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A REGULARIZATION OF DC OPTIMIZATION

ABDELLATIF MOUDAFI

ABSTRACT. Numerous models of real world nonconvex optimization can be for-
mulated as DC optimization problems which consist in minimizing a difference
of two convex functions, see for instance [1]. A popular approach to address non-
smooth terms in convex optimization is to approximate them with their Moreau
envelopes, see for example [7]. In the spirit of an Hiriart-Urruty’s idea [2], we
propose a complete smooth approximation of the original problem that relies
on Moreau envelopes with eventually different regularization parameters. This
would allow to enforcing the regularization of the convex or the concave part.
A parallel proximal algorithm based on the classical gradient descent method is
also proposed.

1. INTRODUCTION

Throughout, we will need few technical tools from variational analysis [4]. We
equip IR™ with the usual inner product (-,-) and the induced Euclidean norm || - ||
and we are interested in DC optimization problems of the form

(1.1) min p(z) = g(z) - h(z),

where g : IR" — IRU {400} and h : IR" — IR U {+o0} are two proper, lower
semi-continuous (Isc) convex functions. DC programming provided an extension of
convex programming, not too large to still allow using convex analysis and convex
optimization tools but suficientely wide to cover most real world nonconvex prob-
lems. Indeed, this problem has many applications such as multicommodity network,
image restoration processing, discrete tomography, clustering and seems particularly
well suited to model several nonconvex industrial problems (portfolio optimization,
fuel mixture, molecular biology, phylogenetic analysis ...), see for example [1]. The
convexity of the two DC components g and h of the objective function has been
used to develop appropriate tools from both theoretical and algorithmic viewpoints.
Besides, regularization has played a major role in recent development of statistical
machine learning algorithms and other applications. Moreau envelopes have been
prevalent due to their nice properties and computational convenience. In this pa-
per, we address a regularization of both functions h and g with possibly different
regularization parameters. This leads to

(1.2) min o3 () = ga(@) = hu(z),
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A>0,u >0, g\ and h, standing for the Moreau envelopes of g and h, respectively.

This asymmetric reqularization approach would give a flexibility and would allow
to better regularize the convex or the concave part of p by adapting the choice of the
two parameters. The reason is that the functions g and h may have very distinct
rough properties.

Remember that for a proper, Isc function f and parameter v, its Moreau envelope
is defined as

1
() = inf {f(w) + 5w 2}

For instance, if f is the 1-norm, then f, is the celebrated Huber’s function in robust
statistics.

It is worth mentioning that (1.1) subsumes a wide spectrum of problems in op-
timization, see for instance [1] and the references therein. The major advantage
of Problem (1.2) is its smoothness and hence can then be tackled via fast smooth
optimization solvers.

Throughout, we will assume that the original function ¢ is bounded below.

Before stating the definition of exact and approximate stationary points, see
[6], which are relaxed versions of the necessary condition, recall that the partial
differential of a function f is defined as

Of(z) :={u e R"; f(w) > f(x) + (u,w — x) Yw € R"}.
Definition 1.1. > We will say that 2* € IR" is a stationary point of ¢ if
(1.3) dg(x™) N Oh(z*) # 0,

a relaxed version of the necessary condition 0h(z*) C dg(z*).
> Furthermore, we will say that «* € IR™ is an e-stationary point of ¢ if,
(1.4)
(", y*) € R" x IR™ such that £* € 0g(z*) — Oh(y*) and max{|[{"|, ||lz* —y*||} <e.

We will see that during the descent gradient method, the subdifferentials of g
and h are not evaluate at the same point, so the e-stationarity is then a natural
relaxation of the exact one.

Proposition 1.2. Let f be a proper, convex lsc, then, for every v > 0, the Moreau
envelope f- is %-Lipschitz—continuously differentiable with gradient

x — proxéﬁ ()

v

[* stands for the conjugate of f, namely f*(z) = sup,ep-{(z, w) — f(w)}.
Note that, we also have

(1.5) Viy(z) = = proz!_, (x/7).

(1) (@) = (@) + S|

The Moreau envelope is an attractive regularization transform considering the facts
that f,(x) converges pointwise to f(x) when v — 0 and that it shares the same
critical points of f with

(1.6) inf f = inf f, and argminf = argminf,.
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Note also that, it is very useful to associate ¢°

inf p = inf ©°.

A this stage, we want to mention that a study dealing with the same regularization
idea, in the case A = p, was developed in [6] with one of the two dc components
assumed to be potentially weakly convex. This amounts to say that there exists
B > 0 such that g + 3/2| - ||*> is convex.

= h* — ¢g* with ¢ especially as

Remark 1.3. Observe that in this last setting g, is max (%, 1_1[3/\)—Lipschitz—
continuously differentiable and the proximity mapping proxg is (1 — B\)-cocoercive

provided that 0 < A < 1/8, see for example [3]. We can also easily verify the re-
+20.12
5 -l

lation p'rox (x) = proxz? A (1 Y B) according to the S-weak convexity of the

function g together with the fact that 0 < ﬁ <1/p.

