjective
linearly constrained convex problem

(CSIP ) “minx∈Rn ” (f1(x), . . . , fp(x))
s.t. ψ0(t) ≤

∑n
i=1 ψi(t)xi, t ∈ [a, b].

Consider now the particular case where the family of norms is limited to the Cheby-
shev and the Manhattan norms ‖·‖∞ and ‖·‖1. Since ψ0(t) ≤

∑n
i=1 ψi(t)xi, for all
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t ∈ [a, b] and for all feasible x,∥∥∥∥∥ψ0 −
n∑

i=1

xiψi

∥∥∥∥∥
∞

= maxt∈[a,b]

{
n∑

i=1

xiψi(t)− ψ0(t)

}
and

‖ψ0 −
∑n

i=1 xiψi‖1 =
∫ b
a [
∑n

i=1 ψi(t)xi − ψ0(t)] dt

=
∑n

i=1

(∫ b
a ψi(t)dt

)
xi −

∫ b
a ψ0(t)dt.

So, one has to solve the continuous biobjective LSIP problem

(LSIP ) “min(x,xn+1)∈Rn+1”
(
xn+1,

∑n
i=1

(∫ b
a ψi(t)dt

)
xi

)
s.t.

∑n
i=1 ψi(t)xi ≥ ψ0(t), t ∈ [a, b],

xn+1 ≥ ψ0(t)−
∑n

i=1 ψi(t)xi ≥ −xn+1, t ∈ [a, b].

Example 3 (Robust convex optimization). ([19], [44], [10], [47]) Consider an un-
certain optimization problem

(P ) ”minx∈Rn ” f(x) = (f1(x), . . . , fp(x))
s.t. gj(x) ≤ 0, j = 1, ..., q,

whose data fi and gj , are the result of perturbing those of some deterministic convex
nominal problem

(P ) “minx∈Rn ” f(x) =
(
f1(x), . . . , fp(x)

)
s.t. gj(x) ≤ 0, j = 1, ..., q,

such that f i, i ∈ I := {1, ..., p} , and gj , j ∈ J = {1, ..., q} , are convex functions.
For the sake of simplicity, we make the assumption that the data of (P ) depend on
parameters ranging on independent uncertainty sets: Ui, for fi, i ∈ I, and Vj , for
gj , j ∈ J (singletons for the deterministic functions). The uncertainty set of (P ) is
U × V with U :=

∏p
i=1 Ui and V :=

∏q
j=1 Vj . Each couple (u, v) ∈ U × V defines a

scenario problem

(Pu,v)u∈U ,v∈V “minx∈Rn ” f(x, u) = (fi(x, ui), ..., fp(x, up))
s.t. gj(x, vj) ≤ 0, j ∈ J,

with (Pu,v) ≡
(
P
)
for some nominal scenario (u, v) ∈ U × V . In most practical

applications each nominal function h ∈
{
f i, i ∈ I

}
∪
{
gj , j ∈ J

}
has a compact

convex uncertainty set W ⊂ Rn+1 such that 0n+1 ∈ intW and is subject to affine
perturbations, that is,

h (x,w) = h (x) + w′x+ z, (w, z) ∈ W .

This uncertainty set is W = Ui for h = f i and W = Vj for h = gj , so that we

are assuming that Ui and Vj are compact convex subsets of Rn+1 whose interiors
contain the origin 0n+1. The objective functions of the robust (or pessimistic)
counterpart of (P ) are the worst case functions φi(·) := supui∈Ui

fi(·, ui) while the
constraints are all conceivable perturbations of the constraints. In conclusion, since
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all these functions are convex, the robust counterpart of (P ) is the multiobjective
CSIP problem

(RCSIP ) “minx∈Rn ” φ(x) :=
(
φ1(x), . . . , φp(x)

)
s.t. gj(x, vj) ≤ 0, vj ∈ Vj,, j ∈ J.

2.2. Linearization of CSIP problems. It is worth mentioning that any multi-
objective CSIP problem as the one in (2.1) can be reformulated as an LSIP (that is,
at least theoretically, any multiobjective CSIP problem is an LSIP one in desguise).
To do this (as in [26]), we must recall some convex analysis concepts. Given a set
∅ 6= A ⊆ Rn, the closure of A, the interior of A, the relative interior of A, the linear
span of A, the convex hull of A, and the convex cone (containing the origin) gen-
erated by A are respectively denoted by A, intA, riA, spanA, convA, and coneA,
respectively. The negative polar cone of A is A0 := {x ∈ Rn : a′x ≤ 0, ∀a ∈ A} and
its strictly negative polar cone A− := {x ∈ Rn : a′x < 0, ∀a ∈ A} .

Given a function h : Rn → R, the effective domain of h, the graph of h, the
epigraph of h and the convex subdifferential of h are respectively denoted by dom h,
gphh, epih and ∂h. The Fenchel conjugate of h is the function h∗ : Rn → R such
that

h∗(v) = sup{v′x− h(x) : x ∈ domh}.
It is well-known that, if h is a proper lower semicontinuous convex function, then
h∗ enjoys the same properties and its conjugate

h∗∗(x) = sup{v′x− h∗(v) : v ∈ domh∗}
coincides with h.

Since all functions involved in (CSIP ) are proper, lsc and convex, we have

(2.4) hi (x) = h∗∗i (x) = sup
u∈dom h∗

i

{x′u− h∗i (u)}, ∀i ∈ I.

Analogously, given t ∈ T,

(2.5)
gt(x) ≤ 0 ⇐⇒ g∗∗t (x) ≤ 0

⇐⇒ x′u− g∗t (u) ≤ 0, ∀u ∈ dom g∗t
⇐⇒ u′x ≤ g∗t (u), ∀u ∈ dom g∗t .

