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mapping B. The splitting method is known to yield weak convergence to a solution
of the VIP. For more literature on the forward backward method, the following
references are useful: [33, 34, 50]. In the setting of Banach spaces, Fang and Huang
[27] introduced the concept of H-accretive operators and defined a corresponding
resolvent operator in the framework of q-uniformly smooth Banach spaces. We
note that in the result of Fang and Huang [27], the mappings A and B are defined
from E → E and from E → 2E , respectively; thus their proposed method cannot
be used to solve the VIP (1.1). Inspired by this drawback, Xia and Huang [52]
introduced another operator which they termed an H-monotone operator. By using
this operator, they introduced a method for approximating a solution to the VIP
(1.1), where E is a uniformly smooth Banach space. In 2020 Ogbuisi and Izuchukwu
[38] considered the problem of approximating a solution to (1.1) in the setting of
a reflexive Banach space. They introduced a resolvent operator and presented its
properties. Furthermore, they proposed a hybrid iterative algorithm for finding the
zeroes of (1.1), which are also fixed points of a suitable nonlinear mapping.

In another direction, the inertial method for approximating a solution to the VIP
(1.1) was introduced by Alvarez and Attouch [3]. They introduced the following
method for finding a zero of (1.1), where A = 0 and B is a maximal monotone
operator. Given x0, x1 ∈ E, let{

yn = xn + βn(xn − xn−1)

xn+1 = (I + λnB)−1yn, n ≥ 0.
(1.2)

They established the weak convergence of the sequences generated by this method
to a solution of the VIP (1.1) in a real Banach space under some mild assumptions
on {βn} and {λn}. The step concerning yn in the above algorithm is called the
extrapolation step and is based on the heavy ball method. For B = 0 the backward
step reduces to the identity and the sequence {xn} given by

xn+1 = (xn − λnAxn + βn(xn − xn−1)), n ≥ 0,

is usually referred to as the heavy ball method. It is an explicit finite difference
discretization of the so-called heavy ball with friction dynamical system

d2x

dt2
+ γ

dx

dt
+∇f(x(t)) = 0.(1.3)

Equation (1.3) arises from the application of Newton’s law to a point subjected
to a frictional force determined by a constant coefficient of friction γ > 0 and the
velocity dx

dt , and the gravitational force f . This is the reason why the term heavy
ball method is used. The term βn(xn − xn−1) is called the inertial force. Thus, an
inertial-type algorithm uses the previous iterates to obtain the next one. The term
{βn} controls the momentum xn−xn−1. Polyak [40] suggested that this combination
of the previous iterates was a very good way of accelerating iterative algorithms (see
also [33]).

The inertial method for approximating a solution to the VIP (1.1) has been well
studied in Hilbert space (see [4,22,25,34]). Inertia-based algorithms have also been
considered in the framework of Banach spaces. We observe the following points of
reference which are present in most of these results:
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(i) To obtain strong convergence, hybrid algorithms are employed (see [20, 21,
48]).

(ii) The direction of the momentum xn − xn−1 was changed in [1, 5, 30]. That
is, βn(xn−1 − xn) was used in place of βn(xn − xn−1).

While seeking a way to avoid these two features, we came across the result of Adamu
et al. [2], where they considered an inertial-type algorithm for approximating a
solution to the VIP (1.1) without the highlighted features in the framework of 2-
uniformly convex Banach spaces.

Motivated by the literature cited above, in particular, the papers of Polyak [40],
Ogbuisi and Izuchukwu [38], and Adamu et al. [2], we propose in the present paper
an inertia-based iterative algorithm for approximating a zero of the sum of two
monotone operators in a class of reflexive Banach spaces which is more general
than the class of uniformly convex Banach spaces. Our method combines the inertial
technique and the modified Halpern iterative process. Using this method, we have
established a strong convergence result for approximating a solution to the VIP.

The rest of our paper is organized as follows: first, we recall some useful definitions
and preliminary results in Section 2. In Section 3 we introduce our proposed method,
state our main result and present its convergence analysis. Some applications of
our main result are presented in Section 4. In Section 5 we present the results of
numerical experiments which demonstrate the efficiency of our method. We provide
some concluding remarks in Section 6.

2. Preliminaries

In this section we give some definitions and preliminary results which are used in
our convergence analysis. Let K be a nonempty, closed and convex subset of a real
Banach space E with norm ∥ · ∥ and dual space E∗. We denote the weak and strong
convergence of a sequence {xn} ⊂ E to a point x ∈ E by xn ⇀ x and xn → x,
respectively.

A function f : E → (−∞,+∞] is said to be

(i) proper if dom(f) = {x ∈ E : f(x) < ∞} ̸= ∅;
(ii) Gâteaux differentiable at x ∈ E if there exists an element in E∗, denoted

by f ′(x) or by ∇f(x), such that

lim
t→0

f(x+ ty)− f(x)

t
= ⟨y, f ′(x)⟩ ∀y ∈ E,

where f ′(x) or ∇f(x) is called the Gâteaux differential or gradient of f at
x;

(iii) strongly convex with a strong convexity constant ρ > 0 if

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ ρ

2
∥x− y∥2 ∀ x, y ∈ E;

(iv) Fréchet differentiable at x if the limit in (ii) above exists uniformly on the
unit sphere of E.

