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Figure 1. Left. Incidence geometry of projection rays and cells in-
dexed by In, that cover a subset in Rd (here: d = 2 for illustration).
The corresponding line integrals define the matrix A that linearly
maps cell values yi, i ∈ In to projections bj , j ∈ {1, . . . , p}. This
gives rise to an underdetermined linear system Ay = b. The task
is to recover y from b by solving (1.2) using the constraints and the
regularizer to obtain a well-posed problem. Right. Reducing the
spatial resolution yields a coarse level representation of the projec-
tion matrix, that enables to evaluate a surrogate of the objective
function on the coarse level which does not involve the data vector
b recorded on the fine level. This coarse level representation allows
to compute descent directions on the fine level efficiently using a
smaller subset of variables at the coarse level.

vectors between levels. Criteria for invoking coarse level computation and certifying
resulting search directions are provided. Numerical results illustrate the effective-
ness of our approach for the specific instance of (1.1)

(1.2) min
y∈[0,1]n

f(y), f(y) := Dφ(Ay, b) + J(y),

where b ∈ Rp
++ is a positive measurement vector, A ∈ Rp×n is a nonnegativity-

preserving linear mapping, J is a smoothed total variation regularizer [11, eq. (2.5)]
and Dφ is the Bregman divergence with respect to the convex function

(1.3) φ : Rn → R, y 7→ φ(y) = 〈y, log y〉 − 〈1, y〉.
See Figure 1 and the caption for further explanation.

Although we consider the specific problem (1.1) in this paper, we believe that
our approach generalizes to other constrained convex programs, analogous to the
way how open convex parameter sets of probability distributions are turned into
statistical manifolds [3, 23].

1.2. Related Work. Multilevel optimization has been introduced by Nash [25].
Multilevel smooth unconstrained optimization is the setting of [15, 25, 37], that
includes trust-region and line search optimization. The first multilevel optimization
method that covers the nonsmooth convex composite case was introduced in [29]. It
is a multilevel version of the well-known proximal gradient method. An accelerated
variant was proposed in [18]. Both approaches in [18,29] can only handle smoothable
functions in the sense of [6]. A multilevel optimization approach for box-constraints
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(non-smoothable functions) was proposed in [21]. The design of the coarse model
in [21] was inspired by the trust-region method in [15] and the work reported in [20],
and was adopted also in [30].

Multilevel approaches for general non-convex optimization problems, as seen
in [37], have not been extended to the non-Euclidean context, so there are currently
no theoretical results available. Recently, a geometric multilevel optimization ap-
proach has been proposed by [33] for the specific case of low-rank matrix manifolds.
Our approach differs in that we focus on information geometry for constructing mul-
tilevel problem representations, which should be applicable to various constrained
programs beyond the case study (1.2) considered in this paper.

Since Nesterov’s work [26], accelerated first-order convex optimization has become
an active research field [14,31,35,38]. Due to the performance of Nesterov’s discrete
scheme and the work [32], a major line of research concerns the understanding and
generation of accelerated discrete scheme using continuous-time ODEs, where an
adaptive ‘friction term’ causes acceleration. In our approach, acceleration is solely
achieved by employing a multilevel problem representation. Acceleration of the
first-order Riemannian dynamics is an interesting problem of future research.

The use of geometry for convex programming has a long history [1, 5, 28]. The
commonly adopted interior point geometry is based on Hessian metrics generated
by self-concordant barrier functions, due to the provable optimality in connection
with Newton-like second-order optimization [27], see e.g. [36] for recent related
work. Closer to our work is the comprehensive paper by [2] where Hessian metrics
generated by convex functions of Legendre type are studied for a class of convex
programs that include affine subspace constraints.

In the present paper, we also consider such a Riemannian metric on a simpler
structured bounded open convex feasible set, in order to focus on multilevel rep-
resentation and accelerated first-order optimization that copes with large problem
sizes. This necessitates, in particular, to devise restriction and prolongation opera-
tors not only for points on the manifold but also for tangent vectors. To this end, we
employ information geometry in order to design smooth nonlinear mappings based
on geometric averaging that can be efficiently computed in closed form. Numerical
experiments demonstrate that our method outperforms the recent state-of-the-art
method [17].

1.3. Contribution, Organization. We introduce basic notation and briefly recall
required properties of Bregman divergences in Section 2. Section 3 summarizes the
basic scheme of two-level optimization in Euclidean spaces. The core part of this
paper, Section 4, generalizes this scheme to a Riemannian setting. In particular,
information geometry is employed in a way that indicates how other convex pro-
grams could be handled in the same way, in principle. While we indicate multilevel
extensions in Sections 3.2 and 4.7, respectively, we mainly focus on the core problem
in this paper, that is two-level geometric optimization. Numerical experiments are
reported in Section 5 for a range of problem instances and compared to a recent
state-of-the-art method [17]. We conclude in Section 6.
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2. Preliminaries

2.1. Notation. We set [n] = {1, 2, . . . , n} for n ∈ N and

B = (0, 1),(2.1a)

Bn = B × · · · × B ⊂ Rn
++. (open n-box)(2.1b)

1 = (1, 1, . . . , 1)⊤ denotes the one-vector with dimension depending on the context.
Sometimes we indicate the dimension by a subscript, e.g. 1n ∈ Rn. The componen-
twise application of functions like log is simply denoted as

(2.2) log y = (log y1, . . . , log yn)
⊤, y ∈ Rn

++.

Likewise, the componentwise multiplication (Hadamard product) and division of
vectors y, y′ is written as

(2.3) y · y′ = (y1y
′
1, . . . , yny

′
n)

⊤,
y

y′
=

(y1
y′1
, . . . ,

yn
y′n

)⊤
.

The Euclidean vector inner product is denoted by 〈y, y′〉 = y⊤y′. ∂f denotes the
gradient of a differentiable function f : Rn → R, whereas grad f denotes the Rie-
mannian gradient of a function f :M→ R on a manifold (M, g) with metric g.

Components yj of vectors y ∈ Bn are indexed by [n] that we specifically denote
in this context by

(2.4) In = [n]. (n-grid)

The notion “n-grid” reminds of the fact that indices j typically refer to locations in
an underlying physical domain (cf. Section 1). In this sense, we will synonymously
refer to j as ‘point’ and ‘index’. A disjoint partition

(2.5) In = Im∪̇Icm, m < n

defines a coarse grid Im indexing coarse grid vectors x ∈ Bm and fine grid points
indexed by the complement Icm. In is called fine grid and vectors y ∈ Bn are called
fine grid vectors.

Regarding problem (1.2), we summarize our assumptions.

(A)

bi > 0, i = 1, . . . , p (1)

Aij ≥ 0, i = 1, . . . , p, j = 1, . . . , n (2)

∀y > 0: supp(Ay) = p, (3)

rankA = min{p, n}, (4)

where supp(y) denotes the number of nonzero components of a vector y.

