Yokohama Publishers
ISSN 2189-3764 ONLINE JOURNAL
© Copyright 2023

A CHARACTERIZATION OF THE SET OF DE BRANGES MATRICES \mathfrak{E} FOR WHICH THERE EXISTS A J-INNER MATRIX FUNCTION U SUCH THAT THE SPACES $\mathcal{B}(\mathfrak{E})$ AND $\mathcal{H}(U)$ COINCIDE

DAMIR Z. AROV AND HARRY DYM

Abstract

In his studies of canonical differential systems L de Branges introduced two classes of reproducing kernel Hilbert spaces of $m \times 1$ vector valued functions that (in our terminology) we refer to as $\mathcal{H}(U)$ spaces based on an $m \times m$ J-inner matrix valued function $U(\lambda)$ and $\mathcal{B}(\mathfrak{E})$ spaces based on an $m \times 2 m$ matrix valued function $\mathfrak{E}(\lambda)$ that we call a de Branges matrix. In a previous publication we have shown that every $\mathcal{H}(U)$ space is automatically a $\mathcal{B}(\mathfrak{E})$ space.

The converse is not true. A transparent characterization of those de Branges matrices for which this holds is presented.

1. Introduction

If J is an $m \times m$ signature matrix and U is J-inner with respect to the open upper half-plane \mathbb{C}_{+}, then the kernel

$$
\begin{equation*}
K_{\omega}^{U}(\lambda)=\frac{J-U(\lambda) J U(\omega)^{*}}{\rho_{\omega}(\lambda)} \quad \text { if } \lambda, \omega \in \mathfrak{h}_{U} \text { and } \lambda \neq \bar{\omega} \tag{1.1}
\end{equation*}
$$

in which \mathfrak{h}_{U} denotes the domain of holomorphy of U in \mathbb{C} and

$$
\rho_{\omega}(\lambda)=-2 \pi i(\lambda-\bar{\omega}),
$$

is positive on $\mathfrak{h}_{U} \times \mathfrak{h}_{U}$. Therefore, by the matrix version of a Theorem of Aronszjan (see e.g., Theorem 5.2 and Lemma 5.6 in [1]) $K_{\omega}^{U}(\lambda)$ is the RK (reproducing kernel) of exactly one RKHS (reproducing kernel Hilbert space) $\mathcal{H}(U)$ of $m \times 1$ vvf's that are holomorphic on \mathfrak{h}_{U}; in fact,

$$
\mathfrak{h}_{U}=\bigcap_{f \in \mathcal{H}(U)} \mathfrak{h}_{f} \quad\left(\text { where } \mathfrak{h}_{f} \text { denotes the domain of holomorphy of } f\right) \text {. }
$$

The RKHS $\mathcal{H}(U)$ is invariant with respect to the generalized backward shift operator R_{α} that is defined by the rule

$$
\left(R_{\alpha} f\right)(\lambda)= \begin{cases}\frac{f(\lambda)-f(\alpha)}{\lambda-\alpha} & \text { for } \lambda, \alpha \in \mathfrak{h}_{f} \text { and } \lambda \neq \alpha \\ f^{\prime}(\alpha) & \text { for } \lambda, \alpha \in \mathfrak{h}_{f} \text { and } \lambda=\alpha\end{cases}
$$

[^0]Key words and phrases. Reproducing kernel Hilbert spaces, vector valued de Branges spaces.

Moreover, there exists a characterization of the RKHS $\mathcal{H}(U)$ by an identity (see e.g., (4.1) below) that is expressed in terms of R_{α} that is due to de Branges [6] (with an important technical improvement of this characterization due to Rovnyak [9]).

