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With the above data, one may also consider the different problem

(VE) find x̄ ∈ K such that f(x̄, x) 6∈ −C\{0}, ∀x ∈ K,

called vector equilibrium problem. Furthermore, if intC 6= ∅, it makes sense to
consider the so-called weak vector equilibrium problem, meaning

(WVE) find x̄ ∈ K such that f(x̄, x) 6∈ −intC, ∀x ∈ K.

It is clear from the respective definitions that every solution to a problem (SVE)
is a fortiori a solution to the problems (VE) and (WVE), defined by the same data
(whence the terminology). Of course, elementary examples show that the converse
is not true. If, in particular, Y = R and C = [0,+∞), then (SVE), (VE) and (WVE)
collapse to the same problem, namely what is called equilibrium problem after Blum
and Oettli. By their seminal paper [9], they definitely contribute to popularize this
kind of problem, in stressing its unifying feature and undertaking a thorough study
of it. In fact, equilibrium problem revealed to be a convenient format to treat in a
unified framework various problems which are relevant in operations research and
mathematical programming, such as single and multicriteria optimization prob-
lems, saddle point problems, complementarity problems, variational inequalities,
fixed point problems, Nash equilibrium problems. In a similar manner, vector equi-
librium problems provide a format able to subsume vector optimization problems,
vector complementarity problems and vector variational inequalities (see [1, 4, 16]
and references therein). For this reason, in the last two decades vector equilibrium
problems became the subject of many investigations. As it is reasonable, within the
fast growing literature in this area, a remarkable amount of research work focussed
on solution existence and related issues (see, for instance, [1–4, 7, 16]). One of the
main techniques of analysis in this context consists in adapting to the vector case
the approach due to Ky Fan, originally proposed for scalar equilibrium problems
(see, for instance, [8]). To achieve the nonemptiness of the solution set, regarded as
the intersection of a proper family of sets, this approach leads to apply the Knaster-
Kuratowski-Mazurkiewicz theorem (a.k.a. Three Polish theorem) or some variant
of it (see [7, 11]). Other approaches to solution existence specific for strong vec-
tor equilibrium problems rely on different techniques, such as the employment of
separation theorems for convex sets (see [16]) or the Kakutani fixed point theorem
(see [3]).

The aim of the present paper is to enhance the study of solvability for strong
vector equilibrium problems by complementing results about solution existence with
inequalities estimating the distance from the solution set. These error bounds for
(SVE) provide useful quantitative information on the set of solutions, which may be
exploited in various contexts of application. For example, it is well known that error
bounds enable to describe the local geometry of the solution set of a problem through
its tangential (first-order) approximation. Moreover, error bounds are known to
be connected with the metric subregularity and calmness properties of set-valued
mappings (see, for instance, [14]). Thus, according to a recognized approach of
analysis, error bounds reveal to be an essential tool for establishing optimality
conditions via penalization techniques. More precisely, the estimates presented in
this paper should be propaedeutic in order for deriving optimality conditions for
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MPEC, where equilibrium constraints take the form of strong vector equilibrium
problems (see [21, Section 5.2.3]). Furthermore, error bounds turn out to play an
important role in the convergence theory of numerical methods.

It is plain to see that a problem (SVE) can be reformulated as a set-valued inclu-
sion. If a set-valued mapping Ff,K : X⇒ Y is defined as

Ff,K(x) = f(x,K) = {y ∈ Y : y = f(x, z), z ∈ K},

then problem (SVE) becomes

find x̄ ∈ K such that Ff,K(x̄) ⊆ C.

Various elements for a solution analysis of the latter problem have been recently
proposed in a series of papers [25–28], where several theoretical aspects of the so-
lution behaviour (including existence and stability issues) have been investigated.
The work presented in this paper can be viewed as an attempt to specialize that
line of research to the context of vector equilibria.

Following a variational approach, the first step consists in introducing some func-
tional characterizations of SE . This is done by associating to a problem (SVE) a
sort of merit function ν : X −→ [0,+∞], which is defined as

ν(x) = exc(Ff,K(x), C) = sup
y∈Ff,K(x)

dist (y, C)(1.1)

= sup
z∈K

dist (f(x, z), C) .

In order to embed also the constraining set K, it is useful to consider as well the
function ν+K : X −→ [0,+∞], given by

(1.2) ν+K(x) = ν(x) + dist (x,K) .

Such merit functions, incorporating all problem data, enable to reduce strong vector
equilibria to zeros (or global minimizers) of a functional.

Remark 1.1. Since C is closed, one sees that x̄ ∈ SE iff x̄ ∈ K and ν(x̄) = 0.
Equivalently, it holds

SE = ν−1((−∞, 0]) ∩K = ν−1(0) ∩K.

Analogously, since K is closed, one sees that x̄ ∈ SE iff ν+K(x̄) = 0, namely

SE = ν−1
+K((−∞, 0]) = ν−1

+K(0).

The above functional characterizations of SE enable also to clarify at once some of
its structural vector-topological properties. Namely, whenever ν and K are convex,
SE is convex (possibly empty). Whenever ν is l.s.c. on X (K being closed), SE
is closed (possibly empty). A sufficient condition for the latter property of ν to
hold is, for instance, that each function x 7→ f(x, z) is continuous on X, for every
z ∈ K. Indeed, in such an event, as the distance function y 7→ dist (y, C) is Lipschitz
continuous on Y and therefore each function x 7→ dist (f(x, z), C) is continuous on
X, then, according to (1.1), ν can be expressed as an upper envelope of continuous
functions on X.
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The contents of the paper are organized as follows. Section 2 contains some
preliminary technicalities dealing with the basic tools of analysis. Other advanced
tools are recalled in the subsequent section, contextually to their use. Section 3
contains the main results of the paper arranged in two subsections: in the first one,
conditions for the enhanced existence are presented, which rely on metric increase
behaviour of the involved bifunctions, whereas in the second one some conditions
are expressed in terms of several subdifferentials and normal cone constructions.
Section 4 is reserved for concluding remarks.

Below, let us introduce the basic notations employed in the paper. The acronyms
l.s.c., u.s.c. and p.h. stand for lower semicontinuous, upper semicontinuous and
positively homogeneous, respectively. In a metric space setting, the closed ball
centered at an element x, with radius r ≥ 0, is denoted by B(x, r). In particular,
in a Banach space, B = B(0, 1), whereas S stands for the unit sphere. The distance
of a point x from S is denoted by dist (x, S), with the convention that dist (x,∅) =
+∞. The function x 7→ dist (x, S) is sometimes indicated by dS , if convenient.
(X, ‖ · ‖) and (Y, ‖ · ‖) denote real Banach spaces, whose null vector is indicated by
0. Given a subset S of a Banach space, intS denotes its interior, bdS its boundary,
whereas coneS its conical hull. By P(X,Y) the Banach space of all continuous p.h.
operators acting between X and Y is denoted, equipped with the operator norm
‖h‖P = supu∈S ‖h(u)‖, h ∈ P(X,Y). L(X,Y) denotes its subspace of all bounded
linear operators and, if Λ ∈ L(X,Y), Λ∗ ∈ L(Y∗,X∗) indicates the adjoint operator
to Λ. In particular, X∗ = L(X,R) stands for the dual space of X∗, in which case
‖ · ‖P is simply marked by ‖ · ‖. The null vector, the unit ball and the unit sphere in
a dual space will be marked by 0∗, B∗, and S∗, respectively. The duality pairing of a
Banach space with its dual will be denoted by 〈·, ·〉. If S is a subset of a dual space,
conv ∗ S stands for its convex closure with respect to the weak∗ topology. Whenever

C ⊆ Y is a cone, by C
⊖

= {y∗ ∈ Y∗ : 〈y∗, y〉 ≤ 0, ∀y ∈ C} its negative dual
cone is denoted. Given a function φ : X −→ R ∪ {±∞}, by [φ ≤ 0] = φ−1([−∞, 0])
its 0-sublevel set is denoted, whereas [φ > 0] = φ−1((0,+∞]) denotes the strict
0-superlevel set of φ. The symbol domφ = φ−1(R) indicates the domain of the
function φ, while ∂φ(x) the subdifferential of φ at x in the sense of convex analysis
(a.k.a. Fenchel subdifferential), with the convention ∂φ(x) = ∅ if x 6∈ domφ. The
normal cone to a set S at x in the sense of convex analysis is denoted by N(x;S).