From (2.4) and (2.5) we get that (CSIP ) is equivalent to the multiobjective LSIP
problem

(LSIP ) “min(z,x)∈Rn+p” f (z, x) = (z1, ..., zp)
s.t. −zi + u′x ≤ h∗i (u), u ∈ dom h∗i , i ∈ I,

u′x ≤ g∗t (u), (u, t) ∈ dom g∗t × T.
The drawback with this reformulation (linearization) of (CSIP ) is that some of

its relevant properties (e.g., the compactness of the index set or desirable constraint
qualifications) are not inherited by (LSIP ) . However, direct linearizations may be
occasionally useful.

Example 4. [26] Suppose that we can invest a capital M in n shares. For j ∈
{1, ..., n} , we denote by xj the amount to be invested in the j−th share, and by

rj its rate of return. Obvious constraints are
n∑

j=1
xj = M and xj ≥ 0, j = 1, ...., n.
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We express these, and possibly other linear constraints, in a compact way as a′jx ≥
bj , j = 1, ..., q. In the (unrealistic) absence of uncertainty, the problem to be solved
is the linear optimization one

(P ) maxx∈Rn r′x s.t. a′jx ≥ bj , j = 1, ..., q.

Unfortunately, r is in practice an uncertain vector. The uncertain problem (P ) can
be modeled in a variety of ways, taking into account that the decision maker intends
to maximize its return at a minimum risk. If the probability distribution of r is
unknown, the first objective for a pessimistic decision maker consists of maximizing
infr∈R r

′x (or, equivalently, minimizing supr∈R (−r′x)), where R ⊂ Rn denotes the
set of conceivable values of r. Concerning the risk, it is usually identified with the
variance of the portfolio x, i.e., the uncertain number x′V x, where V denotes the
(positive definite) matrix of variances-covariances of r. So, the second objective
consists of minimizing the quadratic convex function h (x) := x′V x. Consequently,
we have a biobjective LSIP problem. Indeed, since h∗ (u) = 1

4u
′V −1u for all u ∈ Rn,

the equivalent problem is

(LSIP ) “min(x,z)∈Rn+2” f (z, x) = (z1, z2)
s.t. r′x+ z1 ≥ 0, r ∈ R,

−u′x+ z2 ≥ −1
4u

′V −1u, u ∈ Rn,
a′jx ≥ bj , j = 1, ..., q.

We have mentioned at the beginning of this section two desirable properties of
X : non-emptyness (assumed along the paper) and boundedness. The well-known
characterizations of both properties in terms of the data for linear systems [30, The-
orems 4.4 and 9.3] allow to obtain convex counterparts via the linear representation
of X in (2.5):

X 6= ∅ ⇐⇒ (0n,−1) /∈ cone

(⋃
t∈T

epi g∗t ∪ {(0n, 1)}

)
,

in which case,

X is bounded ⇐⇒ (0n, 1) /∈ int cone
(⋃

t∈T epi g∗t ∪ {(0n, 1)}
)

⇐⇒ cone
(⋃

t∈T dom g∗t
)
= Rn.

3. Numerical issues

Multiobjective CSIP problems are usually solved via scalarization, which con-
sists in obtaining solutions of the (CSIP ) in (2.1) by solving instances of some
parametric scalar (CSIP ) problem. We now briefly describe the application to the
multiobjective (CSIP ) in (2.1) of four of the many available scalarization methods
(see, e.g., [1], [50], [54], [65], [106], etc.).

In the linear weighted sum method the parametric set is the standard simplex in
Rp,

(3.1) ∆p
+ := {w ∈ Rp : w1 + ...+ wp = 1, w ≧ 0p} ,

whose relative interior we denote by

∆p
++ = {w ∈ Rp : w1 + ...+ wp = 1, w > 0p} .
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The parametric (weighted) problem, depending on the parameter w ∈ ∆p
+, is the

scalar CSIP problem

(3.2) (CSIPw) minx∈Rn

p∑
i=1

wifi(x) s.t. g(t, x) ≤ 0, t ∈ T.

Let x ∈ X. Then, according to [21, Propositions 3.9 and 3.10, and Theorems 3.11
and 3.15],

1. x ∈ XP if and only if there exists w ∈ ∆p
++ such that x is a minimizer of

(CSIPw).
2. x ∈ XW if and only if there exists w ∈ ∆p

+ such that x is a minimizer of
(CSIPw).

So, thanks to the convexity of (CSIP ) , optimality for the weighted sum scalar-
ization with w ∈ ∆p

++ (resp. w ∈ ∆p
+) is a necessary and sufficient condition for

proper (weak, resp.) efficiency. Hence, this approach allows to compute all proper
and weak efficient solutions.

In the ε-constraint method the parametric set is Rp× I and the parametric prob-
lem corresponding to (ε, j) ∈ Rp × I is the scalar CSIP problem

(3.3)
(CSIP (ε, j)) minx∈Rn fj (x)

s.t. fi (x) ≤ εi, i ∈ I⧹ {j} ,
g(t, x) ≤ 0, t ∈ T.

Let x ∈ X. Then, according to [21, Proposition 4.3 and Theorem 4.5] (based on [8]),
1. If x is a minimizer of (CSIP (ε, j)) for some (ε, j) ∈ Rp × I, then x ∈ XW .
2. x ∈ XE if and only if there exists a vector ε ∈ Rp such that x is a minimizer

of (CSIP (ε, j)) for all j ∈ I.
So, this approach allows to obtain all efficient solutions (the most important

solutions from the practical point of view), but not all the weakly efficient solutions
of (CSIP ).