There is another RKHS $\mathcal{B}(\mathfrak{E})$ that originates with de Branges [7], [8] that plays a significant role in many problems of analysis. The RK of this space

$$
\begin{equation*}
K_{\omega}^{\mathfrak{E}}(\lambda)=\frac{E_{+}(\lambda) E_{+}(\omega)^{*}-E_{-}(\lambda) E_{-}(\omega)^{*}}{\rho_{\omega}(\lambda)} \quad \text { if } \lambda, \omega \in \mathfrak{h}_{\mathfrak{E}} \text { and } \lambda \neq \bar{\omega} \tag{1.2}
\end{equation*}
$$

is based on an $m \times 2 m \mathrm{mvf}$ (matrix valued function) $\mathfrak{E}=\left[\begin{array}{ll}E_{-} & E_{+}\end{array}\right]$with $m \times m$ components that are of bounded type in each of the two half-planes in $\mathbb{C} \backslash \mathbb{R}$ with matching non tangential limits a.e. on \mathbb{R} (i.e., $E_{ \pm} \in \Pi^{m \times m}$, see below (1.7)) and are such that det $E_{+}(\lambda) \not \equiv 0$ in \mathbb{C}_{+}and $\chi=E_{+}^{-1} E_{-}$is an $m \times m$ inner mvf. We shall call each such $m \times 2 m$ mvf $\mathfrak{E}(\lambda)$ a de Branges matrix.

In previous publications [3], [5] we identified the de Branges space $\mathcal{H}(U)$ with the de Branges space $\mathcal{B}(\mathfrak{E})$ based on the de Branges matrix $\mathfrak{E}=\left[\begin{array}{ll}E_{-} & E_{+}\end{array}\right]$with $m \times m$ components

$$
\begin{equation*}
E_{-}(\lambda)=P_{-}+U(\lambda) P_{+} \quad \text { and } \quad E_{+}(\lambda)=P_{+}+U(\lambda) P_{-}, \tag{1.3}
\end{equation*}
$$

in which $P_{+}=\left(I_{m}+J\right) / 2$ and $P_{-}=\left(I_{m}-J\right) / 2$ and explored this connection in detail in [5]. In particular:

Every J-inner matrix U generates a de Branges matrix \mathfrak{E} via the recipe (1.3).

However, the converse implication is false: Not every de Branges space $\mathcal{B}(\mathfrak{E})$ can be identified as an $\mathcal{H}(U)$ space.

The main objective of this note is to establish a transparent characterization of those de Branges matrices \mathfrak{E} that may be expressed in terms of J-inner matrices U via (1.3). This characterization will be established in Section 3. Section 2 is devoted to some preliminary analysis that reviews and expands upon the conclusions of [5]. Section 4 presents a sample calculation that illustrates the usefulness of this characterization.

The rest of this section is devoted to notation.
The symbols $\mathbb{C}, \mathbb{R}, \mathbb{C}^{p \times q}, \mathbb{C}^{p}$ denote the set of complex numbers, real numbers, $p \times q$ complex valued matrices and $p \times 1$ complex valued vectors, respectively; \mathbb{C}_{+} (resp., \mathbb{C}_{-}) denotes the open upper (resp., lower) half-plane; \mathfrak{h}_{f} stands for the domain of holomorphy of a $\operatorname{mvf} f$, and

$$
\mathfrak{h}_{f}^{+}=\mathfrak{h}_{f} \cap \mathbb{C}_{+}, \quad \mathfrak{h}_{f}^{-}=\mathfrak{h}_{f} \cap \mathbb{C}_{-}, \quad \mathfrak{h}_{f}^{0}=\mathfrak{h}_{f} \cap \mathbb{R} .
$$

The notation

$$
\begin{align*}
f^{\#}(\lambda)= & f(\bar{\lambda})^{*} \quad \text { and } \quad A \succ O \quad(A \succeq O) \text { for } \tag{1.4}\\
& \text { positive definite (resp., semidefinite) matrices } A,
\end{align*}
$$

will be useful.
The following classes of mvf's will play a role:

- $H_{2}^{p \times q}$, the Hardy space of $p \times q$ mvf's f that are holomorphic in \mathbb{C}_{+}for which

$$
\begin{equation*}
\|f\|_{H_{2}^{p \times q}}^{2}=\sup _{\nu>0} \int_{-\infty}^{\infty} \operatorname{trace}\left\{f(\mu+i \nu)^{*} f(\mu+i \nu)\right\} d \mu<\infty . \tag{1.5}
\end{equation*}
$$

$H_{2}^{p \times q}$ is a Hilbert space with norm defined as above.