As a standing assumption, throughout the paper the set-valued mapping x ⇝
Ff,K(x) + C will be supposed to take closed values.

2. Preliminary tools of analysis

A first group of technical preliminaries relate to semicontinuity and convexity
properties of the merit functions ν and ν+K defined as in (1.1) and (1.2). Recall
that, according to [19], given a closed, convex cone C, a mapping g : X −→ Y
between Banach spaces is said to be C-l.s.c. (resp. C-u.s.c.) at x0 ∈ X if for any
neighbourhood V of g(x0) there exists a neighbourhood U of x0 in X such that

g(x) ∈ V + C, (resp. g(x) ∈ V − C) ∀x ∈ U.



EXISTENCE RESULTS FOR STRONG VECTOR EQUILIBRIUM PROBLEMS 991

Clearly, continuous mappings are both C-l.s.c. and C-u.s.c., whereas C-semicontinuity
does not imply continuity, in general.

Lemma 2.1. If g : X −→ Y is C-u.s.c. at x0 ∈ X, then function dC ◦ g is l.s.c. at
x0.

Proof. In the current Banach space setting the property of semicontinuity can be
proven to hold by a sequential argument. So, fix arbitrarily ϵ > 0 and a sequence
(xn)n, with xn → x0 as n → ∞. By the C-upper semicontinuity of g at x0,
corresponding to V = B(g(x0), ϵ) there exists nϵ ∈ N such that

g(xn) ∈ B(g(x0), ϵ)− C, ∀n ≥ nϵ.

This means that there are vn ∈ ϵB and cn ∈ C such that it is possible to write

(2.1) g(xn) = g(x0) + vn − cn, ∀n ≥ nϵ.

Thus, as it is cn + C ⊆ C and hence C ⊆ C − cn, on account of the representation
(2.1) one obtains

(dC ◦ g)(x0) = inf
c∈C

‖g(x0)− c‖ = inf
c∈C

‖g(xn)− vn + cn − c‖

≤ inf
c∈C

‖g(xn)− (c− cn)‖+ ‖vn‖

= inf
y∈C−cn

‖g(xn)− y‖+ ‖vn‖ ≤ inf
c∈C

‖g(xn)− c‖+ ϵ

= (dC ◦ g)(xn) + ϵ, ∀n ≥ nϵ.

From these inequalities it follows

lim inf
n→∞

(dC ◦ g)(xn) ≥ (dC ◦ g)(x0)− ϵ,

which by arbitrariness of ϵ and (xn)n proves the assertion in the thesis. □
Remark 2.2. For the purposes of the present analysis it is useful to note that, as
a straightforward consequence of Lemma 2.1, one can deduce that if each function
x 7→ f(x, z) is C-u.s.c. on K for every z ∈ K, then function ν(x) = supz∈K(dC ◦
f)(x, z) = supz∈K dist (f(x, z), C) is l.s.c. on K, as an upper envelope of functions
being l.s.c. on K. Since dK is (Lipschitz) continuous on X, the same is true for
ν+K .

In order to formulate the next lemma it is convenient to recall that a subset S
of a Banach space partially ordered by a cone C is said to be C-bounded if there
exists a constant m ≥ 0 such that S\C ⊆ mB.

Lemma 2.3. Let f : X × X −→ Y be a given bifunction, K ⊆ X and x0 ∈ K.
If the set f(x0,K) is C-bounded, then x0 ∈ dom ν. If, in addition, each function
x 7→ f(x, z) is C-l.s.c. at x0 uniformly in z ∈ K, then ν is bounded from above in
a neighbourhood of x0 and hence x0 ∈ int dom ν.

Proof. By hypothesis, for some m > 0 it holds

f(x0,K)\C ⊆ mB,
whence it follows

ν(x0) = sup
y∈f(x0,K)\C

dist (y, C) ≤ sup
y∈mB

dist (y, C) ≤ sup
y∈mB

‖y‖ = m < +∞.
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Thus, x0 ∈ dom ν.
According to the additional hypothesis, corresponding to V = lB there exists a

neighbourhood U of x0 (not depending on z ∈ K) such that

f(x, z) ∈ B(f(x0, z), l) + C, ∀x ∈ U, ∀z ∈ K.

This amounts to say that, for any z ∈ K and x ∈ U , there exist v ∈ B(f(x0, z), l)
and c ∈ C (both depending on x ∈ U and z ∈ K), such that f(x, z) = v + c. Thus,
recalling that C + C ⊆ C, for any z ∈ K one finds

dist (f(x, z), C) = dist (v + c, C) = inf
y∈C

‖v + c− y‖

≤ inf
c1∈C

inf
c2∈C

‖v + c− (c1 + c2)‖

≤ inf
c1∈C

inf
c2∈C

[‖v − c1‖+ ‖c− c2‖] ≤ inf
c1∈C

‖v − c1‖

= dist (v, C) , ∀x ∈ U.

Therefore, it follows

sup
x∈U

dist (f(x, z), C) ≤ ‖v − f(x0, z)‖+ dist (f(x0, z), C)

≤ l + dist (f(x0, z), C) , ∀z ∈ K.

Consequently, one obtains

sup
x∈U

ν(x) = sup
x∈U

sup
z∈K

dist (f(x, z), C) = sup
z∈K

sup
x∈U

dist (f(x, z), C)

≤ sup
z∈K

[l + dist (f(x0, z), C)] = l + ν(x0) < +∞,

which means that ν is bounded from above on U . □

Another key assumption for the present approach is C-concavity for mappings.
Following [15], a mapping g : X −→ Y between Banach spaces is said to be C-
concave on the convex set K ⊆ X if for every x1, x2 ∈ K and for every t ∈ [0, 1] it
is true that

tg(x1) + (1− t)g(x2) ≤C g(tx1 + (1− t)x2).

Example 2.4. (i) It is readily seen that if a mapping g : Rn −→ Rm is defined
by components gi : Rn −→ R, each of which is concave on a convex set
K ⊆ Rn, then g is Rm

+ -concave on K.
(ii) A remarkable class of C-concave mappings is the subclass of P(X,Y) formed

by the superlinear operators taking values in a Kantorovich space Y (i.e.
a Dedekind complete normed vector lattice), partially ordered by a cone
C. Following [24], a mapping h ∈ P(X,Y) is said to be superlinear if
h(x) + h(z) ≤C h(x + z), for every x, z ∈ X. It is well known that, as
a consequence of the Hahn-Banach-Kantorovich theorem (see [18]), any su-
perlinear operator admits the following infimal representation

h(x) = min≤
C
{Λx : Λ ∈ ∂h},

where ∂h = {Λ ∈ L(X,Y) : h(x) ≤C Λx, ∀x ∈ X} and min≤
C
S denotes

the smallest element of a set S ⊆ Y with respect to the partial order ≤C .
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Lemma 2.5. If g : X −→ Y is C-concave on the convex set K ⊆ X, then function
dC ◦ g is convex on K.

Proof. Take arbitrary x1, x2 ∈ K and t ∈ [0, 1]. Owing to the C-concavity of g on
K, one has

c0 = g(tx1 + (1− t)x2)− [tg(x1) + (1− t)g(x2)] ∈ C.

Since it is c0 + C ⊆ C, from the above inclusion one obtains

(dC ◦ g)(tx1 + (1− t)x2) = inf
c∈C

‖g(tx1 + (1− t)x2)− c‖

≤ inf
c∈c0+C

‖g(tx1 + (1− t)x2)− c‖

≤ inf
c∈C

‖g(tx1 + (1− t)x2)− {g(tx1 + (1− t)x2)

−[tg(x1) + (1− t)g(x2)] + c}‖
= dist (tg(x1) + (1− t)g(x2), C) .

By recalling that the function y 7→ dist (y, C) is sublinear on Y as C is a convex
cone, then from the above inequalities it follows

(dC ◦ g)(tx1 + (1− t)x2) ≤ tdist (g(x1), C) + (1− t)dist (g(x2), C)

= t(dC ◦ g)(x1) + (1− t)(dC ◦ g)(x2),
which, by arbitrariness of x1, x2 ∈ K and t ∈ [0, 1] completes the proof. □

The next lemma singles out a sufficient condition on the problem data of (SVE)
in order for ν to be a (proper) convex and continuous function.