In the so-called hybrid method the parametric set is again ∆p
+. This method,

which is inspired in the previous ones, requires the previous computation of a feasible
solution x0 ∈ X of (CSIP ). Then, the parametric problem corresponding to w ∈ ∆p

+

is the scalar CSIP problem

(3.4)
(CSIPw) minx∈Rn

p∑
i=1

wifi(x)

s.t. fi (x) ≤ fi
(
x0
)
, i ∈ I,

g(t, x) ≤ 0, t ∈ T.

Given x ∈ X and w ∈ ∆p
++, by [21, Theorem 4.7] (based on [36]), x ∈ XE if and

only if x is a minimizer of (CSIPw) . Observing the independence of the chosen
vector w ∈ ∆p

++, Charnes and Cooper proposed to scalarize with the vector of all
ones 1n, idea that has inspired an algorithm [54], where the authors sum up to the

objective function
p∑

i=1
fi(x) in (CSIP1n) a regularization term 1

2 ‖x− x‖
2 (as in the

proximal algorithm for convex NLP) for a suitable x, so that the objective function
p∑

i=1
fi(·) + 1

2 ‖· − x‖
2 becomes strongly convex instead of just convex.
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Other scalarization methods with CSIP parametric problems are the elastic con-
straint method [21, Section 4.3] and weighted Chebyshev scalarization [21, Section
4.5], whereas Benson’s scalarization method does not [21, Section 4.4], except in the
case that all objective functions are linear (as it happens in multiobjective LSIP,
e.g., in Example 4). In all these methods, the parametric problems aggregate finitely
many convex constraints to the initial constraint system representing X, so that the
continuity of (CSIP ) is inherited by the substitute problems.

Since the last survey paper covering scalar CSIP [66] was published in 2007, we
now briefly review subsequent contributions to the numerical treatment of (CSIP )
in (2.1), with p = 1. Two main difficulties for the numerical treatment of (CSIP )
are:

1. The fact that checking the feasibility of a given x ∈ Rn requires to compute
the optimal value of the so-called lower level problem at x,

Q (x) : maxt∈T g (x, t) ,

which is a global optimization problem.
2. The fact that possibly all constraints are inactive at any feasible solution,

i.e., the set of active constraints at x, i.e. T0 (x) = {t ∈ T : g (x, t) = 0} , could
be empty for all x ∈ X (even on the boundary of X). To avoid this undesirable
situation constraint qualifications are needed.

• Penalty and smoothing methods
[3] proposes a unified framework concerning old and new Remez-type algo-
rithms and integral methods coupled with penalty and smoothing methods
for continuous CSIP that converge assuming that f has bounded lower level
sets and the Slater constraint qualification defined in Section 4 holds; [4]
compares several implementations of one of the algorithmic schemes pro-
posed in [3], RPSALG, tackling the lower level problem Q (x) with a variant
of the cutting angle method called ECAM, a global optimization procedure
for solving Lipschitz programming problems. These variants are compared
with the unique publicly available SIP solver, NSIPS, on a battery of test
problems.
The penalty method in [102] assumes that (CSIP ) is continuous and all
data functions are continuously differentiable. Numerical tests are also pro-
vided.
• Exchange methods
Most exchange method solve sequences of finitely relaxed subproblems, that
is, replace T by a finite subset of T at each step. This is the approach of [107],
which proposes an exchange method for continuous CSIP problems such that
all data are continuously differentiable, f has bounded lower level sets, and
the Slater constraint qualification holds. The method has finite termination
whenever f is strictly convex. The main features of this method are that
only those active constraints with positive Lagrange multipliers are kept
and that, instead of solving Q (x) at each iteration to detect the (almost)
most violated constraint, the algorithm works with indexes whose associated
constraints are only slightly violated. The computational efficiency of this
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method is compared with that of central cutting plane algorithm and with
the semi-infinite solver fseminf in MATLAB toolbox. It is also applied
to the FIR filter design problem. A sequel of this paper is [25], whose
main idea consists in perturbing the non-strictly convex objective function
f making it strictly convex. It is shown that, under certain assumptions, a
good approximate solution of the original problem can be found in a finite
number of steps. The method is illustrated with an application to the so-
called sparse broadband beamformed design problem.
The exchange method in [72] assumes that (CSIP ) is continuous, T is a
polyhedral convex set, and both f and g are continuously differentiable.
In contrast with the traditional exchange methods, this one generates a
sequence of auxiliary semi-́ınfinite problems indexed by T whose constraints
are quadratic approximations of the initial constraints (the so-called refined
problems, that are in practice replaced by NLP problems. Some numerical
tests are provided.
• Cutting surface methods

In 1993 Kortanek and No [58] extended to CSIP the classical Gribik’s
linear cutting plane method, which is based on an efficient grid management
scheme to generate cuts.
The central cutting plane method in [108] applies to CSIP problems of the
form

(3.5) (CSIP ) minx∈C f (x) s.t. g(t, x) ≤ 0, t ∈ T,

where C ⊂ Rn is a given compact convex set and g is continuously differen-
tiable. Observe that the scalarized problems (3.3) and (3.4) have this form,
with C being lower level sets of fi. Some numerical examples are provided.
The cutting surface method of [68] applies to CSIP problems of the form