2.2. Bregman Divergences.

Definition 2.1 (Bregman divergence [8], [10, Section 2], [7, Def. 7.6.1]). Let E
be a Euclidean space and ϕ : E → (−∞,+∞] be a convex function of Legendre
type with non-empty domain dom ϕ ⊆ E [7, Def. 7.1.1]. The Bregman divergence
corresponding to ϕ is defined by

(2.6) Dϕ : E × int domϕ→ [0,∞] : (x, y) 7→ ϕ(x)− ϕ(y)− 〈∂ϕ(y), x− y〉.
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Bregman divergences have the properties Dϕ(x, y) ≥ 0 and Dϕ(x, y) = 0 if and
only if x = y. A basic example is the Kullback-Leibler (KL) divergence

Dφ(y, y
′) =

〈
1, y · log y

y′
+ y′ − y

〉
(2.7a)

corresponding to the function

φ(y) = 〈y, log y〉 − 〈1, y〉, y ∈ Rn
+.(2.7b)

Lemma 2.2 ( [12, Lem 3.1]). Let S ⊂ Rn be an open set with closure S, and let
ϕ : S → R be a convex function as in Definition 2.1. Then, for any three points
a, b ∈ S and c ∈ S, the identity

(2.8) Dϕ(c, a) +Dϕ(a, b)−Dϕ(c, b) = 〈∂ϕ(b)− ∂ϕ(a), c− a〉

holds.

Now we consider the data term of (1.2)

(2.9) h(y) := Dφ(Ay, b)

with the KL-divergence Dφ given by (2.7) and gradient

(2.10) ∂h(y) = A⊤ log
Ay

b
.

Lemma 2.3. Assume b ∈ Rp
++, y ∈ Rn

+, y
′ ∈ Rn

++ and Ay′ ∈ Rp
++ . Then the

Bregman divergence corresponding to the function h given by (2.9) reads

(2.11) Dh(y, y
′) = Dφ(Ay,Ay

′).

Proof. By definition (2.6), we have

Dh(y, y
′) = h(y)− h(y′)− 〈∂h(y′), y − y′〉

(2.9)
= Dφ(Ay, b)−Dφ(Ay

′, b)− 〈∂φ(Ay′)− ∂φ(b), Ay −Ay′〉.(2.12)

Substituting ϕ← φ, b← b, a← Ay′ and c← Ay in Lemma 2.2 yields

Dφ(Ay,Ay
′) +Dφ(Ay

′, b)−Dφ(Ay, b) = 〈∂φ(b)− ∂φ(Ay′), Ay −Ay′〉.

Comparing this equation and (2.12) is equivalent to (2.11). □

3. Two-grid Euclidean optimization

In this section, we summarize prior work on two-level optimization in Euclidean
spaces [25, 37]. Our main contribution in this paper, the generalization to a Rie-
mannian setting, is described in Section 4.



860 S. MÜLLER, S. PETRA, AND M. ZISLER

3.1. Unconstrained Two-Grid Euclidean Optimization. As motivated in Sec-
tion 1, we assume a generic objective function f to be given that can be evaluated at
different discretization levels. In this section, we consider two discretization levels
called fine grid and coarse grid, respectively, and use the following notation.

fine grid variable : y ∈ Rn, current iterate : y0 ∈ Rn,(3.1a)

coarse grid variable : x ∈ Rm, restriction of y0 : x0 = Ry0 ∈ Rm.(3.1b)

Here, the restriction map R and its counterpart, the prolongation map P ,

R : Rm → Rn,(3.2a)

P : Rn → Rm,(3.2b)

transfer fine and coarse grid variables to the coarse and fine grid, respectively,
typically via linear interpolation or simple injection as in classical multigrid methods
[34].

We assume that the argument determines if the objective function f is evaluated
on the fine grid or the coarse grid, respectively. Thus, in view of (3.1), f(y) implies
f : Rn → R whereas f(x) implies f : Rm → R, with m < n.

We next describe a two grid cycle that computes an update y1 of y0 at a fine
grid. This is done either along a search direction efficiently obtained from a sur-
rogate objective function defined on the coarse grid using a much smaller number
of variables: coarse correction. Alternatively, whenever a coarse correction is not
effective, the update is determined using a standard local objective function ap-
proximation defined on the fine grid: fine correction.

The general two grid approach is summarized as Algorithm 1. It uses a repre-
sentation ψ of the objective function, specified in Section 3.1.1, that is not equal to
the evaluation of the objective f : Rm → R on the coarse grid.

Algorithm 1: Two Level Euclidean Optimization

input : initial point y0, mappings R,P (cf. (3.2), coarse grid model ψ
(cf. (3.3)).

output: approximate global minimizer y∗.
1 Initialization: k = 0

2 repeat
3 if condition to invoke the coarse model is satisfied at y0 then
4 set x0 = Ry0
5 determine a coarse grid iterate x such that ψ(x) < f(x0)

6 set d = P (x− x0)
7 find α > 0 such that f(y0 + αd) < f(y0) /* line search */

8 update y0 ← y0 + αd

9 else
10 apply one iteration of a monotone fine level algorithm to find y1 with

f(y1) < f(y0) and update y0 ← y1

11 increment k ← k + 1

12 until a stopping rule is met.
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The condition in line 3 is specified in Section 3.1.3. The role of the coarse grid
model ψ is further discussed in the following section.

3.1.1. Coarse Grid Model. The core ingredient of two level optimization is a coarse
grid model, that is a coarse grid representation of the fine grid problem in terms of
the objective function f evaluated at the coarse grid, the current iterate y0 and its
restriction x0 = Ry0 to the coarse grid. It reads

ψ(x) = f(x)− 〈x− x0, κ(x0, y0)〉,(3.3a)

with the linear correction term

κ(x0, y0) = ∂f(x0)−R∂f(y0).(3.3b)

The rationale behind the coarse grid model is to determine efficiently a gradient-like
descent direction on the fine grid using a much smaller number of variables on the
coarse grid, as first proposed in [25]. The linear correction term (3.3a) guarantees
that a fine grid stationary point is also a coarse grid stationary point. More precisely,
the gradient of ψ equals

∂ψ(x) = ∂f(x)− κ(x0, y0)(3.4a)

= ∂f(x)− ∂f(x0) +R∂f(y0)(3.4b)

= ∂ (f(x)− f(x0)) +R∂f(y0),(3.4c)

and hence the first-order coherence condition [25]

(3.5) ∂ψ(x0) = R∂f(y0),

holds at x = x0.