Lemma 2.1 ([43]). Let f : E → R be uniformly Fréchet differentiable and bounded
on bounded subsets of E. Then ∇f is uniformly continuous on bounded subsets of
E from the strong topology of E to the strong topology of E∗.
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The subdifferential set of f at a point x, denoted by ∂f , is defined by

∂f(x) := {x∗ ∈ E∗ : f(x)− f(y) ≤ ⟨y − x, x∗⟩ ∀y ∈ E}.
Every element x∗ ∈ ∂f(x) is called a subgradient of f at x. If f is continuously
differentiable, then ∂f(x) = {∇f(x)} is the gradient of f at x. The Fenchel con-
jugate of f is the convex functional f∗ : E∗ → R ∪ {+∞} defined by f∗(x∗) =
sup{⟨x∗, x⟩ − f(x) : x ∈ E}. We note that ∇f(∇f∗(x∗)) = x∗ for all x∗ ∈ E∗. Let
E be a reflexive Banach space. The function f is said to be Legendre if it satisfies
the following two conditions (see [6]):

(L1) int dom(f) ̸= ∅ and ∂f is single-valued on its domain;
(L2) int dom(f∗) ̸= ∅ and ∂f∗ is single-valued on its domain.

Let f be a strongly convex and Gâteaux differentiable function. The function
Df : dom (f)×int dom (f)→ [0,∞), defined by

Df (x, y) := f(x)− f(y)− ⟨x− y,∇f(y)⟩,
is called the Bregman distance induced the function f . It is worth mentioning that
the bifunction Df is not a metric in the usual sense because it does not satisfy
the symmetry and the triangle inequality properties. However, it does possess the
following important property called the three point identity:

Df (x, y) +Df (y, z)−Df (x, z) = ⟨∇f(z)−∇f(y), x− y⟩,(2.1)

where x ∈ dom(f) and y, z ∈ int dom(f). Also, from the strong convexity of f and
the definition of the Bregman distance it follows that

Df (x, y) ≥
ρ

2
∥x− y∥2.(2.2)

The Bregman distance function has been widely used by many authors in the liter-
ature (see [6, 14,15,41] and references therein).

Remark 2.2. The following important examples of Bregman distance functions
can be found, for instance, in [8].

(i) If f(x) = 1
2∥ · ∥

2, then Df (x, y) =
1
2∥x− y∥2.

(ii) Let f(x) = −
∑m

j=1 xj log(xj). This is Shannon’s entropy for the non-

negative orthant Rm
++ := {x ∈ Rm : xj > 0}. It induces the Kullback-Leibler

cross entropy defined by

Df (x, y) :=
m∑
j=1

(
xj log

(
xj
yj

)
− 1

)
+

m∑
j=1

yj .(2.3)

We also require the functional Vf : E×E∗ → [0,+∞] associated with the function
f , defined by

V (x, x∗) = f(x)− ⟨x, x∗⟩+ f∗(x∗) ∀ x ∈ E, x∗ ∈ E∗.

We have Vf (x, x
∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗. Moreover, by the

subdifferential inequality, we also have

Vf (x, x
∗) + ⟨∇f∗(x∗)− x, y∗⟩ ≤ Vf (x, x

∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗ (see [31]).
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Definition 2.3 ([13,16]). The bifunction vf : int dom(f)× [0,+∞), defined by

vf (x, t) := inf{Df (y, x) : y ∈ dom(f), ∥y − x∥ = t},
is called the modulus of total convexity of f at x. The function f is called totally
convex at x ∈ int dom(f) if vf (x, t) is positive for all t > 0. The modulus of total
convexity of f on K is the bifunction vf : int dom(f)× [0,+∞), defined by

vf (K, t) := inf{vf (x, t) : x ∈ K ∩ int dom(f)}.
The function f is said to be totally convex on bounded subsets if vf (K, t) > 0 for
any nonempty and bounded subset K and any t > 0. Also, f is said to be strongly

coercive if lim∥x∥→+∞
∣∣f(x)
∥x∥
∣∣ = +∞.

Definition 2.4 ([11]). Let K be a nonempty, closed and convex subset of a reflexive
real Banach space E. The Bregman projection of x ∈ int dom(f) onto K ⊂ int
dom(f) is the unique vector ΠKx ∈ K which satisfies

Df (ΠKx, x) = inf{Df (y, x) : y ∈ K}.

Lemma 2.5 ([16]). Let K be a nonempty, closed and convex subset of E and x ∈ E.
Let f : E → R be a Gâteaux differentiable and totally convex function. Then

(i) q = ΠKx if and only if ⟨∇f(x)−∇f(q), y − q⟩ ≤ 0 for all y ∈ K;
(ii) Df (y,ΠKx) +Df (ΠK(x), x) ≤ Df (y, x) for all y ∈ K.

Proposition 2.6 ([13]). If x ∈ int dom(f), then the following assertions are equiv-
alent:

(i) the function f is totally convex at x;
(ii) f is sequentially consistent at x, that is, for any sequence {yn} ⊂ dom(f),

we have

lim
n→∞

Df (yn, x) = 0 ⇒ lim
n→∞

∥yn − x∥ = 0.

We also recall (see [13]) that the function f is called sequentially consistent if for
any two sequences {xn} and {yn} in E such that the first one is bounded, we have

lim
n→∞

Df (xn, yn) = 0 ⇒ lim
n→∞

∥xn − yn∥ = 0.(2.4)

Proposition 2.7 ([13]). If dom(f) contains at least two points, then the function
f is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Proposition 2.8 ([45]). Let f : E → R be a Gâteaux differentiable and totally con-
vex function. If x̄ ∈ E and the sequence {Df (xn, x̄)} is bounded, then the sequence
{xn} is bounded too.