(3.6) (CSIP ) minx∈C f (x) = x1 s.t. g(t, x) ≤ 0, t ∈ T,

such that C ⊂ Rn is a given compact convex set, the strong Slater condition
defined in Section 4 holds and all constraint functions gt are subdifferentiable
and uniformly bounded. The method is inspired in the mentioned cutting
plane one of Kortanek and No, just replacing planes by nonlinear surfaces,
more precisely convex cuts generated directly from the constraints. The
model (3.6) corresponds to the CSIP formulation of distributionally robust
optimization problems in which the uncertainty set consists of probability
distributions with given bounds on their moments. The paper contains nu-
merical tests and applications to moment robust optimization and portfolio
optimization.
• Bundle methods
The bundle method of [73] applies to CSIP problems formulated as in (3.5)
and such that T ⊂ Rm is compact and g(·, x) is upper semicontinuous.
The idea of the method consists in replacing (CSIP ) by an unconstrained
problem by using the so-called improvement function

Hy (x) := max {f (x)− f (y) ,maxt∈T g(t, x)} ,
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for which, x is a minimizer of (CSIP ) if and only if it is a global minimum
of Hx. The paper provides computational results for non-smooth convex
semi-infinite problems and moment robust optimization, and comparisons
with the cutting plane method of Kortanek and No [58] and the exchange
method of Zhang, Wu, and López [107].
The discretization method proposed by [74] considers CSIP problems as
in (CSIP ) in (2.1) satisfying the Slater constraint qualification such that
T ⊂ Rm is compact and g is locally Lipschitz. It is inspired in the classical
discretization methods and the bundle methods of Sagastizábal and Solodov
[82]. The authors present some numerical tests collected.
• Stochastic approximation methods
Wei, Haskell, and Zhao have recently proposed two stochastic approximation
methods.
The method in [100] applies to continuous CSIP problems of the form (3.5)
where C is a compact and convex subset of Rn, T is a convex body in some
low dimensional space, and all data functions are Lipschitz continuous and
subdifferentiable. The two CoMirror algorithms proposed in this paper use
random sampling to approximately solve the cut generation problem and
their convergence analysis is based on general error bounds. These methods
are compared with those of Calafiore and Campi [6] on a parametric test
problem taken from the latter paper.
The inexact first-order primal-dual algorithm method based on Monte Carlo
sampling proposed in [101] applies to a class of SIP problems slightly larger
than CSIP as the constraints are required to be Lipschitz continuous (but
not necessarily convex), the rest of assumptions being as the ones in the
previous method. The paper contains some numerical tests.

4. Data qualifications

The central theme of the CSIP theory is the characterization of the sets of so-
lutions in terms of convex cones contained in the decision space Rn or in terms
of the existence of Karush-Kuhn-Tucker (KKT in short) multipliers popularized
in all branches of optimization after the publication of [59]. As a general rule, to
obtain checkable necessary optimality conditions and duality theorems for a given
constrained optimization problem, one needs to assume some property of the data
called data qualification. In particular, those data qualifications only involving the
constraint functions {gt, t ∈ T} are called constraint qualifications (CQs), those only
involving the objective functions {fi, i ∈ I} are called objective qualifications (OQs),
and those data qualifications which involve both constraint and objective functions
are called mixed qualifications (MQs). The oldest CQ, published in 1950, was in-
troduced by M. Slater in a seminal work on scalar NLP, and was later adapted to
almost any optimization field, e.g., to scalar LSIP by Charnes, Cooper and Kortanek
in the 1960s. Many of the data qualifications below also have a long history. For
instance, the locally Farkas-Minkowski MQ was first defined in [80] for scalar LSIP,
and then extended to convex scalar CSIP in [30] and to scalar convex infinite pro-
gramming (dealing with optimization problems with infinite dimensional decision
space and infinitely many convex constraints) in [18]; weaker mixed qualifications
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have been introduced in [63] and [62] in scalar CSIP and convex infinite program-
ming, respectively. For the sake of brevity we reduce to a minimum the historical
notes in the following list of the most common data qualifications encountered in
the CSIP literature. More historical details can be found in many papers dealing
with optimality conditions as [60], [14], [15], [26], [27], [37], [62], etc.

Main constraint qualifications

• The Slater constraint qualification (SCQ in brief, introduced in [26] and [27]
in the frameworks of multiobjective LSIP and CSIP, respectively) holds
when there exists x ∈ Rn (called Slater point) such that gt(x) < 0, ∀t ∈ T ,
i.e., T0(x) = ∅.
• The Mangasarian-Fromovitz constraint qualification (MFCQ, [48] in NLSIP)
holds at x̂ ∈ X if

G(x̂) :=
⋃

t∈T (x̂)

∂gt(x̂) 6= ∅

and (its strictly negative polar cone)

G−(x̂) 6= ∅.
• The perturbed Mangasarian-Fromovitz constraint qualification (PMFCQ, [71]
in NLSIP) holds at x̂ ∈ X if there exists w ∈ Rn such that

inf
ε>0

sup

ξ′w : ξ ∈
⋃

t∈Tε(x̂)

∂gt(x̂)

 < 0,

where Tε(x̂) := {t ∈ T : ε ≤ −gt(x̂)} is the set of ε−active indices at x̂.
• The local Farkas-Minkowski constraint qualification (LFMCQ, [30] in scalar
CSIP) holds at x̂ ∈ X when

coneG(x̂) = D0(X, x̂),

where D(X; x̂) is the cone of feasible directions at x̂.
• The Abadie constraint qualification (ACQ, [61] in scalar CSIP; [29] in mul-
tiobjective CSIP) holds at x̂ ∈ X when G(x̂) 6= ∅ and

G0(x̂) ⊆ D(X, x̂),

where D(X, x̂) is, in the convex setting, the tangent cone at x̂, i.e.,

{v ∈ Rn : ∃tr ↓ 0, ∃vr → v such that x̂+ trvr ∈ X, ∀r ∈ N} .
Main objective qualification

• The Maeda objective qualification (MOQ, [67] in multiobjective NLP; [29]
in multiobjective CSIP) holds at x̂ ∈ X when

F 0(x̂) ⊆ {0n} ∪
p⋃

i=i

∂fi(x̂)
−,

where
F (x̂) :=

⋃
i∈I

∂fi(x̂).
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Main mixed qualifications

• The weak Abadie mixed qualification (WAMQ, [30] in scalar CSIP) holds at
x̂ ∈ X when G(x̂) 6= ∅ and

F−(x̂) ∩G0(x̂) ⊆ D(X, x̂).

