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Moreover, when the function ϕ has the form ctr for some c > 0 and r ⩾ 1, these
properties may be characterized in terms of the r-order variation of F at (x̄, ȳ); see
also [10].

In recent years, significant progress has been made by several authors to go be-
yond the well posedness properties mentioned above, which imply the action of map-
pings around the reference points in all directions, to the case where the relations
which define these properties hold only on some directions (see [1,2,13,14,16,18,25]
and the references therein). In particular, Frankowska and Quincampoix [12, The-
orem 5.2] presented a necessary condition and a sufficient condition for the Hölder
metric regularity with respect to a set of directions belonging to a closed convex
cone in output spaces using high order variations.

More recently, motivated by some optimization problems such as differentiating
between minima and maxima, Durea, Panţiruc and Strugariu [9] introduced and
studied the following three directional concepts for set-valued mappings that take
into account sets of directions in both input and output spaces: directional linear
openness, directional metric regularity and directional Aubin continuity; they show
their links on the lines of the classical case and give necessary conditions and suffi-
cient conditions for these directional concepts in terms of coderivatives.

The purpose of this paper is to generalize and refine the aforementioned results.
More precisely, our main contributions are as follows:

(i) Show equivalence between the following three directional concepts: direc-
tional ϕ-openness, directional ϕ-regularity and directional ϕ-continuity (The-
orem 3.1).

(ii) Give a necessary and sufficient condition in terms of directional coderivatives
for a closed set-valued mapping to be directionally linearly open (Theorem 3.4).

(iii) Provide a necessary and sufficient condition in terms of directional variations
for a closed set-valued mapping to be directionally linear/nonlinear open (The-
orem 3.5).

Note that some results can be given in normed vector spaces but we prefer to
work with finite dimensional spaces for simplicity of presentation,

It would be interesting to have a necessary and sufficient condition in terms of
(directional) coderivatives for (directional) nonlinear openness. This question is
mostly open, to the best of the authors’ knowledge; see also [6] and the references
therein.

The rest of this paper is organized as follows. The definitions of directional
openness, directional regularity and directional continuity are given in Section 2.
The notions of directional coderivative and directional variation are also introduced
in this section. The main results and their proofs will be presented in Section 3.

2. Preliminaries

Let Rn be equipped with the usual scalar product 〈·, ·〉 and the corresponding
Euclidean norm ‖ · ‖. The open ball and sphere centered at x ∈ Rn of radius r will
be denoted by Bn(x, r) and Sn−1(x, r) respectively. For simplicity, we write Bn and
Sn−1 if x = 0 and r = 1.
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For a subset Ω of Rn, the closure of Ω will be written as Ω, the cone at the origin
generated by Ω is designated by coneΩ. To simplify notation, for a point x ∈ Rn,
we write [x+Ω] instead of the set {x+ u : u ∈ Ω}.

Let F : Rn ⇒ Rm be a set-valued mapping. The graph of F is denoted by

graphF := {(x, y) ∈ Rn × Rm : y ∈ F (x)}.
The mapping F is called closed if its graph is a closed set. The inverse set-valued
mapping of F is F−1 : Rm → Rn given by

F−1(y) := {x ∈ Rn : y ∈ F (x)}.
We shall consider the set

lim sup
x

Ω→x̄

F (x) :=

{
y ∈ Rm : there are sequences xk → x̄, yk → y

with xk ∈ Ω and yk ∈ F (xk)

}
,

which is called the Painlevé–Kuratowski upper limit of F at x̄ (along Ω).

2.1. Directional minimal time function. We will make use of a special minimal
time function with respect to a set of directions, which was defined and analyzed
in [8].

Definition 2.1. Let L and Ω be nonempty subsets of Sn−1 and Rn respectively.
Then the function

TL(x,Ω) := inf{t ⩾ 0 : there is u ∈ L such that x+ tu ∈ Ω}
= inf{t ⩾ 0 : [x+ tL] ∩ Ω 6= ∅}

is called the directional minimal time function with respect to L.

By convention, set TL(x, ∅) := +∞ for every x ∈ Rn. Moreover, for simplicity,
we denote TL(x, {x′}) by TL(x, x

′).

Remark 2.2. By definition, if L = Sn−1, then TL(·,Ω) is the distance function to
the set Ω. Furthermore, if the sets L and Ω are closed, then the infimum in the
definition of TL(·,Ω) is always attained.

2.2. Directional openness, regularity and continuity. In the current and sub-
sequent sections, let Φ denote the set of all strictly increasing continuous functions
ϕ : [0,+∞) → [0,+∞) with ϕ(0) = 0.

Definition 2.3. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and
M be nonempty subsets of Sn−1 and Sm−1, respectively, and let ϕ ∈ Φ.

(i) F is directionally ϕ-open around (x̄, ȳ) with respect to L and M if there are
ϵ > 0 and open neighborhoods U of x̄ and V of ȳ such that for every t ∈ (0, ϵ)
and every (x, y) ∈ (U × V ) ∩ graphF,

Bm(y, ϕ(t)) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
.