- $H_{\infty}^{p \times q}$, the Hardy space of $p \times q$ mvf's f that are holomorphic in \mathbb{C}_{+}for which

$$
\begin{equation*}
\|f\|_{\infty}=\sup _{\omega \in \mathbb{C}_{+}}\|f(\omega)\|<\infty \tag{1.6}
\end{equation*}
$$

$H_{\infty}^{p \times q}$ is a Banach space with norm defined as above.

- $\mathcal{S}_{i n}^{p \times q}$, the class of $p \times q$ inner mvf's, is the set of mvf's f that belong to $H_{\infty}^{p \times q}$ with $f(\lambda)^{*} f(\lambda) \preceq I_{q}$ for $\lambda \in \mathbb{C}_{+}$and $f(\mu)^{*} f(\mu)=I_{q}$ a.e. on \mathbb{R}.
- $\mathcal{N}^{p \times q}$, the Nevanlinna class of $p \times q$ mvf's f that are meromorphic in \mathbb{C}_{+} and admit a representation of the form

$$
\begin{equation*}
f=g^{-1} h \quad \text { with } g \in H_{\infty}^{1 \times 1} \text { and } h \in H_{\infty}^{p \times q} . \tag{1.7}
\end{equation*}
$$

- $\Pi^{p \times q}$, the class of meromorphic $p \times q$ mvf's f on $\mathbb{C} \backslash \mathbb{R}$ such that
(1) the restriction of f to \mathbb{C}_{+}belongs to $\mathcal{N}^{p \times q}$,
(2) the restriction of f to \mathbb{C}_{-}belongs to the class $\left\{f: f^{\#} \in \mathcal{N}^{q \times p}\right\}$ and
(3) $\lim _{\nu \downarrow 0} f(\mu+i \nu)=\lim _{\nu \downarrow 0} f(\mu-i \nu)$ a.e. on \mathbb{R}.

The abbreviation $X^{p}=X^{p \times 1}$ will be used for each of the spaces considered above. Thus, for example, $H_{2}^{p}=H_{2}^{p \times 1}$.

2. Preliminaries

Recall that a matrix $J \in \mathbb{C}^{m \times m}$ is a signature matrix if $J=J^{*}$ and $J J^{*}=I_{m}$. We shall make use of the signature matrices

$$
j_{p q}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right] \quad \text { with } p+q=m \text { and } j_{p}=j_{p p} \quad \text { with } 2 p=m .
$$

An $m \times m \operatorname{mvf} U(\lambda)$ that is meromorphic in \mathbb{C}_{+}is said to be J-contractive in \mathbb{C}_{+}if
(1) $U(\lambda)^{*} J U(\lambda) \preceq J$ for every point $\lambda \in \mathfrak{h}_{U}^{+}$.

It is well known that every J-contractive mvf $U(\lambda)$ has nontangential limits $U(\mu)$ at a.e. point $\mu \in \mathbb{R}$ (see e.g. pp. 169-170 in [1]). A J-contractive $\operatorname{mvf} U(\lambda)$ is said to be J-inner if,
(2) $U(\mu)^{*} J U(\mu)=J$ for a.e point $\mu \in \mathbb{R}$.

If (1) and (2) hold, then $U(\lambda)$ may be extended to \mathbb{C}_{-}via the formula

$$
J=U(\omega) J U(\bar{\omega})^{*} \quad \text { for } \omega \in \mathbb{C}_{-} \text {such that } \bar{\omega} \in \mathfrak{h}_{U}^{+} \text {and } \operatorname{det} U(\bar{\omega}) \neq 0 .
$$

The J-inner $m \times m$ mvf $U(\lambda)$ extended to \mathbb{C}_{-}belongs to the class $\Pi^{m \times m}$.
Additional information on the classes of mvf's listed above and some of their principal applications may be found in [1], [2] and [4] (as well as many other places) and the references cited therein.