3.1.2. Descent Directions Based on the Coarse Grid Model. We next show that a
sufficient decrease of ψ given by (3.3) by updating the smaller number of coarse
grid variables x determines a descent direction for the fine grid objective. To this
end, we rewrite ψ in terms of the Bregman divergence corresponding to the coarse
grid objective f ,

ψ(x) = f(x)− 〈x− x0, κ(x0, y0)〉(3.6a)

= f(x)− 〈x− x0, ∂f(x0)−R∂f(y0)〉(3.6b)

= f(x)− f(x0)− 〈x− x0, ∂f(x0)−R∂f(y0)〉+ f(x0)(3.6c)

= Df (x, x0) + 〈x− x0, R∂f(y0)〉+ f(x0).(3.6d)

Now, assuming R and P satisfy the Galerkin condition

(3.7) R = P⊤

that is a standard condition in multigrid literature [34], we get

(3.8) ψ(x) = Df (x, x0) + 〈P (x− x0), ∂f(y0)〉+ f(x0).

Hence, whenever

(3.9) ψ(x) < f(x0) = ψ(x0)

at a coarse iterate x and the coarse objective f is convex, then the vector

(3.10) d = P (x− x0)
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is a descent direction of the fine grid objective f , since (3.9) and Df ≥ 0 implies

(3.11) 〈P (x− x0), ∂f(y0)〉 < 0

by (3.8). To find such a coarse grid iterate x in practice, one typically employs few
iterations of a monotone algorithm for minimizing ψ at the coarse level.

Remark 3.1. The coarse grid model rewritten in the form (3.8) reveals that it
incorporates both second-order information of the coarse grid objective (first term)
and first-order information of the fine grid objective (second term). Indeed, ignoring
the constant f(x0) and assuming f is twice differentiable, the first term can be
equivalently rewritten as

(3.12) Df (x, x0) =
1

2

〈
x− x0, ∂2f(x̃)(x− x0)

〉
for some x̃ ∈ {(1− t)x+ tx0 : t ∈ [0, 1]}, where ∂2f(x̃) is the Hessian of f at x̃.

3.1.3. Coarse Grid Correction Criteria. We employ the coarse grid model whenever
the criteria

(3.13) ‖R∂f(y0)‖ ≥ η‖∂f(y0)‖ and ‖y0 − yc‖ > ε

are satisfied, where η ∈ (0,min(1, ‖R‖)), ε ∈ (0, 1) and yc is the last point that
initiated a coarse grid correction.

(1) The first condition in (3.13) is adopted from [37] and is widely used in the
multilevel optimization literature. We discuss this first condition in view of
the first-order coherence condition (3.5).

If the left-hand side ‖R∂f(y0)‖ is too small at the current iterate y0, then
there is nothing to optimize on the coarse grid – as ‖∂ψ(x0)‖ is small too.
The entire first condition says that y0 is non-optimal in a twofold sense:
‖∂f(y0)‖ > 0 (otherwise both sides vanish) and on a coarser scale f is
sufficiently non-flat as well such that invoking the coarse grid model pays
off.

(2) Violation of the second condition says that the current iterate y0 is too close
to a point that already initiated a coarse grid correction.

3.1.4. Application to a Regularized Inverse Problem. In order to apply two-level
optimization to the regularized inverse problem (1.2), the coarse grid model function
ψ given by (3.8) has to be computed. Similar to the evaluation of the objective
function at both levels, we assume that the operator A can be directly evaluated at
both levels. For example, in discrete tomography, the projection matrix A represents
the incidence relation of projection rays and cells centered at the grid points, and
can be evaluated on every grid.

If suffices to consider the Bregman divergence since the remaining term only
involves fine grid variables (we ignore the constant f(x0)).

Lemma 3.2. The Bregman divergence corresponding to the objective function (1.2),
evaluated at the coarse level, reads

Df (x, x0) = Dφ(Ax,Ax0) + λDJ(x, x0).(3.14)
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Proof. Lemma 2.3 shows Dh(x, x0) = Dφ(Ax,Ax0) with h given by (2.9). The
result follows from linearity of the Bregman divergence with respect to the inducing
function, i.e. Dh+λJ(x, x0) = Dh(x, x0) + λDJ(x, x0). □
Remark 3.3. Lemma 3.2 shows, in particular, that the specific ray geometry (de-
picted in Fig. 1) at the coarse level can be selected independently of the ray geom-
etry at the fine level, since the projection data b drop out and hence have not to be
transferred between levels.

3.2. Multilevel Extension. We introduce the notation

x(ℓ) ∈ Rnℓ(3.15a)

for the variables at levels ℓ ∈ {0, 1, 2, . . . }, where

x(0) := x ∈ Rn =: Rn0(3.15b)

are the original fine grid variables. The components x
(ℓ)
i of these vectors are indexed

by the nested index sets

(3.15c) i ∈ Inℓ
⊂ Inℓ−1

⊂ · · · ⊂ In = In0 .

Accordingly, the coarse grid model (3.3) applied at level ℓ reads

ψ(x(ℓ)) = f(x(ℓ))− 〈x(ℓ) − x(ℓ)0 , κ(x
(ℓ)
0 , x

(0)
0 )〉,(3.16a)

κ(x
(ℓ)
0 , x

(0)
0 ) = ∂f(x

(ℓ)
0 )−R(0)

(ℓ)∂f(x
(0)
0 ),(3.16b)

with x
(ℓ)
0 = R

(0)
(ℓ)x

(0)
0 . Substituting κ(x

(ℓ)
0 , x

(0)
0 ) into ψ(x(ℓ)), we have

ψ(x(ℓ))− f(x(ℓ)0 ) = f(x(ℓ))− f(x(ℓ)0 )−
〈
x(ℓ) − x(ℓ)0 , ∂f(x

(ℓ)
0 )−R(0)

(ℓ)∂f(x
(0)
0 )

〉
= Df (x

(ℓ), x
(ℓ)
0 ) +

〈
P

(ℓ)
(0)(x

(ℓ) − x(ℓ)0 ), ∂f(x
(0)
0 )

〉
(3.17)

Lem. 2.3
= Dφ(A

(ℓ)x(ℓ), A(ℓ)x
(ℓ)
0 ) + λDJ(x

(ℓ), x
(ℓ)
0 ) +

〈
P

(ℓ)
(0)(x

(ℓ) − x(ℓ)0 ), ∂f(x
(0)
0 )

〉
,

where A(ℓ) ∈ Rpℓ×nℓ is the discretization of the linear operator at level ℓ, R
(0)
(ℓ) =

(P
(ℓ)
(0))

⊤ and P
(ℓ)
(0) prolongates vectors at level ℓ to level 0 by interpolation, e.g. as

through the composition P
(ℓ)
(0) = P

(ℓ)
(ℓ−1) ◦· · ·◦P

(1)
(0) of interpolation operators between

adjacent levels.
We note that the data vector b ∈ Rp0 := Rp in (1.2) is only required on the finest

(original) level. In addition, comparing (3.8) and (3.17) makes evident that the

discussion of (3.8) applies also to (3.17): an iterate x(ℓ) satisfying ψ(x(ℓ))−f(x(ℓ)0 ) <

0 yields a descent direction P
(ℓ)
(0)(x

(ℓ)−x(ℓ)0 ) at level 0. Clearly, the criterion analogous

to (3.13) (with R
(0)
(ℓ) in place of R) for employing a coarse correction will be less likely

satisfied at level ℓ than a finer level ℓ′ < ℓ. On the other hand, if it is satisfied, then
determining a descent direction is computationally (very) cheap.