(ii) F is directionally ϕ-regular around (x̄, ȳ) with respect to L and M if there
are ϵ > 0 and open neighborhoods U of x̄ and V of ȳ such that for every
(x, y) ∈ U × V, with TM (y, F (x)) < ϵ,

TL(x, F
−1(y)) ⩽ ϕ

(
TM (y, F (x))

)
.
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(iii) F is directionally ϕ-continuous around (x̄, ȳ) with respect to L and M if there
are open neighborhoods U of x̄ and V of ȳ such that for every x, x′ ∈ U, and
every y ∈ F (x) ∩ V , one has

TM

(
y, F (x′)

)
⩽ ϕ

(
TL(x

′, x)
)
.

Remark 2.4. Unlike [9], in Definition 2.3(i) above, we write coneM instead of
−coneM since it seems more natural this way; see also the formulation of Theo-
rem 3.1.

The most interesting candidate for our strictly increasing continuous function
ϕ(t) is ctr for some c > 0 and r ⩾ 1.

Definition 2.5. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and
M be nonempty subsets of Sn−1 and Sm−1, respectively, and let c > 0 and r ⩾ 1.

(i) F is directionally open (resp., directionally regular and directionally continu-
ous) at rate r with modulus c around (x̄, ȳ) with respect to L and M if F is direc-
tionally ϕ-open (resp., directionally ϕ-regular and directionally ϕ-continuous)
around (x̄, ȳ) with respect to L and M for ϕ = ctr.

(ii) F is directionally linearly open (resp., directionally metrically regular and di-
rectionally Aubin continuous) with modulus c > 0 around (x̄, ȳ) with respect
to L and M if F is directionally ϕ-open (resp., directionally ϕ-regular and
directionally ϕ-continuous) around (x̄, ȳ) with respect to L and M for ϕ = ct.

Remark 2.6. Assume that F : Rn ⇒ Rm is semi-algebraic set-valued mapping and
L,M are semi-algebraic sets1. Then it is not hard to check that F is directionally
ϕ-open around (x̄, ȳ) with respect to L and M if and only if there are ϵ > 0 and
open neighborhoods U of x̄ and V of ȳ such that for every t ∈ (0, ϵ) there exists
s > 0 satisfying

Bm(y, s) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
for every (x, y) ∈ (U × V ) ∩ graphF. Furthermore, the function ϕ can be chosen to
be ctr for some c > 0 and r ⩾ 1. As we shall not use these facts, we leave the proof
to the reader; see also [20].

2.3. Directional normal cones and coderivatives. In order to characterize the
directional linear openness in terms of coderivatives, we recall the following notions;
confer [23].

Definition 2.7. Let Ω ⊂ Rn × Rm, (x, y) ∈ Ω, L and M be nonempty subsets of
Sn−1 and Sm−1, respectively.

(i) The regular (or Fréchet) normal cone to Ω at (x, y) with respect to L and M,

denoted by N̂L,M (Ω, (x, y)), is the set of vectors (x∗, y∗) ∈ Rn ×Rm such that
for every ϵ > 0 there exists δ > 0 such that

〈x∗, x′ − x〉+ 〈y∗, y′ − y〉 ⩽ ϵ
(
‖x′ − x‖+ ‖y′ − y‖

)
1A subset of Rn is semialgebraic if it can be written as a finite union and intersection of sets

of the form {x ∈ Rn : f(x) = 0} and {x ∈ Rn : f(x) > 0}, where f is a polynomial function
on Rn; a set-valued mapping F : Rn ⇒ Rm is semialgebraic if its graph is a semialgebraic subset of
Rn × Rm. (See, e.g., [15].)
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whenever (x′, y′) ∈ Ω with x′ ∈ Bn(x, δ)∩ [x+ coneL] and y′ ∈ Bm(y, δ)∩ [y+
coneM ].

(ii) The limiting (or Mordukhovich) normal cone to Ω at (x̄, ȳ) with respect to L
and M is given by

NL,M (Ω, (x̄, ȳ)) := lim sup
(x,y)

Ω→(x̄,ȳ)

N̂L,M (Ω, (x, y)),

where lim sup is the Painlevé–Kuratowski upper limit.

Definition 2.8. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and
M be nonempty subsets of Sn−1 and Sm−1, respectively.

(i) The regular (or Fréchet) directional coderivative of F at (x̄, ȳ) with respect to
L and M is the set-valued mapping

D̂∗
L,MF (x̄, ȳ) : Rm ⇒ Rn

defined by

D̂∗
L,MF (x̄, ȳ)(y∗) := {x∗ ∈ Rn : (x∗,−y∗) ∈ N̂L,M (graphF, (x̄, ȳ))},

where y∗ ∈ Rm.
(ii) The limiting (or Mordukhovich) directional coderivative of F at (x̄, ȳ) with

respect to L and M is the set-valued mapping

D∗
L,MF (x̄, ȳ) : Rm ⇒ Rn

given by

D∗
L,MF (x̄, ȳ)(y∗) := {x∗ ∈ Rn : (x∗,−y∗) ∈ NL,M (graphF, (x̄, ȳ))},

where y∗ ∈ Rm.

