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of the interior-point method tends to be better than the worst case of O(
√
nL)

iterations.
For the second and the third approaches we are not aware of similar bounds,

but the asymptotic bounds for rate of convergence are provided (see, e.g. [20]).
Therefore, the goal of this manuscript is to estimate empirically the time required
to solve a QP problem with the second and the third approaches as a function of the
number of variables n. As a representative of the second approach a fast projected
gradient method (see [7, 19]) is selected. As a representative the third approach
a nonlinear rescaling (NR) method (see [16, 20]) with Newton steps is selected.
Equality constraints are treated with augmented Lagrangian method [9,21] for both
algorithms. Thus the manuscript is dealing with augmented Lagrangian approach
with different ways of treating the simple bounds: first, using fast projected gradient
for primal minimization; second, using Newton’s method for primal minimization in
the framework of NR method. Therefore any difference that we observe in behavior
of the two algorithms can be attributed mainly to the different treatment of the
simple bounds and to whether the first- or the second-order methods are used to
produce iterates.

We would like to mention that any problem with linear inequality constraints
may be converted to a problem with linear equality constraints and simple bounds
by introduction the slack variables. Thus we are dealing with the two methods
that can be used to solve a general QP problem with linear inequality and equality
constraints. In case the inequality constraints are simple bounds (or just nonnega-
tivity), then the projection on such feasible set is computationally inexpensive and
takes only O(n) operations as detailed further.

In the last decade the family of fast gradient method, originally proposed by
Nesterov [12], gained a popularity due to its theoretical and computational supe-
riority over simple gradient methods (steepest descent methods). Fast gradient
methods belong to a family of first-order methods that do not use Hessians or solve
linear systems. Therefore, they are attractive for solving large problems. Adding
a projection step onto a set defined by simple bounds does not compromise their
computational efficiency. Fast projected gradient methods have similar convergence
bounds to those of their nonprojective variants [2, 20].

At the same time it is important to understand better how the computational
time of fast projected gradient methods scales up with an increase of the number
of variables for QP. Therefore one of the goals of the manuscript is to address this
question by conducting computational experiments.

A good alternative to first-order methods is Newton’s method, arguably the
most famous second-order method. Besides being by itself one of the most widely
used algorithms for solving smooth unconstrained minimization problems, Newton’s
method is responsible for the success of some constrained optimization algorithms
such as, for example, interior- and exterior-point methods [4,5]. Every Newton step
is capable of producing significant progress of iterates towards the solution result-
ing in quadratic rate of convergence in the neighborhood of the solution for a large
class of problems (see [20] for more details). Of course, the main challenge for the
algorithms based on Newton iterations is the necessity of solving a linear system of
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equations to find Newton directions each iteration, where most of the computational
time is spent.

Therefore conceptually the question is whether it is rewarding to spend computa-
tional time in calculating Newton directions since they produce significant progress
of the iterates each step, or it is better to stick to first-order methods with their
computationally inexpensive one iteration and settle for a much larger number of
simple iterations? Addressing this question by running computational experiments
is the second goal of the manuscript.

Finally, since Newton’s method is efficient only for smooth problems, combin-
ing Newton’s method with some kind of projection would result in the loss of the
quadratic convergence of the Newton iterates while still requiring solving linear sys-
tem of equations at every iteration. Therefore with Newton’s method we employ a
different mechanism of attaining feasibility and optimality: nonlinear rescaling prin-
ciple (NRP) introduced by Polyak [16]. The NRP solves a constrained optimization
problem as a sequence of smooth and well-conditioned unconstrained optimization
subproblems. Therefore the NRP is well suited to be used with Newton’s method.
By running computational experiments we aim to get some insight on how the so-
lution time for Newton nonlinear rescaling method scales up comparing to that of
a fast projected gradient method.