Now, it is worth mentioning that a d.c. function ¢ has infinitely many d.c.
decompositions, for example, ¢ = (g + ©) — (h + %) for every finite proper convex
and lsc function ¢ defined the whole space. It is then useful to find a suitable d.c.
decomposition of ¢, since it may have an important influence on the efficiency of
algorithms for its solution. Consequently, we can relax conditions on the involving
functions by assuming the functions g and/or h to be weakly convex. We can reach
convexity of the two dc components by choosing an appropriate 5 > 0 and applying
the following process

p=g—h=(g+5/2] 1*) — (h+5/2ll-?)

In this case, the d.c. components in the dual problem will be continuously differen-
tiable.

2. SOME PROPERTIES OF ) ,

> In the light of Proposition 1.1, ¢, , is differentiable and its gradient is given
by
x —proxs(z) T - proxﬁ(x)
A I
= (A1 — N — (A proad () — pprozl (x).

In the nice case A = p, this reduces to

Voru (z) =

prowﬁ( ) — proas (x)

(2.1) Voaa(z) = 3
The optimality condition, in the general case, reads as
(2.2) Vga(z) = Vhy(x) & prozt . (u/) = prozd_, (z/3),
and remains to solve the fixed-point problem
z = kprozs(z) + (1 — m)proxﬁ(as),with K= ﬁ

In the interesting case A\ = p, relation (2.2) amounts to

(2.3) promA( ) = prox)\( )<:>proa:)\ (z/A) = prox Lz /A).



850 A. MOUDAFI

Since, we always have
f 1 f 2 1 2 n
() = f(proz:(z)) + %Hpm%(w) —z|” < f(w) + gllw —z|” Yw € R",
we can write

03(x) — = |proaf(z) — al|? — h(proz(z))

2 < @eaul@) = ga() — hu(z)
< glprozl(z))
1 h 2
+ox lprow,(z) — all” = hu ().
Therefore
1
p(proxf(x)) + m(u = Nproz§(z) —zlI> < @xu(z)
< @(prozli(x))

1 h 9
+2/\M (= Mlprozx,,(z) — z[|*.

In other words

so(proa:§<x>>+QLm—A)HVgA(x)HQ < o)

< lprox) (@) + 2-(u = N[ Vhu()|P.

The former inequality, in the nice case A = u, reduces to

(2.4) p(proz§(z)) < pan(z) < p(prozl(@)).

In this optimal case the smooth function ¢, ) shares minimizers and stationary
points with the nonsmooth function ¢, see the interesting paper by Hiriart-Urruty
[2].

> Now, let us show that the gradient Vo, , is i-weakly monotone (which

amounts to saying that ¢, , + %H . ”2 is convex) and that it is m—smoo‘ch.
g h
x —proxd(x) x—prox,(x)
(Voru(@) = Voruw)a—y) = (5 - —— =)
- prozi(y) vy —proxﬁ(y)) v 1)
A p )

= (A=Yl —y)?

= (proas(x) — proxf(y), = — y)

e o R

+;<p7‘0wﬁ(ﬂf) — prozli(y),z — y).
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According to the fact that the proximal mappings are firmly nonexpansive, this
leads to

1 1
—;Hw —yl*+ ;Ilprox,’i(fﬁ) —prozl()* < (Veru(@) — Veru(y),z —y)

1 2
< g =
< Sllo -yl

1

— S llprozt (@) — prozs (y)|I°
Which ensures that

1 1
(2.5) —;Hw —yl* < (Verul@) = Voruw),z — ) < Sl =yl
and therefore
2. — ) < ——— |z — gy
(2.6) ((Voru(@) = Voru(y),z —y)| < max()\,,u)ng yl|

Clearly, ¢, is then i—weakly monotone and m—smoo‘ch.

The key properties of the Moreau envelope naturally lead to consider gradient
methods. It should be mentioned that algorithms that aim to finding critical points
of dc functions were presented, for exemple, in [1] and [5]. The DCA which in-
terleaves subgradient evaluations of the second function and the first one, and the
proximal-gradient method that combines an ascent subgradient step on the second
function with a proximal step on the first one.

3. GRADIENT DESCENT METHOD

We consider the following algorithm based on the Classical Gradient Descent
Method and we assume that g and h are two proximable functions ( i.e., which
loosely speaking means that their proximal operator can be efficiently computed for
every A > 0 and p > 0, respectively):

Parallel Proximal DC Algorithm: Starting from zy € IR", it generates the
iterates (zg, Yk, 2k )kev Dy the following rules:

Select p, A > 0 and 0 < v < 2 and compute

> g = Vhy(x) = p~ (- proali(zy)),

> zp = Vor(zk) = X H(ag — proz$ (zy)).