If L = Sn−1 and M = Sm−1, for simplicity, we will omit the subscripts L and M
in the above definitions.

2.4. Subdifferentials.

Definition 2.9. Let f : Rn → R∪{+∞} be a lower semicontinuous function which
is finite at x̄ ∈ Rn. The limiting (or Mordukhovich) subdifferential of f at x̄ is
defined by

∂f(x̄) := {x∗ ∈ Rn : (x∗,−1) ∈ N(epif, (x̄, f(x̄)))},
where epif := {(x, y) ∈ Rn × R : y ⩾ f(x)} is the epigraph of f.

Let us recall some properties of subdifferentials which will be needed later (see [23,
Proposition 1.30, Corollary 2.20]).

Proposition 2.10. Let f : Rn → R ∪ {+∞} be a lower semi-continuous function
which is finite at x̄ ∈ Rn. The following assertions hold:

(i) If x̄ is a local minimizer of f , then 0 ∈ ∂f(x̄).
(ii) If g : Rn → R ∪ {+∞} is locally Lipschitz around x̄, then

∂(f + g)(x̄) ⊂ ∂f(x̄) + ∂g(x̄).



1028 S. T. D- INH AND T. S. PHA. M

(iii) We have the representation

∂(‖ · −x̄‖)(x) =


x− x̄

‖x− x̄‖
if x 6= x̄,

Bn
otherwise.

2.5. Directional variations. In order to characterize the directional linear/non-
linear openness in terms of variations, we need the following concept.

Definition 2.11. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF,
L and M be nonempty subsets of Sn−1 and Sm−1, respectively, and let r > 0.
The r-th directional variation of F at (x̄, ȳ) with respect to L and M, denoted by

F
(r)
L,M (x̄, ȳ), is the set of vectors v ∈ coneM such that for all sequences tk > 0 and

(xk, yk) ∈ graphF converging to zero and (x̄, ȳ) respectively, there exists a sequence
vk ∈ Rm tending to v such that

vk ∈
F
(
B(xk, tk) ∩ [xk + coneL]

)
− yk

trk
and v ∈ vk + coneM.

Remark 2.12. Observe that this definition is nothing else than a directional version
of high order variations, which was introduced by Frankowska [10].

2.6. A directional Ekeland variational principle. We recall here a directional
Ekeland variational principle, which makes use of the directional minimal time func-
tion and which will be an important tool in the proof of Theorem 3.4.

Proposition 2.13 (see [9, Corollary 3.4]). Let L ⊂ Sn−1 and M ⊂ Sm−1 be
nonempty closed sets such that coneL and coneM are convex. Let Ω ⊂ Rn × Rm

be a closed set and f : Ω → R ∪ {+∞} be a bounded from below and lower semi-
continuous function, which is finite at (x0, y0) ∈ Ω. Then for every ϵ > 0, there
exists (xϵ, yϵ) ∈ Ω such that

f(xϵ, yϵ) ⩽ f(x0, y0)− ϵ
(
TL(xϵ, x0) + TM (yϵ, y0)

)
and for any (x, y) ∈ Ω \ {(xϵ, yϵ)},

f(xϵ, yϵ) < f(x, y) + ϵ
(
TL(x, xϵ) + TM (y, yϵ)

)
.

3. Main results

3.1. Directional openness, regularity and continuity. As in the classical case,
the relations between the concepts given before are presented in the following result.

Theorem 3.1. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and
M be nonempty subsets of Sn−1 and Sm−1, respectively, and let ϕ ∈ Φ. Then the
following statements are equivalent:

(i) F is directionally ϕ-open around (x̄, ȳ) with respect to L and M.
(ii) F is directionally ϕ−1-regular around (x̄, ȳ) with respect to L and −M.
(iii) F−1 is directionally ϕ−1-continuous around (ȳ, x̄) with respect to −M and L.

Proof. Since ϕ ∈ Φ, the inverse function ϕ−1 exists and belongs to Φ, and so the
statements make sense.



CHARACTERIZATIONS OF DIRECTIONAL OPENNESS 1029

(i) ⇒ (ii). By definition, there is ρ > 0 such that for all t ∈ (0, ρ) and all
(x, y) ∈ graph(F ) ∩

(
Bn(x̄, ρ)× Bm(ȳ, ρ)

)
we have

Bm(y, ϕ(t)) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
.(3.1)

Let ϵ ∈ (0,min{ρ
2 , ϕ(ρ)}). Take any (x, y) ∈ Bn(x̄, ϵ) × Bm(ȳ, ϵ) such that

T−M (y, F (x)) < ϵ. We will show that

TL(x, F
−1(y)) ⩽ ϕ−1 (T−M (y, F (x))) .