A $p \times 2 p \operatorname{mvf} \mathfrak{E}(\lambda)=\left[E_{-}(\lambda) \quad E_{+}(\lambda)\right]$ with $p \times p$ blocks $E_{ \pm}(\lambda)$ that belong to $\Pi^{p \times p}$ such that

$$
\operatorname{det} E_{+}(\lambda) \not \equiv 0 \quad \text { in } \mathbb{C}_{+} \text {and the } \operatorname{mvf} \chi=E_{+}^{-1} E_{-} \text {belongs to } \mathcal{S}_{i n}^{p \times p}
$$

will be called a de Branges matrix.
If \mathfrak{E} is a de Branges matrix, then the space

$$
\begin{align*}
\mathcal{B}(\mathfrak{E}) & =\left\{p \times 1 \text { vvf's } f: E_{+}^{-1} f \in H_{2}^{p} \ominus \chi H_{2}^{p}\right\} \\
& =\left\{p \times 1 \text { vvf's } f: E_{+}^{-1} f \in H_{2}^{p} \quad \text { and } \quad E_{-}^{-1} f \in\left(H_{2}^{\perp}\right)^{p}\right\} \tag{2.1}
\end{align*}
$$

(here $H_{2}^{\perp}=L_{2} \ominus H_{2}$) with inner product

$$
\begin{equation*}
\langle f, g\rangle_{\mathcal{B}(\mathfrak{E})}=\left\langle E_{+}^{-1} f, E_{+}^{-1} g\right\rangle_{s t}=\int_{-\infty}^{\infty} g(\mu)^{*} \Delta_{\mathfrak{E}}(\mu) f(\mu) d \mu, \tag{2.2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{s t}$ denotes the standard inner product in L_{2}^{p} and

$$
\begin{equation*}
\Delta_{\mathfrak{E}}(\mu)=\left\{E_{+}(\mu) E_{+}(\mu)^{*}\right\}^{-1} \quad \text { a.e. on } \mathbb{R} \tag{2.3}
\end{equation*}
$$

is a RKHS of $p \times 1$ vvf's that are holomorphic in $\mathfrak{h}_{\mathfrak{E}}$ with RK given by (1.2). Moreover, $\mathcal{B}(\mathfrak{E}) \subset \Pi^{p}$, and $\mathfrak{h}_{\mathfrak{E}} \subseteq \mathfrak{h}_{f}$ for every $f \in \mathcal{B}(\mathfrak{E})$; see e.g., Theorem 5.65 in [1].

The next theorem recalls the identification of the RKHS $\mathcal{H}(U)$ of $m \times 1$ vvf's based on a J-inner mvf U as a de Branges space $\mathcal{B}(\mathfrak{E})$ based on an $m \times 2 m$ de Branges matrix that is defined in terms of U.
Theorem 2.1. The $R K H S \mathcal{H}(U)$ with $R K$ given by formula (1.1) coincides with the de Branges space $\mathcal{B}(\mathfrak{E})$ based on the de Branges matrix $\mathfrak{E}=\left[\begin{array}{ll}E_{-} & E_{+}\end{array}\right]$with $m \times m$ components

$$
\begin{equation*}
E_{-}(\lambda)=P_{-}+U(\lambda) P_{+} \quad \text { and } \quad E_{+}(\lambda)=P_{+}+U(\lambda) P_{-} \tag{2.4}
\end{equation*}
$$

in which

$$
P_{+}=\frac{I_{m}+J}{2} \quad \text { and } \quad P_{-}=\frac{I_{m}-J}{2}
$$

Moreover,

$$
\begin{equation*}
E_{+}^{-1} \in H_{\infty}^{m \times m}, \quad\left(E_{-}^{\#}\right)^{-1} \in H_{\infty}^{m \times m} \tag{2.5}
\end{equation*}
$$

and the inner product

$$
\begin{equation*}
\langle f, g\rangle_{\mathcal{H}(U)}=\int_{-\infty}^{\infty} g(\mu)^{*} \Delta_{\mathfrak{E}}(\mu) f(\mu) d \mu \quad \text { for } f, g \in \mathcal{H}(U) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{\mathfrak{E}}(\mu)=\left\{E_{+}(\mu) E_{+}(\mu)^{*}\right\}^{-1} \quad \text { a.e. on } \mathbb{R} . \tag{2.7}
\end{equation*}
$$