Optimizing the costs for invoking coarse grid models vs. saving computations
through evaluating these models with much smaller numbers of variables, is left for
future work.
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4. Multilevel geometric optimization

4.1. Riemannian Geometry of the Box. In this section, we represent the open
n-box Bn (2.1b) as a Riemannian manifold. To this end, we turn the open intervall
(2.1a) into a manifold (B, g) with metric g and define (Bn, g) as the corresponding
product manifold.

In order to specify (B, g), we apply basic information geometry [3]. Let points
η ∈ B parametrize the Bernoulli distribution

(4.1) p(z; η) = ηz(1− η)1−z

of a binary random variable Z ∈ {0, 1}. Then the metric tensor of the Fisher-Rao
metric is simply a scalar function of η given by

(4.2) G(η) = 4
∑

z∈{0,1}

( d

dη

√
p(z; η)

)2
=

1

1− η
+

1

η
=

1

η(1− η)
.

In view of (2.1b), this naturally extends to the metric g on TBn in terms of the
diagonal matrix

(4.3) Gn(y) = Diag
( 1

y1(1− y1)
, . . . ,

1

yn(1− yn)

)
as metric tensor, using again the symbol ‘G’ for simplicity. We naturally identify

(4.4) TyBn ∼= Rn, ∀y ∈ Bn
and denote this metric interchangeably by

(4.5) gy(v, v
′) = 〈v, v′〉y = 〈v,Gn(y)v

′〉, ∀v, v′ ∈ TyBn.

4.2. Retraction and its Inverse. Retractions [1, Def. 4.1.1] and their inverses are
basic ingredients of first-order optimization algorithms on Riemannian manifolds.
The main motivation is to replace the exponential map with respect to the metric
(Levi Civita) connection by an approximation that can be efficiently evaluated or
even in closed form. Below, we compute the exponential map with respect to the e-
connection of information geometry [3] and show subsequently that it is a retraction.

Proposition 4.1. The exponential maps on B resp. Bn with respect to the e-
connection are given by

exp: B × TB → B, expη(tv) =
ηe

t v
η(1−η)

1− η + ηe
t v
η(1−η)

, t > 0(4.6a)

exp: Bn × TBn → Bn, expy(tv) =
(
expyj (tvj)

)
j∈In(4.6b)

with inverses

exp−1 : B × B → TB, exp−1
η (η′) = η(1− η) log (1− η)η′

η(1− η′)
(4.7a)

exp−1 : Bn × Bn → TBn, exp−1
y (y′) =

(
exp−1

yj (y
′
j)
)
j∈In .(4.7b)

Proof. It suffices to show (4.6a) from which (4.7a) follows from an elementary calcu-
lation. (4.6b) and (4.7b) result from the componentwise application of these maps.
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A key concept of information geometry is to replace the metric connection by
a pair of connections that are dual to each other with respect to the Riemannian
metric g [3, Section 3.1]. In particular, under suitable assumptions, the parameter
space of a probability distribution becomes a Riemannian manifold that is dually
flat, i.e. two distinguished coordinate systems (the so-called m- and e-coordinates)
exists with affine geodesics. We consider the simple case (B, g).

First, we rewrite the distribution (4.1) as distribution of the exponential family [9]

p(z; θ) = exp
(
zθ − ψ(θ)

)
(4.8a)

θ = θ(η) = log
η

1− η
, η = η(θ) =

eθ

1 + eθ
(4.8b)

with exponential parameter θ and log-partition function

(4.9) ψ(θ) = logZ(θ), Z(θ) = 1 + eθ

that is convex and of Legendre type [7, Def. 7.1.1]. The aforementioned distin-
guished two coordinates are η and θ with affine geodesics

t 7→ ηv(t) = η + tv ∈ B,(4.10a)

t 7→ θu(t) = θ + tu ∈ R.(4.10b)

Note that unlike η, v, the coordinate θ and the tangent u are unconstrained. Using
(4.8b), the e-geodesic reads

(4.11) η
(
θu(t)

)
=

eθu(t)

1 + eθu(t)
=

eθetu

1 + eθetu
∈ B.

It remains to replace θ by η = η(θ) due to (4.8b) and u by η and v, respectively.
The latter results from substituting the affine geodesic (4.10a) into θ = θ(η) and to
express u by

u = u(η, v) =
d

dt
θ
(
ηv(t)

)∣∣
t=0

=
d

dt
θ(η + tv)

∣∣
t=0

(4.12a)

=
d

dt
log

η + tv

1− η − tv

∣∣∣
t=0

=
v

η(1− η)
.(4.12b)

Substituting into (4.11) yields

(4.13) expη(tv) :=
eθ(η)etu(η,v)

1 + eθ(η)etu(η,v)
=

ηe
t v
η(1−η)

1− η + ηe
t v
η(1−η)

which is (4.6a). □
Remark 4.2 (g is a Hessian metric). The dual nature of the exponential parametriza-
tion (4.8) is also highlighted by recovering the metric tensor (4.2) as Hessian metric
from the potential ϕ(η) that is conjugate to the log-partition function (4.9),

(4.14) ϕ(η) = ψ∗(η) = η log η + (1− η) log(1− η),
that is

(4.15) ϕ′′(η) = G(η) =
1

η(1− η)
.
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The dual coordinate and potential yield the inverse metric tensor

(4.16) ψ′′(θ) =
eθ

(1 + eθ)2
=

1

G(η)

∣∣∣∣
η=η(θ)

.

The following formulas will be used later on.

Lemma 4.3 (Differential of exp and exp−1). The differentials of the mappings expη
and exp−1

η at u and η′, respectively, are given by

d expη(u) : TηB → Tη′B,(4.17a)

v 7→ d expη(u)v =
e

u
η(1−η)(

1− η + ηe
u

η(1−η)
)2 v =

η′(1− η′)
η(1− η)

v, η′ = expη(u)(4.17b)

d exp−1
η (η′) : Tη′B → TηB,(4.17c)

v′ 7→ d exp−1
η (η′)v′ =

η(1− η)
η′(1− η′)

v′.(4.17d)

Proof. By direction computation,

(4.18) d expη(u)v =
d

dt
expη(u+ tv)

∣∣
t=0

using (4.6a) and similarly for (4.17d) using (4.7a). Clearly, d(exp−1
η (η′)) =

(d expη(u))
−1. □

Retractions provide a proper class of surrogate mappings for replacing the canon-
ical exponential map corresponding to the metric connection.