Lemma 2.9 ([39]). If f : E → (−∞,+∞] is a proper, lower semicontinuous and
convex function, then f∗ : E∗ → (−∞,+∞] is a proper, weak∗ lower semicontinuous
and convex function. Thus for all y ∈ E, we have

Df

(
y,∇f∗

(
N∑
i=1

λi∇f(xi)

))
≤

N∑
i=1

λiDf (y, xi),

where {xi}Ni ⊂ E and {λi}Ni ⊂ (0, 1) with
∑N

i=1 λi = 1.
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Let K be a nonempty, closed and convex subset of a real Banach space E, and
let S : K → K be a mapping. A point x ∈ K is said to be a fixed point of S if
x = Sx. A point x is called an asymptotic fixed point of S [42] if K contains a
sequence {xn}n≥1 such that xn ⇀ x and ∥xn−Sxn∥ → 0 as n → ∞. We denote by

F (S) and by F̂ (S) the set of fixed points and the set of asymptotic fixed points of
S, respectively. If S : K → int dom(f) is a mapping, then S is said to be

(a) Bregman firmly nonexpansive (BFNE) if

⟨∇f(Sx)−∇f(Sy), Sx− Sy⟩ ≤ ⟨∇f(x)−∇f(y), Sx− Sy⟩ ∀ x, y ∈ K;

(b) Quasi-Bregman firmly nonexpansive (QFNE) if F (S) ̸= ∅ and

⟨∇f(x)−∇f(Sx), x− y⟩ ≥ 0 ∀ x ∈ K, y ∈ F (S);

(c) Bregman strongly nonexpansive (BSNE) with respect to F̂ (S) if

Df (y, Sx) ≤ Df (y, x) ∀ x ∈ K, y ∈ F̂ (S)

and for any bounded sequence {xn}n≥1 ⊂ K,

lim
n→∞

Df (y, xn)−Df (y, Sxn) = 0

implies that

lim
n→∞

Df (xn, Sxn) = 0

(see [29]). It is not difficult to see that if F (S) = F̂ (S) ̸= ∅, then

BFNE ⊂ QFNE ⊂ BSNE.

If h : E → R ∪ {∞} is a proper, convex and lower semicontinuous function, then
the proximal map of h of order λ > 0 is given by

proxλh(x) = argmin
y∈E

{
h(x) +

1

2λ
Df (x, y)

}
.

A mapping A : E → 2E
∗
is called monotone if for any x, y ∈ domA, we have

u ∈ Ax and v ∈ Ay ⇒ ⟨u− v, x− y⟩ ≥ 0.(2.5)

A is said to be maximal monotone if A is monotone and the graph of A is not
properly contained in the graph of any other monotone mapping. The resolvent

associated with the mapping A of order λ for any λ > 0 is the operator Jf
λA : E → 2E

defined by

Jf
λA := (∇f + λA)−1 ◦ ∇f.

Let K be a nonempty, closed and nonempty subset of a reflexive Banach space E.
The mapping A : E → 2E

∗
is called Bregman inverse strongly monotone (BISM)

on the set K if

K ∩ dom(f) ∩ int dom(f) ̸= ∅
and for any x, y ∈ K ∩ int dom(f), u ∈ Ax and v ∈ Ay, we have

⟨u− v,∇f∗(∇f(x)− u)−∇f∗(∇f(y)− v)⟩ ≥ 0.(2.6)
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It is known (see [29]) that the class of BISM mappings is more general than the class
of firmly nonexpansive operators in Hilbert spaces. To see this, let f(·) = 1

2∥ · ∥
2.

Then ∇f = ∇f∗ = I, where I is the identity operator and (2.6) becomes

⟨u− v, x− y⟩ ≥ ∥u− v∥2.

For more information on this class of operators, see [12, 44]. Let A : E → 2E
∗
be a

mapping. Then the anti-resolvent associated with A of order λ > 0 is the mapping

Af
λ : E → 2E given by

Af
λ := ∇f∗ ◦ (∇f − λA).

Proposition 2.10 ([38]). Let B : E → 2E
∗
be a maximal monotone operator and

A : E → E∗ be a Bregman inverse strongly monotone operator such that (A +
B)−1(0) ̸= ∅. Let f : E → R be a Legendre function which is uniformly Fréchet
differentiable and bounded on bounded subsets of E. Then we have

(i) (A+B)−1(0) = F (Jf
λB ◦Af

λ);

(ii) Jf
λB ◦Af

λ is a BSNE operator such that F (Jf
λB ◦Af

λ) = F̂ (Jf
λB ◦Af

λ);

(iii) Df (p, J
f
λB ◦Af

λx) +Df (J
f
λB ◦Af

λx, x) ≤ Df (p, x) for any p ∈ (A+B)−1(0),
x ∈ X and λ > 0.

Lemma 2.11 ([47]). Let {an} be a sequence of nonnegative real numbers, {αn} be
a sequence of real numbers in (0, 1) such that

∑∞
n=1 αn = ∞ and {bn} be a sequence

of real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn ∀ n ≥ 1.

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

} of {an} satisfying the condition

lim inf
k→∞

(ank+1 − ank
) ≥ 0,

then limn→∞ an = 0.