Furthermore, $U(\lambda)$ and J can be recovered from $\mathfrak{E}(\lambda)$ by the formulas

$$
U(\lambda)=E_{-}(\lambda)+E_{+}(\lambda)-I_{m}=\mathfrak{E}(\lambda)\left[\begin{array}{c}
I_{m} \tag{2.8}\\
I_{m}
\end{array}\right]-I_{m}
$$

and

$$
\begin{equation*}
E_{+}-E_{-}=\left(I_{m}-U\right) J=\left(2 I_{m}-E_{+}-E_{-}\right) J \tag{2.9}
\end{equation*}
$$

respectively.

Proof. This theorem coincides with Theorem 3.1 in [5] except for the addition of (2.9), which is self-evident from (2.4).

There is a converse that builds upon the observation that the mvf's defined in (2.4) satisfy the condition $E_{ \pm} P_{ \pm}=P_{ \pm}$:

Theorem 2.2. If $\mathfrak{E}=\left[\begin{array}{ll}E_{-} & E_{+}\end{array}\right]$is a de Branges matrix of size $m \times 2 m$ and $P_{ \pm} \in \mathbb{C}^{m \times m}$ are complementary orthogonal projections (i.e., $P_{ \pm}^{2}=P_{ \pm}, P_{ \pm}^{*}=P_{ \pm}$ and $\left.P_{+}+P_{-}=I_{m}\right)$ such that $E_{+} P_{+}=P_{+}$and $E_{-} P_{-}=P_{-}$then:
(1) $U=E_{+}+E_{-}-I_{m}$ is J-inner with respect to the signature matrix $J=$ $P_{+}-P_{-}$.
(2) $\mathcal{H}(U)=\mathcal{B}(\mathfrak{E})$.

Proof. It suffices to show that the (numerators of) the reproducing kernels $K_{\omega}^{U}(\lambda)$ (defined in (1.1)) and $K_{\omega}^{\mathfrak{E}}(\lambda)$ (defined in (1.2)) coincide. Under the given assumptions, $U P_{+}=E_{-} P_{+}$and $U P_{-}=E_{+} P_{-}$. Consequently, for every pair of points $\lambda, \omega \in \mathfrak{h}_{\mathfrak{E}}$,

$$
\begin{aligned}
E_{+}(\lambda) E_{+}(\omega)^{*}-E_{-}(\lambda) E_{-}(\omega)^{*}= & E_{+}(\lambda) P_{+} E_{+}(\omega)^{*}-E_{-}(\lambda) P_{-} E_{-}(\omega)^{*} \\
& +E_{+}(\lambda) P_{-} E_{+}(\omega)^{*}-E_{-}(\lambda) P_{+} E_{-}(\omega)^{*} \\
= & P_{+}-P_{-}+U(\lambda)\left(P_{-}-P_{+}\right) U(\omega)^{*} \\
= & J-U(\lambda) J U(\omega)^{*}
\end{aligned}
$$

Therefore, (1) and (2) hold.
We remark that the Potapov-Ginzburg transform

$$
\begin{equation*}
S=\left(P_{+}+U P_{-}\right)^{-1}\left(P_{-}+U P_{+}\right)=E_{+}^{-1} E_{-} \tag{2.10}
\end{equation*}
$$

which maps the class $\mathcal{U}(J)$ of J-inner mvf's onto the set

$$
\begin{equation*}
\left\{S \in \mathcal{S}_{i n}^{m \times m}: \operatorname{det}\left(P_{+}+S P_{-}\right) \not \equiv 0\right\} \tag{2.11}
\end{equation*}
$$