• The extended Abadie mixed qualification (EAMQ, MOQ, [67] in multiob-
jective NLP; [29] in multiobjective CSIP) holds at x̂ ∈ X when G(x̂) 6= ∅
and

F 0(x̂) ∩G0(x̂) ⊆
⋂
i∈I

D(Qi(x̂), x̂),

where, for each i ∈ I,

Qi(x̂) := {x ∈ X : fk(x) ≤ fk(x̂), ∀k ∈ I \ {i}} .

• The Local Farkas-Minkowski mixed qualification (LFMMQ, [64] in scalar
LSIP; [34] in multiobjective CSIP) holds at x̂ ∈ X when

[− convF (x̂)] ∩D0(X; x̂) ⊂ coneG (x̂) .

Diagram 1 summarizes the main relationships between the above data qualifica-
tions [29, Theorem 1]. Some implications are true under additional assumptions:
[1] (CSIP ) is continuous; [2] G (x̂) 6= ∅; [3] p = 1.

PMFCQ [2] → MFCQ ←[2] SCQ

↓[1]
LFMCQ → LFMMQ
↓

MOQ ACQ [3] → EAMQ
↓ ↙

WAMQ

Diagram 1

Observe that MOQ is the unique DQ not connected in the above graph gathering
the existing relationships.

5. Optimality

This section presents characterizations of the sets XW , XE , XP , and XS by
means of Karush-Kuhn-Tucker (KKT in short) type optimality conditions and the
attainment of the zero-value by the gap function

ϑ :
⋃

x∈Rn

(
{x} ×

p∏
i=1

∂fi (x)×∆p
+

)
−→ R,
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where ∆p
+ was defined in (3.1), such that

ϑ(x, ξ, λ) := sup
y∈X

(
p∑

i=1

λiξ
′
i(x− y)

)
.

Obviously,

ϑ(x, ξ, λ) ≥ 0, ∀x ∈ X, ∀ξ ∈
p∏

i=1

∂fi (x) , ∀λ ∈ ∆p
+.

We say that ϑ(x, ·, ·) attains zero-value on a set ∆ such that ∅ 6= ∆ ⊂ Rp at x ∈ X
if there exist ξ ∈

∏p
i=1 ∂fi(x) and λ ∈ ∆ such that ϑ(x, ξ, λ) = 0.

By R(T (x̂))
+ we denote the positive cone in the vector space R(T (x̂)) of real-valued

functions on T (x̂) with finite support, that is, a function β : T (x̂) −→ R+ belongs

to R(T (x̂))
+ if βt = β (t) = 0 for all t ∈ T (x̂) except for finitely many indices.

• Weak efficiency

The weak KKT condition holds at x̂ ∈ X if there exist α ∈ ∆p
+ and β ∈

R(T (x̂))
+ such that

0n ∈
p∑

i=1

αi∂fi(x̂) +
∑

t∈T (x̂)

βt∂gt(x̂),

or, equivalently, if 0n ∈ convF (x̂) + coneG(x̂).
Regarding the weak KKT condition, by [29, Theorem 4].

weak KKT holds at x̂ ∈ X =⇒ x̂ ∈ XW ,

by [29, Theorem 2(i)], under WAMQ,

x̂ ∈ XW =⇒ 0n ∈ convF (x̂) + coneG(x̂),

and, by [34, Theorem 4.1], under the stronger LFMMQ,

x̂ ∈ XW ⇐⇒ weak KKT holds at x̂ ∈ X.

Regarding the gap function,

ϑ(x̂, ·, ·) attains zero-value on ∆p
+ =⇒ x̂ ∈ XW

and by [34, Theorem 4.2], under LFMMQ,

x̂ ∈ XW ⇐⇒ ϑ(x̂, ·, ·) attains zero-value on ∆p
+.

• Efficiency

The strong KKT condition holds at x̂ ∈ X when there exist α ∈ ∆p
++ and

β ∈ R(T (x̂))
+ such that

0n ∈
p∑

i=1

αi∂fi(x̂) +
∑

t∈T (x̂)

βt∂gt(x̂).
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One has

0n ∈ ri convF (x̂) + coneG (x̂) =⇒ strong KKT holds at x̂ =⇒ x̂ ∈ XE .

Moreover, if all objective functions are differentiable at x̂,

strong KKT holds at x̂⇐⇒ 0n ∈ ri convF (x̂) + coneG (x̂) .

In general, by [29, Theorem 7],

strong KKT holds at x̂ =⇒ x̂ ∈ XE ,

and, according to [29, Theorem 6], the converse statement holds whenever
EAMQ and MOQ hold at x̂, i.e.

x̂ ∈ XE ⇐⇒ strong KKT holds at x̂.

Regarding the gap function, by [29, Theorem 8(i)],

ϑ(x̂, ·, ·) attains zero-value on ∆p
++ =⇒ x̂ ∈ XE

and the converse holds, by [29, Theorem 8(ii)], under EAMQ and MOQ,
that is,

x̂ ∈ XE ⇐⇒ ϑ(x̂, ·, ·) attains zero-value on ∆p
++.