Lemma 2.6. Let f : X×X −→ Y be a given bifunction and let K ⊆ X be a convex
set. Suppose that:

(i) each function x 7→ f(x, z) is C-concave on K, for every z ∈ K;
(ii) there exists x0 ∈ K such that f(x0,K) is C-bounded and function x 7→

f(x, z) is C-l.s.c. at x0, uniformly in z ∈ K.

Then, function ν : K −→ [0,+∞] is convex and continuous on int dom ν 6= ∅.

Proof. According to Lemma 2.3, by virtue of hypothesis (ii) x0 ∈ int dom ν and ν
turns out to be bounded from above in a neighbourhood of x0. According to Lemma
2.5, each function x 7→ dist (f(x, z), C) is convex on K and therefore so is function
ν, which can be regarded as an upper envelope of functions dist (f(·, z), C) over
z ∈ K. As a convex function, which is bounded from above in a neighbourhood of
x0, ν must be continuous on the interior of its domain, in the light of a well-known
result in convex analysis (see, for instance, [30, Theorem 2.2.9]). □
Remark 2.7. In view of the subsequent analysis, it is convenient to notice that,
under the hypotheses of Lemma 2.6, also function ν+K turns out to be convex and
continuous, with dom ν+K = dom ν 6= ∅.

A characteristic feature of the main results established in the next section is to
provide, along with solution existence, quantitative (metric) information about the
solution set to strong vector equilibrium problems. Following a standard technique
of variational analysis, estimates for the distance from the solution set to (SVE)
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will be investigated by means of a metric slope of the merit functions. Given a
function φ : X −→ R ∪ {±∞} defined on a Banach space, a closed set K ⊆ X and
x ∈ K ∩ domφ, the nonnegative value

|∇Kφ|(x) =


0, if x is a local minimizer

of φ subject to x ∈ K,

lim sup
u
K→x

φ(x)− φ(u)

‖x− u‖
, otherwise,

where u
K→ x means u → x while u ∈ K, represents the slope of φ at x restricted to

K. It may be regarded as a restricted version of the well-known notion of (strong)
slope of a function φ : X −→ R ∪ {±∞} defined on a metric space (X, d), denoted
here by |∇φ|(x), which was introduced in [13] and subsequently employed in various
contexts of variational analysis (see, among the others, [5, 6, 17,22]).

Remark 2.8. (i) Directly from the above definition, one sees that in general
it holds

|∇Kφ|(x) ≤ |∇φ|(x),
while, whenever it is x ∈ intK, one has |∇Kφ|(x) = |∇φ|(x).

(ii) Remember that, whenever φ is Fréchet differentiable at x ∈ domφ, it holds
|∇φ|(x) = ‖Dφ(x)‖.

(iii) Whenever φ is a proper, convex and l.s.c. function, one has |∇φ|(x) =
dist (0∗, ∂φ(x)) (see, for instance, [6, Proposition 3.1] or [14, Theorem 5(ii)]).

The seminal condition for the solution existence of (SVE) presented in Section 3
will be formulated in terms of the following crucial value associated through ν with
a problem (SVE):

|∇Kf |> = inf
x∈[ν>0]∩K

|∇Kν|(x).

It is well known from variational analysis (see, for instance, [5, 6,17,22,25]) that
distances from sublevel sets of a l.s.c. function can be estimated in terms of its slope,
while a certain positivity behaviour of the slope allows one to establish solvability
of inequalities. All of this leads to investigate metric behaviours of the bifunction
f , which ensure these conditions to hold. The property defined below pursues this
purpose. It is a uniform variant of a conceptual tool that was already considered
in [25], in connection with the analysis of solvability and stability properties of
set-valued inclusions (see also [27]).

Definition 2.9. Let f : X × X −→ Y be a bifunction and let K ⊆ X and S ⊆ X
be given sets. Then, f is said to be metrically C-increasing on the set S, uniformly
in z ∈ K, if there exists α > 1 such that for every x0 ∈ S there is δ0 > 0 (not
depending on z) such that

∀r ∈ (0, δ0) ∃x ∈ B(x0, r) ∩ S :

B(f(x, z), αr) ⊆ B(f(x0, z) + C, r), ∀z ∈ K.(2.2)

The value
incC(f ;S) = sup{α > 1 : condition (2.2) holds}

is called exact bound of uniform C-metric increase of f over S.
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In view of the next proposition, it is useful to recall some relations involving the
behaviour of the excess of sets that will be exploited in its proof. Let C ⊆ Y be a
closed, convex cone and let S ⊆ Y a set with S 6⊆ C (hence, nonempty). Then, it
holds

(p1) exc(B(S, r), C) = exc(S,C) + r, ∀r > 0 (see [25, Lemma 2.2]);
(p2) exc(S + C,C) = exc(S,C) (see [25, Remark 2.1]).

The next proposition shows that the metric C-increase property is able to capture
a behavior of f , which is useful in providing estimates from below of |∇Kf |> that
are convenient to the present approach.

Proposition 2.10. Let f : X × X −→ Y be a given bifunction and let K ⊆ X.
Suppose that:

(i) the function ν, associated with f and K as in (1.1), is l.s.c. on K;
(ii) f(·, z) is metrically C-increasing on K ∩ [ν > 0], uniformly in z ∈ K;
(iii) the set-valued mapping Ff,K takes C-bounded values on K.

Then, it holds

(2.3) |∇Kf |> ≥ incC(f ;K ∩ [ν > 0])− 1.

Proof. Take arbitrary α ∈ (1, incC(f ;K ∩ [ν > 0])) and x0 ∈ K ∩ [ν > 0]. Since ν
is l.s.c. at x0, there exists δ > 0 such that B(x0, δ) ∩ K ⊆ [ν > 0]. By virtue of
hypothesis (ii), for any r ∈ (0, δ0), where δ0 ∈ (0, δ) is as in Definition 2.9, there
exists xr ∈ B(x0, r)∩K ∩ [ν > 0] such that B(f(xr, z), αr) ⊆ B(f(x0, z) +C, r), for
every z ∈ K. This implies

B(f(xr, z), αr) ⊆ B(f(x0,K) + C, r), ∀z ∈ K,

whence it is possible to deduce

(2.4) B(f(xr,K), αr) ⊆ B(f(x0,K) + C, r),

because the set B(f(x0,K)+C, r) is closed. Notice that it must be xr 6= x0. Indeed,
assume to the contrary that xr = x0. From inclusion (2.4) it follows

(2.5) B(Ff,K(x0), αr) ⊆ B(Ff,K(x0) + C, r).

Let us show that such an inclusion under the hypotheses taken leads to an absurdum.
To this aim, observe that, in turn, inclusion (2.5) implies for any α̃ ∈ (1, α)

(2.6) B(Ff,K(x0) + C, α̃r) ⊆ B(Ff,K(x0) + C, r).

To check this fact notice that, as α̃ < α, it holds

B(Ff,K(x0) + C, α̃r) ⊆ B(Ff,K(x0), αr) + C

and
B(Ff,K(x0) + C, r) + C ⊆ B(Ff,K(x0) + C + C, r).

Thus, by taking into account inclusion (2.5), from the above relations one gets

B(Ff,K(x0) + C, α̃r) ⊆ B(Ff,K(x0), αr) + C

⊆ B(Ff,K(x0) + C, r) + C

⊆ B(Ff,K(x0) + C + C, r)

= B(Ff,K(x0) + C, r),
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so inclusion (2.6) holds true. Now, since Ff,K(x0) is C-bounded according to hy-
pothesis (iii), there exists m > 0 such that Ff,K(x0)\C ⊆ mB. Consequently, it
is

Ff,K(x0) + C 6= Y,
because it is

Ff,K(x0) + C = [(Ff,K(x0)\C) ∪ (Ff,K(x0) ∩ C)] + C

⊆ [mB ∪ C] + C = (mB+ C) ∪ (C + C)

= mB+ C.