The manuscript is organized as follows. The next section describes a fast pro-
jected gradient augmented Lagrangian algorithm (FPGAL). Section 3 describes
Newton nonlinear rescaling algorithm (NNRAL). Section 4 provides numerical re-
sults. Section 5 provides a summary and discussion of the results, conclusions and
possible future directions of investigating the topic further.

2. Fast projected gradient - augmented Lagrangian algorithm

Consider the problem

minimize
x∈B

f(x)

subject to g(x) = 0,
(2.1)

where

f(x) =
1

2
xTQx+ qTx,

g(x) = Ax− b,

where Q is an n×n positive definite matrix, A is an m×n matrix, q ∈ IRn, b ∈ IRm,
m < n, and the set

B = {x ∈ IRn : li ≤ xi ≤ ui, i = 1, . . . n} .

Some lower and upper bounds could be −∞ or +∞. Therefore some variables may
be unbounded.

We assume that the feasible set Ax − b = 0, x ∈ B contains nonempty relative
interior points. Since Q is positive definite, the resulting problem is strongly convex.

The Lagrangian for (2.1) is given by

L(x, λ) = f(x) − λT g(x),
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and the augmented Lagrangian is as follows:

Lk(x, λ) = f(x) − λT g(x) +
k

2
g(x)T g(x),

where λ ∈ IRm is a vector of Lagrange multipliers that corresponds to the equality
constraints and k > 0 is the scaling parameter.

The augmented Lagrangian method consists of a sequence of inexact minimiza-
tions of Lk(x, λ) in x on the B set

(2.2) x̂ ≈ x̂(λ) = argmin
x∈B

Lk(x, λ).

followed by updating the Lagrange multipliers:

λ̂ = λ− kg(x̂).

For the stopping criteria of the problem (2.2), we use the following function that
measures the violation of the first order optimality conditions for problem (2.2):

(2.3) µ(x, λ) = max
1≤i≤m

µi(x, λ),

where

(2.4) µi(x, λ) =

 |(∇xL(x, λ))i|, if li < xi < ui,
max{0,−(∇xL(x, λ))i}, if xi = li,
max{0, (∇xL(x, λ))i}, if xi = ui.

Note that the function accur(x, λ) =: max{µ(x, λ), ∥g(x)∥} measures the violation
of the optimality conditions for the problem (2.1), and accur(x, λ) = 0 is equivalent
to satisfying the first order optimality conditions.

Figure 1 describes the augmented Lagrangian method for solving problem (2.1).

1. Set x ∈ B, λ = λ0 = 0, rec = accur(x, λ).
Select k > 0, ϵ > 0, 0 < θ < 1, δ ≥ 1.

2. Find x̂ ≈ argmin
x∈B

Lk(x, λ) with FPGM such that µ(x̂, λ) ≤ ϵ/k

3. Set rec := accur(x̂, λ)

4. Find λ̂ = λ− kg(x̂).

5. Set x := x̂, λ := λ̂, ϵ := θϵ, k := δk.
6. If rec > RequiredAccuracy then Goto 2.
7. Stop.

Figure 1. Augmented Lagrangian Method

The minimization of the set B in Step 2 of the augmented Lagrangian algorithm
is performed with the fast projected gradient method using FISTA [2] formulas for
iterate update (see [6, 7] for more details). The algorithm is shown in Figure 2.

Since Lk is a quadratic form with respect to x, L = ∥∇2
xxLk(x, λ)∥ = ∥Q+kATA∥,

where the matrix spectral norm and is the largest singular value of a matrix, i.e.
the constant that depends only on Q, A and the parameter k.

Note that the matrix-vector products Qx and ATλ are the most computation-
ally expensive parts for the ∇xLk(x, λ) calculation, which takes O(n2) operations.
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1. Input (x, λ).
2. Set x̄ = x, t = 1. Select L > 0.
3. Set x̂ = PB(x− 1

L∇xLk(x, λ))

4. Set t̄ = 0.5(1 +
√

1 + 4t2)
5. Set x = x̂+ (x̂− x̄)(t− 1)/t̄
6. Set x̄ = x̂, t = t̄
7. If µ(x̂, λ) > RequiredAccuracy, Goto 3.
8. Output x̂.