• Proper efficiency

In general,

strong KKT holds at x̂ =⇒ x̂ ∈ XP

and, according to [34, Theorem 5.1], if LFMMQ holds at x̂, one has

x̂ ∈ XP ⇐⇒ strong KKT holds at x̂ ∈ X.

Similarly, it is always true that

ϑ(x̂, ·, ·) attains zero-value on ∆p
++ =⇒ x̂ ∈ XP ,

and, according to [34, Theorem 5.2], the converse statement holds whenever
LFMMQ holds at x̂, i.e.,

x̂ ∈ XP ⇐⇒ ϑ(x̂, ·, ·) attains zero-value on ∆p
++.

• Sharp efficiency

The perturbed KKT condition holds at x̂ ∈ X when there exist ν > 0 such

that, ∀w ∈ νBn, there exist α ∈ ∆p
+ and β ∈ R(T (x̂))

+ such that

w ∈
p∑

i=1

αi∂fi(x̂) +
∑

t∈T (x̂)

βt∂gt(x̂).

By [29, Theorem 10], we always have that

perturbed KKT holds at x̂⇐⇒ 0n ∈ int (convF (x̂) + coneG(x̂)) =⇒ x̂ ∈ XS .
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If (CSIP ) is continuous and the PMFCQ holds at x̂, by [29, Theorem 9(ii)],

x̂ ∈ XS ⇐⇒ perturbed KKT holds at x̂.

Finally, assume that (CSIP ) is continuous, that all constraints are contin-
uously differentiable at x̂ ∈ X and that PMFCQ holds at x̂. Then, by [29,
Theorem 9(i)],

x̂ ∈ XS ⇐⇒

{
∃ν > 0 : ∀w ∈ νBn, ∃ξ ∈

∏p
i=1 ∂fi(x̂) and ∃λ ∈ R

p
++

such that ϑ(x̂, ξ − w, λ) = 0

}
.

Optimality conditions for multiobjective LSIP were provided in [26] and [49],
not all of them being straightforward consequence of the above ones, but the bulk
of papers providing optimality conditions for multiobjective SIP deal with NCSIP
problems involving locally Lipschitz continuous data. Recall that if h : Rn −→ R
is a proper convex function, then it is locally Lipschitz on the interior of its do-
main [105, Theorem 2.1.5], so that our (CSIP ) in (2.1) has locally Lipschitz data
whenever all the involved functions are real-valued, in which case extended subdif-
ferentials as those of Clark and Mordukhovich can be used. The abundant literature
on optimality conditions for multiobjective SIP problems with locally Lipschitz data
includes [16], [17], [46], [55], [71], [78], [79], [94], etc., while [98] provides optimality
conditions for multiobjective SIP problems under geodesic convexity assumptions.
Moreover, [83] provides optimality conditions for approximate Pareto solutions of
multiobjective programming problems posed in Banach spaces with locally Lips-
chitz data in terms of Clarke subdifferentials, while [15] provides new KKT type
conditions for x̂ ∈ XW in terms of limiting subdifferentials.

6. Duality

Given two scalar optimization problems

(P ) minx∈X f (x) and (D) maxz∈Z h (z) ,

one says that the pair (P )− (D) satisfies weak duality if h (z) ≤ f (x) for all x ∈ X
and z ∈ Z, i.e, if supZ h ≤ infX f. If supZ h = infX f and the supremum (respec-
tively, infimum) is attained then strong duality (reverse strong duality, resp.) holds.
Typically, these duality theorems require the satisfaction of data qualifications. In
the case of the scalar CSIP problem in (2.1) with p = 1, different dual problems
have been defined, among them the Lagrange-Haar dual

(LCSID) max
λ∈R(T )

+

h (λ) ,

with objective function h (λ) := infy∈Rn

{
f (y) +

∑
t∈T λtgt (y)

}
and feasible set

Z = R(T )
+ , and variants where Z ⊊ R(T )

+ . Strong duality theorems and reverse
strong duality theorems for the pair (CSIP )− (LCSID) and some variants can be
found in [28], [32], [33], and references therein (observe that most duality theorems
for CSIP in these papers are also valid for convex infinite optimization problems,
where the decision space is an arbitrary locally convex space instead of Rn, but the
SIP case is also discussed in the three mentioned papers). The most common data
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qualifications for the strong duality theorems are SCQ (and relaxed CQs) or closed
cone CQs involving the set

⋃
t∈T

epi g∗t , while the assumptions are of topological nature

for the reverse strong duality theorems. Other dual problems can be associated with
(CSIP ) under additional assumptions. For instance, if all data are differentiable,
the Wolfe dual of (CSIP ) is

(WCSID) max
(y,λ)∈Rn×R(T )

+

f (y) +
∑

t∈T λtgt (y)

s.t. ∇f (y) +
∑

t∈T λt∇gt (y) = 0n,

with feasible set Z = Rn × R(T )
+ , and, if (CSIP ) is a continuous LSIP problem, as

(LSIP ) in (2.2) with p = 1, its continuous dual is

(CLSID) maxµ∈C′
+(T )

∫
T bt dµ (t)

s.t.
∫
T atdµ (t) = c,

whose feasible set Z = C′+ (T ) is the cone of non-negative regular Borel measures on
T. Duality theorems for (CLSID) can be found in the classical book on continuous
linear problems [2] and references therein, while (WCSID) is still to be investigated.