3. Main result

In this section we first propose a strongly convergent algorithm for approximating
a solution to the VIP (1.1) and then present its convergence analysis. Recall that
the solution set Γ of the problem is closed and convex [38,52].

Algorithm 3.1. Modified Halpern-Inertial Iterative Method (MHIM)

Initialization: Choose v, x0, x1 ∈ E and θ > 0. For all n ∈ N, let {αn}, {βn}, {γn}
be sequences in (0,1) such that αn + βn + γn = 1.
Step 1: Given xn, xn−1, choose θn such that θn ∈ [0, θ̄n], where

θ̄n =

min

{
θ,

ϵn
∥∇f(xn)−∇f(xn−1)∥

}
, if ∇f(xn) ̸= ∇f(xn−1),

θ otherwise
(3.1)

and {ϵn} is a sequence of nonnegative numbers such that ϵn = ◦(αn), that is,
limn→∞

ϵn
αn

= 0.
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Compute {
wn = ∇f∗(∇f(xn) + θn(∇f(xn)−∇f(xn−1))),

yn = Jf
λnB

◦Af
λn
wn.

(3.2)

If yn = wn, then stop. Otherwise, go to the next step.
Step 2: Compute

xn+1 = ∇f∗(αn∇f(v) + βn∇f(wn) + γn∇f(yn)) ∀ n ≥ 0.(3.3)

Set n := n+ 1 and return to Step 1.

Lemma 3.2. The sequence {xn} generated by Algorithm 3.1 is bounded. Conse-
quently, the sequences {wn} and {yn} are bounded too.

Proof. Let p ∈ Γ and vn = ∇f(xn)+θn(∇f(xn)−∇f(xn−1)). Then wn = ∇f∗(vn).
Using (3.2), we see that

Df (p, wn)
(3.4)

= Df (p,∇f∗(vn)) = f(p)− f∗(vn) + ⟨p, vn⟩
= f(p)− f∗(∇f(xn) + θn(∇f(xn)−∇f(xn−1)))

+ ⟨p,∇f(xn) + θn(∇f(xn)−∇f(xn−1))⟩
≤ f(p) + ⟨p,∇f(xn)⟩+ ⟨p, θn(∇f(xn)−∇f(xn−1))⟩
− [(1 + θn)f

∗(∇f(xn))− θnf
∗(∇f(xn−1))

+ θn(1 + θn)ρr(∥∇f(xn)−∇f(xn−1∥))]
= f(p) + ⟨p,∇f(xn)⟩ − f∗(∇f(xn) + ⟨p, θn(∇f(xn)−∇f(xn−1))⟩
− [θnf

∗(∇f(xn))− θnf
∗(∇f(xn−1)) + θn(1 + θn)ρr(∥∇f(xn)−∇f(xn−1∥))]

= Df (p, xn) + ⟨p, θn(∇f(xn)−∇f(xn−1))⟩
− [θnf

∗(∇f(xn))− θnf
∗(∇f(xn−1)) + θn(1 + θn)ρr(∥∇f(xn)−∇f(xn−1∥))]

= Df (p, xn)− θnf
∗(∇f(xn)) + θnf

∗(∇f(xn−1)) + ⟨p, θn(∇f(xn)−∇f(xn−1))⟩
− θn(1 + θn)ρr(∥∇f(xn)−∇f(xn−1∥))
≤ Df (p, xn)− θn[f

∗(∇f(xn))− f∗(∇f(xn−1))] + ⟨p, θn(∇f(xn)−∇f(xn−1))⟩
≤ Df (p, xn)− θn⟨xn,∇f(xn)−∇f(xn−1)⟩+ θn⟨p, (∇f(xn)−∇f(xn−1))⟩
= Df (p, xn) + θn⟨p− xn,∇f(xn)−∇f(xn−1)⟩
≤ Df (p, xn) + θn∥xn − p∥∥∇f(xn)−∇f(xn−1)∥.
It follows from (3.1) that θn∥∇f(xn) − ∇f(xn−1)∥ ≤ ϵn. Combining this with

limn→∞
ϵn
αn

= 0, we obtain

lim
n→∞

θn
αn

∥∇f(xn)−∇f(xn−1)∥ ≤ lim
n→∞

ϵn
αn

= 0.

Thus, there exists a number M1 > 0 such that

θn
αn

∥∇f(xn)−∇f(xn−1)∥ ≤ M1 ∀ n ≥ 1.
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Hence

Df (p, wn) ≤ Df (p, xn) + αnM1M2

= Df (p, xn) + αnM,(3.5)

where M2 = supn∈N ∥xn − p∥.
Using (3.2) once again, we have

Df (p, yn) = Df (p, J
f
λnB

◦Af
λn
wn)

≤ Df (p, wn).(3.6)

It now follows from (3.3) that

Df (p, xn+1) = Df (p,∇f∗(αn∇f(v) + βn∇f(wn) + γnf(yn)))

≤ αnDf (p, v) + βnDf (p, wn) + γnDf (p, yn)

≤ αnDf (p, v) + (βn + γn)Df (p, wn)

= αnDf (p, v) + (1− αn)Df (p, wn)

≤ (1− αn)Df (p, xn) + αn(Df (p, v) +M)

≤ max{Df (p, xn), Df (p, v) +M}
...