Figure 2. Fast Projected Gradient Method

The projection step PB is shown in Figure 3 and requires only O(n) arithmetic
operations.

1. Loop over all i = 1, . . . , n.
2. If xi < li then Set xi = li
3. If xi > ui then Set xi = ui
4. Return x.

Figure 3. Operator PB : Projection of x ∈ IRn

onto the set B

Theoretical convergence analysis of FPGAL algorithm in Figure 1-3 can be found
in [7].

3. Newton nonlinear rescaling - augmented Lagrangian algorithm

Another method we selected for computational experiments is based on a combi-
nation of nonlinear rescaling principle for treating inequality constraints with aug-
mented Lagrangian method for handling equations. Unconstrained minimizations
were performed by Newton’s method.

Nonlinear rescaling principle was developed by Polyak [16]. It is the general-
ization of the modified barrier function method [14]. The main idea is that the
functions that define inequality constraints are rescaled with with a transformation
that has certain characteristics described below. As a result, the rescaled prob-
lem is equivalent to the original problem yet possesses additional useful properties
that can be exploited. Therefore such rescaling mechanism is an alternative to the
projection when treating simple bounds.

The rescaling of the functions that define constraints is accomplished with a
transformation ψ : IR → IR with the following properties:

(1) ψ′(t) > 0, ψ′′(t) < 0 for all t ∈ IR.
(2) ψ(0) = 0, ψ′(0) = 1.
(3) ψ′ (t) ≤ a/(t+ 1) for all t ≥ 0 and some a > 0.
(4) −ψ′′ (t) ≤ b/(t+ 1)2 for all t ≥ 0 and some b > 0.
The examples of the transformations ψ that satisfy properties (1) - (4) can be

found in [17,20].



834 IGOR GRIVA

To conduct computational experiments we used a smooth combination of the
modified barrier function and a parabola:

(3.1) ψ (t) =

{
ln (t+ 1) , t > −0.5

−2t2 + ln (.5) + .5, t ≤ −0.5.

Consider the functions ci(x) = xi − li, i = 1, . . . , n, ci(x) = ui−n − xi−n, i =
n+ 1, . . . , 2n. The the bounded set B can be described as follows:

B = {x ∈ IRn : li ≤ xi ≤ ui, i = 1, . . . n}

= {x ∈ IRn : ci(x) ≥ 0, i = 1, . . . 2n} .
The QP (2.1) can be restated as

minimize
x∈ IRn

f(x)

subject to g(x) = 0,

c(x) ≥ 0,

(3.2)

where c(x) = (c1(x), . . . cn(x), cn+1(x), ..., c2n(x))T is a vector function.
The nonlinear transformation ψ rescales functions ci, i = 1, ..., 2n without chang-

ing set B :

B = {x ∈ IRn : ψ(kci(x))/k ≥ 0, i = 1, . . . 2n} ,
where k > 0 is a fixed scaling parameter.

Consider the Lagrangian for the rescaled problem

 L(x, λ, µ) = f(x) −
2n∑
i=1

µiψ(kci(x))/k − λT g(x)

and the augmented Lagrangian

Lk(x, λ, µ) = f(x) −
2n∑
i=1

µiψ(kci(x))/k − λT g(x) + 0.5kg(x)T g(x).

Here µ = (µ1, . . . , 2n) ∈ IR2n
+ is a vector of the Lagrange multipliers that corre-

spond to the inequality constraints, while λ ∈ IRm, as previously, the vector of the
Lagrange multipliers that correspond to the equations.

The nonlinear rescaling - augmented Lagrangian (NRAL) method consists of a
sequence of inexact unconstrained minimizations of Lk(x, λ) in x on the IRn

(3.3) x̂ ≈ x̂(λ, µ) = argmin
x∈IRn

Lk(x, λ, µ).

followed by updating the Lagrange multipliers:

µ̂i = µiψ
′(kci(x̂)), i = 1, . . . , 2n.