Of course, it is mB+ C 6= Y. To see this, take uc ∈ S ∩ C. Since C is pointed and
uc 6= 0, it must be −uc 6∈ C. As C is closed, it is δc = dist (−uc, C) > 0. So, by
recalling that function y 7→ dist (y, C) is p.h. as C is a cone, one obtains

dist

(
−2m

δc
uc,mB+ C

)
≥ dist

(
−2m

δc
uc, C

)
−m

=
2m

δc
dist (−uc, C)−m = m > 0.

The positive distance of −2m
δc
uc from mB+C allows one to conclude that −2m

δc
uc ∈

Y\(mB + C) 6= ∅. By recalling that Ff,K(x0) 6⊆ C, and hence Ff,K(x0) + C 6⊆ C,
and that C is closed, it is possible to claim the existence of y0 ∈ Y and η ∈ (0, r)
such that

y0 ∈ bd [Ff,K(x0) + C]

and

B(y0, η) ∩ C = ∅.

Then one can pick yr ∈ B(y0, η)\ [(Ff,K(x0) + C) ∪ C]. As Ff,K(x0) + C is closed,
these choices imply

(2.7) 0 < dist (yr, Ff,K(x0) + C) ≤ ‖yr − y0‖ ≤ η < r

and

(2.8) dist (yr, C) > 0.

From the above constructions, by remembering that Ff,K(x0) + C ⊆ mB+ C, one
obtains the following estimate for any t ∈ [1,+∞)

dist (tyr, Ff,K(x0) + C) ≥ dist (tyr,mB+ C) ≥ dist (tyr, C)−m

= tdist (yr, C)−m.

This estimate and inequality (2.8) clearly imply

lim
t→+∞

dist (tyr, Ff,K(x0) + C) = +∞.

Let γ : [1,+∞) −→ [0,+∞) be the continuous function defined by

γ(t) = dist (tyr, Ff,K(x0) + C) .

According to inequality (2.7), one has

(2.9) γ(1) = dist (yr, Ff,K(x0) + C) < r.
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On the other hand, it has been shown that it holds

lim
t→+∞

γ(t) = +∞.

By virtue of a well-known property of continuous functions of one real variable, one
can deduce the existence of tα̃ ∈ (1,+∞) such that

γ(tα̃) = dist (tα̃yr, Ff,K(x0) + C) = α̃r > r.

In the light of the last estimate, one can conclude that

tα̃yr ∈ B(Ff,K(x0) + C, α̃r)\B(Ff,K(x0) + C, r),

which contradicts inclusion (2.6) and hence (2.5). Therefore, as claimed, it must be
xr 6= x0.

Now, since Ff,K(xr) 6⊆ C, on account of the above recalled relations (p1) and
(p2), one obtains

ν(xr) = exc(B(Ff,K(xr), αr), C)− αr

≤ exc(B(Ff,K(x0) + C, r), C)− αr

≤ ν(x0) + r − αr.

As xr belongs to B(x0, r) ∩K ∩ [ν > 0], one finds

ν(x0)− ν(xr) ≥ (α− 1)r ≥ (α− 1)‖xr − x0‖.
By arbitrariness of r ∈ (0, δ0), it results in

|∇Kν|(x0) ≥ α− 1.

Since the last inequality is true all over K ∩ [ν > 0] by the arbitrariness of x0,
then one can conclude that |∇Kf |> ≥ α− 1. From this inequality one achieves the
estimate in (2.3) by taking into account the arbitrariness of α ∈ (1, incC(f ;K∩ [ν >
0])). □

3. Enhanced solution existence for strong vector equilibrium
problems

The present approach to the strong solvability of vector equilibrium problems
starts with a general result which relies on the following specialization of [5, Theorem
1.10].

Proposition 3.1. Let (X, d) be a complete metric space and let φ : X −→ R∪{+∞}
be a l.s.c. function. Assume that [φ < +∞] 6= ∅ and

τ = inf
x∈[0<φ<+∞]

|∇φ|(x) > 0.

Then, it is [φ ≤ 0] 6= ∅ and

(3.1) dist (x, [φ ≤ 0]) ≤ max{φ(x), 0}
τ

, ∀x ∈ [φ < +∞].

Proof. The thesis follows directly from the assertion a) in [5, Theorem 1.10], with
the choice α = γ = 0 and β = +∞ for the parameters appearing in its statement.
Notice, in particular, that the nonemptiness of [φ ≤ 0] comes as a consequence of
inequality (3.1), whose left-side term must be a real number for every x ∈ [φ <
+∞]. □
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A first enhanced existence result for strong equilibrium problems can be estab-
lished in terms of constructions described in Section 2 as follows.

Theorem 3.2. With reference to a problem (SVE), suppose that:

(i) each function x 7→ f(x, z) is C-u.s.c. on K, for every z ∈ K;
(ii) there exists x0 ∈ K such that f(x0,K) is C-bounded;
(iii) it is |∇Kf |> > 0.

Then, SE is nonempty and closed and the following estimate holds

(3.2) dist (x,SE) ≤ ν(x)

|∇Kf |>
, ∀x ∈ K.

Proof. If K ∩ [ν > 0] = ∅ it means that SE = K, so all the assertions in the thesis
become trivially true. Assume henceforth that K ∩ [ν > 0] 6= ∅. In the light of
Remark 2.2, under the made assumptions function ν : K −→ [0,+∞] turns out to
be l.s.c. on K and, by virtue of Lemma 2.3, it is x0 ∈ [ν < +∞] 6= ∅. As K is
closed, the metric space (K, d), where d is the metric induced by the norm of X
on K, is complete. Thus it is possible to invoke Proposition 3.1, in such a way to
get, in consideration of the functional characterization of SE (remember Remark
1.1) SE 6= ∅. By taking into account that ν takes nonnegative values only, from
inequality (3.1) one can reach the estimate in the thesis for every x ∈ K ∩ [ν <
+∞]. The extension of the validity of inequality (3.2) in such a way to include also
x ∈ K∩ [ν = +∞] is obvious. As for the closedness of SE , it comes as an immediate
consequence of the lower semicontinuity property of ν on K. This completes the
proof. □

As it happens for existence and error bound results related to several problems,
which can be achieved by following the present variational approach (see, among the
others, [25, 27]), Theorem 3.2 provides a sufficient condition for solvability, which
generally fails to be also necessary. The example below aims at illustrating this
fact.

Example 3.3. Let X = Y = R2 be equipped with its standard Euclidean space
structure, C = R2

+, K = −R2
+ and let f : R2 × R2 −→ R2 be defined by

(3.3) f(x, z) =

(
−x21 + e−∥z∥

−x22 +
1

∥z∥+1

)
, x = (x1, x2), z = (z1, z2) ∈ R2.

It is evident that x̄ = 0 is a solution to the problem (SVE) defined by the given data.
More precisely, it is SE = {0}. Indeed, if x̂ ∈ −R2

+\{0} it must be min{x̂1 x̂2} < 0.
According to the expression in (3.3), if taking zk = (−k, 0) ∈ −R2

+ for every k ∈ N,
one finds

f(x̂, zk) =

(
−x̂21 + e−k

−x̂22 +
1

k+1

)
k→∞−→

(
−x̂21
−x̂22

)
6∈ R2

+,

and hence, as R2
+ is closed, for some zk ∈ −R2

+, it must be true that f(x̂, zk) 6∈ R2
+,

so x̂ 6∈ SE . Since f is continuous on R2, in particular each function x 7→ f(x, z) is

C-u.s.c. on −R2
+, for every z ∈ −R2

+. From being e−∥z∥, (‖z‖ + 1)−1 ∈ (0, 1] for
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every z ∈ −R2
+, one deduces that

Ff,K(x) = f(x,−R2
+) ⊆

(
−x21
−x22

)
+ ([0, 1]× [0, 1]), ∀x ∈ −R2

+,

which shows that the set f(x,−R2
+) is bounded (and hence, a fortiori, R2

+-bounded)
for every x ∈ −R2

+. Whereas hypotheses (i) and (ii) of Theorem 3.2 happen to be
satisfied, hypothesis (iii) does not. Indeed, for the problem under consideration the
merit function ν : R2 −→ [0,+∞) is clearly given by the expression

ν(x) =

∥∥∥∥( −x21
−x22

)∥∥∥∥ =
√

x41 + x42, ∀x ∈ −R2
+.