Proposition 4.4 (exp is a retraction). The mapping exp: TB → B is a retraction
in the sense of [1, Def. 4.1.1.].

Proof. We check the two criteria that characterize retractions. First,

(4.19) expη(0)
(4.6a)
= η, ∀η ∈ B.

Second, the so-called local rigidity condition

(4.20) d expη(0)
(4.17b)
= 1 = idTηB, ∀η ∈ B

holds as well. □

Remark 4.5 (Vector transport). In the same way as retractions may properly
replace the canonical exponential map, the class of vector transport mappings

(4.21) Π: TB × TB → TB, (uη, vη) 7→ Πuη(vη)

may properly replace the canonical parallel transport of tangent vectors [1, Section
8.1]. Given a retraction, like in Proposition 4.4, a vector transport map can be
conveniently obtained by differentiation [1, Section 8.1.2],

(4.22) Πu(v) = d expη(u)v
(4.17b)
=

η′(1− η′)
η(1− η)

v, η′ = expη(u).
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The above proof of Proposition 4.1 revealed the representation of tangents v and u
of (4.10) in the form

T (m)
η = {v ∈ R : η + v ∈ B}, η ∈ B,(4.23a)

T (e)
η =

{
u =

vu
η(1− η)

: vu ∈ R
}
, η ∈ B.(4.23b)

Thus, in view of (4.23b), the vector transport (4.22) may be interpreted as sending

u = v
η(1−η) ∈ T

(e)
η to u′ = v′

η′(1−η′) ∈ T
(e)
η′ with v′ = Πu(v).

4.3. Line Search. We now adopt the simplest approach to optimizing a differen-
tiable function f : Bn → R on the manifold (Bn, g), by continuously translating a
current iterate y in the direction of steepest descent, − grad f(y). With the retrac-
tion calculated in Proposition 4.1, we will now use Armijo line search [1, Def. 4.2.2]
to move within our Riemannian manifold. For minimizing coarse level approxima-
tions, see Section 4.6, we will employ the same techniques.

In particular, given f , a point y ∈ Bn and η := − grad f(y) ∈ TBn, the goal is to
determine an update of y along the steepest descent direction η. To this end, we
set

(4.24) y+ = f
(
expy(αη)

)
, α ∈ R+,

with expy(·) given by (4.6a). The appropriate value for the step size parameter
α > 0 determines the update expy(αη) of y. An exact line search, which would
find α = argmint>0 f(expy(tη)), is often not feasible. A commonly used alternative
is the Armijo line search, which starts with a large estimate for α and gradually
reduces it until a value is found that results in a sufficient decrease of the objective
function f . Algorithm 2 details the the Armijo line search strategy, and Theorem
4.6 guarantees convergence of the overall procedure.

Theorem 4.6. [1, Thm. 4.3.1] Any cluster point of the sequence generated by the
Algorithm (2) is a critical point of f .

Algorithm 2: Riemannian Gradient with Armijo Line Search [1]

initialization: initial point y, initial step size α0 > 0, σ, β ∈ (0, 1).

set search direction to η = − grad f(y);

repeat
set α = α0;

if f(expy(αη))− f(y) > σα〈grad f(y), η〉y then
set α = βα;

update the iterate y = expy(αη);

update the search direction to η = − grad f(y);

until termination criterion holds.

4.4. Geometric Means. Intergrid transfer operators, used to transfer information
between grids, are usually calculated using linear interpolation or injection. As
interpolation requires computing averages, we need to generalize such operations
to our manifolds in order to devise e.g. prolongation operators. Proposition 4.1
enables to average points on B in a computationally convenient way.
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Proposition 4.7. Let (ηi)i∈I ⊂ B be arbitrary numbers and let

(4.25) Ω = {ωi > 0: i ∈ I},
∑
i∈I

ωi = 1

be given corresponding weights. Then the weighted geometric mean of these numbers
is

(4.26) ηΩ :=

∏
i∈I

( ηi
1−ηi

)ωi

1 +
∏

i∈I
( ηi
1−ηi

)ωi
∈ B.

Likewise, the weighted geometric mean of vectors {yi : i ∈ I} ⊂ Bn is given by

(4.27) yΩ = (yj;Ω)j∈In ,

that is, each component (yΩ)j is the weighted geometric average of the corresponding
components {yij : i ∈ I} of the given vectors.

Proof. We define ηΩ by the condition that characterizes the center of mass on a
Riemannian manifold [19, Lemma 6.9.4],

(4.28) 0 =
∑
i∈I

ωi exp
−1
ηΩ

(ηi),

except for using the exponential map (4.6) instead of the exponential map corre-
sponding to the metric connection. Using (4.7) we get

0 =
∑
i∈I

ωiηΩ(1− ηΩ) log
(1− ηΩ)ηi
ηΩ(1− ηi)

.(4.29a)

Subdividing by ηΩ(1− ηΩ) ∈ B and taking into account (4.25) gives (4.26),

log
1− ηΩ
ηΩ

= −
∑
i∈I

ωi log
ηi

1− ηi
(4.29b)

ηΩ =
e
∑

i∈I ωi log
ηi

1−ηi

1 + e
∑

i∈I ωi log
ηi

1−ηi

=

∏
i∈I

( ηi
1−ηi

)ωi

1 +
∏

i∈I
( ηi
1−ηi

)ωi
.(4.29c)

□

Remark 4.8 (Geometric averaging in closed form). We point out that the compu-
tation of Riemannian means typically requires to solve an optimality condition of
the form (4.28) by a fixed-point iteration. In the present case, the chosen geometry
yields the corresponding geometric mean (4.26) in closed form.

4.5. Grid Transfer Operators.

4.5.1. Prolongation. We associate with every fine grid point j ∈ Icm – recall the
notation and nomenclature in Section 2.1 – a neighborhood Nj and corresponding
weights Ωj ,

Nj ⊂ Im, j ∈ Icm(4.30a)

Ωj = {ωi : i ∈ Nj}.(4.30b)
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The prolongation map is defined by keeping coarse grid components and by assigning
geometric averages of coarse grid components to fine grid components, i.e.

(4.31) P : Bm → Bn, P (x)j =

{
xj if j ∈ Im,
xΩj , if j ∈ Icm.

Tangent vectors are transferred from coarse to fine by the differential of the prolon-
gation map.

