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solves at each iteration the regularized EP (fk,K), where fk is given by

(1.2) fk(x, y) = f(x, y) + γk⟨x− xk, y − x⟩,

for {γk} a positive bounded auxiliary sequence. In 2012, Burachik and Kassay [5]
generalized (1.2) by using Bregman functions on the regularization term as follows:

(1.3) fk(x, y) = f(x, y) + γk⟨∇φ(x)−∇φ(xk), y − x⟩,

where φ is a Bregman function; see [5] for more details. The notion of Bregman
function has its origin in Bregman [2] while the proximal point method became
popular after the seminar work of Rockafellar [28]; see also Bruck and Reich [3].
Bregman functions have been extensively used for defining “generalized” versions
of the proximal point method (e.g., [6, 8–10, 12, 20]). Note that for φ(x) = 1

2 ||x||
2

then (1.3) reduces to (1.2).
Recently, Santos and Souza [29] proposed for the first time an extension of the

proximal point method to the more general context of quasi-equilibrium problems
(QEP). This problem consists of finding x∗ ∈ C(x∗) such that

(1.4) f(x∗, y) ≥ 0, ∀y ∈ C(x∗),

where C is a multivalued mapping from a closed and convex set X into itself such
that C(x) ⊂ X is a non-empty, closed and convex set, for every x ∈ X, and f
is an equilibrium bifunction. Since C(x∗) ⊂ X, at a first glance, it seems that
solving (1.4) is easier to solve (1.1) with K = X. However, in addition to satisfying
(1.4), a candidate x∗ ∈ X of solution of the QEP must also to satisfy x∗ ∈ C(x∗).
Therefore, the study of existence results or methods for solving QEP is challenging
because it requires that an equilibrium problem and a fixed point problem must
be solved simultaneously and this is clearly more difficult than only to solve an
equilibrium problem. Quasi-equilibrium problems have a large number of important
applications, for example, in economics, engineering, and operations research; see
for instance [13,31]. In particular, the generalized Nash equilibrium problem, which
extends the very important Nash equilibrium problem, can be modeled as a quasi-
equilibrium problem and, when the data set is differentiable, as a quasi-variational
inequality problem; see [30]. It is well known that quasi-variational inequalities
cannot be written as a particular instance of an equilibrium problem; see for instance
[21]. This illustrates how important is to study algorithms for solving QEP.

The aim of this paper is to propose a Bregman regularized version of the proximal
point method such as in [5] for solving quasi-equilibrium problems. In this sense,
our work can be viewed as a generalization from EP to QEP of [5] as well as from a
square norm regularization to Bregman regularization in QEP of [29]. In the main
convergence result of [5] is assumed that the solution set of the dual equilibrium
problem is non-empty while in our approach we replace it by an auxiliary subset of
the solution set of the QEP. Furthermore, we use the concept of Mosco continuity of
C to deal with the fact that in [5] the constraint set K is fixed while in our context
it may change through the mapping C. On the other hand, the assumptions made
on the Bregman distance as well as its properties allowed us to extend the results
in [29]. A numerical illustration suggests that the Bregman version of the proximal
point method outperforms its classical version.
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The paper is presented as follows. Section 2 presents some preliminary concepts
and results on equilibrium problems and Bregman distances.The algorithm and
its convergence analysis is developed in Section 3. Finally, numerical results are
reported in Section 4.

2. Preliminary

2.1. Basic concepts and properties of equilibrium problems. Let X ⊂ Rn

be a closed and convex set and f : X × X → R be a bifunction satisfying the
following conditions:

(P1) f(x, x) = 0, for all x ∈ X;
(P2) f(·, ·) : X × X → R is jointly continuous on X × X (or the graph of f

is sequentially closed) in the sense that if x, y ∈ X, {xk} and {yk} are
sequences in X converging to x and y, respectively, then f(xk, yk) converges
to f(x, y);

(P3) f(x, ·) : X → R is convex, for all x ∈ X;
(P4) f is monotone, i.e., for each pair of points x, y ∈ K, we have that f(x, y) +

f(y, x) ≤ 0.

2.2. Bregman distances. Let A ⊆ Rn be a closed and convex set with intA
nonempty, where intA denotes the interior of set A. Consider a function φ : Rn →
R ∪ {+∞} strictly convex, proper and lower semicontinuous with closed domain
D := dom(φ) and continuously differentiable on intA.

Definition 2.1. The Bregman distance associated to φ with zone A is given by

Dφ(x, y) =

{
φ(x)− φ(y)− ⟨∇φ(y), x− y⟩, ∀ x ∈ A, ∀y ∈ intA
+∞, otherwise.