λ̂ = λ− kg(x̂).

The algorithm performs an unconstrained minimization of a smooth function Lk.
Therefore ∥∇Lx(x̂, λ, µ)∥ ≤ ε can be used for the stopping criteria of the uncon-
strained subproblem (3.3). A function ν(x, λ, µ) that measures the violation of the
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KKT conditions

ν(x, λ, µ) = max

{
∥∇xL(x, λ, µ)∥, c(x)Tµ, max

1≤i≤2n
{−ci(x)}, ∥g(x)∥

}
can be used for the stopping condition of the NRAL method.

Figure 4 describes the nonlinear rescaling augmented Lagrangian method for
solving problem (3.2).

1. Set x∈ IRn, λ=0 ∈ IRm, µ=(1, . . . , 1)T ∈ IR2n
++, r=ν(x, λ, µ).

Select k > 0, ϵ > 0, 0 < θ < 1, δ ≥ 1.
2. Find x̂ ≈ argmin

x∈IRn
Lk(x, λ, µ) with NM: ∥∇xLk(x̂, λ, µ)∥ ≤ ϵ/k

3. Find µ̂i = µiψ
′(kci(x̂)), i = 1, . . . , 2n.

4. Find λ̂ = λ− kg(x̂).

5. Set x := x̂, λ := λ̂, µ = µ̂, r := ν(x, λ, µ), ϵ := θϵ, k := δk.
6. If r > RequiredAccuracy then Goto 2.
7. Stop.

Figure 4. Nonlinear Rescaling - Augmented La-
grangian Method

Since Q is positive definite, the problem (3.2) satisfies the standard second-order
optimality conditions. Therefore for the sequence of the primal-dual triples zs =
(xs, ys, zs) generated by the NRAL method and k large enough, the Q-linear rate
of convergence takes place, i.e. the following bound holds:

(3.4) ∥zs+1 − z∗∥ ≤ σ

k
∥zs − z∗∥,

where zs+1 = (xs+1, λs+1, µs+1) and zs = (xs, λs, µs) are two consecutive primal-
dual iterates of the NRAL method shown in Figure 4, and σ > 0 is a constant
related to problem data (see [20] for more detail). From the convergence of {zs}, in

1. Input (x, λ, µ).
2. Set t = 1, ĝ = ∇xLk(x, λ, µ)
3. Solve the system ∇2

xxLk(x, λ, µ)∆x = −ĝ for ∆x.
4. While Lk(x+ t∆x, λ, µ) > Lk(x, λ, µ) + 0.1tĝT∆x

t := t/2
5. Set x = x+ t∆x
6. If ∥∇xLk(x, λ, µ)∥ > RequiredAccuracy, Goto 2.
7. Output x.

Figure 5. Newton’s method for minimizing Lk

particular, follows its boundedness.
Figure 5 describes Newton’s method (NM) used in Step 2 of the nonlinear rescaling-

augmented Lagrangian algorithm. Convergence properties of Newton’s method
mainly depend on the Lipschitz constant M(λs, µs) > 0 for the Hessian ∇2

xxLk(x, λs, µs),
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and the strong convexity constant m(λs, µs) of Lk(x(λs, µs), λs, µs), where x(λs, µs) =
argminx∈IRn Lk(x, λs, µs). The existence of the Lipschitz constant M(λs, µs) follows
from boundedness of the closed set S(xs, λs, µs) = {x : Lk(x, λs, µs) ≤ Lk(xs, λs, µs)}
for any λs ∈ IRm, µs ∈ IR2n

++, and xs ∈ IRn. Further, from the convergence and
hence boundedness of {zs} = {(xs, λs, µs)} of the sequence generated by the non-
linear rescaling - augmented Lagrangian method in Figure 5 and the continuity in
x of Lk(x, λ, µ) follows the existence of M <∞ such as supsM(λs, µs) ≤M.

