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λ > 0, µ > 0, gλ and hµ standing for the Moreau envelopes of g and h, respectively.
This asymmetric regularization approach would give a flexibility and would allow

to better regularize the convex or the concave part of φ by adapting the choice of the
two parameters. The reason is that the functions g and h may have very distinct
rough properties.

Remember that for a proper, lsc function f and parameter γ, its Moreau envelope
is defined as

fγ(x) = inf
w∈IRn

{f(w) + 1

2γ
∥w − x∥2}.

For instance, if f is the 1-norm, then fγ is the celebrated Huber’s function in robust
statistics.

It is worth mentioning that (1.1) subsumes a wide spectrum of problems in op-
timization, see for instance [1] and the references therein. The major advantage
of Problem (1.2) is its smoothness and hence can then be tackled via fast smooth
optimization solvers.

Throughout, we will assume that the original function φ is bounded below.
Before stating the definition of exact and approximate stationary points, see

[6], which are relaxed versions of the necessary condition, recall that the partial
differential of a function f is defined as

∂f(x) := {u ∈ IRn; f(w) ≥ f(x) + ⟨u,w − x⟩ ∀w ∈ IRn}.

Definition 1.1. ▷ We will say that x∗ ∈ IRn is a stationary point of φ if

(1.3) ∂g(x∗) ∩ ∂h(x∗) ̸= ∅,

a relaxed version of the necessary condition ∂h(x∗) ⊂ ∂g(x∗).
▷ Furthermore, we will say that x∗ ∈ IRn is an ε-stationary point of φ if,

(1.4)
∃(ξ∗, y∗) ∈ IRn× IRn such that ξ∗ ∈ ∂g(x∗)−∂h(y∗) and max{∥ξ∗∥, ∥x∗−y∗∥} ≤ ε.

We will see that during the descent gradient method, the subdifferentials of g
and h are not evaluate at the same point, so the ε-stationarity is then a natural
relaxation of the exact one.

Proposition 1.2. Let f be a proper, convex lsc, then, for every γ > 0, the Moreau
envelope fγ is 1

γ -Lipschitz-continuously differentiable with gradient

(1.5) ∇fγ(x) =
x− proxfγ(x)

γ
= proxf

∗

γ−1(x/γ).

f∗ stands for the conjugate of f , namely f∗(x) = supw∈IRn{⟨x,w⟩ − f(w)}.
Note that, we also have

(fγ)
∗(x) = f∗(x) +

γ

2
∥x∥2.

The Moreau envelope is an attractive regularization transform considering the facts
that fγ(x) converges pointwise to f(x) when γ → 0 and that it shares the same
critical points of f with

(1.6) inf f = inf fγ and argminf = argminfγ .
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Note also that, it is very useful to associate φ⋄ = h∗ − g∗ with φ especially as
inf φ = inf φ⋄.

A this stage, we want to mention that a study dealing with the same regularization
idea, in the case λ = µ, was developed in [6] with one of the two dc components
assumed to be potentially weakly convex. This amounts to say that there exists
β > 0 such that g + β/2∥ · ∥2 is convex.

Remark 1.3. Observe that in this last setting gλ is max
(
1
λ ,

1
1−βλ

)
-Lipschitz-

continuously differentiable and the proximity mapping proxgλ is (1−βλ)-cocoercive
provided that 0 < λ < 1/β, see for example [3]. We can also easily verify the re-

lation prox
g+β

2
∥·∥2

λ (x) = proxg λ
1+λβ

(
x

1+λβ

)
according to the β-weak convexity of the

function g together with the fact that 0 < λ
1+λβ < 1/β.

Now, it is worth mentioning that a d.c. function φ has infinitely many d.c.
decompositions, for example, φ = (g + ψ) − (h + ψ) for every finite proper convex
and lsc function ψ defined the whole space. It is then useful to find a suitable d.c.
decomposition of φ, since it may have an important influence on the efficiency of
algorithms for its solution. Consequently, we can relax conditions on the involving
functions by assuming the functions g and/or h to be weakly convex. We can reach
convexity of the two dc components by choosing an appropriate β > 0 and applying
the following process

φ = g − h = (g + β/2∥ · ∥2)− (h+ β/2∥ · ∥2).