The following maps are examples of Bregman distances.

Example 2.2. The Bregman function φ(x) = 1
2 ||x||

2 and its respective Bregman
distance

Dφ(x, y) =
1

2
||x− y||2

with A = Rn.

Example 2.3. The Bregman function φ(x) = −
∑n

i∈I(x) log xi and its respective

Bregman distance

Dφ(x, y) =
n∑

i∈I(x)

log(yi/xi) +
xi
yi

− 1

with A = Rn
+, where I(x) = {i : xi > 0}. This function is called Burg entropy.

Example 2.4. The Bregman function φ(x) =
∑n

i=1 xi log xi called Shannon en-
tropy and its respective Bregman distance

Dφ(x, y) =

n∑
i=1

xi log(xi/yi) + yi − xi

with A = Rn
+ known as Kullback-Leibler distance.



820 E. L. DIAS JR, P. J. S. SANTOS, AND J. C. O. SOUZA

Next, we state the well known three point property for Bregman distances. More
information on Bregman functions and distances can be found, for example, in the
recent paper by Reem et al. [26].

For any x ∈ D and y, z ∈ intD, it is straightforward to check that

(2.1) ⟨∇φ(y)−∇φ(z), z − x⟩ = Dφ(x, y)−Dφ(x, z)−Dφ(z, y).

Following Burachik and Scheimberg [4], we consider throughout this paper the
following set of assumptions on φ:

(B1) The right level sets of Dφ(y, ·):

Sy,α := {z ∈ intD : Dφ(y, z) ≤ α}

are bounded for all α ≥ 0 and for all y ∈ D.
(B2) If {xk}, {yk} ⊂ intD with limk→+∞ xk = x, limk→+∞ yk = x and

lim
k→+∞

Dφ(x
k, yk) = 0,

then

lim
k→+∞

Dφ(x, x
k)−Dφ(x, y

k) = 0.

(B3) If {xk} ⊂ D is bounded, {yk} ⊂ intD is such that limk→+∞ yk = y and
limk→+∞Dφ(x

k, yk) = 0, then limk→+∞ xk = y.
(B4) For every y ∈ A, there exists x ∈ intD such that ∇φ(x) = y.

Remark 2.5. The Bregman distances in Examples 2.2-2.4 are examples of functions
which satisfy assumptions (B1)-(B4); see [6].

3. Bregman regularized PPM

Throughout this paper we consider a quasi-equilibrium problem which consists
of finding x∗ ∈ C(x∗) such that

(3.1) f(x∗, y) ≥ 0, ∀y ∈ C(x∗).

We suppose that X ⊂ Rn is a closed and convex set such that X ⊂ intD, Dφ is
a Bregman distance with zone X and f : X ×X → R (called bifunction) satisfies
the assumptions (P1)–(P4). Additionally, we suppose that C : X → P(X) is point-
to-set mapping such that, for every x ∈ X, C(x) is a nonempty, closed and convex
subset of X. Furthermore, we suppose the M-continuity of the multivalued mapping
C. Let us recall that C is said to be M-continuous if:

(i) For {xk}, {yk} ⊂ X with yk ∈ C(xk), xk → x and yk → y implies that
y ∈ C(x), which means that the graph of C is sequentially closed.

(ii) For any sequence {xk} ⊂ X with xk → x and for each y ∈ C(x) there exists
a sequence {yk} ⊂ X with yk ∈ C(xk) such that yk → y.

We denote the solution set of QEP as SQEP (f, C). Next, we consider a set
S∗ ⊂ SQEP (f, C) and we assume that S∗ ̸= ∅, where it is given by

(3.2) S∗ =

{
x ∈

⋂
z∈X

C(z) : f(x, y) ≥ 0, ∀y ∈
⋃
z∈X

C(z)

}
.
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This assumption was considered to study the convergence of extragradient algo-
rithms for solving QEP (see Strodiot et al. [30]), a projection-like method for QVIP
(see Zhang et al. [32]) and generalized Nash equilibrium problem (see Han et al. [17]).

Remark 3.1. In equilibrium problems, the hypothesis “the solution set of the
EP is nonempty” has been assumed as a mild assumption. In our context, the
assumption S∗ ̸= ∅ can be viewed as a natural extension to QEP’s of the assumption
SEP (f,X) ̸= ∅ because if C(x) ≡ X, for all x ∈ X, then

⋂
z∈X C(z) =

⋃
z∈X C(z) =

X and S∗ = SEP (f,X). It is easy to verify that the assumption S∗ ̸= ∅ guarantees
that SQEP (f, C) ̸= ∅. For QVIP, there are available a great number of results
when either X is bounded or the operator C satisfies certain coercivity condition.
However, as remarked by Giannessi and Khan [16] many applications deal with
QVIP with non-coercive operators defined on unbounded sets.