The strong convexity constant m(λs, µs) of Lk(x, λs, µs) is separated from zero
by the minimum eigenvalue m of matrix Q : m(λ, µ) ≥ m > 0. Therefore in the
neighborhood of x(λs, µs) Newton’s method has a quadratic rate of convergence and
the following bound holds:

(3.5) ∥xs+1 − x(λs, µs)∥ ≤ M

2(m−M∥xs − x(λs, µs)∥)
∥xs − x(λs, µs)∥2,

where xs, xs+1 are two consecutive iterates of Newton’s method shown in Figure 5
(see [20] for the proof of (3.5)).

4. Numerical experiments

For numerical experiments we selected the dual problem for training soft margin
support vector machines (SVM) with Gaussian kernels (see [24] for details).

Let {(z1, y1), . . . , (zn, yn)} be a set of n argument-value training examples of an
unknown binary function that the SVM needs to approximate. Here zi ∈ IRp,
i = 1, . . . ,m are examples of function arguments and yi ∈ {−1, 1} represent the
corresponding function values, or labels indicating the class to which zi belongs.
The dual form of the soft margin SVM problem finds support vectors by solving
the following quadratic QP problem for x∗ = (x∗1, . . . , x

∗
n)T [24].

minimize f(x) =
1

2

n∑
i=1

n∑
j=1

yiyjxixjK (zi, zj) −
n∑

i=1

xi

subject to g(α) =

n∑
i=1

yixi = 0,

0 ≤ xi ≤ C, i = 1, . . . , n,

(4.1)

where K(·, ·) is a Kernel function.
To show that problem (4.1) can be formulated as problem (2.1), let us introduce

the following bounded set:

B = {x ∈ IRn : 0 ≤ xi ≤ C, i = 1, . . . n} .
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k Training time (sec) # of Iterations # of minimizations on B

2−5 > 100 reached iter limit reached iter limit

2−4 > 100 reached iter limit reached iter limit

2−3 > 100 reached iter limit reached iter limit

2−2 32.39 7192 22

2−1 24.96 5924 12

20 24.92 5863 8

21 25.56 6056 5

22 38.03 9085 4

23 56.78 13222 3

24 123.38 28643 3

25 201.70 47535 2

Table 1. Training SVM with FPGAL method with different k (n = 1000)

Then the optimization problem (4.1) can be rewritten as follows:

minimize
x∈B

f(x) =
1

2

n∑
i=1

n∑
j=1

yiyjxixjK (zi, zj) −
n∑

i=1

xi

subject to g(x) =
n∑

i=1

yixi = 0,

(4.2)

or equivalently as

minimize
x∈B

f(x)

subject to g(x) = 0,
(4.3)

where

f(x) =
1

2
xTQx− eTx,

g(x) = yTx,

where Q is an n × n matrix with the elements qij = yiyjK(zi, zj), i, j = 1, . . . , n,
e = (1, . . . , 1)T ∈ IRn, y ∈ IRn is a vector with the entries made of 1 and −1. Using
Gaussian kernels with non-repeating data points ensures that Q is positive definite.
In other words, problem (4.3) is a particular representative of a general problem
(2.1).

We selected SVM problem (4.1) for testing experiments mainly because it is easy
to change the size of the problem while keeping all the other characteristics of the
problem similar. All we have to do is to select a different number of data points n
from the same large data set. A particular choice of a data set is not important as
long as it has a sufficient number of data points, so we can observe how the solution
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time scales up. The data we use are HSLS09 study of high school student indi-
cators (https://nces.ed.gov/surveys/hsls09/), where the predicted binary variable
yi ∈ {−1, 1} represent the label indicating where a high student attended a college
or not. The SVM was trained to predict the college attendance using a vector of
high school student descriptors zi ∈ IR501. The Gaussian kernel function was se-
lected K(zi, zj) = exp(−γ∥zi − zj∥2). The parameters γ = 0.004 and C = 10 were
selected to achieve high SVM predictive accuracy. The accuracy in the stopping
criteria of optimization algorithms was selected as RequiredAccuracy = 0.001. We
implemented both algorithms in Matlab “from scratch” except the subroutine for
solving linear systems of equations, for which we used a built in Matlab solver. We
used a Windows laptop with Intel Xeon CPU E3-1535M v6 to run computational
experiments.