In this case, the d.c. components in the dual problem will be continuously differen-
tiable.

2. Some properties of φλ,µ

▷ In the light of Proposition 1.1, φλ,µ is differentiable and its gradient is given
by

∇φλ,µ(x) =
x− proxgλ(x)

λ
−
x− proxhµ(x)

µ

= (λ−1 − µ−1)x− (λ−1proxgλ(x)− µ−1proxhµ(x)).

In the nice case λ = µ, this reduces to

(2.1) ∇φλ,λ(x) =
proxhλ(x)− proxgλ(x)

λ
.

The optimality condition, in the general case, reads as

(2.2) ∇gλ(x) = ∇hµ(x) ⇔ proxh
∗

µ−1(x/µ) = proxg
∗

λ−1(x/λ),

and remains to solve the fixed-point problem

x = κproxgλ(x) + (1− κ)proxhµ(x),with κ =
µ

µ− λ
.

In the interesting case λ = µ, relation (2.2) amounts to

(2.3) proxhλ(x) = proxgλ(x) ⇔ proxh
∗

λ−1(x/λ) = proxg
∗

λ−1(x/λ).
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Since, we always have

fγ(x) = f(proxfγ(x)) +
1

2γ
∥proxfγ(x)− x∥2 ≤ f(w) +

1

2γ
∥w − x∥2 ∀w ∈ IRn,

we can write

gλ(x)−
1

2µ
∥proxgλ(x)− x∥2 − h(proxgλ(x)) ≤ φλ,µ(x) = gλ(x)− hµ(x)

≤ g(proxhµ(x))

+
1

2λ
∥proxhµ(x)− x∥2 − hµ(x).

Therefore

φ(proxgλ(x)) +
1

2λµ
(µ− λ)∥proxgλ(x)− x∥2 ≤ φλ,µ(x)

≤ φ(proxhµ(x))

+
1

2λµ
(µ− λ)∥proxhµ(x)− x∥2.

In other words

φ(proxgλ(x)) +
λ

2µ
(µ− λ)∥∇gλ(x)∥2 ≤ φλ,µ(x)

≤ φ(proxhµ(x)) +
µ

2λ
(µ− λ)∥∇hµ(x)∥2.

The former inequality, in the nice case λ = µ, reduces to

(2.4) φ(proxgλ(x)) ≤ φλ,λ(x) ≤ φ(proxhλ(x)).

In this optimal case the smooth function φλ,λ shares minimizers and stationary
points with the nonsmooth function φ, see the interesting paper by Hiriart-Urruty
[2].

▷ Now, let us show that the gradient ∇φλ,µ is 1
µ -weakly monotone (which

amounts to saying that φλ,µ + 1
µ∥ · ∥

2 is convex) and that it is 1
max(λ,µ) -smooth.

⟨∇φλ,µ(x)−∇φλ,µ(y), x− y⟩ = ⟨(
x− proxgλ(x)

λ
−
x− proxhµ(x)

µ
)

−(
y − proxgλ(y)

λ
−
y − proxhµ(y)

µ
), x− y⟩

= (λ−1 − µ−1)∥x− y∥2

− 1

λ
⟨proxgλ(x)− proxgλ(y), x− y⟩

+
1

µ
⟨proxhµ(x)− proxhµ(y), x− y⟩.
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According to the fact that the proximal mappings are firmly nonexpansive, this
leads to

− 1

µ
∥x− y∥2 + 1

µ
∥proxhµ(x)− proxhµ(y)∥2 ≤ ⟨∇φλ,µ(x)−∇φλ,µ(y), x− y⟩

≤ 1

λ
∥x− y∥2

− 1

λ
∥proxgλ(x)− proxgλ(y)∥

2.