Lemma 4.9. The differential of the prolongation map (4.31) is given by

dPx : TxBm → TP (x)Bn,(4.32a)

(dPxu)j =


uj , if j ∈ Im,
xΩj (1− xΩj )

∑
i∈Nj

ωi
xi(1−xi)

ui, if j ∈ Icm,
0, otherwise.

(4.32b)

Proof. Put

κj(x; Ω) =
∑
i∈Nj

ωi log
xi

1− xi
,(4.33a)

φj(x; Ω) = xΩj

(4.26)
=

eκj(x;Ω)

1 + κj(x; Ω)
.(4.33b)

Then

dκj(x; Ω)[u] =
d

dt
κj(x+ tu; Ω)|t=0 =

∑
i∈Nj

ωi

xi(1− xi)
ui,(4.34a)

dφj(x; Ω)[u] =
eκj(x;Ω)

(1 + κj(x; Ω))2
dκj(x; Ω)[u]

(4.33b)
= xΩj (1− xΩj )dκj(x; Ω)[u](4.34b)

and hence from (4.31)

(4.35) (dPxu)j = (dP (x)[u])j =


uj , if j ∈ Im,
dφj(x; Ω)[u], if j ∈ Icm,
0, otherwise,

which is (4.32). □

4.5.2. Restriction. In view of Definition 4.31, it is obvious that the only coarse grid
vector x that conforms to the fine grid vector y = P (x) is the trivial restriction

(4.36) R : Bn → Bm, x = Ry = [y]Im = (yj)j∈Im .

Unlike the prolongation map P (4.31), this restriction map R is linear. Concerning
the restriction of tangent vectors, using the differential dR = R analogous to (4.32)
would be a less sensible choice, however. Rather, we define for this purpose an
individual operator as follows.
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Let x = Ry, v ∈ TyBn and u ∈ TxBm. We define

TRy : TyBn → TxBm,(4.37a)

TRy = Gm(x)−1dP⊤
x Gn(y), x ∈ Ry(4.37b)

(TRy)ij =


(dP⊤

x )ij , if j = i ∈ Im
xi(1−xi)
yj(1−yj)

(dP⊤
x )ij , if j ∈ Icm and i ∈ Nj

0, otherwise.

,(4.37c)

for j ∈ In = Im∪̇Icm, i ∈ Im.(4.37d)

The rationale behind this definition is the equation

(4.38) 〈u, TRyv〉x = 〈dPxu, v〉y
that mimics in terms of TR and the differential dP the common Galerkin condition
R = P⊤ in the case of Euclidean scenarios and linear mappings R,P , while taking
into account the coarse and find-grid metrics. Expanding this equation using (4.5)
gives

(4.39) 〈u,Gm(x)TRyv〉 = 〈dPxu,Gn(y)v〉
which implies (4.37b). Inspecting the componentwise specification (4.37c) of TRy,

we observe the aforementioned relation TRy = dP⊤
x in the case of coinciding coarse

and fine grid points indexed by i and j, whereas the second line of (4.37c) shows
that vector transport from the fine grid to the coarse grid is involved – cf. Remark
4.5 and (4.22) – if j 6∈ Icm ⊂ In differs from i ∈ Im.

As a result, pushing tangent vectors to the coarse grid using the nonlinear map-
ping TR better conforms to the nonlinear prolongation map (4.31), than merely
using dR = R based on the restriction map (4.36), which is a reasonable choice for
transferring vectors of Bn (rather than tangent vectors of TBn).

4.6. Two-Level Geometric Optimization. We generalize the two-level Euclidean
optimization approach of Section 3 to our Riemannian setting.

4.6.1. Coarse Objective Function. We adapt the coarse grid model (3.3) of the ob-
jective function at x0 = Ry0 to the present geometric setting,

ψ(x) = f(x)− 〈exp−1
x0

(x), κ(x0, y0)〉x0 ,(4.40a)

κ(x0, y0) = grad f(x0)− TRy0 grad f(y0),(4.40b)

with the Riemannian gradients grad f(x0) = Gm(x0)
−1∂f(x0), grad f(y0) =

Gn(y0)
−1∂f(y0). We check the first-order coherence condition corresponding to

(3.5).

Lemma 4.10 (First-order coherence condition). The coarse grid model (4.40) sat-
isfies

(4.41) gradψ(x0) = TRy0 grad f(y0).

Proof. By Lemma 4.3, we have

(4.42)
∂

∂xi
〈exp−1

x0
(x), κ(x0, y0)〉 =

x0i(1− x0i)
xi(1− xi)

κi(x0, y0)
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and hence

∂〈exp−1
x0

(x), κ(x0, y0)〉x0 = Gm(x)Gm(x0)
−1Gm(x0)κ(x0, y0)(4.43a)

= Gm(x)κ(x0, y0).(4.43b)

Substituting into (4.40) gives

gradψ(x) = grad f(x)− κ(x0, y0)(4.44a)

(4.40b)
= grad f(x)− grad f(x0) + TRy0 grad f(y0).(4.44b)

Setting x = x0 yields (4.41). □

4.6.2. Coarse Grid Descent Step, Algorithm. We examine the effect of minimizing
the coarse grid function (4.40), analogous to Section 3.1.2. Rearranging terms, we
have

ψ(x)− f(x0) = f(x)− f(x0)− 〈exp−1
x0

(x), grad f(x0)〉x0(4.45a)

+ 〈exp−1
x0

(x), TRy0 grad f(y0)〉x0(4.45b)

(4.38)
= f(x)− f(x0)− 〈exp−1

x0
(x), ∂f(x0)〉(4.45c)

+ 〈dPx0 exp
−1
x0

(x), grad f(y0)〉y0 .(4.45d)

Following the reasoning of Section 3.1.2 shows that, if x can be determined such
that ψ(x) < f(x0), then dPx0 exp

−1
x0

(x) is a descent direction with respect to f on
the fine grid if the first three terms on the right-hand side, i.e. f(x) − f(x0) −
〈exp−1

x0
(x), ∂f(x0)〉, are nonnegative.

In the Euclidean case, with x− x0 in place of exp−1
x0

(x), the latter automatically

holds since f(x) − f(x0) − 〈exp−1
x0

(x), ∂f(x0)〉 = Df (x, x0) ≥ 0 (cf. Remark 3.1).
In the present geometric setting, however, this reasoning can only be guaranteed if
‖x− x0‖ is sufficiently small, as stated in the following Lemma.

Lemma 4.11. For the mapping defined by (4.7), one has

(4.46) exp−1
x0

(x) = x− x0 +R(x− x0) with lim
x→x0

R(x− x0)
‖x− x0‖

= 0.

Furthermore,

(4.47) (x− x0)i
(
exp−1

x0
(x)

)
i
≥ 0, ∀i ∈ Im.

