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A CHARACTERIZATION OF THE SET OF DE BRANGES
MATRICES ¢ FOR WHICH THERE EXISTS A J-INNER
MATRIX FUNCTION U SUCH THAT THE SPACES B(¢) AND
H(U) COINCIDE

DAMIR Z. AROV AND HARRY DYM

ABSTRACT. In his studies of canonical differential systems L de Branges intro-
duced two classes of reproducing kernel Hilbert spaces of m x 1 vector valued
functions that (in our terminology) we refer to as H(U) spaces based on an mxm
J-inner matrix valued function U()) and B(€) spaces based on an m x 2m matrix
valued function (X) that we call a de Branges matrix. In a previous publication
we have shown that every H(U) space is automatically a B(€) space.

The converse is not true. A transparent characterization of those de Branges
matrices for which this holds is presented.

1. INTRODUCTION

If J is an m x m signature matrix and U is J-inner with respect to the open
upper half-plane C;., then the kernel

T -UWNJU(w)*
(1.1) KY(\) = o)

in which by denotes the domain of holomorphy of U in C and

pu(N) = —2mi(\ — @),
is positive on hy x hy. Therefore, by the matrix version of a Theorem of Aronszjan
(see e.g., Theorem 5.2 and Lemma 5.6 in [1]) KY()) is the RK (reproducing kernel)

of exactly one RKHS (reproducing kernel Hilbert space) H(U) of m x 1 vvf’s that
are holomorphic on hy; in fact,

if webhyand A\ #w

by = ﬂ hs (where by denotes the domain of holomorphy of f).
fFex(U)

The RKHS H(U) is invariant with respect to the generalized backward shift operator
R, that is defined by the rule

— O ? .f

f'(@) for \,a € hy and \ = a.
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Moreover, there exists a characterization of the RKHS H(U) by an identity (see e.g.,
(4.1) below) that is expressed in terms of R, that is due to de Branges [6] (with an
important technical improvement of this characterization due to Rovnyak [9]).

There is another RKHS B(&) that originates with de Branges [7], [8] that plays
a significant role in many problems of analysis. The RK of this space

_ B (VB () — E_(N)E_(w)"
Puw(N)

is based on an m x 2m mvf (matrix valued function) ¢ = [E_  EL] with m x m
components that are of bounded type in each of the two half-planes in C \ R with
matching non tangential limits a.e. on R (i.e., Ex € II"™*™ see below (1.7)) and
are such that det B4 (\) # 0 in C4 and x = E;'E_ is an m x m inner mvf. We
shall call each such m x 2m mvf () a de Branges matrix.

In previous publications [3], [5] we identified the de Branges space H(U) with
the de Branges space B(€) based on the de Branges matrix ¢ = [E_  E,| with
m X m components

(1.2) KE(\) if \,w € he and A #w

(1.3) E_(\)=P_+U\Py and E,(\) =P, +UNP.,

in which Py = (I,, + J)/2 and P_ = (I, — J)/2 and explored this connection in
detail in [5]. In particular:

Every J-inner matriz U generates a de Branges matriz € via the recipe (1.3).

However, the converse implication is false: Not every de Branges space B(€&) can
be identified as an H(U) space.

The main objective of this note is to establish a transparent characterization
of those de Branges matrices € that may be expressed in terms of J-inner matrices
U via (1.3). This characterization will be established in Section 3. Section 2 is
devoted to some preliminary analysis that reviews and expands upon the conclusions
of [5]. Section 4 presents a sample calculation that illustrates the usefulness of this
characterization.

The rest of this section is devoted to notation.