By taking into account what noticed in Remark 2.8, one obtains in particular

|∇Kν|(x) = |∇ν|(x) = ‖Dν(x)‖, ∀x ∈ int (−R2
+) = −intR2

+.

Then, elementary calculations lead to find

‖Dν(x)‖ =

∥∥∥∥∥∥
 2x3

1√
x4
1+x4

2
2x3

2√
x4
1+x4

2

∥∥∥∥∥∥ =
2√

x41 + x42

√
x61 + x62, ∀x ∈ −intR2

+.

Therefore, if setting xn = −(1/n, 1/n) ∈ −intR2
+, one obtains

|∇Kν|(xn) = 2

√
1
n6 + 1

n6

1
n4 + 1

n4

=
2

n
, ∀n ∈ N\{0}.

Consequently, it results in

|∇Kf |> = inf
x∈−R2

+\{0}
|∇Kν|(x) ≤ inf

n∈N\{0}
|∇Kν|(xn) = 0.

So, hypothesis (iii) is not fulfilled. In spite of this, it happens that SE 6= ∅.
Nevertheless, it is worth observing that, while a solution to the problem (SVE)
actually exists, an error bound such as inequality (3.2), with |∇Kf |> replaced with
any positive constant τ , fails to work for the problem at the issue. This because the
inequality

dist (x,SE) = dist (x, {0}) =
√

x21 + x22 ≤
√
x41 + x42
τ

, ∀x ∈ −R2
+,

can never be true, no matter how the value of τ > 0 is chosen.

3.1. Enhanced existence conditions under metric C-increase. Further en-
hanced existence results for (SVE) can be derived by exploiting conditions able to
guarantee hypothesis (iii) of Theorem 3.2 to hold ceteris paribus. As seen in Sec-
tion 2, the property of metric C-increase offers the possibility to estimate the merit
function’s slope in a way which is useful in the present context.

Corollary 3.4 (Existence under metric increase). With reference to a problem
(SVE), suppose that:

(i) each function x 7→ f(x, z) is C-u.s.c. on K, for every z ∈ K;
(ii) the set-valued mapping Ff,K takes C-bounded values on K;
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(iii) f(·, z) is metrically C-increasing on K\SE, uniformly in z ∈ K.

Then, SE is nonempty and closed, and the following estimate holds true

(3.4) dist (x,SE) ≤ ν(x)

incC(f ;K\SE)− 1
, ∀x ∈ K.

Proof. It suffices to observe that the current hypotheses enable one to apply Propo-
sition 2.10, according to which one has

|∇Kf |> ≥ incC(f ;K\SE)− 1 > 0.

Therefore also hypothesis (iii) of Theorem 3.2 is satisfied. So all the assertions in
the thesis follow at once from Theorem 3.2. □

The next step in the present investigation is to derive from Corollary 3.4 verifiable
conditions for the enhanced existence of solutions to (SVE), which rely on differential
calculus, with the aim of making the last result more suitable for applications. This
can be done to a level of generality large enough to include also certain nonsmooth
mappings.

Following [23], let us say that a mapping g : X −→ Y between Banach spaces
is Bouligand-differentiable (for short, B-differentiable) at x0 ∈ X if there exists a
mapping DBg(x0) ∈ P(X,Y) (henceforth called the B-derivative of g at x0) such
that

(3.5) lim
x→x0

g(x)− g(x0)−DBg(x0;x− x0)

‖x− x0‖
= 0.

The reader should notice that, since DBg(x0) is required to be continuous by the
above notion, then g is continuous at x0 whenever it is B-differentiable at the same
point. Besides, whenever it happens, in particular, that DBg(x0) ∈ L(X,Y) ⊆
P(X,Y), then g turns out to be Fréchet differentiable at x0, with DBg(x0; v) =
Dg(x0)v for every v ∈ X. Therefore B-differentiability extends Fréchet differential
calculus to a broader class of mappings. A sufficient condition for the metric C-
increase of B-differentiable mappings can be formulated in terms of existence of
directions, along which the B-derivative is “firmly positive”.

Proposition 3.5 (Differential condition for metric increase). Given a mapping
g : X −→ Y, a convex subset S ⊆ X and a closed convex cone C ⊆ Y. If g is B-
differentiable at each point of S\g−1(C) and there exists σ > 0 such that for every
x0 ∈ S\g−1(C)

(3.6) ∃u0 ∈ S ∩ cone (S − x0) : DBg(x0;u0) + σB ⊆ C,

then g is metrically C-increasing on S\g−1(C), with

(3.7) incC(g;S\g−1(C)) ≥ σ + 1.

Proof. Fix arbitrary ϵ ∈ (0,min{σ, 1}) and x0 ∈ S\g−1(C) and set α = σ+1−ϵ > 1.
According to (3.5), there exists δ > 0 such that

g(x0 + tv)− g(x0)− tDBg(x0; v) ∈ ϵt‖v‖B ⊆ ϵtB, ∀v ∈ B, ∀t ∈ [0, δ].

In particular, taking u0 ∈ S ∩ cone (S − x0) as in the assumption (3.6), one finds

(3.8) g(x0 + tu0) ∈ g(x0) + tDBg(x0;u0) + ϵtB, ∀t ∈ [0, δ].
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Notice that u0 ∈ S ∩ cone (S − x0) implies the existence of λ0 > 0 and s0 ∈ S\{x0}
(having to be u0 6= 0) such that u0 = λ0(s0 − x0). Therefore, if one assumes that
δ ∈ (0, λ−1

0 ), for every t ∈ [0, δ] it is possible to write

x0 + tu0 = x0 + tλ0(s0 − x0) = (1− tλ0)x0 + tλ0s0,

where it is tλ0 ∈ [0, 1] because 0 ≤ tλ0 ≤ δλ0 < 1. Thus, up a reduction in the
value of δ, if needed, as x0, s0 ∈ S, by convexity of S it holds x0 + tu0 ∈ S for
every t ∈ [0, δ]. Since g is continuous on S\g−1(C) (as a consequence of its B-
differentiability on the same set) and C is closed, without any loss of generality,
one can assume that B(x0, δ) ∩ S ⊆ S\g−1(C). So, by setting δ0 = δ, fixed any
r ∈ (0, δ0), let us choose xr = x0 + ru0. In this way, one has xr ∈ S\g−1(C) and,
on account of the inclusions (3.8) and in (3.6), it results in

B(g(xr), αr) = g(xr) + αrB ⊆ g(x0) + rDBg(x0;u0) + ϵrB+ αrB
= g(x0) + rDBg(x0;u0) + ϵrB+ (σ + 1− ϵ)rB
⊆ g(x0) + r[DBg(x0;u0) + σB] + (ϵ+ 1− ϵ)rB
⊆ g(x0) + rC + rB ⊆ B(g(x0) + C, r).

As x0 was arbitrarily chosen in S\g−1(C), the above inclusion amounts to say that
g is metrically C-increasing on S\g−1(C), with incC(g;S\g−1(C)) ≥ σ+1− ϵ. The
estimate in (3.7) then follows for arbitrariness of ϵ. □

When dealing with bifunctions, the above differentiability notion will be employed
in its (partial) uniform variant: given a bifunction f : X × X −→ Y and a subset
K ⊆ X, f is said to be (partially) B-differentiable at x0 ∈ X, uniformly in z ∈ K,
if there exist mappings DBf(·, z)(x0) ∈ P(X,Y) with the property that for every
ϵ > 0 there exists δ > 0 (depending on x0 and ϵ, but not on z ∈ K) such that

(3.9) sup
z∈K

‖f(x, z)− f(x0, z)−DBf(·, z)(x0;x− x0)‖
‖x− x0‖

≤ ϵ, ∀x ∈ B(x0, δ).

Example 3.6. (i) Whenever a bifunction f : X× X −→ Y takes the following
additively separable form

f(x, z) = g(x) + h(z), (x, z) ∈ X×K,

where g : X −→ Y is B-differentiable at x0 and h : K −→ Y, then f
is B-differentiable at x0 uniformly in K and it holds DBf(·, z)(x0; v) =
DBg(x0; v), for every z ∈ K and v ∈ X.