Proof. The expansion (4.46) is easy to compute. As for (4.47), we have by (4.17d)
that, for each component i ∈ Im, the derivative of the function xi 7→ expx0i

(xi)
is nonnegative. Consequently, this function is monotonously increasing as is the
function xi 7→ xi − x0i, and both functions only attain the value 0 at x0i. □

Expansion (4.46) shows that for x sufficiently close to x0, dPx0 exp
−1
x0

(x) is a
descent direction on the fine grid whenever ψ(x) < f(x0). Relation (4.47), on
the other hand, shows that the vector exp−1

x0
(x) points into the positive half space

defined by x − x0 and, in this sense, is aligned with x − x0. Yet, for increasing
‖x−x0‖, the nonlinearity of this term increases as well, such that the inner product
〈exp−1

x0
(x), ∂f(x0)〉 may not allow to certify a descent direction by merely checking
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the sign of ψ(x) − f(x0). Therefore, besides the geometric version of condition
(3.13),

(4.48) ‖TRy0 grad f(y0)‖Ry0 ≥ η‖ grad f(y0)‖Ry0 ∧ ‖y − yc‖ ≥ ε,
the following algorithm involves the additional test

(4.49) D̃f (x, x0) := f(x)− f(x0)− 〈exp−1
x0

(x), ∂f(x0)〉 ≥ 0,

that still can be cheaply done at the coarse level, rather than checking directly and
more costly the vector dPx0 exp

−1
x0

(x) on the fine level.

Algorithm 3: Two-Level Geometric Optimization

initialization: initial fine grid point y, corresponding coarse grid point
x = Ry.

repeat
set y0 = y, x0 = Ry;

if condition (4.48) is satisfied at x0 then
find x such that ψ(x) < f(x0); /* coarse grid update */

if condition (4.49) holds then
set h = dPx0 exp

−1
x0

(x);

find α > 0: f(expy0(αh)) < f(y0); /* line search */

y ← expy0(αh) /* update */

else
apply one fine level iteration to compute y such that f(y) < f(y0).
/* update */

until termination criterion holds.

4.7. MultiLevel Extension. Analogous to Section 3.2, we introduce the notation

x(ℓ) ∈ B(ℓ)nℓ
(4.50a)

for the variables at levels ℓ ∈ {0, 1, 2, . . . }, where

x(0) = x ∈ Bn = B(0)n0
(4.50b)

are the original fine grid variables. The components x
(ℓ)
i of these vectors are indexed

by the nested index sets

(4.50c) i ∈ Inℓ
⊂ Inℓ−1

⊂ · · · ⊂ In = In0 .

Accordingly, the coarse grid model (4.40) applied at level ℓ reads

ψ(x(ℓ)) = f(x(ℓ))− 〈exp−1

x
(ℓ)
0

(x(ℓ)), κ(x
(ℓ)
0 , x

(0)
0 )〉

x
(ℓ)
0

,(4.51a)

κ(x
(ℓ)
0 , x

(0)
0 ) = grad f(x

(ℓ)
0 )− TR(0)

(ℓ) (x
(0)
0 ) grad f(x

(0)
0 ),(4.51b)

with x
(ℓ)
0 = R

(0)
(ℓ)x

(0)
0 . Prolongation operators P

(ℓ)
(0) , ℓ > 1 can be defined in the same

way as P
(1)
0 = P is defined by (4.31), with increasingly larger neighborhoods (4.30).
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By this, the mappings TR
(0)
(ℓ) for pushing tangent vectors from level 0 to ℓ follow

analogous to (4.38).
This formulation adapts to the geometric setting the Euclidean multilevel ap-

proach outlined in Section 3.2, and similar comments concerning the trade-off of
invoking coarse grid models at various levels apply. We leave a detailed study of
this multilevel extension for future work.

5. Experiments

In this section we numerically evaluate the proposed approach. In a first experi-
ment we compare the Riemannian Gradient (RG) descent, see Algorithm 2, with a
state-of-the-art Accelerated Bregmann Proximal Gradient (ABPG) method [17]. In
a second experiment we evaluate one-level vs. two-level (2L) schemes and compare
our approach using Riemannian Gradient descent on both fine and coarse grids with
a state-of-the-art first-order multilevel approach [21] based on Projected Gradients
(PG).

5.1. Data Setup. For our numerical evaluation we considered the phantom (1024×
1024 pixels) shown by Figure 2. The tomographic projection matrices were com-
puted by means of the ASTRA-toolbox1, using parallel beam geometry with equidis-
tant angles in the range [0, π]. The undersampling rate at the fine grid was chosen to
be 2% and 20%, respectively, corresponding to 20 and 200 projection angles. Each
entry aij of the projection matrix A corresponds to the length of the line segment of
the i-th projection ray passing through the j-th pixel in the image domain (Figure
1). At every level the width of the detector-array was set to the grid size, so that
at each scale every pixel intersects with at least a single projection ray.

Figure 2. The phantoms (1024×1024) used for the numerical eval-
uation exhibit both fine and large scale structures and various
shapes.

5.2. Implementation Details. The coarse grid update in Algorithm 3 was per-
formed by Armijo line search with a modification, such that if the calculated feasible
stepsize was numerically close to 0, then the coarse step was discarded and a normal
step was performed instead.

For an efficient implementation of the geometric grid transfer operators we used
vectorized versions. For the experiments in this work we use uniform weights ωi,

1https://www.astra-toolbox.com
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therefore the geometric mean, defined in Eq. (4.26), can be reformulated as

(5.1) ηΩ =

∏
i∈I

( ηi
1−ηi

)ωi

1 +
∏

i∈I
( ηi
1−ηi

)ωi
=

e
∑

i∈I ωi log
ηi

1−ηi

1 + e
∑

i∈I ωi log
ηi

1−ηi

=
e
BI

(
log η

1−η

)
1 + e

BI
(
log η

1−η

) ,
where BI(v) is the standard bilinear interpolation operator. We used PyLops2,
the linear operator library for Python, for performing bilinear interpolation and its
transpose operation. Consequently, the grid transfer operators (4.31), (4.32) and
(4.37) can be vectorized by using bilinear interpolation, resulting in

P (x) = xΩ(5.2a)

dPxu = Gn(P (x))
−1BI(Gm(x)u)(5.2b)

TRyv = BI⊤(Gn(P (R(y)))
−1Gn(y)v),(5.2c)

where BI⊤(v) denotes the transposed bilinear interpolation operator. Note that
in case of non-uniform weights, the operation BI(v) can be still represented by a
corresponding linear operator.

In order to avoid numerical issues very close to the boundary of the box manifold,
we clip each component yi to [ε, 1−ε] with ε = 10−10. This clipping step is performed
directly after evaluating the exponential map (4.6).