≤ max{Df (p, x0), Df (p, v) +M} ∀ n ≥ 0.(3.7)

Thus, we find that {Df (p, xn)} is bounded. It now follows from Proposition 2.8
that the sequence {xn} is bounded. Consequently, the sequences {wn} and {yn}
are bounded too, as asserted. □

Theorem 3.3. Let E be a real reflexive Banach space and let E∗ be its dual. Let
B : E → 2E

∗
be a maximal monotone operator and let A : E → E∗ be a BISM

mapping such that Γ ̸= ∅. Let f : E → R ∪ {+∞} be a strongly coercive Legendre
function, which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. If the sequences {αn}and {γn} ⊂ (0, 1) are selected such that

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1,

then the sequence {xn} generated by Algorithm 3.1 converges strongly to a point
p ∈ Γ, where p = ΠΓv.
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Proof. Let p = ΠΓv. Since p ∈ Γ, it follows from (3.2), (3.3) and Proposition 2.10
(iii) that

Df (p, xn+1) = Df (p,∇f∗(αn∇f(v) + βn∇f(wn) + γnf(yn)))

= Vf (p, αn∇f(v) + βn∇f(wn) + γnf(yn))

≤ Vf (p, αn∇f(v) + βn∇f(wn) + γnf(yn)− αn(∇f(v)−∇f(p)))

+ 2αn⟨xn+1 − p,∇f(v)−∇f(p)⟩
= Df (p,∇f∗(αn∇f(p) + βn∇f(wn) + γnf(yn)))

+ 2αn⟨xn+1 − p,∇f(v)−∇f(p)⟩
≤ αnDf (p, p) + βnDf (p, wn) + γnDf (p, yn)

+ 2αn⟨xn+1 − p,∇f(v)−∇f(p)⟩
≤ βnDf (p, wn) + γn(Df (p, wn)−Df (yn, wn))

+ 2αn⟨xn+1 − p,∇f(v)−∇f(p)⟩
= (βn + γn)Df (p, wn)− γnDf (yn, wn) + 2αn⟨xn+1 − p,∇f(v)−∇f(p)⟩
≤ (1− αn)Df (p, xn)− γnDf (yn, wn)

+ αn

(
2⟨xn+1 − p,∇f(v)−∇f(p)⟩+ θn

αn
∥∇f(xn)−∇f(xn−1)∥M2

)
≤ (1− αn)Df (p, xn) + αnbn,(3.8)

where

bn =

(
2⟨xn+1 − p,∇f(v)−∇f(p)⟩+ θn

αn
∥∇f(xn)−∇f(xn−1)∥M2

)
.

Therefore we have

γnDf (yn, wn) ≤ Df (p, xn)−Df (p, xn+1) + αnM
′,(3.9)

where M ′ = supn∈N bn.
We next show that the sequence {xn} converges strongly to p. To this end, set

an = Df (p, xn). Then it follows from (3.8) that

an+1 ≤ (1− αn)an + αnbn.

To conclude the argument, we apply Lemma 2.11. Indeed, it suffices to show that
lim supk→∞ bnk

≤ 0 whenever there exists a subsequence {ank
} of {an} verifying

lim inf
k→∞

(ank+1 − ank
) ≥ 0.(3.10)

Suppose such a subsequence exists. Then it follows from (C1) and (3.9) that

lim sup
k→∞

γnk
Df (ynk

, wnk
) ≤ lim sup

k→∞
(ank

− ank+1) +M ′ lim
k→∞

αnk

= − lim inf
k→∞

(ank+1 − ank
)

≤ 0.(3.11)

Thus,

lim
k→∞

Df (ynk
, wnk

) = 0.(3.12)
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By Proposition 2.9, we have

∥ynk
− wnk

∥ → 0 as k → ∞.(3.13)

Observe that

∥∇f(wnk
)−∇f(xnk

)∥ = θnk
∥∇f(xnk

)−∇f(xnk−1
)∥

≤ αnk

θnk

αnk

∥∇f(xnk
)−∇f(xnk−1)∥ → 0 as k → ∞.(3.14)

Therefore, since ∇f∗ is continuous on bounded subsets of E∗, we obtain

lim
k→∞

∥wnk
− xnk

∥ = 0.(3.15)

Observe also from (3.3) that

∥∇f(xnk+1)−∇f(xnk
)∥ ≤ αnk

∥∇f(v)−∇f(xnk
)∥+ βnk

∥∇f(wnk
)−∇f(xnk

)∥
+ γnk

∥∇f(ynk
)−∇f(xnk

)∥
≤ αnk

∥∇f(v)−∇f(xnk
)∥+ βnk

∥∇f(wnk
)−∇f(xnk

)∥
+ γnk

∥∇f(ynk
)−∇f(wnk

)∥+ γnk
∥∇f(wnk

)−∇f(xnk
)∥

which implies by condition (C1), (3.13) and (3.14), that

∥∇f(xnk+1)−∇f(xnk
)∥ → 0 as k → ∞.

It now follows that

lim
k→∞

∥xnk+1 − xnk
∥ = 0.(3.16)

Since {xnk
} is bounded, there exists a subsequence, say {xnkj

}, of {xnk
} such

that xnkj
⇀ q ∈ K and (see (3.16)) such that

lim sup
k→∞

⟨xnk+1 − p,∇f(v)−∇f(p)⟩ = lim
j→∞

⟨xnkj
+1 − p,∇f(v)−∇f(p)⟩

= ⟨q − p,∇f(v)−∇f(p)⟩.