The symbols C, R, CP*9, CP denote the set of complex numbers, real numbers,
p %X g complex valued matrices and p x 1 complex valued vectors, respectively; C
(resp., C_) denotes the open upper (resp., lower) half-plane; bh; stands for the
domain of holomorphy of a mvf f, and

hf =b;NCy, by =b;NC, by =bhrNR.
The notation
(1.4) FEO) =f)* and A=0 (A= 0) for
. positive definite (resp., semidefinite) matrices A,

will be useful.
The following classes of mvf’s will play a role:



DE BRANGES SPACES B(¢) THAT COINCIDE WITH DE BRANGES SPACES H(U) 811

e HY™ the Hardy space of p x ¢ mvf’s f that are holomorphic in C for
which

(1.5) 1120 = sup [ trace (f(u-+ i) o+ iv) e < oc.

—00

HEY*? is a Hilbert space with norm defined as above.

o HE? the Hardy space of p x ¢ mvf’s f that are holomorphic in C, for
which

(1.6) [flloo = sup [[f(w)| < oo.
weCy

HEX? is a Banach space with norm defined as above.

e 8P*1 the class of p x g inner mvf’s, is the set of mvf’s f that belong to H5
with f(X)*f(X) 2 I; for A € Cy and f(p)*f(n) = I; a.e. on R.

e NP> the Nevanlinna class of p x ¢ mvf’s f that are meromorphic in C
and admit a representation of the form

(1.7) f=g'h withge HX" and h € HEX?.

e [1P*4 the class of meromorphic p x ¢ mvf’s f on C\ R such that
(1) the restriction of f to C; belongs to NP*9,
(2) the restriction of f to C_ belongs to the class {f : f# € N9*P} and

(3) limy o f(p +iv) = lim, o f(u — iv) a.e. on R.
The abbreviation XP = XP*! will be used for each of the spaces considered above.
Thus, for example, HY = H2pX1.

2. PRELIMINARIES

Recall that a matrix J € C"™*™ is a signature matrix if J = J* and JJ* = I,,.
We shall make use of the signature matrices

Yoo = [% —(}J with p+ ¢ = m and j, = j,p with 2p = m.

An m x m mvf U()\) that is meromorphic in C is said to be J-contractive in

Cy if

(1) UN)*JU(N) = J for every point A € hi.
It is well known that every J-contractive mvf U(A) has nontangential limits U ()
at a.e. point p € R (see e.g. pp. 169-170 in [1]). A J-contractive mvf U()) is said
to be J-inner if,

(2) U(u)*JU(u) = J for a.e point u € R.
If (1) and (2) hold, then U(\) may be extended to C_ via the formula

J=U(w)JU@)* for we C_ such that @ € h; and det U(w) # 0.

The J-inner m x m mvf U()\) extended to C_ belongs to the class TT™*"™.

Additional information on the classes of mvf’s listed above and some of their
principal applications may be found in [1], [2] and [4] (as well as many other places)
and the references cited therein.



812 D. Z. AROV AND H. DYM

A p x2p mvf €\) = [E_(\) E4(\)] with p x p blocks E4(\) that belong to
I1P*P such that

det E4+(\) #0 in Cy and the mvf x = E;'E_ belongs to 8LP

will be called a de Branges matrix.
If € is a de Branges matrix, then the space

2.1) B(&) = {px 1vvf’s f: E;'f € HY © xH}}

' ={px1vvls f: E;lf € HY and E~'fc (Hy)P}
ere = Lo & H9o) with mner product

(here Hy- = Ly © Ho) with i prod

o0

(22) (F, 9)ne) = (B3 f, By gs = / 9 ()" D (40) f (),

—00

where (-, )5 denotes the standard inner product in L} and

(2.3) Ae(p) = {E+(W)E+(p)*} ! ae. onR

is a RKHS of p x 1 vvf’s that are holomorphic in he with RK given by (1.2).
Moreover, B(&) C II?, and he C by for every f € B(€); see e.g., Theorem 5.65
in [1].

The next theorem recalls the identification of the RKHS H(U) of m x 1 vvf’s
based on a J-inner mvf U as a de Branges space B(€) based on an m x 2m de
Branges matrix that is defined in terms of U.