Which ensures that

(2.5) − 1

µ
∥x− y∥2 ≤ ⟨∇φλ,µ(x)−∇φλ,µ(y), x− y⟩ ≤ 1

λ
∥x− y∥2,

and therefore

(2.6) |⟨∇φλ,µ(x)−∇φλ,µ(y), x− y⟩| ≤ 1

max(λ, µ)
∥x− y∥2.

Clearly, φλ,µ is then 1
µ -weakly monotone and 1

max(λ,µ) -smooth.

The key properties of the Moreau envelope naturally lead to consider gradient
methods. It should be mentioned that algorithms that aim to finding critical points
of dc functions were presented, for exemple, in [1] and [5]. The DCA which in-
terleaves subgradient evaluations of the second function and the first one, and the
proximal-gradient method that combines an ascent subgradient step on the second
function with a proximal step on the first one.

3. Gradient descent method

We consider the following algorithm based on the Classical Gradient Descent
Method and we assume that g and h are two proximable functions ( i.e., which
loosely speaking means that their proximal operator can be efficiently computed for
every λ > 0 and µ > 0, respectively):

Parallel Proximal DC Algorithm: Starting from x0 ∈ IRn, it generates the
iterates (xk, yk, zk)k∈IN by the following rules:

Select µ, λ > 0 and 0 < γ < 2 and compute

▷ yk = ∇hµ(xk) = µ−1(xk − proxhµ(xk)),

▷ zk = ∇gλ(xk) = λ−1(xk − proxgλ(xk)).

Next, set:

(3.1) ▷ xk+1 = xk − γmax(λ, µ)∇φλ,µ(xk) = xk − γmax(λ, µ)(zk − yk).

Theorem 3.1. Starting from x0 ∈ IRn, we consider the iterates (xk, yk, zk)k∈IN
generated by the above algorithm. Then, for every k ∈ IRn, we have

φλ,µ(xk+1) ≤ φλ,µ(xk)−
2− γ

2γmax(λ, µ)
∥xk+1 − xk∥2 and min

1≤i≤k
∥yk − zk∥ = o

( 1√
k

)
.

▷ If the objective function φ is bounded below, then the sequence (xk)k∈IN has a
finite length and the sequences (yk)k∈IN and (zk)k∈IN have the same set of cluster
points, says Γ.
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▷ If (xk)k∈IN is bounded, x∗ a cluster point of (xk)k∈IN , then every y∗ ∈ Γ is ε-
stationary for φ⋄, and proxgλ(x

∗) and proxhµ(x
∗) are both ε-stationary points for φ,

provided that λ and µ are very close.
▷ In the optimal case λ = µ, we have that

proxgλ(x
∗) = proxhλ(x

∗) and φλ,λ(x
∗) = φ(proxgλ(x

∗)) = φ(proxhλ(x
∗)).

Proof. We successively have

φλ,µ(xk+1) ≤ φλ,µ(xk) + ⟨∇φλ,µ(xk), xk+1 − xk⟩+
1

2max(λ, µ)
∥xk+1 − xk∥2

= φλ,µ(xk)−
1

γmax(λ, µ)
∥xk+1 − xk∥2 +

1

2max(λ, µ)
∥xk+1 − xk∥2

= φλ,µ(xk)−
γ − 2

2γmax(λ, µ)
∥xk+1 − xk∥2

= φλ,µ(xk)−
(2− γ)γmax(λ, µ)

2
∥zk − yk∥2.

The sequence (φλ,µ(xk))k∈IN is a monotonically decreasing sequence. Furthermore,
it converges to some limit φ∗ provided that the objective function φ is bounded
below. This ensurses that the sequences

(
∥xk+1 − xk∥2

)
k∈IN and

(
∥yk − zk∥2

)
k∈IN

are summable, which in turn imply that

(3.2) (xk)k∈IN is asymptotically regular and min
1≤i≤k

∥yk − zk∥ = o
( 1√

k

)
.