(ii) Whenever a bifunction f : X× X −→ Y takes the following factorable form

f(x, z) = λ(z)g(x), (x, z) ∈ X×K,

where g : X −→ Y is B-differentiable at x0 and λ : K −→ R is bounded onK,
then f is B-differentiable at x0 uniformly inK and it holds DBf(·, z)(x0; v) =
λ(z)DBg(x0; v), for every z ∈ K and v ∈ X.

The next technical lemma provides a sufficient condition for the uniform metric C-
increase property of uniformly B-differentiable bifunctions, along with an estimate
of the exact bound of uniform metric C-increase.
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Lemma 3.7. With reference to problem (SVE), let f : X × X −→ Y be a bifunc-
tion and let K ⊆ X be a convex set. Suppose that f is B-differentiable in the
first argument at each point of K\SE, uniformly in z ∈ K, with B-derivatives
DBf(·, z)(x0) ∈ P(X,Y). If there exists σ > 0 such that for every x0 ∈ K\SE

(3.10) ∃u0 ∈ S ∩ cone (K − x0) : DBf(·; z)(x0;u0) + σB ⊆ C, ∀z ∈ K,

then f is metrically C-increasing on K\SE, uniformly in z ∈ K, and it holds

(3.11) incC(f ;K\SE) ≥ σ + 1.

Proof. One needs to adapt the proof of Proposition 3.5 to the context of uniform
B-differentiability for bifunctions. Fix arbitrary ϵ ∈ (0,min{σ, 1}) and x0 ∈ K\SE
and set α = σ+1− ϵ > 1. By uniform B-differentiability of f at x0, for some δ > 0,
taking u0 ∈ S ∩ cone (K − x0) as in (3.10) (not depending on z ∈ K), one has

f(x0 + tu0, z) ∈ f(x0, z) + tDBf(·; z)(x0;u0) + ϵtB, ∀t ∈ [0, δ], ∀z ∈ K.

Observe that, since

x0 ∈ K\SE = K\
⋂
z∈K

f(·, z)−1(C) =
⋃
z∈K

[K\f(·, z)−1(C)],

there exists z0 ∈ K such that x0 ∈ K\f(·, z0)−1(C). As the mapping x 7→ f(x, z0)
is continuous at x0, up to a reduction of the value of δ one finds

B(x0, δ) ∩K ⊆ K\f(·, z0)−1(C) ⊆ K\SE .

So, by setting δ0 = δ and choosing xr = x0 + ru0 for any r ∈ (0, δ0), through the
same reasoning as in the proof of Proposition 3.5, one obtains

B(f(xr, z, αr) ⊆ B(f(x0, z) + C, r), ∀z ∈ K.

This shows that the conditions in Definition 2.9 are satisfied, along with the related
estimate, thereby completing the proof. □

Corollary 3.8. Under the assumptions (i) and (ii) of Corollary 3.4, suppose in
addition that:

(iii) K is convex;
(iv) f is B-differentiable in the first argument on K\SE, uniformly in z ∈ K,

and K is convex;
(v) there exists σ > 0 satisfying the condition in (3.10).

Then, SE is nonempty and closed, and the following estimate holds true

(3.12) dist (x,SE) ≤ ν(x)

σ
, ∀x ∈ K.

Proof. It suffices to observe that, under the above assumptions, Lemma 3.7 can be
applied, so f turns out to be metrically C-increasing on K\SE uniformly in z ∈ K,
with the estimate in (3.11) being valid. In such a circumstance, all its hypotheses
being satisfied, it remains to invoke Corollary 3.4 to get all the assertions in the
thesis. □
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Example 3.9. Let X = Y = R2 be equipped with their standard Euclidean space
structure, let f : R2 × R2 −→ R2 be defined by

f(x, z) = g(z)− g(x),

where g(x) = x, let R2 be partially ordered by the cone C = R2
+ and let the

constraining set be given by

Kθ =
{
x = (r cos t, r sin t) ∈ R2 : r ≥ 0, θ ≤ t ≤ π

2
− θ
}
,

for any fixed θ ∈ (0, π4 ). It is clear that the strong equilibrium problem defined by
the above data is equivalent to finding the strong efficient solutions to the vector
optimization problem

min≤
C
g(x) subject to x ∈ Kθ.

So one readily sees that SE = {0}. Since f is continuous over R2 ×R2, assumption
(i) of Corollary 3.4 is fulfilled. As it is

f(x,Kθ) = g(Kθ)− g(x) = Kθ − x

and θ ∈ (0, π4 ), one sees that the set-valued mapping x ⇝ f(x,Kθ) takes R2
+-

bounded values on Kθ. Moreover, since Kθ − x + R2
+ is a translation of R2

+, it
is is a closed set, so the standing assumption on Ff,K + C to be closed-valued is
satisfied. Since f takes a form such as in Example 3.6(i), with g being differentiable,
assumption (iv) of Corollary 3.8 is satisfied with

DBf(·, z)(x; v) = −v, ∀x ∈ Kθ\{0}.

Let us check that also assumption (v) of Corollary 3.8 is fulfilled. To this aim,
observe that, if taking x0 ∈ intKθ, then it is cone (Kθ − x0) = R2. Therefore, by
choosing u0 = (−1/

√
2,−1/

√
2) ∈ cone (Kθ − x0) ∩ S, one finds

(3.13) DBf(·, z)(x0;u0) +
1√
2
B =

(
1√
2
1√
2

)
+

1√
2
B ⊆ R2

+.

Now take x0 = (r0 cos θ, r0 sin θ) ∈ Kθ\{0}, for any r0 > 0. In this case, one has

cone (Kθ − x0) = {x = (r cos t, r sin t) ∈ R2 : r ≥ 0, θ ≤ t ≤ θ + π}.

Thus, if taking u0 = (cos(θ + π), sin(θ + π)) = −(cos θ, sin θ), one finds

(3.14) DBf(·, z)(x0;u0) + sin θB =

(
cos θ
sin θ

)
+ sin θB ⊆ R2

+.

Notice that the last inclusion is true because it is sin θ < cos θ, as θ ∈ (0, π4 ). The

remaining case x0 =
(
r0 cos

(
π
2 − θ

)
, r0 sin

(
π
2 − θ

))
∈ Kθ\{0}, for any r0 > 0, can

be discussed in a similar manner by taking into account the symmetry of Kθ with
respect to the axe of equation x2 = x1. Thus, since it is sin θ < 1√

2
, by inclusions

(3.13) and (3.14) one verifies that condition (3.10) is fulfilled with σ = sin θ. As a
consequence, Corollary 3.8 can be applied to the problem under examination.
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In order to check the validity of the error bound provided in its thesis, one needs
to find the expression of ν. This is easily done, inasmuch as one has

ν(x) = sup
z∈Kθ

dist
(
z − x,R2

+

)
= sup

z∈Kθ

dist
(
z, x+ R2

+

)
≥ dist

(
0, x+ R2

+

)
= ‖x‖, ∀x ∈ Kθ.

On the other hand, as Kθ ⊆ R2
+, one gets

ν(x) ≤ sup
z∈R2

+

dist
(
z, x+ R2

+

)
= dist

(
0, x+ R2

+

)
= ‖x‖, ∀x ∈ Kθ.

From the last inequalities, one obtains

ν(x) = ‖x‖, ∀x ∈ Kθ.

So, in the light of the above computations, it is possible to check that it actually
holds

dist (x,SE) = dist (x, {0}) = ‖x‖ ≤ ‖x‖
sin θ

=
ν(x)

σ
, ∀x ∈ Kθ,

in accordance with inequality (3.12).
The reader should be warned that the same conclusions can not be drawn in the

(critical) case with θ = 0, corresponding to a vector equilibrium problem defined by
the same bifunction f , but with K = R2

+. There is no σ > 0 for which assumption
(v) of Corollary 3.8 happens to be satisfied. Indeed, if taking x0 = (r0, 0) ∈ K\{0},
for some r0 > 0, one can not find u0 ∈ cone (R2

+ − (r0, 0)) = {x = (x1, x2) ∈ R2
+ :

x2 ≥ 0} such that

−u0 + σB ⊆ R2
+.