It also follows from the fact that xnkj
⇀ q and (3.15) that the sequence {wnkj

}
converges weakly to q. Thus, using (3.13), and Proposition 2.10 (i) and (ii), we see
that q ∈ (A+B)−1(0). Since p = ΠΓv, we infer that

lim sup
k→∞

⟨xnk+1 − p,∇f(v)−∇f(p)⟩ = ⟨q − p,∇f(v)−∇f(p)⟩

≤ 0.

Now it follows from Lemma 2.11 and (3.8) that Df (p, xn) → 0 as n → ∞. It also
follows from Proposition 2.6 that the sequence {xn} converges strongly to p ∈ Γ, as
asserted. □
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4. Applications

4.1. Application to Minimization Problems (MP). Let C be a nonempty,
closed and convex subset of a real reflexive Banach space E. Consider the following
Minimization Problem: Find x ∈ C such that

min
y∈E

h1(x) + h2(x),(4.1)

where h1 : E → R ∪ {+∞} is a proper, convex and lower semicontinuous function,
and h2 : E → R is a smooth, convex and differentiable function with a Lipschitz
continuous gradient ∇h2. It is well known that many optimization problems such
as image processing, machine learning, statistical regression and signal processing
can be cast into the form (4.1) (see [51] and references therein). This formulation is
premised on the fact that ∇h2 is monotone and ∂h1 is maximal monotone (see [46]).
Note that the MP (4.1) is equivalent to the VIP

0 ∈ ∂h1(x) +∇h2(x).(4.2)

It follows then that (4.2) is a special case of (1.1) with A = ∇h2 and B = ∂h1.
By setting A = ∇h2 andB = ∂h1 in Algorithm 3.1, we see that yn = proxλnh1(wn−

λn∇h2(wn)). We then obtain the following strong convergence theorem for approx-
imating a solution to (4.2), that is, a minimizer of (4.1). We denote the solution
set of (4.2) by Ω.

Theorem 4.1. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and let E∗ be the dual space of E. Let h1 : E → R ∪ {+∞} be a
proper, convex and lower semicontinuous function and let h2 be a smooth, convex
and differentiable function with L-Lipschitz continuous gradient. Assume that Ω ̸= ∅
and that λn ∈

(
0, 2

L

)
. Let f : E → R ∪ {+∞} be a strongly coercive Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. If the sequences {αn}and {γn} ⊂ (0, 1) are selected so that

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1,

then the sequence {xn} generated by Algorithm 3.1 converges strongly to a point
p ∈ Ω, where p = ΠΩv.

4.2. Appication to split feasibility problems. Let E1 and E2 be real Banach
spaces and let T : E1 → E2 be a bounded linear operator. Let C andQ be nonempty,
closed and convex subsets of E1 and E2, respectively. The split feasibility problem
(SFP) is the problem of finding a point x ∈ C such that

Tx ∈ Q.

We denote the solution set of the SFP by Υ = C ∩ T−1(Q) = {y ∈ C : Ty ∈ Q}.
The SFP was introduced by Censor and Elfving [18] for solving inverse problems
arising from phase retrievals, medical image processing, and machine learning.

We recall that the indicator function of C is the function iC , defined by

iC(x) :=

{
0, x ∈ C,

∞, otherwise.
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It is well known that the proximal mapping of iC is the projection on C; that is,

proxiC (x) = argmin
y∈C

Df (y, x)

= ΠCx.

Let C and Q be nonempty, closed and convex subsets of real reflexive Banach
spaces E1 and E2, respectively. Let T : E1 → E2 be a bounded linear operator and
denote its adjoint by T ∗. Take h2(x) = 1

2∥Tx − ΠQ(Tx)∥2 and h1(x) = iC . The
following theorem follows from Theorem 4.1 with yn = ΠC(wn−λnT

∗(I−ΠQ)Twn)
in Algorithm 3.1.

Theorem 4.2. Let C and Q be nonempty, closed and convex subsets of the real
reflexive Banach spaces E1 with E2, respectively. Let T : E1 → E2 be a bounded
linear operator and let T ∗ denote the adjoint of T . Assume that Υ ̸= ∅ and that
λn ∈

(
0, 2

∥T∥2
)
. Let f : E1 → R ∪ {+∞} be a strongly coercive Legendre function

which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E1. If the sequences {αn}and {γn} ⊂ (0, 1) are selected so that

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1,

then the sequence {xn} generated by Algorithm 3.1 converges strongly to a point
p ∈ Υ, where p = ΠΥv.

4.3. Application to LASSO Problems. The following application is a special
case of the one given in Section 4.1.

Recall that the ℓ1-norm regularized least squares model is formulated as follows:

min
x∈Rn

1

2
∥Dx− b∥2 + λ∥x∥1,(4.3)

where D ∈ Rm×n is a given matrix, b is a given vector and λ is a positive constant.
Denote the solution set of (4.3) by Ω. The concept of ℓ1 regularization has been
studied for many years. The least squares problem with ℓ1 penalty was presented
and popularized independently with the name Least Absolute Shrinkage and Selec-
tion Operator (LASSO, see [49]) and Basis Pursuit Denoising (BPDN) [19]. Interest
in compressed sensing is in recovering a solution x to an underdetermined system
of linear equations Dx = b in the case where n > m. We know from linear alge-
bra that solutions to this system may not exist or be unique when the number of
unknowns is greater than the number of equations. In order to solve a system of
this formulation, the ℓ1 norm regularized least squares model is used. If x is sparse,
as is often the case in applications, then x can be recovered by solving the above
ℓ1-norm regularized least squares model (4.3). This model is often referred to as a
LASSO problem. Two notable iterative methods that take advantage of the special
structure of LASSO problems are the Iterative Shrinkage Thresholding Algorithm
(ISTA) and the Fast Iterative Shrinkage Thresholding Algorithm (FISTA), which is
an accelerated version of ISTA. The ISTA, which is also said to be a proximal gradi-
ent method, involves matrix and vector multiplication and possesses great advantage
over standard convex algorithms by avoiding matrix factorization. To improve the
speed of convergence, Beck and Teboulle [9] introduced the accelerated ISTA which
follows an earlier method by Nesterov [36,37]. The ISTA and FISTA have been used
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for solving problems containing convex differentiable objectives combined with an
ℓ1 regularization terms like the problem