On the other hand, if the sequence (xk)k∈IN is bounded so are (yk)k∈IN and (zk)k∈IN
since the gradients of both gλ and hµ are Lipchitz continuous. Moreover the se-
quences (yk)k∈IN and (zk)k∈IN have the same set of cluster points. Now, for any
cluster points x∗ and y∗ of the sequences (xk)k∈IN and (yk)k∈IN , up to possibly
extracting new subsequences, we obtain at the limit

y∗ = ∇gλ(x∗) = ∇hµ(x∗).

According to

∇gλ(xk) ∈ ∂g(proxgλ(xk)) ⇔ proxgλ(xk) ∈ ∂g∗(∇gλ(xk)),

and passing to the limit, on a subsequence, we get

y∗ ∈ ∂g(proxgλ(x
∗)) ⇔ proxgλ(x

∗) ∈ ∂g∗(y∗).

Similarly, from

∇hµ(xk) ∈ ∂h(proxhµ(xk)) ⇔ proxhµ(xk) ∈ ∂h∗(∇hµ(xk)),

we derive

y∗ ∈ ∂h(proxhµ(x
∗)) ⇔ proxhµ(x

∗) ∈ ∂h∗(y∗).

Consequently,

proxgλ(x
∗) = x∗ − λy∗ and proxhµ(x

∗) = x∗ − µy∗ are ε− stationary points of φ,

when

|λ− µ|∥y∗∥ ≤ ε, in other words λ is close enough to µ.
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Because,

(3.3) 0 ∈ ∂g(proxgλ(x
∗))−∂(proxhµ(x∗)) and ∥proxhµ(x∗)−prox

g
λ(x

∗)∥ = |λ−µ|∥y∗∥.
Moreover, in this case, y∗ is an ε-stationary points of φ⋄.

In the optimal case λ = µ, we have proxgλ(x
∗) = proxhλ(x

∗), hence the latter satisfy
the exact stationary condition (1.3). Regarding the coincidence of the values of
φ and φλ,λ at proxgλ(x

∗) and x∗, this follows from relation (2.4) together with
continuity of φλ,λ and the relation inf φλ,λ = inf φ, see [2]. Note that, in this case,
y∗ is a stationary point of φ⋄. □
Remark 3.2. In the weakly convex case, having in mind Remark 1.1, following the
same lines as in the proof of (2.5)-(2.6) and as long as βmax(λ, µ) < 1, we derive
(3.4)
−1 + β(λ− µ)

µ(1− λβ)
∥x− y∥2 ≤ ⟨∇φλ,µ(x)−∇φλ,µ(y), x− y⟩ ≤ 1 + β(λ− µ)

λ(1− µβ)
∥x− y∥2,

and therefore in the case λ = µ, clearly φλ,µ is 1
λ(1−λβ) -smooth.

The Parallel Proximal DC Algorithm is then applicable with the following decom-
position

φ = g̃ − h̃, where g̃ = g + β/2∥ · ∥2 and h̃ = h+ β/2∥ · ∥2,
and its related convergence results hold true provided that 0 < λ < 1/β and 0 <
γ < 2. Further, according to a formula in Remark 1.1, the algorithm can be written
as

Parallel Proximal DC Algorithm: Starting from x0 ∈ IRn, it generates the
iterates (xk, yk, zk)k∈IN by the following rules:

Select 0 < λ < 1/β and 0 < γ < 2 and compute

▷ yk = proxh̃λ(xk) = proxh λ
1+λβ

(
xk

1+λβ

)
.

▷ zk = proxg̃λ(xk) = proxg λ
1+λβ

(
xk

1+λβ

)
.

Next, set:

(3.5) ▷ xk+1 = xk − γλ(1− λβ)∇φ̃λ,λ(xk) = xk − γ(1− λβ)(zk − yk).

It is worth mentioning that accelerated versions of these approaches can also
been considered, but their use will make the analysis more complicated than for the
classical gradient case.
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/UTLN) Marseille, France

E-mail address : abdellatif.moudafi@univ-amu.fr