To this end, take arbitrary δ > 0 such that T−M (y, F (x)) + δ < ϵ. By the definition
of the infimum, there exist a real number s ∈ [T−M (y, F (x)), T−M (y, F (x))+ δ) and
a vector v ∈ −M such that y′ := y + sv ∈ F (x). We have

‖y′ − ȳ‖ = ‖y + sv − ȳ‖ ⩽ ‖y − ȳ‖+ s < ϵ+ T−M (y, F (x)) + δ

< 2ϵ < ρ.

Observe that s ∈ [0, ϵ) ⊂ [0, ϕ(ρ)) and so t := ϕ−1(s) ∈ [0, ρ). Take arbitrary
t′ ∈ (t, ρ). It follows from (3.1) that

Bm(y′, ϕ(t′)) ∩ [y′ + coneM ] ⊂ F (Bn(x, t′) ∩ [x+ coneL]).

Consequently, y = y′ − sv ∈ F (x′) for some x′ ∈ Bn(x, t′) ∩ [x+ coneL]. Hence

TL(x, F
−1(y)) ⩽ ‖x− x′‖ < t′.

Letting t′ → t we obtain

TL(x, F
−1(y)) ⩽ t = ϕ−1(s) ⩽ ϕ−1 (T−M (y, F (x)) + δ) .

Since δ > 0 is chosen arbitrarily small and ϕ−1 is continuous, we have

TL(x, F
−1(y)) ⩽ ϕ−1 (T−M (y, F (x))) .

(ii) ⇒ (iii). By assumption, there exists ρ > 0 such that for every (x, y′) ∈
Bn(x̄, ρ)× Bm(ȳ, ρ) with T−M (y′, F (x)) < ρ we have

TL(x, F
−1(y′)) ⩽ ϕ−1

(
T−M (y′, F (x))

)
.(3.2)

Let ϵ ∈
(
0, ρ2

)
. Take any y, y′ ∈ Bm(ȳ, ϵ). We will show that

TL(x, F
−1(y′)) ⩽ ϕ−1

(
T−M (y′, y)

)
for all x ∈ F−1(y) ∩ Bn(x̄, ϵ).

Clearly, if y 6∈ y′ − coneM or F−1(y)∩Bn(x̄, ϵ) = ∅ then the above inequality holds
trivially. So assume that y ∈ y′ − coneM and F−1(y)∩Bn(x̄, ϵ) 6= ∅. Take arbitrary
x ∈ F−1(y) ∩ Bn(x̄, ϵ). Then x ∈ Bn(x̄, ρ), y ∈ F (x) and

T−M (y′, F (x)) ⩽ ‖y′ − y‖ ⩽ ‖y′ − ȳ‖+ ‖y − ȳ‖ < 2ϵ < ρ.

It follows from (3.2) that

TL(x, F
−1(y′)) ⩽ ϕ−1

(
T−M (y′, F (x))

)
⩽ ϕ−1(‖y′ − y‖)
= ϕ−1

(
T−M (y′, y)

)
,

which is the desired result.
(iii) ⇒ (i). By assumption, there exists ρ > 0 such that for all y, y′ ∈ Bm(ȳ, ρ)

and all x ∈ F−1(y) ∩ Bn(x̄, ρ), we have

TL(x, F
−1(y′)) ⩽ ϕ−1

(
T−M (y′, y)

)
.(3.3)
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Let ϵ ∈ (0,min{ρ
2 , ϕ

−1(ρ2)}). Take any t ∈ (0, ϵ) and any (x, y) ∈ graph(F ) ∩(
Bn(x̄, ϵ)× Bm(ȳ, ϵ)

)
. We will show that

Bm(y, ϕ(t)) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
.

Indeed, take any y′ ∈ Bm(y, ϕ(t)) ∩ [y + coneM ]. Then y′ = y + sv for some s ∈
[0, ϕ(t)) and some v ∈ M. We have

‖y′ − ȳ‖ = ‖y + sv − ȳ‖ ⩽ ‖y − ȳ‖+ s

< ϵ+ s < ϵ+ ϕ(t) < ϵ+ ϕ(ϵ) < ρ.

Since the function ϕ−1 is increasing, it follows from (3.3) that

TL(x, F
−1(y′)) ⩽ ϕ−1

(
T−M (y′, y)

)
= ϕ−1(s) < ϕ−1(ϕ(t)) = t < +∞.

In particular, the set F−1(y′) is nonempty and contains a point x′ ∈ Bn(x, t)∩ [x+
coneL]. Consequently,

y′ ∈ F (Bn(x, t) ∩ [x+ coneL]),

which completes the proof. □
The following two corollaries follow directly from Theorem 3.1.