Next, set:

(3.1) > 21 = 2 — ymax(A, p)Vor (k) = o — ymax(A, 1) (25 — Yi)-
Theorem 3.1. Starting from zo € IR™, we consider the iterates (g, Yk, 2k )ke N
generated by the above algorithm. Then, for every k € IR"™, we have
2—9
2 max(\, 1)

1
Pau(Thr1) < Ox () | 2ks1 — x| and min, g, — 2kl = 0(ﬁ)~
> If the objective function ¢ is bounded below, then the sequence (xp)kenw has a
finite length and the sequences (yx)kemw and (zx)kemw have the same set of cluster
points, says I.
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> If (zk)kenv is bounded, x* a cluster point of (zi)kemv, then every y* € T' is e-
stationary for ¢°, and proz(z*) and proxﬁ(m*) are both e-stationary points for o,
provided that A\ and v are very close.

> In the optimal case X = u, we have that

proa(a*) = proa(a”) and px(a*) = w(proad (*)) = w(proal(a”)).

Proof. We successively have

Oau(@rr1) < @au(@r) + (Vo u(®r), Ths1 — o) + 2max1(>\,u)ka“ — zp||?
= onlon) = sl — ol + g o —
= Paulen) = g i —
= prulm) - BT e

2

The sequence (¢ ,(2))ren is a monotonically decreasing sequence. Furthermore,
it converges to some limit ¢* provided that the objective function ¢ is bounded
below. This ensurses that the sequences (||zp41 — kaz)ke]N and ([lyx — Zk”Q)keﬂV
are summable, which in turn imply that

1

vl

On the other hand, if the sequence (z)ren is bounded so are (yx)ken and (zx)re v
since the gradients of both g\ and h, are Lipchitz continuous. Moreover the se-
quences (yg)ren and (zx)kemn have the same set of cluster points. Now, for any
cluster points * and y* of the sequences (x)renv and (yr)kemw, up to possibly
extracting new subsequences, we obtain at the limit

y" = Vga(z®) = Vhy(z).

(3.2) (zx)remn is asymptotically regular and 121121’C lyk — zi] = o
<i<

According to
Vgx(zk) € 9g(proa3 (zk)) < prozf(zx) € g™ (Vaa(zk)),
and passing to the limit, on a subsequence, we get
y* € dg(proad(z*)) & proad(z*) € g™ (y*).
Similarly, from
Vhu(xg) € 8h(pr0xﬁ(xk)) = proxﬁ(mk) € Oh* (Vhy(zr)),
we derive
y* e 8h(pro:cﬁ(x*)) & proxﬁ(a@*) € On* (y").
Consequently,

prozs(z*) = 2* — Ay* and proxﬁ(w*) =" — py* are e — stationary points of ¢,

when
A — ullly*|| < e, in other words A is close enough to u.
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Because,

(3.3) 0 € dg(prozs(z*))—(prox)(z*)) and ||prox(x*)—prozs («*)| = [A—pllly*|.

Moreover, in this case, y* is an e-stationary points of ¢°.

In the optimal case A = p1, we have proz§ (z*) = proaz})f(:v*), hence the latter satisfy
the exact stationary condition (1.3). Regarding the coincidence of the values of
¢ and @y at proz§(z*) and z*, this follows from relation (2.4) together with
continuity of ¢y » and the relation inf ¢y y = inf ¢, see [2]. Note that, in this case,

y* is a stationary point of ¢°. a

Remark 3.2. In the weakly convex case, having in mind Remark 1.1, following the
same lines as in the proof of (2.5)-(2.6) and as long as S max(\, u) < 1, we derive

(3.4)
—14+8A—p) 14 B0 — )
WH«T - y‘|2 < <VSDA,H(«T) - V(P)\,u(y),x —y) < Wux _ y”27

and therefore in the case A\ = p, clearly ¢ , is m—smooth.

The Parallel Proximal DC Algorithm is then applicable with the following decom-
position

p=g—h, where g=g+05/2|-|* and h=h+5/2||-|?
and its related convergence results hold true provided that 0 < A < 1/5 and 0 <

~v < 2. Further, according to a formula in Remark 1.1, the algorithm can be written
as

Parallel Proximal DC Algorithm: Starting from xg € IR", it generates the
iterates (xg, Yk, 2k )kev by the following rules:

Select 0 < A < 1/f and 0 < v < 2 and compute

> yp = prozl(zx) = proz” ().

1+>\/\3
> 2 = pTOiUi(ﬂﬂk) = pTOl’L (ﬁiiﬁ)
1+28
Next, set:
(3.5) > Tpp1 = 2 — YA1 = AB)V@ra(zr) =z — v(1 — XB) (21 — yi)-

It is worth mentioning that accelerated versions of these approaches can also
been considered, but their use will make the analysis more complicated than for the
classical gradient case.
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