In spite of this, it is still ν(x) = ‖x‖ for every x ∈ R2
+ and SE = {0}, so the error

bound

dist (x,SE) = ‖x‖ ≤ ν(x), ∀x ∈ R2
+

still holds true. This fact shows once more that the conditions for the enhanced
existence established by the present approach can be only sufficient.

3.2. Subdifferential conditions for the enhanced solution existence. Through-
out the current subsection the Banach space (X ‖ · ‖) is assumed to be reflexive.

In order to formulate the next enhanced existence results for problem (SVE), some
more technical tools from nonsmooth analysis need to be recalled. Let K ⊆ X be a
nonempty closed subset and let x ∈ X\K such that Π(x;K) 6= ∅. In [20, Proposition
1.102] it has been proved that

∂̂dist (·,K) (x) ⊆
⋂

w∈Π(x;K)

N̂(w;K) ∩ S∗,

where

∂̂φ(x) =

{
x∗ ∈ X∗ : lim inf

v→0

φ(x+ v)− φ(x)− 〈x∗, v〉
‖v‖

≥ 0

}
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denotes the (regular) Fréchet subdifferential of a function φ at x ∈ domφ, and

N̂(w;K) =

{
x∗ ∈ X∗ : lim sup

x
K→w

〈x∗, x− w〉
‖x− w‖

≤ 0

}
denotes the cone of the Fréchet normals (a.k.a. prenormal cone) to K at w. On the
other hand, if x ∈ K then [20, Corollary 1.96] provides the different representation

∂̂dist (·,K) (x) = N̂(x;K) ∩ B∗.

Since in what follows both the cases have to be considered, it is convenient to deal

with the set-valued mapping B̂∗
K : X⇒ X∗, defined by

B̂∗
K(x) =


N̂(x;K) ∩ B∗ if x ∈ K,⋂
w∈Π(x;K)

N̂(w;K) ∩ S∗ if x 6∈ K.
(3.15)

WheneverK is a closed convex set, in a reflexive Banach space setting it is Π(x;K) 6=
∅ for every x ∈ X. Thus, since in such an event it turns out that ∂̂dist (·,K) (x) =

∂dist (·,K) (x) and N̂(w;K) = N(w;K) (see [20, Theorem 1.93] and [20, Proposition

1.3], respectively), the set-valued mapping B̂∗
K is well-defined and takes the special

form

B̂∗
K(x) =


N(x;K) ∩ B∗ if x ∈ K,⋂
w∈Π(x;K)

N(w;K) ∩ S∗ if x 6∈ K.

Remark 3.10. It is well known that if x ∈ X\K and (X, ‖ · ‖) has a uniformly
Gâteaux differentiable norm, then function dist (·,K) is strictly differentiable at
x, with Ddist (·,K) (x) ∈ S∗ (see [29, Corollary 4.2]), so in this case one has

B̂∗
K(x) = {Ddist (·,K) (x)}. The class of Banach spaces admitting a uniformly

Gâteaux differentiable norm is known to include all separable spaces (see [12, Chap-
ter II, Corollary 6.9(i)]).

Theorem 3.11 (C-concave case). With reference to a problem (SVE), suppose that:

(i) each function x 7→ f(x, z) is C-concave on the convex set K, for every
z ∈ K;

(ii) there exists x0 ∈ K such that f(x0,K) is C-bounded;
(iii) each function x 7→ f(x, z) is C-u.s.c. on X, for every z ∈ K;
(iv) there exists γ > 0 such that

(3.16)
[
∂ν(x) + B̂∗

K(x)
]
∩ γB∗ = ∅, ∀x ∈ X\SE .

Then, SE is nonempty, closed and convex, and the following estimate holds true

(3.17) dist (x,SE) ≤ ν+K(x)

γ
, ∀x ∈ X.
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Proof. Observe first that, on account of Remark 2.2 and hypothesis (iii), the merit
function ν+K is l.s.c. on X. Moreover, as stated in Remark 2.7, under hypotheses
(i) and (ii) ν+K is convex on X and x0 ∈ dom ν+K , so that [ν+K < +∞] 6= ∅.
Now, take x ∈ [0 < ν+K < +∞]. Since ν+K is proper, convex and l.s.c. on X, then
according to Remark 2.8(iii), the following slope estimate holds

|∇ν+K |(x) = dist (0∗, ∂ν+K(x)) .

Since both ν and dist (·,K) are convex functions, while ν is l.s.c. and dist (·,K) is
continuous at x0 ∈ dom ν ∩ domdist (·,K), by the Moreau-Rockafellar theorem one
obtains

∂ν+K(x) = ∂ν(x) + ∂dist (·,K) (x) ⊆ ∂ν(x) + B̂∗
K(x).

Thus, the condition in hypothesis (iv) implies

|∇ν+K |(x) = dist (0∗, ∂ν+K(x)) ≥ γ, ∀x ∈ [0 < ν+K < +∞].

This estimate shows that is possible to apply Proposition 3.1 with X = X and
φ = ν+K , what leads to obtain the nonemptiness of SE and the inequality

dist (x,SE) ≤ ν+K(x)

γ
, ∀x ∈ [ν+K < +∞].

The last inequality readily allows one to achieve the estimate in (3.17). The con-
vexity of SE is a direct consequence of the convexity of ν+K , as observed in Remark
1.1. Thus the proof is complete. □
Remark 3.12. It should be noticed that inequality (3.17), in particular, entails

dist (x,SE) ≤ ν(x)

γ
, ∀x ∈ K.

As a comment to Theorem 3.11, it is to be pointed out that the condition in
hypothesis (iv), involving function ν, is not explicitly formulated in terms of problem
data. In fact, expressing the subdifferential of ν in terms of generalized derivatives
of f may imply nontrivial calculations. Nevertheless, in the special case in which
K is compact and each function x 7→ f(x, z) is smooth, with surjective derivatives,
this issue can be faced by means of well-known subdifferential calculus rules and
other technical results in nonsmooth analysis. To see this in detail, given x ∈ K let
us set

Kx = {z ∈ K : dist (f(x, z), C) = ν(x)}
and let us introduce the set-valued mapping B∗

C : X⇒ Y∗, defined by

B∗
C(x) =

 C
⊖ ∩ B∗ if ν(x) = 0,

C
⊖ ∩ S∗ if ν(x) > 0.

Proposition 3.13. With reference to a problem (SVE), suppose that:

(i) K is compact and convex and (Y, ‖ · ‖) is reflexive;
(ii) f : X× X −→ Y is continuous on X× X;
(iii) each function x 7→ f(x, z) is C-concave on X, for every z ∈ K;
(iv) each function x 7→ f(x, z) is C1(X), with Df(·, z)(x) ∈ L(X,Y) being onto,

for every z ∈ K;
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(v) there exists γ > 0 such thatconv ∗

 ⋃
z∈Kx

Df(·, z)(x)∗(B∗
C(x))

+ B̂∗
K(x)

 ∩ γB∗ = ∅,

∀x ∈ X\SE .
Then, SE is nonempty, closed and convex, and inequality (3.17) holds true.

Proof. Let us start with observing that, by virtue of hypothesis (ii), the bifunction
dC ◦ f is continuous on X × X. By the compactness of K, this implies that, for
every x ∈ K, the value ν(x) = supz∈K dist (f(x, z), C) is attained at some z ∈ K,

so that Kx 6= ∅ for every x ∈ K. Furthermore, the continuity of dC ◦ f entails
that each function x 7→ dist (f(x, z), C) is continuous on X and each function z 7→
dist (f(x, z), C) is, in particular, u.s.c. on X. Since by virtue of hypothesis (iii) each
function x 7→ dist (f(x, z), C) is convex on X (remember Lemma 2.5), these facts
enable one to apply the well-known max rule for the subdifferential of a supremum
of convex functions (see, for instance, [30, Theorem 2.4.18]), which gives

∂ν(x) = ∂

(
sup
z∈K

dist (f(·, z), C)

)
(x)

= conv ∗

 ⋃
z∈Kx

∂dist (f(·, z), C) (x)

 .(3.18)

Since each function f : x 7→ (x, z) is, in particular, strictly differentiable and its
derivative is surjective according to hypothesis (iv), then it is possible to employ
the formula in [20, Proposition 1.112(i)], which rules the subdifferential under com-
position with smooth mappings. In doing so, by recalling that the Mordukhovich
(a.k.a. basic or limiting) subdifferential coincides here with the subdifferential in
the sense of convex analysis by the convexity of the involved functions, one finds

∂dist (f(·, z), C) (x) ⊆ Df(·, z)(x)∗∂dC(f(x, z)).
Now, observe that if x ∈ X\SE and ν(x) > 0, then for every z ∈ Kx it must be
f(x, z) 6∈ C. Consequently, as also (Y, ‖ · ‖) is reflexive, Π(f(x, z);C) 6= ∅ and
therefore

∂dC(f(x, z)) ⊆
⋂

w∈Π(f(x,z);C)

N(w;C) ∩ S∗ ⊆ C
⊖ ∩ S∗.