To select a good value for the scaling parameter for FPGAL method we ran a
few experiments for

k = 2l, l = −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5.

The results are shown in Table 4. The cases with k = 2−5, 2−4, 2−3 took too much
time and hit an iteration limit. This happened because when the value of k is too
small, each minimization on B does not produce a good enough progress of dual
iterates λ towards the dual solution λ∗. The value of k = 1 provides an optimal
setting. This is consistent with results obtained in the previous study [6].

We also checked the range of k from 1 to 200 to investigate how the training SVM
by FPGAL scales up with further increase of k. Figure 6 shows that solving time
scales up as O(

√
k). The result can be explained by the estimate for the number

of iterations that is needed to solve the problem. As the scaling parameter grows,
most of the computational effort goes to finding the first minimization (2.2) on B.
According to [19] for the first minimization, for the iterates xs, s = 0, 1, . . . , the
following bound takes place:

(4.4) Lk(xs, λ0) − Lk(x(λ0), λ0) ≤
2L∥x0 − x(λ0)∥2

(s+ 1)2
,

where x(λ0) is the solution to the first minimization problem (2.2), L is the Lipschitz
constant for ∇xLk(x, λ0) such that

∥∇xLk(x1, λ0) −∇xLk(x2, λ0)∥ ≤ L∥x1 − x2∥

for any x1, x2 ∈ IRn.
Since Lk(x, λ) is a quadratic form in x, its Hessian

∇2
xxLk(x, a, λ) = Q+ kyyT ,

and the spectral norm

(4.5) L = ∥Q+ kyyT ∥

grows linearly with increase of k. Therefore, according to (4.4), the iteration count

s must grow as O(
√
L) = O(

√
k) to counter the linear growth of the numerator of

the right-hand-side of (4.4) to achieve the same level of accuracy of the left-hand-
side of (4.4). Similar scalings of L take place on all subsequent minimization on
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Figure 6. CPU times for training SVM with FPGAL and NNRAL
as a function of the scaling parameter k, number of training points
n = 1000

B. Therefore the growth of solving time O(
√
k) that one can see in Figure 6 is

expected.
The NNRAL method allows more freedom in selecting the scaling parameter k as

Figure 6 suggests. Any value of k from 50 to 200 results in about the same solution
time. So we selected k = 100 for the NNRAL experiments.

We trained SVM with both FPGAL and NNRAL methods to the accuracy of
10−3 for n ranging from 1000 to 15000 training examples and recorded the solution
times. Then we created logarithmic plots as shown in Figure 7.

The logarithmic plots are useful because if they show a linear growth of solution
times, that means the actual growth is polynomial O(nd) with a slope approximating
the degree d of the polynomial. The height of the line logH (y-intercept) is the
logarithm of a coefficient before the highest degree d :

(4.6) s.t.(solution time) ≈ Hnd.

Indeed, by taking the logarithm of both side of (4.6) we have a linear law in log n:

(4.7) log(s.t.) ≈ logH + d log n.

First observation is that for both FPGAL and NNRAL methods the logarithmic
plots follow well linear pattern suggesting that the scaling of both algorithms is
closed to polynomial. The slope of each line approximates the highest degree of the
polynomial. The larger n, the more accurately the slope approximates the degree
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Figure 7. CPU times for training SVM with FPGAL and New-
ton NRAL as a function of the number of training points n =
1000, 1050, 1100, . . . , 15000. The times for solving a linear system of
thee size n also provided for a reference.

d in the formula s.t. = O(nd). Note that the slopes of the graphs for both FPGAL
and NNRAL are less than 3 (2.8 and 2.7 respectively), which is the consequence
of using many problems with relatively small n for the slope approximation. To
test this hypothesis, we looked into how solving a single linear symmetric system
with the SVM matrix Q scales up. The corresponding graph is shown in blue with
the slope approximation of 2.54, which is less than the theoretical value of 3, since
linear systems scale up as O(n3).