(see e.g., Subsection 2.2 in [1] for the existence of the indicated inverses for transforms of the form (2.10)). The formulas in (2.10) imply that U can be recovered from \mathfrak{E} via the formula

$$
U=\left(P_{+}+S P_{-}\right)^{-1}\left(P_{-}+S P_{+}\right) \quad \text { with } S=E_{+}^{-1} E_{-}
$$

3. A PARAMETRIZATION OF THOSE \mathfrak{E} FOR which $\mathcal{B}(\mathfrak{E})=\mathcal{H}(U)$

Theorem 3.1. If $\mathfrak{F}=\left[\begin{array}{ll}F_{-} & F_{+}\end{array}\right]$is an $m \times 2 m$ de Branges matrix such that
(1) $\mathcal{B}(\mathfrak{F})=\mathcal{H}(U)$ for some $m \times m$-inner mvf U with signature matrix $J \in$ $\mathbb{C}^{m \times m}$ and
(2) $K_{\dot{\omega}}^{\mathfrak{F}}(\omega) \succ O$ for at least one (and hence every) point $\omega \in \mathfrak{h}_{\mathfrak{F}}$,
then

$$
\left[\begin{array}{ll}
F_{-} & F_{+}
\end{array}\right]=\left[\begin{array}{ll}
E_{-} & E_{+} \tag{3.1}
\end{array}\right] V
$$

for some j_{m}-unitary matrix $V \in \mathbb{C}^{2 m \times 2 m}$ and some de Branges matrix $\mathfrak{E}=\left[\begin{array}{ll}E_{-} & E_{+}\end{array}\right]$ with blocks $E_{ \pm}$for which

$$
\begin{equation*}
E_{+} P_{+}=P_{+}, \quad E_{-}=E_{-} P_{-} \quad \text { where } \quad P_{ \pm}=\left(I_{m} \pm J\right) / 2 \tag{3.2}
\end{equation*}
$$

Proof. If $\mathcal{B}(\mathfrak{F})=\mathcal{H}(U)$, then, in view of Theorems 5.65 and 5.49 in [1],

$$
\mathfrak{h}_{\mathfrak{F}} \subseteq \bigcap_{f \in \mathcal{B}(\mathfrak{F})} \mathfrak{h}_{f}=\bigcap_{f \in \mathcal{H}(U)} \mathfrak{h}_{f}=\mathfrak{h}_{U}
$$

and hence, as $\mathcal{H}(U)$ is R_{α} invariant for every point $\alpha \in \mathfrak{h}_{U}, \mathcal{B}(\mathfrak{F})$ is also R_{α} invariant for every point $\alpha \in \mathfrak{h}_{\mathfrak{F}}$. Therefore, Lemma 2.4 of [5] guarantees that if $K_{\omega}^{\mathfrak{F}}(\omega) \succ O$ for at least one point $\omega \in \mathfrak{h}_{\mathfrak{F}}$, then $K_{\omega}^{\mathfrak{F}}(\omega) \succ O$ for every point $\omega \in \mathfrak{h}_{\mathfrak{F}}$.

In view of Theorem $2.1, \mathcal{H}(U)=\mathcal{B}(\mathfrak{E})$, where the blocks $E_{ \pm}$of \mathfrak{E} are specified in terms of U and $P_{ \pm}$by the formulas

$$
\begin{equation*}
E_{+}=P_{+}+U P_{-} \quad \text { and } \quad E_{-}=P_{-}+U P_{+} \tag{3.3}
\end{equation*}
$$

which clearly meet the conditions in (3.2). Thus, $\mathcal{B}(\mathfrak{F})=\mathcal{H}(U)=\mathcal{B}(\mathfrak{E})$, Theorem 2.3 of [5] ensures that (3.1) holds for some j_{m}-unitary matrix $V \in \mathbb{C}^{2 m \times 2 m}$.