Next, we present the proximal point method with a Bregman regularization for
solving QEP such that the Bregman function φ is strictly convex and satisfies the
assumptions (B1)-(B4).

Algorithm 3.2 (Bregman PPM).
Step 0: (Initial data) Take a bounded sequence of positive parameters {γk}, choose
x0 ∈ X and set k = 0;
Step 1: (Iterative step) Given xk, compute xk+1 ∈ SEP (fk, Ck), where

(3.3) fk(x, y) = f(x, y) + γk⟨∇φ(x)−∇φ(xk), y − x⟩
and Ck := C(xk).
Step 2: (Stopping rule) If xk+1 = xk, stop and return xk. Otherwise, set k = k+1
and return to Step 1.

Remark 3.3. Note that Algorithm 3.2 solves at each iterate a Bregman regularized
equilibrium problem. Thus, the well-definition of the method depends on (3.3) has
a solution. In [5, Corollary 3.2], it is proved that (3.3) has a solution if the following
assumption holds: given x̄ ∈ X fixed, if for every sequence {xk} ⊂ X such that
limk→∞ ||xk|| = ∞, we have

(3.4) lim inf
k→∞

(
f(x̄, xk) + γ⟨∇φ(x̄)−∇φ(xk), x̄− xk⟩

)
> 0.

Moreover, if φ is strictly convex, then (3.3) has a unique solution. In [5, Remark 3.1],
it is shown that the above condition is weaker than to suppose that the Bregman
function φ is coercive, i.e.,

(3.5) lim
||x||→∞

φ(x)

||x||
= +∞

see [27, Lemma 1] and [5, Corollary 3.3]. On the other hand, as mentioned by
Censor et al. [7, page 380], if φ is a Bregman function with zone S and S′ ⊂ S is
convex and closed, then φ can also be considered as a Bregman function with zone
S′. This fact can be applied to Algorithm 3.2 taking into account that Ck ⊂ X
is convex and closed, for all k ∈ N, together with the assumptions made on the
Bregman distance Dφ with zone X and the bifunction f . Therefore, one can ensure
that Step 1 of Algorithm 3.2 is well-defined (i.e., (3.3) has a solution) by assuming
that (3.4) (or alternatively (3.5)) holds.
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Next, we show that if Algorithm 3.2 stops at iterate xk, then this point is a
solution of the QEP (3.1).

Proposition 3.4. If the stopping rule in Algorithm 3.2 is reached, then it returns
a solution of (3.1).

Proof. Note that xk+1 ∈ SEP (fk, Ck) implies that xk+1 ∈ C(xk) and

f(xk+1, y) + γk⟨∇φ(xk+1)−∇φ(xk), y − xk+1⟩ ≥ 0, ∀y ∈ C(xk).

Letting xk+1 = xk, then xk ∈ C(xk) and the above inequality implies that

f(xk, y) ≥ 0,

for all y ∈ C(xk). Thus, xk is a solution of (3.1). □
Remark 3.5. In practice, we use the following stopping rule: given ϵ > 0 a relative
error tolerance, we perform the iterative step in Algorithm 3.2 until ||xk+1−xk|| < ϵ.
In this case, Algorithm 3.2 returns xk+1. A natural question arises: how good is
this output xk+1 of Algorithm 3.2? In this paper, we refrain from discussing inexact
algorithms as well as inexact computation of the subproblems (3.3), and hence we
skip discussions of implementation issues with alternative approaches.

On the other hand, the next proposition provides a partial answer to this question
and it will be used in our numerical result in Section 4. It measures the quality of
a candidate to solution of QEP and was proved in the context of QEP by Santos
and Souza [29]. Given x ∈ X, we define

Υ(x) = ||x− arg min
y∈C(x)

{f(x, y) + 1

2
||y − x||2}||.

Proposition 3.6. A point x∗ ∈ SQEP (f, C) if and only if Υ(x∗) = 0.

Proof. See Santos and Souza [29, Proposition 2.6]. □
Before presenting the convergence analysis of Algorithm 3.2, let us state and prove

a Bregman version of [29, Proposition 2.5] that we will use in the next results. To
this end, let x̄ be fixed define

(3.6) f̃(x, y) = f(x, y) + γ⟨∇φ(x)−∇φ(x̄), y − x⟩,
for some γ > 0.