The explanation for this discrepancy is in the presence of lower order terms in the
accurate count of number of arithmetic operations. For example, to solve a linear
system, the formula for the flop count is a polynomial of degree 3:

p(n) = c3n
3 + c2n

2 + c1n+ c0.

When n is small, the terms such as c2n
2 simply cannot be ignored and result in the

underestimation of the highest degree of 3. In order to be able to ignore the terms
c2n

2 + c1n + c0, we need to consider very large n. Then the number of arithmetic
operations will be more accurately approximated with the highest degree term c3n

3.
Therefore to improve the accuracy of the degree estimate we consider only very

large available n. For example, in the range of 10000 and 15000, the approximation
of the iteration count p(n) ≈ c3n

3 should become more accurate.
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Figure 8. CPU times for training SVM with FPGAL and New-
ton NRAL as a function of the number of training points n =
10000, 10050, 10100, . . . , 15000. The times for solving a linear sys-
tem of thee size n also provided for a reference.

Indeed, Figure 8 demonstrates that the slopes for the line that shows the scaling of
solving a single linear system of equations is about 3. That gives us some confidence
to assume that in the case of large n the slopes for scaling FPGAL and NNRAL are
also accurate: 2.999 for FPGAL, and 3.008 for NNRAL. Therefore the numerical
experiments demonstrate that the the solution time for both FPGAL and NNRAL
methods scales up as O(n3).

5. Discussion and concluding remarks

There are several conclusions we can draw from the described numerical experi-
ments.

First, we observed that the time it takes to train SVM with the NNRAL method
scales up approximately as O(n3). The observation can be explained by the fact
that it takes approximately the same number of Newton steps to solve large and
small problems. A small growth in a number of Newton steps is still observed, from
an average of about 90 Newton steps for the smallest half n = 1000, ..., 8000, to an
average of about 116 Newton steps for the largest half n = 8000, ..., 15000. However,
this growth is negligible. Newton’s method is mainly immune to the growth of the
Lipschitz constant for ∇xLk(x, λ, µ). Convergence properties of Newton’s method
mainly depend on the Lipschitz constant M for the Hessian ∇2

xxLk(x, λ, µ), and the



842 IGOR GRIVA

strong convexity constant m of Lk(x, λ, µ). For SVM problem (4.1), it can be shown
thatM depends only on the value of the scaling parameter k, Lagrange multipliers µ,
and the value of ψ′′′(kci(x)). The Lagrange multipliers µ are bounded since NRAL
converges. Moreover, we do not observe the growth of the Lagrange multiplier
with the increase of n. Also because of convergence, we have kci(x) ≥ −0.5 in the
neighborhood of the solution. Therefore, according to (3.1), ψ′′′(kci(x)) ≤ 16, i.e.
ψ′′′(kci(x)) is also bounded for any n. Therefore the Lipschitz constant M is not
expected to grow with n.

The strong convexity constant m may worsen a little (become smaller) when we
increase the number of data points. As the number of data points grows, then we
may have more data points, which are close in distance. That may result in the
decrease of the smallest eigenvalue of Q.

Also, as the number of data points n grows,we may have more points close to
the separating hyperplane, which may result having a larger constant σ in (3.4).
Therefore the number of unconstrained minimizations with Newton’s method may
increase a little.

However, we emphasize that the resulting increase of the number of Newton steps
is insignificant and not systematic as shown in Figure 9. So it can be ignored.

Figure 9. Number of iterations for training SVM with FPGAL
and Newton NRAL as a function of the number of training points
n = 10000, 10050, 10100, . . . , 15000.