Remark 3.2. Theorem 3.1 admits a self-evident converse: If $\mathfrak{F}=\left[\begin{array}{ll}F_{-} & F_{+}\end{array}\right]$and $\mathfrak{E}=\left[\begin{array}{ll}E_{-} & E_{+}\end{array}\right]$are de Branges matrices with blocks $F_{ \pm}$and $E_{ \pm}$of size $m \times m$ such that (3.1) holds for some j_{m}-unitary matrix $V \in \mathbb{C}^{2 m \times 2 m}$ and there exist a pair of complementary projections $P_{ \pm} \in \mathbb{C}^{m \times m}$ such that (3.2) holds for the blocks of \mathfrak{E}, then $\mathcal{B}(\mathfrak{F})=\mathcal{H}(U)$, where $U=E_{+}+E_{-}-I_{m}$ is J-inner with respect to the signature matrix $J=P_{+}-P_{-}$.

This follows from the fact that

$$
-\mathfrak{F}(\lambda) j_{m} \mathfrak{F}(\omega)^{*}=-\mathfrak{E}(\lambda) j_{m} \mathfrak{E}(\omega)^{*}=J-U(\lambda) J U(\omega)^{*} .
$$

4. A SAMPle CALCULATION

A de Branges space $\mathcal{B}(\mathfrak{E})$ can be identified as an $\mathcal{H}(U)$ space for some J-inner $\operatorname{mvf} U$ if and only if $\mathcal{B}(\mathfrak{E})$ is invariant under R_{α} for every point $\alpha \in \mathfrak{h}_{\mathfrak{E}}$ and the de Branges identity

$$
\begin{equation*}
\left\langle R_{\alpha} f, g\right\rangle_{\mathcal{B}(\mathfrak{E})}-\left\langle f, R_{\beta} g\right\rangle_{\mathcal{B}(\mathfrak{E})}-(\alpha-\bar{\beta})\left\langle R_{\alpha} f, R_{\beta} g\right\rangle_{\mathcal{B}(\mathfrak{E})}=2 \pi i g(\beta)^{*} J f(\alpha) \tag{4.1}
\end{equation*}
$$

is in force for every pair of points $\alpha, \beta \in \mathfrak{h}_{\mathfrak{E}}$ and every pair of vvf's $f, g \in \mathcal{B}(\mathfrak{E})$ (see e.g., Theorem 5.21 in [1] for a characterization of $\mathcal{H}(U))$.

In this section we shall indicate how to verify (4.1) for de Branges matrices of the form (2.4) when $J=j_{p q}$ by exploiting the following result, which is Corollary 5.3 in [5]:

Theorem 4.1. If \mathfrak{E} is a de Branges matrix such that $\mathcal{B}(\mathfrak{E})$ is R_{α}-invariant for every point $\alpha \in \mathfrak{h}_{\mathfrak{E}}$, then the de Branges identity (4.1) holds in $\mathcal{B}(\mathfrak{E})$ if and only if

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{g(\bar{\alpha})^{*} \Delta_{\mathfrak{E}}(\mu) f(\mu)-g(\mu)^{*} \Delta_{\mathfrak{E}}(\mu) f(\alpha)}{\mu-\alpha} d \mu=2 \pi i g(\bar{\alpha})^{*} J f(\alpha) \tag{4.2}
\end{equation*}
$$

for all vvf's $f, g \in \mathcal{B}(\mathfrak{E})$ and all points $\alpha \in \mathfrak{h}_{\mathfrak{E}}$ such that $\bar{\alpha} \in \mathfrak{h}_{\mathfrak{E}}$.
Discussion Suppose that (3.2) and (3.3) hold with $J=j_{p q}, p+q=m$ and $U=$ $\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{21} & u_{22}\end{array}\right]$. Then

$$
E_{+}=\left[\begin{array}{cc}
I_{p} & u_{12} \\
O & u_{22}
\end{array}\right] \quad \text { and } \quad E_{-}=\left[\begin{array}{ll}
u_{11} & O \\
u_{21} & I_{q}
\end{array}\right]
$$