If x ∈ X\SE but ν(x) = 0, then it happens that f(x, z) ∈ C also for z ∈ Kx, so one
can only say

∂dC(f(x, z)) ⊆ C
⊖ ∩ B∗.

Thus, from inclusion (3.18) one obtains in any case

∂ν(x) ⊆ conv ∗

 ⋃
z∈Kx

Df(·, z)(x)∗(B∗
C(x))

 , ∀x ∈ [ν+K > 0].

In the light of the last inclusion, it is clear that hypothesis (v) implies the validity
of condition (iv) in Theorem 3.11.
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It remains to notice that, for any fixed x ∈ X, by continuity of the function
z 7→ dist (f(x, z), C) and by compactness of K, also the set f(x,K) is compact and
hence C-bounded, so hypothesis (ii) of Theorem 3.11 is fulfilled. As for hypothesis
(iii) of Theorem 3.11, it comes true as an easy consequence of the current hypothesis
(ii). Thus, the thesis can be achieved by applying Theorem 3.11. □

Another worthwhile comment refers to condition (3.16), which, as a requirement
for subgradients to be sufficiently away from 0∗, can be regarded as a regularity
condition. The reader should notice that if x ∈ [ν+K > 0]∩K, then ν+K(x) = ν(x),
so it must ν(x) > 0. IfK is such that ν(x) > dist (f(x, z), C) for at least some z ∈ K,
that is dist (f(x, ·), C) is not constant over z ∈ K, then x cannot be a minimizer
of ν, with the consequence that 0∗ 6∈ ∂ν(x). Therefore, if ∂ν(x) lies sufficiently

faraway from the origin, it may actually happen that
[
∂ν(x) + B̂∗

K(x)
]
∩ γB∗ = ∅.

On the other hand, if x ∈ [ν+K > 0]\K, then it may happen that ν(x) = 0, so

0∗ ∈ ∂ν(x), but in such an event, according to (3.15), it is 0∗ 6∈ B̂∗
K(x). Thus, again

the condition (3.16) may actually take place.
By replacing the Fenchel subdifferential with more involved tools of nonsmooth

analysis, the above line of investigation can be expanded in such a way to consider
also problems without C-concave bifunctions. Below, the reader will find an attempt
to develop the analysis by employing Fréchet and Mordukhovich subgradients. Let
φ : X −→ R∪{±∞} be function, l.s.c. around a point x ∈ domφ and let (X, ‖·‖) be
an Asplund space. In this setting, an equivalent way to introduce the Mordukhovich
subdifferential ∂Mφ(x) of φ at x̄ by using the Fréchet subdifferential is to define

∂Mφ(x̄) = Limsup ∂̂φ(x),
x

φ→ x̄

where Limsup
x

φ→x̄
denotes the Painlevé-Kuratowski upper limit of the set-valued

mapping ∂̂φ : X ⇒ X∗ as x → x̄ and φ(x) → φ(x̄), with respect to the norm
topology on X and the weak∗ topology on X∗ (see, for more details, [20] and Theorem
2.34 therein).

Theorem 3.14 (Mordukhovich subdifferential condition). With reference to a prob-
lem (SVE), suppose that:

(i) the set K is convex;
(ii) each function x 7→ f(x, z) is C-u.s.c. on X, for every z ∈ K;
(iii) there exists x0 ∈ K such that f(x0,K) is C-bounded;
(iv) there exists γ > 0 such that

(3.19)
[
∂Mν(x) + B̂∗

K(x)
]
∩ γB∗ = ∅, ∀x ∈ X\SE .

Then, SE is nonempty and closed, and the the estimate in (3.17) holds true.

Proof. By hypothesis (ii) the merit function ν+K : X −→ [0,+∞] is l.s.c. on X and
therefore the set [ν+K > 0] is open. By hypothesis (iii) it is x0 ∈ [ν+K < +∞] 6= ∅.
Moreover, observe that (X, ‖ · ‖), as a reflexive Banach space, is an Asplund space.
According to [17, Theorem 1, Chapter 2], this is equivalent to the fact that (X, ‖ · ‖)
is ∂̂-trustworthy. Such a property allows one to exploit the slope estimate in [17,
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Proposition 1, Chapter 3] valid for l.s.c. functions on open subsets of ∂̂-trustworthy
Banach spaces, according to which

(3.20) inf
x∈[ν+K>0]

|∇ν+K |(x) ≥ inf
x∈[ν+K>0]

dist
(
0∗, ∂̂ν+K(x)

)
.

By recalling that for any x ∈ X the following general relation between subdifferen-
tials holds

∂̂ν+K(x) ⊆ ∂Mν+K(x),

from inequality (3.20) one obtains

(3.21) inf
x∈[ν+K>0]

|∇ν+K |(x) ≥ inf
x∈[ν+K>0]

dist (0∗, ∂Mν+K(x)) .

Now, as ν and dist (·,K) are l.s.c. and Lipschitz continuous on X, respectively,
they form a semi-Lipschitzian sum at any x ∈ dom ν+K in the sense of [20, Chapter
2.4]. Thus, as (X, ‖ · ‖) is an Asplund space, according to the sum rule for the
Mordukhovich subdifferential (see [20, Theorem 2.33(c)]) one finds

∂Mν+K(x) ⊆ ∂Mν(x) + ∂Mdist (·,K) (x) ⊆ ∂Mν(x) + B̂∗
K(x),

where the last inclusion holds because the Mordukhovich subdifferential coincides
with the Fenchel subdifferential, in consideration of the convexity of K. By virtue
of hypothesis (iv), the last inclusion implies

inf
x∈[ν+K>0]

|∇ν+K |(x) ≥ γ.

Such an inequality enables one to apply Proposition 3.1, from which all the asser-
tions in the thesis can be deduced. This completes the proof. □

Remark 3.15. The author is aware of the fact that Theorem 3.14 can be subsumed
in a more general scheme of analysis, where the Fréchet and the Mordukhovich
subdifferentials are replaced with any subdifferential ∂□, axiomatically defined as
in [17, Section 1.5, Chapter 2], and (X, ‖ · ‖) is supposed to be ∂□-trustworthy, as
meant in [17, Definition 4, Chapter 2]). It is clear that, following such an approach,
the subdifferential condition (3.19) should be expected to take a more involved form,
because of the need of employing fuzzy sum rules for the ∂□ subdifferential.

4. Conclusions

The contents of the present paper describe an attempt to conduct a study of solv-
ability and error bounds for vector equilibrium problems via a variational approach.
This attempt leads to obtain, as a main result, conditions which are expressed in
terms of B-derivatives, convex normals and subgradients as well as Mordukhovich
subdifferential. With respect to results focussing exclusively on the existence is-
sue and obtained by different approaches, the conditions here established clearly
demonstrate the crucial role that nonsmooth analysis can play in the development
of this area. The achievements here discussed leave open the possibility for subse-
quent refinements and improvements. Some of them should come from a convenient
expressions of subdifferentials of ν in terms of proper generalized derivatives of the
bifunction f .
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[30] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River
Edge, NJ, 2002.

Manuscript received May 11 2022

revised September 30 2022

A. Uderzo
Dept. of Mathematics and Applications, University of Milano - Bicocca, Milano, Italy

E-mail address : amos.uderzo@unimib.it