Theorem 2.1. The RKHS H(U) with RK given by formula (1.1) coincides with
the de Branges space B(€) based on the de Branges matriz & = [E_ E+] with
m X m components

(2.4) E-(\)=P_+UNP, and E.(\) =P, +UNP.,
in which s ; I ;

P, = m ¥ and P.="_2.

2 2

Moreover,
(2.5) E;' e HX™,  (EF)~l e g
and the inner product
(26) (Fghscn = [ 9wy Belulfdu for f.g € H(D)
where
(2.7) Aelp) = {EL (B ()} a.e. onR.
Furthermore, U(\) and J can be recovered from €(\) by the formulas
(2.8) UN) = E-(\) + B+ (\) — Iy = (\) [ﬁm] I
and
(2.9) By —E_ =(Iyp—U)J = 2L, Es - E_)J,

respectively.



DE BRANGES SPACES B(¢) THAT COINCIDE WITH DE BRANGES SPACES H(U) 813

Proof. This theorem coincides with Theorem 3.1 in [5] except for the addition of
(2.9), which is self-evident from (2.4). O

There is a converse that builds upon the observation that the mvf’s defined in
(2.4) satisfy the condition Ey Py = Py:

Theorem 2.2. If ¢ = [E, E+] is a de Branges matriz of size m X 2m and
Py € C™™ are complementary orthogonal projections (i.e., P2 = Py, P} = Py
and Py + P_ = I,,) such that E. Py = P, and E_P_ = P_ then:

(1) U = E; + E_ — I, is J-inner with respect to the signature matriz J =
P.—P_.
(2) J(U) = B(€).

Proof. Tt suffices to show that the (numerators of) the reproducing kernels KUY ()
(defined in (1.1)) and K&()) (defined in (1.2)) coincide. Under the given assump-
tions, UPy = E_Py and UP_- = E.P_. Consequently, for every pair of points
A w € be,

By VB, () — B-(WE_ () = By ()P} By (w) — E_(\P_E_(w)"
By (VP By ()" — B (NP E_(w)"
=P, —P_4+U\N(P-—-PU(w)*
=J-UNJU(w)".
Therefore, (1) and (2) hold. O
We remark that the Potapov-Ginzburg transform
(2.10) S=(Py +UP.)"Y(P_+UP;)=E;'E_
which maps the class U(J) of J-inner mvf’s onto the set
(2.11) {S e8I ™ det (Py +SP_) #0}

(see e.g., Subsection 2.2 in [1] for the existence of the indicated inverses for trans-
forms of the form (2.10)). The formulas in (2.10) imply that U can be recovered
from €& via the formula

U= (Py+SP_) (P_+SP;) with S=FE;'E_.

3. A PARAMETRIZATION OF THOSE € FOR WHICH B(€) = H(U)

Theorem 3.1. If§ = [F_ F+] s an m X 2m de Branges matriz such that

(1) B(F) = H(U) for some m x m J-inner muf U with signature matriz J €
Cm™™ and
(2) K3(w) = O for at least one (and hence every) point w € by,

then
(3.1) [F. F{=[E- E4{]V

for some jp,-unitary matriz Ve C*™*2™ and some de Branges matriz ¢ = [E_ E+]
with blocks E+ for which

(3.2) E.P,=P., E_=FE_P_ where Py=(I,+J)/2
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Proof. 1f B(F) = H(U), then, in view of Theorems 5.65 and 5.49 in [1],

bs € (\bs = (br =bv
feB®)  fEH(U)
and hence, as H(U) is R,, invariant for every point a € b7, B(F) is also R, invariant
for every point a € hz. Therefore, Lemma 2.4 of [5] guarantees that if K3(w) = O
for at least one point w € hg, then K3(w) = O for every point w € bs.
In view of Theorem 2.1, H(U) = B(€), where the blocks E of € are specified in
terms of U and Py by the formulas