Let us now consider the multiobjective counterpart. Given two multiobjective
optimization problems

(P ) “minx∈X ”f (x) and (D) “maxz∈Z ”h (z) ,

we say that the pair (P ) − (D) satisfies weak duality if h (z) ≦ f (x) for all x ∈ X
and z ∈ Z, and the duality theorems guarantee the equality h (z) = f (x) with
attainment (i.e., existence of some type of solution) of either (D) (in the strong
duality theorems) or (P ) (in the reverse strong duality theorems). The types of
solutions are not necessarily the same for (P ) and (D) .

The natural dual problem for (CSIP ) is the Lagrange-Haar dual

(LCSID) “max
λ∈R(T )

+

” h (λ) = (h1 (λ) , ..., hp (λ)) ,

where hi (λ) := infy∈Rn

{
fi (y) +

∑
t∈T λtgt (y)

}
, i = 1, ..., p. The inequality h (z) ≦

f (x) for all x ∈ X and z ∈ Z holds for free from the scalar case with objective
functions fi and hi, i = 1, ..., p. However, to the authors’ knowledge, the unique
published paper dealing with duality in multiobjective CSIP is [38], for continuous
(CSIP ) problems. The authors reformulate their primal problem by rewriting X as
solution set of a conic system as follows: X =

{
x ∈ Rn : g (x, ·) ∈ −C (T )+

}
, where

C (T )+ is the positive cone in the space C (T ) of real-valued continuous functions on
T. Then, following [45], they associate with (CSIP ) the continuous dual problem

(CCSID) “max(λ,µ,y)∈Z ” h (λ, µ, y) = y,

where

Z :=

{
(λ, µ, y) ∈ A× C′+ (T )× Rp : λ′y ≤ inf

y∈Rn

{
λ′f (y) +

∫
T
g (y, t) dµ (t)

}}
,
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A being a suitable subset of Rp
+. In the strong duality theorem [38, Theorem

2.3], under SCQ, and taking A = Rp
++, it is proved, that if x̂ ∈ XP , there ex-

ists
(
λ̂, µ̂, ŷ

)
∈ ZE such that f (x̂) = h

(
λ̂, µ̂, ŷ

)
. Moreover, it is shown that re-

verse strong duality holds assuming the compactness of Z, more precisely, that

if
(
λ̂, µ̂, ŷ

)
∈ ZE , then there exists x̂ ∈ XP such that f (x̂) = h

(
λ̂, µ̂, ŷ

)
. Analo-

gously, in the strong duality theorem [38, Theorem 2.5], also under SCQ, and taking
A = Rp

+⧹ {0p} , the same is proved just replacing x̂ ∈ XP by x̂ ∈ XW and ZE by
ZW in the first statement and ZE by ZW and XP by XW in the second one.

In the particular case of multiobjective LSIP, the following Wolfe-type dual prob-
lem is associated in [49] with the problem (LSIP ) in (2.2):

(LSID) “max
(y,λ,α)∈Rn×R(T )

+ ×Rp
++

” h (y, λ, α)

s.t.
∑p

i=1 αici +
∑

t∈T λtat = 0n,∑p
i=1 αi = 1,

where

h (y, λ, α) =

(
c′1y +

∑
t∈T

λt
(
a′ty − bt

)
, ..., c′py +

∑
t∈T

λt
(
a′ty − bt

))
.

The authors provide a strong duality theorem [49, Theorem 4.2] asserting under

EAMQ that, if span {c1, ..., cp} = Rn and x̂ ∈ XE , then there exists
(
ŷ, λ̂, α̂

)
∈ ZW

such that f (x̂) = h
(
ŷ, λ̂, α̂

)
. A similar result is valid for a Mond-Weir-type dual

problem.
Duality theorems for multiobjective NCSIP can be found in [81] and [104], for

multiobjective SIP problems with convex constraints and DC objective functions, in
[93], for multiobjective SIP problems with convex constraints and multiple interval-
valued objective functions, in [56] [78] and [79], for similar problems with with
vanishing constraints, in [99], for multiobjective SIP problems with locally Lipschitz
data, in [69] and [70], for multiobjective SIP problems with generalized convex data
(e,g., pseudoconvex and quasiconvex), in [98] for multiobjective SIP problems under
geodesic convexity assumptions, etc.

7. Stability

Almost all the existing literature on stability of multiobjective SIP problems
concerns the effect of small perturbations of the nominal data on either the set
of weak efficient solutions or the set of efficient solutions (the Pareto frontier).
The model consists of embedding the nominal problem (CSIP ) into a family of
parameterized CSIP problems of the form

(CSIPθ) “minx∈Rn ” f(x, θ) := (f1(x, θ), . . . , fp(x, θ)) s.t. g(t, x, θ) ≤ 0, t ∈ T,

with θ ∈ Θ, the so-called space of parameters, with (CSIPθ) = (CSIP ) for certain

θ ∈ Θ, so that the perturbations are required to preserve the number n of decision
variables and the index set T. The topology on Θ usually corresponds to some
measure (e.g., a pseudometric) of the size of the admissible perturbations. There is a
consensus about the convenience of measuring the distance between two parameters
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as the supremum of some distance between functions for all the data. In the case of
linear functions, 〈p, ·〉 and 〈q, ·〉, this distance uses to be some norm of the difference
of their gradients, i.e., d (p, q) = ‖p− q‖ , while in the case of extended real-valued
functions it is customary to consider an expansive family of compact convex sets
{Bk, k ∈ N} covering Rn (as the integer multiples of the unit closed ball Bn), and
define the pseudo-distance between g and h, g, h : Rn → R ∪ {+∞}, as

d(g, h) :=
+∞∑
k=1

2−k min{1, dk(g, h)},

where

dk(g, h) := sup
x∈Bk

|f(x)− h(x)|, ∀k ∈ N,

with the convention that (+∞)− (+∞) = 0 and | −∞| = +∞, |+∞| = +∞.
Let us recall the definitions of the stability concepts favorites of the researchers

in this area. Consider a set-valued mapping M : Θ ⇒ Rn, and let θ ∈ Θ be such
thatM

(
θ
)
6= ∅.