Proposition 3.7. Let x̄ ∈ X be an arbitrary point, x̃, x∗ ∈ X such that x̃ ∈
SEP (f̃ , C(x̄)) and x∗ ∈ Sd

EP (f, C(x̄)). If f satisfies (P1)-(P3), then

Dφ(x
∗, x̃) +Dφ(x̃, x̄) ≤ Dφ(x

∗, x̄).

Proof. Since that x̃ ∈ SEP (f̃ , C(x̄)), we have that f̃(x̃, y) ≥ 0, for all y ∈ C(x̄).
This means that

(3.7) 0 ≤ f(x̃, y) + γ⟨∇φ(x̃)−∇φ(x̄), y − x̃⟩, ∀ y ∈ C(x̄).

Now, as x∗ ∈ Sd
EP (f, C(x̄)), we have that x∗ ∈ C(x̄) and, in addition, f(x, x∗) ≤ 0,

for all x ∈ C(x̄). Making y = x∗ in the last inequality and using this fact in (3.7)
together with γ > 0, we obtain

0 ≤ ⟨∇φ(x̃)−∇φ(x̄), x∗ − x̃⟩.
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Finally, from (2.1), we have

0 ≤ ⟨∇φ(x̃)−∇φ(x̄), x∗ − x̃⟩ = Dφ(x
∗, x̄)−Dφ(x

∗, x̃)−Dφ(x̃, x̄).

Consequently, we get the result. □

Next, we prove some classical properties of the proximal point method.

Theorem 3.8. The following assertions hold:

i) {xk} is bounded;
ii) limk→+∞Dφ(x

k+1, xk) = 0.

Proof. Let x∗ ∈ S∗ be arbitrary. Since S∗ ⊂ SEP (f, C(z)), for all z ∈ X, we
have that x∗ ∈ SEP (f, C(z)) and hence f(x∗, y) ≥ 0, for all y ∈ C(z). Now, since
that f is monotone, we have f(y, x∗) ≤ 0, for all y ∈ C(z). This implies that
x∗ ∈ Sd

EP (f, C(z)), for all z ∈ X, and, in particular, for z = xk. From the definition

of Algorithm 3.2, we have xk+1 ∈ SEP (fk, C(xk)). Thus, applying Proposition 3.7

with f̃ = fk in (3.3), x̃ = xk+1, x̄ = xk we have that

Dφ(x
∗, xk+1) +Dφ(x

k+1, xk) ≤ Dφ(x
∗, xk), k ∈ N.(3.8)

Since Dφ(x
k+1, xk) ≥ 0, we have

Dφ(x
∗, xk+1) ≤ Dφ(x

∗, xk), ∀k ∈ N, x∗ ∈ S∗.

It follows from the last inequality that {Dφ(x
∗, xk)} is non-increasing, and since it

is non-negative, it converges. In particular, it is bounded. Thus, the first assertion
directly follows from condition (B1).

Now, from (3.8), we have

Dφ(x
∗, xk+1) ≤ Dφ(x

∗, xk+1) +Dφ(x
k+1, xk) ≤ Dφ(x

∗, xk), ∀k ∈ N.

Letting k → ∞ in the last inequality and taking into account that {Dφ(x
∗, xk)} is

convergent, we obtain the second assertion. □

Next, we prove our main convergence result.

Theorem 3.9. Every cluster point of {xk} belongs to SQEP (f, C).

Proof. Let {xkj} be a subsequence of {xk} that converges to x̂. From the definition
of Algorithm 3.2, we have that xkj+1 ∈ C(xkj ). From Theorem 3.8 (ii), we have

lim
k→∞

Dφ(x
k+1, xk) = 0,

and hence, we can guarantee from condition (B3) that limj→∞ xkj+1 = x̂. Thus,
from the M-Continuity of C, we have that x̂ ∈ C(x̂) and, given y ∈ C(x̂), there exists
a sequence {ykj} such that ykj → y and ykj ∈ C(xkj ). Now, as xkj+1 ∈ SEP (fkj , Ck)
we have

fkj (x
kj+1, z) ≥ 0, ∀z ∈ C(xkj ),

which means in particular for z = ykj ∈ C(xkj ) that

f(xkj+1, ykj ) + γkj ⟨∇φ(xkj+1)−∇φ(xkj ), ykj − xkj+1⟩ ≥ 0.
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Using the fact that {γkj}, {xkj} and {ykj} are bounded sequences, φ is continuously
differentiable, f satisfies (P2) and taking the limit as j → ∞ in the last inequality,
we have

f(x̂, y) ≥ 0.