Unlike Newton’s method, the gradient based first-order methods experience an
increase of the number of iterations when n grows. Figure 9 suggests that the
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number of iterations scales up as O(n). This can be explained using formula (4.4).
For the SVM problem the Lipschitz constant L grows linearly with n as suggest
formula (4.5) together with the fact that the Gaussian kernel is used. Assuming
that x0 = 0, the term ∥x0 − x(λ0)∥2, also grows linearly with n. So the numerator
in the right-hand-side of (4.4) grows as O(n2). Therefore to compensate for this
growth and to achieve the same level of accuracy in the left-hand-side of (4.4) the
number of iterations must grow as O(n). Similar considerations are applied to all
minimizations on the set B. It has been observed that the number of minimizations
on the set B does not grow with the increase of n. Therefore the total solution time
grows linearly also as O(n) consistently with the observation in Figure (9).

It takes O(n2) of arithmetic operations to perform each iteration of the FPGAL,
since the most computationally expensive part is the calculations of the gradient
∇f(x) = Qx + q. Therefore the the training of SVM by FPGAL method should
scale up as O(n3), which is confirm by our experiment.

At the same time the coefficient H before the highest degree p(n) ≈ Hn3 is
larger for the FPGAL than that for NNRAL methods, according to Figure 8 sug-
gesting that NNRAL method is generally faster on SVM problems (at least for our
implementation of the algorithms). By fitting the time data to the model (4.7),
we found that log10H = −8.91 for the NNRAL method, and log10H = −8.13 for
the FPGAL algorithm suggesting, suggesting that the NNRAL method is about
10−8.13+8.91 = 100.78 ≈ 6 times faster for problems of the same size.

Figure 10. Transformation of constraints: no transformation
(black), classical barrier (red), projection (blue), nonlinear rescal-
ing (green).

Finally, to put another spin on the question whether one should use projection or
rescaling, it is worth mentioning that a projection also can be viewed as a rescaling
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transformation as shown in Figure 10. The projection transformation is shown blue,
while the NR smooth transformation is shown green. Therefore the projection can
be viewed as particular transformation of the functions ci.

To complete the picture, the classical barrier function (shown red in Figure 10)
also can be viewed as a rescaling transformation. In particular, it can be seen that
only when the barrier parameter µ is closed to zero, the classical barrier transforma-
tion can be used to find a solution, since we need the transformation to go through
the origin to deal with the active constraints. Finally “no rescaling transformation”
case, or ψ(t) = t is shown black. As one can see, the NR transformation that pos-
sesses properties (1) - (4) described earlier is the only nonlinear and smooth at the
solution where ci(x

∗) = 0 for the active constraints.
Thus, the question whether one should project or rescale is rhetorical, because all

three approaches mentioned in the introduction is one or another form of rescaling.
A better question posed is how the functions that define constraints need to be
rescaled? While various rescaling methods can be used, only nonlinear rescaling
with properties (1) - (4) allows using second-order well conditioned approximations
at the solution.

Even though our version NNRAL is faster than FPGAL method, still it takes
a long time to train large SVM even with NNRAL method. Therefore methods
based on selection of smaller working sets of data points is a promising direction
of further improving SVM training efficiency. Some preliminary results [1] suggest
that using efficient working set selection techniques with FPGAL allow to attain
significant training improvement over the FPGAL that uses all the data points
simultaneously. Based on the results of this manuscript, we believe that using
NRAL with decomposition techniques can results in efficient new algorithms for
solving large scale QP in general and SVM training in particular.

In the future we plan to gain more insight on a theoretical confirmation of the
hypothesis O(n3) for both methods studied here. We also would like to conduct more
numerical experiments for other classes of nonlinear problems and other nonlinear
optimization methods. Finally, we would like to develop and study decomposition
optimization methods for general QP inspired by ideas developed by solving the QP
problem for the SVM training.
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