Corollary 3.2. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L
and M be nonempty subsets of Sn−1 and Sm−1, respectively. Then the following
statements are equivalent for c > 0 and r ⩾ 1:

(i) F is directionally open at rate r with modulus c around (x̄, ȳ) with respect to
L and M.

(ii) F is directionally regular at rate 1
r with modulus 1

c around (x̄, ȳ) with respect
to L and −M.

(iii) F−1 is directionally continuous at rate 1
r with modulus 1

c around (ȳ, x̄) with
respect to −M and L.

Corollary 3.3 (see [9, Proposition 2.4]). Let F : Rn ⇒ Rm be a set-valued mapping,
(x̄, ȳ) ∈ graphF, L and M be nonempty subsets of Sn−1 and Sm−1, respectively. Then
the following statements are equivalent for c > 0:

(i) F is directionally linearly open with modulus c around (x̄, ȳ) with respect to L
and M.

(ii) F is directionally metrically regular with modulus 1
c around (x̄, ȳ) with respect

to L and −M.
(iii) F−1 is directionally Aubin continuous with modulus 1

c around (ȳ, x̄) with re-
spect to −M and L.

3.2. Directional openness and coderivatives. The following result is a direc-
tional version of the Mordukhovich criterion [21]; see also [9, Propositions 4.1, 4.2
and Theorem 4.3].

Theorem 3.4. Let F : Rn ⇒ Rm be a closed set-valued mapping, (x̄, ȳ) ∈ graphF, L
and M be nonempty closed subsets of Sn−1 and Sm−1, respectively, such that coneL
and coneM are convex. Then the following statements are equivalent for c > 0:

(i) For every a ∈ (0, c), the mapping F is directionally linearly open with modulus
a around (x̄, ȳ) with respect to L and M.
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(ii) There exists ρ > 0 such that for every (x, y) ∈ graphF ∩ [Bn(x̄, ρ)×Bm(ȳ, ρ)],
every y∗ ∈ Rm, every x∗ ∈ D∗

L,MF (x, y)(y∗), and every v ∈ M there exists

u ∈ coneL ∩ Bn
such that

〈x∗, u〉 ⩽ c〈y∗, v〉.

Proof. (i) ⇒ (ii). Let a ∈ (0, c). By assumption and Corollary 3.3, F−1 is direction-
ally Aubin continuous with modulus 1

a around (ȳ, x̄) with respect to −M and L.
Hence, there is ρ > 0 such that for every y, y′ ∈ Bn(ȳ, 2ρ) with y′ ∈ [y+coneM ], y′ 6=
y, every x ∈ F−1(y) ∩ Bn(x̄, ρ), we have

TL(x, F
−1(y′)) ⩽ 1

a
T−M (y′, y) =

1

a
‖y′ − y‖.(3.4)

By definition, it suffices to prove (ii) with D∗
L,MF being replaced by D̂∗

L,MF.

So let (x, y) ∈ graphF ∩ [Bn(x̄, ρ) × Bm(ȳ, ρ)], y∗ ∈ Rm, x∗ ∈ D̂∗
L,MF (x, y)(y∗),

and v ∈ M . By definition, we have (x∗,−y∗) ∈ N̂L,M (graphF, (x, y)). Take any

ϵ ∈ (0, 1a). There is δ ∈ (0, ρ) such that for every (x′, y′) ∈ graphF ∩ [(Bn(x, δ)∩ [x+
coneL])× (Bm(y, δ) ∩ [y + coneM ])], we have

〈x∗, x′ − x〉 − 〈y∗, y′ − y〉 ⩽ ϵ
(
‖x′ − x‖+ ‖y′ − y‖

)
.(3.5)

Let y′ ∈ [y + coneM ] be such that y′ 6= y, ‖y′ − y‖ < min{δ, a2δ} and v = y′−y
∥y′−y∥ .

Then

‖y′ − ȳ‖ ⩽ ‖y′ − y‖+ ‖y − ȳ‖ < δ + ρ < 2ρ.

Since the sets graphF and L are closed, the infimum in the definition of
TL(x, F

−1(y′)) is always attained. This, together with (3.4), implies that there
exists x′ ∈ F−1(y′) ∩ [x+ coneL] such that

(3.6) ‖x′ − x‖ = TL(x, F
−1(y′)) ⩽ 1

a
‖y′ − y‖ <

1

a

a

2
δ =

δ

2
< δ.

Hence, by (3.5) and the first inequality in (3.6), one has

〈x∗, x′ − x〉 − 〈y∗, y′ − y〉 ⩽ ϵ

(
1

a
+ 1

)
‖y′ − y‖.

Equivalently,〈
x∗,

x′ − x

‖y′ − y‖

〉
−
〈
y∗,

y′ − y

‖y′ − y‖

〉
=

〈
x∗,

x′ − x

‖y′ − y‖

〉
− 〈y∗, v〉

⩽ ϵ

(
1

a
+ 1

)
.