For all algorithms in our numerical evaluation we used the same set of parameters.
The maximum number of iterations was set to 50, which also serves as termination
criterion. We used the natural initialization at y0 = 0.5 1 (uninformative choice).
The parameters for the Armijo line search [1, Def. 4.2.2] were set to σ = 10−4,
β = 0.6, α0 = 1/β. For condition (3.13) and its geometric version (4.48) for
optimization on the coarse model, we selected η = 0.49 and ε = 10−3. Regarding
the objective function f defined in Eq. (1.2), we set λ = 0.5 for weighting the
smoothed total variation with smoothing parameter ρ = 0.5.

5.3. Experiments and Discussion. In a first experiment, we studied the impact
of the Riemannian geometry on first-order optimization. We compared Riemannian
gradient descent with a state-of-the-art accelerated proximal gradient method, the
ABPG method [17, Alg. 4], that is suited to minimize objectives that are not
Lipschitz-smooth, like the KL-divergence based objective function (1.2). Results are
shown as Figure 3. By choosing the two quite different under-sampling scenarios,
we created one problem instance with 200 angles (20% undersampling) that is likely
to have a unique optimum, see [22], and a second problem with multiple solutions
due to the high undersampling ratio of 2% with 20 angles. The proposed method
performed on par or better than ABPG and was significantly superior for that latter
three phantoms shown in Figure 2 that have more homogeneous shapes.

In a second experiment we studied the influence of a using a second coarse level
for computing efficiently descent directions on a 512 × 512 grid, as summarized
by Algorithm 3. Figures 4 and 5 show the results for the Riemannian gradient
descent: using one level versus two levels compared with state of the art ABPG.
We observed the following. Firstly, the impact of the two-level acceleration is much
stronger in the highly underdetermined case. Secondly, we concede that although

2https://github.com/PyLops/pylops
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ABPG performed worse in both scenarios, the cost of the iterations on the fine level
are more expensive when using our method due to line search. On the coarser level
however, the higher cost of the line search is compensated by using a much smaller
number of variables for computing search directions.

Figure 3. ABPG vs. Riemannian gradient (RG) descent in
terms of relative objective values is compared on 2% and 20% under-
sampled projection data. The left column corresponds to the first
three phantoms: gear, bone, vessel in Figure 2, the right columns
to the last three: batenburg, roux, skulls. The Riemannian gra-
dient descent achives lower objective values due to proper step-size
selection (line search). For the more homogeneous phantoms cor-
responding to the right column, the proposed method significantly
outperforms ABPG [17].

Finally, we compared the proposed method to the Euclidean state-of-the-art mul-
tilevel method in [21], that is capable on handling box constraints. The results are
shown as Figure 6. We call the latter method two-level projected gradient (2L PG)
as it uses the projected gradient method on both levels for optimizing the fine grid
objective as well as the coarse grid model. Two-level projected gradient uses a
scaled-down box that is adapted to the current iterate in such a way that feasibility
is achieved after prolongation of the coarse level correction. Such an adaption of
the constraints is not needed in our proposed approach and therefore makes our
approach more flexible. We notice however that the impact of the second level in
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the case of the projected gradient is stronger than in the geometric case. We be-
lieve that this is due to the fact that our coarse model looses its convexity when the
iterate is close to the boundary of the feasible set.

Figure 4. 20% undersampling: comparison of relative ob-
jective function values for single-level resp. two-level (2L) Rie-
mannian gradient descent (RG, 2L RG) and ABPG [17]. The left
column corresponds to the first three phantoms: gear, bone, vessel
in Figure 2, the right columns to the last three: batenburg, roux,
skulls. Black dots indicate when descent directions were computed
on coarser grids. On the coarse grid we have 40% undersampling
and the coarse problem has a unique solution [22]. As a consequence
we quickly approach the boundary of the box. This results in an in-
efficient update using the Armijo line search and more similar curves
for single-level resp. two-level (2L) Riemannian gradient descent.

6. Conclusions

We introduced a novel approach to geometric multilevel optimization. The ap-
proach employs information geometry in order to devise all ingredients of the itera-
tive multilevel scheme. Invoking coarse level representations for computing descent
directions effectively accelerates convergence. Experiments conducted for a range of
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Figure 5. 2% undersampling: comparison of relative ob-
jective function values for single-level resp. two-level (2L) Rie-
mannian gradient descent (RG, 2L RG) and ABPG [17]. The left
column corresponds to the first three phantoms: gear, bone, vessel
in Figure 2, the right columns to the last three: batenburg, roux,
skulls. Black dots indicate when descent directions were computed
on coarser grids. The two-level schemes - where we now have 4%
undersampling - aggressively decreases the objective, in particular
for more homogeneous phantoms in the right column.

instances of an ill-posed linear inverse problem with a non-quadratic convex regular-
izer and box constraints demonstrate promising performance of the method relative
to the state-of-the-art.

The derivation of the approach for boxed-constrained convex programs can be
transferred to other convex programs with simply structured feasible sets, analogous
to turning parameter spaces of probability distributions into Riemannian manifolds
in information geometry. Simplices instead of boxes as feasible sets provide an
example [4].

This paper mainly focuses on the case of two-grid geometric optimization, which
constitutes the core problem of multilevel optimization. Our future work will exam-
ine the multilevel case in detail, the selection of an appropriate number of resolution
levels and related problems, and possible refinements. The latter includes machine
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Figure 6. Projected gradient (PG) vs. Riemannian gradi-
ent (RG) descent in terms of relative objective values is compared
for the single-level and two-level (2L) scenario with 2% undersampled
projection data. The left column corresponds to the first three phan-
toms: gear, bone, vessel in Figure 2, the right columns to the last
three: batenburg, roux, skulls. Black dots indicate when descent
directions were computed on coarser grids. Overall, the Riemannian
version of the gradient descent decreases faster the objective than
projected gradient, since the descent direction already respects the
constraints. Both two-level approaches show in addition more rapid
reduction of the objective function.

learning components that can be controlled precisely, in order to optimize the trans-
fer between levels, to adapt to each concrete problem instance and to given input
data, for further accelerating the overall optimization process.
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[21] M. Kočvara and S. Mohammed, A First-Order Multigrid Method for Bound-Constrained Con-
vex Optimization, Optim. Method. Softw. 31 (2016), no. 3, 622–644.

[22] J. Kuske and S. Petra, Performance Bounds For Co-/Sparse Box Constrained Signal Recovery,
An. St. Univ. Ovidius Constanta 1 (2019), 79–109.

[23] S. L. Lauritzen, Chapter 4: Statistical Manifolds, Differential Geometry in Statistical Inference
(Shanti S. Gupta, S. I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, and C. R.
Rao, eds.), Institute of Mathematical Statistics, Hayward, CA, 1987, pp. 163–216.

[24] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 2009.
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