min
y∈E

h1(x) + h2(x),(4.4)

where h1 is a smooth convex function and h2 is a continuous function not necessarily
smooth. It is obvious that the LASSO problem (4.3) is a special case of (4.4) with
h1(x) =

1
2∥Dx−b∥2 and h2(x) = λ∥x∥1. The gradient of h1 is ∇h1(x) = D∗D−D∗b

with Lipschitz constant L = ∥D∗D∥. The proximal map with g(x) = λ∥x∥1 is given
by

proxg(x) = proxλ∥·∥(x) =
(
proxλ∥·∥(x1), . . . , proxλ∥·∥(xn)

)
= (γ1, . . . , γn),

where γj = sgn(xj)max{|xj | − λ, 0} for j = 1, 2, . . . , n. Using this, we obtain from
Theorem 4.1 the following theorem for solving LASSO problems.

Theorem 4.3. Let E be a real reflexive Banach space and let E∗ denote its dual
space. Let h1 : E → R and h2 : E → R be such that h1(x) = 1

2∥Dx − b∥2 and

h2(x) = λ∥x∥1. Assume Ω is nonempty and let λn ∈
(
0, 2

∥L∥
)
, where L = ∥D∗D∥.

Let f : E → R ∪ {+∞} be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. If the
sequences {αn} and {γn} ⊂ (0, 1) are selected so that

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1,

then the sequence {xn} generated by Algorithm 3.1 converges strongly to a point
p ∈ Ω, where p = ΠΩv.

5. Numerical examples

In this section we present numerical examples regarding the performance of our
algorithm.

Example 5.1. Let E1 = E2 = R, C = [−1, 1] and let f : R → R be defined

by f(x) = x2

2 . Then f satisfies the assumptions of Theorem 3.3 (see [10]). We

have ∇f(x) = x, f∗(x∗) = x∗2

2 and ∇f∗(x∗) = x∗. Let A : R → R be defined by
A(x) = 5x and let B : R → R be defined B(x) = 7x− 1. Then A and B are BISM
and maximal monotone, respectively. Let yn be as given in Algorithm 3.1, and let
x ∈ E and λn > 0. Then

Jf
λnB

◦Af
λn
x = (∇f + λnB)−1∇f ◦ ∇f∗(∇f − λn)A)(x)

= (∇f + λnB)−1(x− 5λnx)

=
x− 5λnx+ λn

1 + 7λn
.

Hence,

yn =
(1− 5λn)wn + λn

1 + 7λn
.
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Let αn = 1
5n+2 , βn = 3n

5n+2 , γn = 2n+1
5n+2 , ϵn = 1

n2 , θ = 1
3.3 and λn = 1.1. Choosing

a stopping criterion given by En = ∥xn+1 − xn∥ = 10−4, we consider the following
cases for this numerical experiment.

Case (i) v = 0.8, x0 = 1.75 and x1 = 1.2;
Case (ii) v = 0.8, x0 = 1.896 and x1 = 1.896;
Case (iii) v = 1.2, x0 = 1.25 and x1 = 1.896;
Case (iv) v = 2.5, x0 = 5.25 and x1 = 7.69.

The results we have obtained are displayed in Figure 1.

Table 1. Computational results for Example 5.1

Case Test Parameter Algorithm 3.1 Unaccelerated Altered
(i) No of Iter. 7 16 26

CPU time (sec) 0.0013 2.9229 4.561
(ii) No of Iter. 14 16 26

CPU time (sec) 0.0130 3.6771 6.124
(iii) No of Iter. 6 20 29

CPU time (sec) 0.0050 5.8712 8.001
(iv) No of Iter. 20 29 35

CPU time (sec) 0.0079 5.8712 7.556

Example 5.2. Next, we give an example illustrating our Theorem 4.2. Let f(x) =
1
2∥x∥

2 and E1 = E2 = L2([α, β]) equipped with the inner product and norm given

by ⟨x, y⟩ =
∫ β
α x(s)y(s)ds and ∥x∥ =

√∫ β
α ∥x(s)|2ds, respectively, for all x, y ∈

L2([α, β]) and s ∈ [α, β]. Suppose

C := {u ∈ L2([α, β]) : ⟨a, u⟩ ≤ b},
where 0 ̸= a ∈ L2([α, β]) and b ∈ R. Then we know (see [17]) that

ΠC(u) = PC(u) =

{
u+ b−⟨a,u⟩

∥a∥2 , if u /∈ C

u, otherwise.

Let Q be given by
Q = {v ∈ L2([α, β]) : ⟨v, d⟩ = e}

which is a closed hyperplane. Also,

ΠQ(v) = PQ(v) = max

{
0,

e− ⟨v, d⟩
∥d∥2

}
d+ v.(5.1)

For this example, we let C := {x ∈ L2([0, 1]) : ⟨x, a⟩ ≤ b}, where a = t
5 and b = −1.