Since ϵ can be taken arbitrarily small and the sets graphF and L are closed, in view
of (3.6), there must exists x′ ∈ F−1(y′) ∩ Bn(x, δ) ∩ [x+ coneL] such that〈

x∗,
x′ − x

‖y′ − y‖

〉
⩽ 〈y∗, v〉 and ‖x′ − x‖ ⩽ 1

a
‖y′ − y‖.

Furthermore, since a can be taken arbitrarily close to c, the point x′ can be chosen

so that ‖x′ − x‖ ⩽ 1
c‖y

′ − y‖. Clearly, u := c(x′−x)
∥y′−y∥ has the desired properties.
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(ii) ⇒ (i). Let a ∈ (0, c), b ∈
(

a
a+1 ,

c
c+1

)
and ϵ > 0 be such that

a

a+ 1
< b+ ϵ <

c

c+ 1
and

aϵ

b
<

ρ

2
.

Take any t ∈ (0, ϵ) and (x0, y0) ∈ graphF ∩
[
Bn

(
x̄, ρ2

)
× Bm

(
ȳ, ρ2

)]
. We will show

that

Bm(y0, at) ∩ [y0 + coneM ] ⊂ F
(
Bn(x0, t) ∩ [x0 + coneL]

)
.

To this end, let y′ ∈ Bm(y0, at) ∩ [y0 + coneM ] and define the function

f : graphF → R ∪ {+∞}, (x, y) 7→ T−M (y′, y).

It is easy to see that f is bounded from below, lower semi-continuous and finite at
(x0, y0) ∈ graphF. By applying Proposition 2.13 for the function f and the closed
sets −L and −M , we get (xb, yb) ∈ graphF such that

(3.7) T−M (y′, yb) ⩽ T−M (y′, y0)− b
(
T−L(xb, x0) + T−M (yb, y0)

)
and for any (x, y) ∈ graphF,

(3.8) T−M (y′, yb) ⩽ T−M (y′, y) + b
(
T−L(x, xb) + T−M (y, yb)

)
.

Since y′ ∈ y0 + coneM, we have T−M (y′, y0) = ‖y′ − y0‖. It follows from (3.7) that
T−M (y′, yb) and T−L(xb, x0) + T−M (yb, y0) are finite, (xb, yb) ∈ (x0 + coneL, y0 +
coneM). So from (3.8), one has

(3.9) ‖y′ − yb‖ ⩽ ‖y′ − y0‖ − b
(
‖x0 − xb‖+ ‖y0 − yb‖

)
.

Consequently,

‖x0 − xb‖+ ‖y0 − yb‖ ⩽ 1

b
‖y0 − y′‖ <

1

b
at <

aϵ

b
<

ρ

2
.

Hence

‖x̄− xb‖ ⩽ ‖x̄− x0‖+ ‖x0 − xb‖ < ρ,

‖ȳ − yb‖ ⩽ ‖ȳ − y0‖+ ‖y0 − yb‖ < ρ.

Therefore (xb, yb) ∈ graphF ∩
[
(Bn(x̄, ρ)∩ [x0+coneL])×(Bm(ȳ, ρ)∩ [y0+coneM ])

]
.

If yb = y′, then from (3.9), we have

b‖xb − x0‖ ⩽ (1− b)‖y0 − y′‖ < (1− b)at < bt.

So xb ∈ Bn(x0, t) ∩ [x0 + coneL] and y′ = yb ∈ F (xb) ⊂ F (Bn(x0, t) ∩ [x0 + coneL])
which is exactly the conclusion.

Now the statement follows if we can show that y′ = yb is the only possibility.
Suppose for contradiction that y′ 6= yb. From (3.8), it follows that the pair (xb, yb)
is a global minimizer for the function

graphF → R ∪ {+∞}, (x, y) 7→ T−M (y′, y) + b
(
T−L(x, xb) + T−M (y, yb)

)
.

Equivalently, the pair (xb, yb) is a global minimizer for the function

Rn × Rm → R ∪ {+∞}, (x, y) 7→ ‖y − y′‖+ b
(
‖x− xb‖+ ‖y − yb‖

)
+ ιΩ(x, y),

where we put

ιΩ(x) :=

{
0 if x ∈ Ω,

+∞ otherwise,
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which is the indicator function of the closed set

Ω :=

{
(x, y) ∈ Rn × Rm : y ∈ F (x), y ∈ y′ − coneM,

x ∈ xb + coneL, y ∈ yb + coneM

}
.

Observe that the function (x, y) 7→ ‖y − y′‖ + b
(
‖x − xb‖ + ‖y − yb‖

)
is locally

Lipschitz and the function ιΩ is lower semi-continuous. In view of Proposition 2.10,
these imply that

(0, 0) ∈ bBn × {0}+ {0} ×
(

yb − y′

‖yb − y′‖
+ bBm

)
+ ∂ιΩ(xb, yb).

(Note that yb 6= y′.) On the other hand, since the cones coneL and coneM are closed
convex, it follows easily from definitions that

∂ιΩ(xb, yb) ⊂ NL,M (graphF, (xb, yb)).