• M is (Berge-Kuratowski) lower semicontinuous (lsc, in brief) at θ if for each
open set U ⊂ Rn verifying M

(
θ
)
∩ U 6= ∅, there exists a neighborhood V

of θ such thatM (θ) ∩ U 6= ∅, for all θ ∈ V.
• M is (Berge-Kuratowski) upper semicontinuous (usc) at θ if for each open
set U ⊂ Rn verifying M

(
θ
)
⊂ U, there exists a neighborhood V of θ such

thatM (θ) ⊂ U, for all θ ∈ V.
• M is Painlevé-Kuratowski convergent (pkc) at θ when for each sequence
(θr)

∞
r=1 ⊂ Θ such that limr→∞ θr = θ, there exists p ∈ N such thatM (θr) 6=

∅ for all r ≥ p and limr→∞M (θr) = M
(
θ
)
in the Painlevé-Kuratowski

sense, i.e.

lim inf
θr→θ, r≥p

M (θr) = lim sup
θr→θ, r≥p

M (θr) =M
(
θ
)
.

• M is pseudo-Lipschitz (pl) at
(
θ, x
)
∈ gphM if there exist neighborhoods

V of θ and U of x, and a scalar κ ≥ 0 such that

dist (x,M (θ)) ≤ κd
(
θ, θ′

)
, ∀θ, θ′ ∈ V, ∀x ∈M(θ′) ∩ U.

This property is equivalent to the metric regularity of the inverse mapping
M−1 at

(
x, θ
)
.

We denote by XW and XE the set-valued mappings associating with each θ ∈ Θ
its sets of weak efficient solutions and efficient solutions, respectively. Tables 1 and
2 summarize the available information on the type of stability properties of XW

and XE (the unique ones analyzed in the literature), whose rows correspond to the
stability properties under study while the columns are the type of multiobjective
SIP problem considered by each work: “LSIP” (respectively, “CSIP”, “NCSIP”)
when the work deals with multiobjective linear SIP (multiobjective convex SIP,
multiobjective nonconvex SIP, resp.). The nonconvexity is usually some kind of
extended convexity of the data, e.g., quasiconvexity or continuity (recall that any
real-valued convex function on Rn is continuous).



1074 M. GOBERNA AND M. I. TODOROV

LSIP CSIP NCSIP
lsc [92] [9] [103]
usc [92] [9] [103]
pkc [92] [51], [76], [77]
pl [13]

Table 1: Stability of XW

LSIP NCSIP
lsc [92] [11], [12], [35], [52], [103]
usc [92] [12], [52], [103]
pkc [13], [92]

Table 2: Stability of XE

Each empty cell in Tables 1 and 2 detects an open problem. For instance, re-
garding the efficient solution set XE , neither its pseudo-Lipschitz property nor its
stability for multiobjective CSIP have been studied up to now (even though most
NCSIP sufficient stability conditions apply to CSIP). The same happens with other
desirable properties of the parameters, that have only been analyzed for multiob-
jective LSIP :

• θ is well-posed w.r.t. a certain property at θ when this property is satisfied by
any perturbed problem provided the perturbation is sufficiently small: [87,
LSIP], [88, LSIP], [90, LSIP], [91, LSIP].
• A property is generic when it holds on some ‘large subset of Θ’, e.g., on an
open dense subset or on a Gδ subset (i.e., a countable intersection of open
sets): [86, LSIP], [88, LSIP]; [23] shows that every vector CSIP problem
can be arbitrarily approximated by stable CSIP problems (in the sense that
either XW is simultaneously lsc and usc or XE is usc) are dense in Θ.

As it can be seen from the definition, the well-posedness depends strongly on
the topologies chosen in the parameter and image spaces. To avoid this obstacle it
would be appropriate to search into two different directions. The first, which was the
purpose of the papers [90], [91], is to look for good properties providing information
about the continuity without having in mind the topologies in both spaces. We
shall mention here the so-called domination properties, defined by Bednarczuk [5],
and the following stability concept introduced in [90]:

• θ ∈ Θ is nice if XE

(
θ
)
= XW

(
θ
)
.

It turns out that the property of being nice is closely related to the well-posedness
of the problem in some sense. However, there are not topological notions in it. This
property guarantees also the closedness of XE

(
θ
)
, which is not true in general and it

could be interpreted as the vector counterpart of uniqueness of the optimal solutions
in the definition of well-posedness in scalar optimization.

The second direction, is to find suitable topologies, especially in the image space,
giving the possibility to prove easily well-posedness not only of the restricted maps.
It is obvious that one can not prove generic well-posedness using the well known
Hausdorff topology. Regarding LSIP, [92] uses topologies in the space of closed
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subsets of a Banach space (like Mosco, or bounded Hausdorff topology) to prove
generic well-posedness and Painlevé-Kuratowski convergence of the efficient sets.

The extension of the above mentioned results on stability from multiobjective
LSIP to the CSIP setting remains a challenging open problem. Stability results
for a very general class of multiobjective CSIP and for multiobjective GSIP can be
found in [53] and [24], respectively, and references therein. There exist also stability
results on vector IP as [75] and [76].
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[30] M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, Chichester, 1998.
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