The set Q is given by Q := {y ∈ L2([0, 1]) : ⟨c, y⟩ = e}, where c = t
3 and e = 0. Let

the operator T : L2([0, 1]) → L2([0, 1]) be given by T (x(s)) = x(s)
2 ∀x ∈ L2([0, 1]).

Let αn = 1
200n+3 , βn = γn = 100n+1

200n+3 , ϵn = 1
n1.1 , θ = 1

3 and λn = 2.2. Choosing

a stopping criterion given by En = ∥xn+1 − xn∥ = 10−2, we consider the following
cases for the initial values x0 and x1:

Case (I) v = 2t, x0 = −2t+ 1 and x1 = sin(t+ 1);
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Figure 1. Example 5.1, Top left: Case (i); Top right: Case (ii);
Bottom left: Case (iii); Bottom right: Case (iv)

Case (II) v = 2t, x0 = 2t2 + 1 and x1 = sin(2t− 1);
Case (III) v = t

5 , x0 = 11t2 + 10t+ 7 and x1 = e−t;

Case (IV) v = t
5 , x0 = log(2t) and x1 = e−3t.

The numerical results we have obtained are displayed in Figure 2.

Example 5.3. We now give an application of our method to image restoration. We
first recall that the general image recovery problem is formulated by the inversion
of the following linear equation:

y = Dx+ b,(5.2)

where x ∈ Rn, x, b and y are the original image, additive random noise, which is
unknown, and the known degraded observation, respectively. The operator D is a
linear operator which depends on the image recovery problem under consideration.
This model has been applied to several optimization problems. For solving problems
arising from this model, authors have used the ℓ1 norm. The ℓ1 regularization
problem is given by

min
x

{
1

2
∥Dx− b∥22 + λn∥x∥1

}
,(5.3)
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Figure 2. Example 5.2, Top left: Case (I); Top right: Case (ii);
Bottom left : Case (III); Bottom right: Case (IV).

where x ∈ Rn, b ∈ Rm, D is an m × n matrix and λn is a nonnegative parameter.
Thus, finding solutions to (5.2) amounts to approximating solutions of the convex
minimization problem

Find x ∈ arg min
x∈Rn

{
1

2
∥Dx− b∥2 + λn∥x∥1

}
,(5.4)

where b is the degraded image and D is an operator representing the mask. Setting
Ax := ∇(12∥Dx− b∥22) = DT (Dx− b) and Bx := ∂(λ∥x∥1), we apply Algorithm 3.1
to solving (5.4).

In our experiments we have used the MATLAB blur function “P = special
(‘motion’, 20,30)” and added the random noise 0.001 × randn(size(x)). We ini-
tialize x0 and u to be zeroes in Rn and set x1 = Dx+ b. We also choose αn = 0.5,
β = 0.75, γ = 0.25, θ = 0.95 and λ = 0.000001. We have chosen flamingo, pep-
per, sherlock and strawberries from the MATLAB toolbox as our test images. The

stopping criterion for the algorithms is ∥xn+1−xn∥
∥xn+1∥ < 10−4 and a maximum iteration

number of n = 100.
The signal-to-noise ratio (SNR) is a measure used in science and engineering to

compare the level of a desired signal to the level of the background noise. In this
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Figure 3. Test images and restoration via Algorithm 3.1 and one
of its variations

case, it is used to measure the performance of the algorithms and is defined by

SNR = 10 log
∥xn∥

∥x− xn∥
,

where x and xn are the original image and estimated image at iteration n, re-
spectively. By using this measuring technique, the best restoration process via the
algorithm is determined by the higher SNR (see Table 2 and 3) for comparing two
methods.

Remark 5.4. It is evident from Table 2, 3 and Figure 3 that our method performs
better in applications than the method where the direction of the momentum xn −
xn−1 is changed.

6. Conclusions

We have introduced an inertial iterative method for approximating a zero of the
sum of two monotone operators in a reflexive Banach space. By using the forward-
backward and the Halpern techniques, we have presented and proved a strong con-
vergence theorem assuming standard conditions on the control parameters. We note
that in choosing our inertial step the change of direction of the momentum which
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Table 2. Numerical results of SNR in Figure 3.

Algorithm 3.1 Altered direction
n Flamingo Pepper Flamingo Pepper
1 32.58 32.12 30.59 28.50
10 36.96 36.95 34.53 34.56
20 39.74 40.20 35.82 36.27
30 43.48 44.37 36.79 37.54
40 45.70 46.62 37.58 38.55
50 47.28 48.21 38.22 39.38
60 48.69 49.47 38.78 40.07

Table 3. Continuation of Table 2.

Algorithm 3.1 Altered direction
n Sherlock Strawberries Sherlock Strawberries
1 47.08 28.07 39.72 26.12
10 52.50 32.19 50.23 29.82
20 55.63 34.94 52.17 31.01
30 58.12 38.09 53.49 31.92
40 59.19 41.62 54.49 32.65
50 59.71 43.55 55.30 33.27
60 59.99 45.43 55.97 33.80

has been mostly used when the framework is a Banach space ([1,5,30]) has been re-
moved. Some applications of our main result have been reported. Furthermore, we
have displayed several numerical examples which show the differences in the number
of iterations and the CPU time for convergence for our method and its variations
in terms of the inertial technique.
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