Therefore, there exists x∗ ∈ Bn
and y∗ ∈ Bm

such that

(−bx∗, v − by∗) ∈ NL,M (graphF, (xb, yb)),

where v := − yb−y′

∥yb−y′∥ ∈ M. By definition,

−bx∗ ∈ D∗
L,MF (xb, yb)(−v + by∗).

Our assumption gives the existence of u ∈ coneL ∩ Bn
satisfying

〈−bx∗, u〉 ⩽ c〈−v + by∗, v〉.
Note that

〈−bx∗, u〉 = −b〈x∗, u〉 ⩾ −b and 〈−v + by∗, v〉 = −1 + b〈y∗, v〉 ⩽ −1 + b.

So −b ⩽ c(−1+ b); i.e., b ⩾ c
c+1 which contradicts the fact b < c

c+1 . Hence we must

have y′ = yb. This ends the proof of the theorem. □
3.3. Directional openness and variations. Similar to the classical case (see [5,
Theorem 4.4]), a necessary and sufficient condition in terms of directional variations
for a closed set-valued mapping to be directionally open is presented in the next
result.

Theorem 3.5 (compare [12, Theorem 5.2]). Let F : Rn ⇒ Rm be a closed set-valued
mapping, (x̄, ȳ) ∈ graphF, L and M be nonempty closed subsets of Sn−1 and Sm−1,
respectively, such that coneL and coneM are convex. Then the following statements
are equivalent for r ⩾ 1:

(i) The mapping F is directionally open at rate r around (x̄, ȳ) with respect to L
and M.

(ii) There exists a constant c > 0 such that cBm ∩ coneM ⊂ F
(r)
L,M (x̄, ȳ).

In order to prove Theorem 3.5, we need to make use of the following lemma.

Lemma 3.6. Consider a closed set-valued mapping F : Rn ⇒ Rm, a closed convex
cone C ⊂ Rn, and a bounded set K ⊂ Rm. Let (x̄, ȳ) ∈ graphF, r > 0 and ϵ > 0
be given. Assume that for some 0 ⩽ α < 1, we have for all t ∈ [0, ϵ] and all

(x, y) ∈ graphF ∩
(
Bn

(x̄, ϵ)× Bm
(ȳ, ϵ)

)
,

y + trK ⊂ F
(
Bn

(x, t) ∩ [x+ C]
)
+ αtrK.(3.10)
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Then there exists δ ∈ (0, ϵ) such that for all t ∈ [0, δ] and all (x, y) ∈ graphF ∩(
Bn

(x̄, δ)× Bm
(ȳ, δ)

)
, we have

y +
(
1− α

1
r
)r
trK ⊂ F

(
Bn

(x, t) ∩ [x+ C]
)
.

Proof. The proof is similar to that in [11, Theorem 1.1]. Nevertheless, for the
convenience of the reader, we give a complete proof here. Set c := supy∈K ‖y‖. Pick
a constant δ > 0 such that

(3.11) 2δ ⩽ ϵ and cδr
(
1− α

1
r
)r
(1 + α) + δ ⩽ ϵ.

Let t ∈ [0, δ], (x, y) ∈ graphF ∩
(
Bn

(x̄, δ)× Bm
(ȳ, δ)

)
and y′ ∈ y+

(
1−α

1
r

)r
trK.

We will construct a sequence xk converging to some point x′ ∈ Bn
(x, t) ∩ [x + C]

such that y′ ∈ F (x′). To this end, set (x0, y0) := (x, y). By (3.10), there is (x1, y1) ∈
graphF such that

x1 ∈ [x0 + C], ‖x1 − x0‖ ⩽
(
1− α

1
r
)
t and y′ ∈ y1 + α

((
1− α

1
r
)
t
)r
K.

Hence

‖y1 − y′‖ ⩽ cα
((
1− α

1
r
)
t
)r
.

Assume that we already constructed (xi, yi) ∈ graphF, i = 1, . . . , k such that

(3.12) xi ∈ [xi−1 + C] and ‖xi − xi−1‖ ⩽ α
i−1
r
(
1− α

1
r
)
t

and

(3.13) y′ ∈ yi + αi
((
1− α

1
r
)
t
)r
K.

Then

‖xk − x‖ ⩽
k∑

i=1

‖xi − xi−1‖ ⩽ t
(
1− α

1
r
) k∑
i=1

α
i−1
r ⩽ t.(3.14)

Therefore

‖xk − x̄‖ ⩽ ‖xk − x‖+ ‖x− x̄‖ ⩽ t+ δ ⩽ 2δ ⩽ ϵ.

Furthermore, by (3.11) and (3.13), we have

‖yk − ȳ‖ ⩽ ‖yk − y′‖+ ‖y′ − y‖+ ‖y − ȳ‖
⩽ cαk

(
1− α

1
r

)r
tr + c

(
1− α

1
r

)r
tr + δ

⩽ cδr
(
1− α

1
r

)r
(1 + αk) + δ ⩽ ϵ.