(3.3) E,=P . +UP- and E_=P_+UPy,

which clearly meet the conditions in (3.2). Thus, B(F) = H(U) = B(€&), Theorem
2.3 of [5] ensures that (3.1) holds for some j,,-unitary matrix V € C2mx2m,

O
Remark 3.2. Theorem 3.1 admits a self-evident converse: If § = [F_ F+] and
¢ = [E_ E+] are de Branges matrices with blocks Fy and E1 of size m x m such
that (3.1) holds for some j,-unitary matrix V' € C2™*2™ and there exist a pair
of complementary projections Py € C™*™ such that (3.2) holds for the blocks of
¢, then B(F) = H(U), where U = E; + E_ — I, is J-inner with respect to the
signature matrix J = Py — P_.

This follows from the fact that

SN imS ()" = —€(N)jm€E(w)" = J = U(N)JU(w)".
4. A SAMPLE CALCULATION

A de Branges space B(€) can be identified as an H(U) space for some J-inner
mvf U if and only if B(€) is invariant under R, for every point a € he and the de
Branges identity

(4.1)  (Raf,9)ne) — (f, Rpg)n(e) — (@ = B)(Raf, Rpg)n(e) = 2mig(8)"J f(a)
is in force for every pair of points «, § € he and every pair of vvf’s f,g € B(€) (see
e.g., Theorem 5.21 in [1] for a characterization of H(U)).

In this section we shall indicate how to verify (4.1) for de Branges matrices of
the form (2.4) when J = jj,, by exploiting the following result, which is Corollary
5.3 in [5]:

Theorem 4.1. If € is a de Branges matriz such that B(€) is R-invariant for
every point o € b, then the de Branges identity (4.1) holds in B(€) if and only if

az [T AE) 0 I gy iy
for all wuf’s f,g € B(€) and all points o € he such that @ € be.
Discussion Suppose that (3.2) and (3.3) hold with J = j,,, p+ ¢ =m and U =

Uilr U2 Then
U1 U22

|y ui2 ~funn O
E, = [O qu] and FE_ = [um I,
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Then
-1 -1
E-lp — |1 = Uiy Ul —URUpy | _ |51 S12 gmxm
+ = -1 —1 - € o
Ugg U21 Ugg 821 S22
and
_ I 512
Ae¢=(ELEY) =P 7 a.e. on R.
S12 g

Therefore, the vvf f = col (fi1, f2) with components f; € II? and fy € 17 belongs to
B(¢) if and only if

—1p, Ip _U12u;21 o Ip 512 fl m
E+f_[0 Uy f= O s2| |f2 € Hy

and
(E;lf, (EIIE,)g>st =0 for every g € H}".
Thus, if g = col (g1, g2) with g1 € HY and g2 € HJ, then

< [f1 + S12f2] [812] > B
) g2 =0
522 f22 892 o
for every g, € Hj. Thus,

fi+siafo € HY and  ([s{o(f1 + s12f2) + shosaafo] , g2)st = 0

for every go € Hj. Since s12(p)*s12(p) + s22(p)*s22(p) = I, a.e. on R, the second
equality implies that sf;fl + fo € (H5)A.

We are now ready to evaluate the integral in (4.2). We assume that o € hg and
@ € bhg. Then

/_ Z g(a)*jf(/;)f(u) dyt = 2mi < [ f%;}lsfﬁ] ’pla BQEZH >St
= 2migr (@)*[f1(@) + s12() f2(a)]

since f1 + s12f2 € HY and sﬁfl + fo € (Hi ).
The next step is to observe that

/ fla / f1(a)*[g1( )+312(M)92(M)]d

1L

/ Falo)*[s5( )1(N)+92(M)]du

n—a

=0 — 2mif>()" [si(@)gl (@) + g2(@)].

/ ()Ai( </ fla Ae)()dﬂ>
- ' = 2mi[g1(@)"s12(a) + g2(@)"] fa ()

and hence (4.2) with J = jp, follows by combining these evaluations.

Thus,
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