Since we consider an arbitrary y ∈ C(x̂) this means that f(x̂, y) ≥ 0, for all y ∈ C(x̂),
and hence, x̂ ∈ SQEP (f, C). This completes the proof. □

4. Numerical illustration

In this section, we illustrate the performance of the proposed method on one
test problem adapted from [29]. We compare the performance of two Bregman
regularized versions with the (classical) proximal point method for quasi-equilibrium
problems proposed by [29]. We refrain from discussing computational efficiency
of other methods, and hence, we skip discussions of comparisons of the proposed
methods with other methods for QEP’s.

The algorithms are coded in MATLAB R2020b on a 8 GB RAM Intel Core i7 to
obtain the numerical results. The stopping rule is ∥xk+1 − xk∥ < 10−5. We take
γk = γ = 3.5, for all k ∈ N. We solve the subproblem (3.3) by using the regularized
method in Muu and Quoc [23] in the classical version and the Bregman regularized
method in Flam and Antipin [15]. They consider the following iterative method for
solving an equilibrium problem: for any starting point x0 ∈ X and γ > 0, given
xk ∈ X define xk+1 ∈ X such that

(4.1) xk+1 = argmin
y∈X

{γf(xk, y) + 1

2
∥y − xk∥2}

and

(4.2) xk+1 = argmin
y∈X

{γf(xk, y) +Dφ(y, x
k)},

respectively. The solutions of the subproblems in (4.1) and (4.2) are computed by
the build-in MATLAB solver “fmincon”.

Example 4.1. [29, Example 4.1 - Adapted] Consider the 2-dimensional nonsmooth
quasi-equilibrium problem with the bifunction f : X ×X → R given by

f(x, y) =| y1 | − | x1 | +y22 − x22

and the multivalued mapping C given by

C(x) =

{
y ∈ X ; y1 + y2 = 1 +

| x1 |
1+ | x1 |

, i = 1, 2

}
,

where X ⊂ R2
++ is given by X = [0.1,+∞) × [0.1,+∞). One can check that f is

monotone and the solution set is the single point x∗ = (1, 12).

We run Algorithm 3.2 with 100 random starting points in the box [0.1, 20] ×
[0.1, 20]. We compare the performance of the method with the Bregman functions
given in Example 2.2 (called PPM), Example 2.3 (called BPPM-1) and Example 2.4
(called BPPM-2). At each running, the methods start from the same initial point
and use the same constant γ. In the Tables 1,2 and 3, we show the results of all
methods in terms of number of iterates, CPU time and the accuracy Υ(x∗) (cf.
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Proposition 3.6) until the stopping rule is satisfied, respectively. In these tables,
min. iter. (resp. min. time), max. iter. (resp. max. time) and med. iter. (resp.
med. time) denote the minimal, maximum and median of iterates (resp. CPU time)
in 100 runs of the methods as well as min. Υ(x∗), max. Υ(x∗) and med. Υ(x∗)
stand respectively to the minimum, maximum and median of the values Υ(x∗) in
100 runs, where x∗ is the solution found by the methods.

As we can see in Tables 1 and 2, the Bregman regularized methods outperform
the classical proximal point method in both number of iterates and CPU time.
Furthermore, as shown in Table 3 all the methods find a good approximation of the
solution.

Table 1. Running 100 times Algorithm 3.2 for Example 4.1.

Algorithm min. iter.(k) max. iter.(k) med. iter.(k)

PPM 7 14 12.65
BPPM-1 8 17 11.69
BPPM-2 7 15 12.25

Table 2. Running 100 times Algorithm 3.2 for Example 4.1.

Algorithm min. CPU time max. CPU time med. CPU time

PPM 0.0992826 1.1111657 0.199839135
BPPM-1 0.0840165 0.2752377 0.171949707
BPPM-2 0.0973115 0.4178743 0.178682051

Table 3. Running 100 times Algorithm 3.2 for Example 4.1.

Algorithm min. Υ(x∗) max. Υ(x∗) med. Υ(x∗)

PPM 0 2.360499186405201e-06 4.720998372810402e-08
BPPM-1 0 2.880658707330110e-06 5.761317414660219e-08
BPPM-2 0 2.687690141983094e-06 5.375380283966188e-08

In Figures 1,2 and 3, we consider a particular instance of each method (using
the same random starting point x0 = (8.493, 18.3231)) to illustrate the assertions in
Theorems 3.8 and 3.9. Figure 1 shows that the sequence {Dφ(x

k+1, xk)} converges

to zero faster than {||xk+1 − xk||} using both Bregman distances in Example 2.3
and 2.4. In Figures 2 and 3 we can see that the sequence {xk} generated by the
methods BPPM-1 and BPPM-2 approach the solution of the QEP faster than the
Euclidean regularized PPM.
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