Applying (3.10) and (3.13) to (xk, yk), there exists (xk+1, yk+1) ∈ graphF sat-
isfying (3.12) and (3.13) with i = k + 1. From (3.12), it follows that xk is a
Cauchy sequence and so it converges to some x′. Furthermore, (3.13) implies that
limk→∞ yk = y′. Since F is a closed set-valued mapping, y′ ∈ F (x′). Further-
more, by the assumption that C is a closed convex cone and (3.12), it follows that
xk ∈ [x + C] for all k, so x′ ∈ [x + C]. Moreover, by taking the limit in (3.14), we
obtain ‖x′ − x‖ ⩽ t. The lemma is proved. □
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Proof of Theorem 3.5. (i) ⇒ (ii). Assume that F is directionally open at rate r
with modulus c > 0 around (x̄, ȳ) with respect to L and M ; i.e., there is a constant
ρ > 0 such that for all t ∈ (0, ρ) and all (x, y) ∈ graphF ∩ (Bn(x̄, ρ)× Bm(ȳ, ρ)) , we
have

Bm(y, ctr) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
.

Equivalently,

cBm ∩ coneM ⊂ F (Bn(x, t) ∩ [x+ coneL])− y

tr
,

from which the desired result follows easily.

(ii) ⇒ (i). Let c > 0 be such that cBm ∩ coneM ⊂ F
(r)
L,M (x̄, ȳ). By shrinking c if

necessary we may assume that cBm∩ coneM ⊂ F
(r)
L,M (x̄, ȳ). Pick α ∈ (0, 1) and take

any ϵ > 0 such that 2ϵ < αc.

Observe that if v ∈ cBm ∩ coneM, then v ∈ F
(r)
L,M (x̄, ȳ) and so there exists

a constant δv > 0 such that for all t ∈ (0, δv) and all (x, y) ∈ graphF ∩ (Bn(x̄, δv)×
Bm(ȳ, δv)) , we have

v ∈ F (Bn(x, t) ∩ [x+ coneL])− y

tr
+ ϵ(Bm ∩ coneM).

Hence

y + trv ∈ F (Bn(x, t) ∩ [x+ coneL]) + ϵtr(Bm ∩ coneM).

Since coneM is convex, (Bm∩coneM)+(Bm∩coneM) ⊂ 2(Bm∩coneM). Therefore

y + trw ∈ F (Bn(x, t) ∩ [x+ coneL]) + 2ϵtr(Bm ∩ coneM)

for all w ∈ Bm
(v, ϵ)∩ [v+ coneM ]. Note that the set cBm ∩ coneM is compact, and

so there exists a finite subset {v1, . . . , vN} of cBm ∩ coneM such that

cBm ∩ coneM ⊂
N⋃
k=1

Bm
(vk, ϵ) ∩ [vk + coneM ].

Let δ := mink=1,...,N δvk > 0. Then for all t ∈ (0, δ) and all (x, y) ∈ graphF ∩
(Bn(x̄, δ)× Bm(ȳ, δ)) , we have

y + tr(cBm ∩ coneM) ⊂ F (Bn(x, t) ∩ [x+ coneL]) + 2ϵtr(Bm ∩ coneM).

The choice of ϵ yields

y + tr(cBm ∩ coneM) ⊂ F (Bn(x, t) ∩ [x+ coneL]) + αtr(cBm ∩ coneM)

⊂ F (Bn
(x, t) ∩ [x+ coneL]) + αtr(cBm ∩ coneM).

In view of Lemma 3.6, for all t > 0 sufficiently small and all (x, y) ∈ graphF close
to (x̄, ȳ) we have

y + (1− α
1
r )rtr(cBm ∩ coneM) ⊂ F (Bn

(x, t) ∩ [x+ coneL]).

Equivalently,

Bm
(y, c(1− α

1
r )rtr) ∩ [y + coneM ] ⊂ F (Bn

(x, t) ∩ [x+ coneL]).
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Replacing t by (1− α
1
r )t, we get

Bm
(
y, c(1− α

1
r )2rtr

)
∩ [y + coneM ] ⊂ F

(
Bn

(
x, (1− α

1
r )t

)
∩ [x+ coneL]

)
⊂ F (Bn (x, t) ∩ [x+ coneL]) .

Hence F is directionally open at rate r with modulus c(1−α
1
r )2r around (x̄, ȳ) with

respect to L and M. □
Remark 3.7. A useful information that may be extracted from the proof of The-
orem 3.5 is the following equality:

c̄ = sup
{
c : cBm ∩ coneM ⊂ F

(r)
L,M (x̄, ȳ)

}
,

where c̄ stands for the supremum of real numbers c > 0 for which F is directionally
open at rate r with modulus c around (x̄, ȳ) with respect to L and M.
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