Then

$$
E_{+}^{-1} E_{-}=\left[\begin{array}{cc}
u_{11}-u_{12} u_{22}^{-1} u_{21} & -u_{12} u_{22}^{-1} \\
u_{22}^{-1} u_{21} & u_{22}^{-1}
\end{array}\right]=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right] \in \mathcal{S}_{i n}^{m \times m}
$$

and

$$
\Delta_{\mathfrak{E}}=\left(E_{+} E_{+}^{*}\right)^{-1}=\left[\begin{array}{cc}
I_{p} & s_{12} \\
s_{12}^{*} & I_{q}
\end{array}\right] \quad \text { a.e. on } \mathbb{R} \text {. }
$$

Therefore, the $\operatorname{vvf} f=\operatorname{col}\left(f_{1}, f_{2}\right)$ with components $f_{1} \in \Pi^{p}$ and $f_{2} \in \Pi^{q}$ belongs to $\mathcal{B}(\mathfrak{E})$ if and only if

$$
E_{+}^{-1} f=\left[\begin{array}{cc}
I_{p} & -u_{12} u_{22}^{-1} \\
O & u_{22}^{-1}
\end{array}\right] f=\left[\begin{array}{cc}
I_{p} & s_{12} \\
O & s_{22}
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] \in H_{2}^{m}
$$

and

$$
\left\langle E_{+}^{-1} f,\left(E_{+}^{-1} E_{-}\right) g\right\rangle_{s t}=0 \quad \text { for every } g \in H_{2}^{m}
$$

Thus, if $g=\operatorname{col}\left(g_{1}, g_{2}\right)$ with $g_{1} \in H_{2}^{p}$ and $g_{2} \in H_{2}^{q}$, then

$$
\left\langle\left[\begin{array}{c}
f_{1}+s_{12} f_{2} \\
s_{22} f_{22}
\end{array}\right],\left[\begin{array}{l}
s_{12} \\
s_{22}
\end{array}\right] g_{2}\right\rangle_{s t}=0
$$

for every $g_{2} \in H_{2}^{q}$. Thus,

$$
f_{1}+s_{12} f_{2} \in H_{2}^{p} \quad \text { and } \quad\left\langle\left[s_{12}^{*}\left(f_{1}+s_{12} f_{2}\right)+s_{22}^{*} s_{22} f_{2}\right], g_{2}\right\rangle_{s t}=0
$$

for every $g_{2} \in H_{2}^{q}$. Since $s_{12}(\mu)^{*} s_{12}(\mu)+s_{22}(\mu)^{*} s_{22}(\mu)=I_{q}$ a.e. on \mathbb{R}, the second equality implies that $s_{12}^{\#} f_{1}+f_{2} \in\left(H_{2}^{\perp}\right)^{q}$.

We are now ready to evaluate the integral in (4.2). We assume that $\alpha \in \mathfrak{h}_{\mathfrak{E}}^{+}$and $\bar{\alpha} \in \mathfrak{h}_{\mathfrak{E}}^{-}$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{g(\bar{\alpha})^{*} \Delta_{\mathfrak{E}}(\mu) f(\mu)}{\mu-\alpha} d \mu & =2 \pi i\left\langle\left[\begin{array}{l}
f_{1}+s_{12} f_{2} \\
s_{12}^{*} f_{1}+f_{2}
\end{array}\right], \frac{1}{\rho_{\alpha}}\left[\begin{array}{l}
g_{1}(\bar{\alpha}) \\
g_{2}(\bar{\alpha})
\end{array}\right]\right\rangle_{s t} \\
& =2 \pi i g_{1}(\bar{\alpha})^{*}\left[f_{1}(\alpha)+s_{12}(\alpha) f_{2}(\alpha)\right]
\end{aligned}
$$

since $f_{1}+s_{12} f_{2} \in H_{2}^{p}$ and $s_{12}^{\#} f_{1}+f_{2} \in\left(H_{2}^{\perp}\right)^{q}$.
The next step is to observe that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{f(\alpha)^{*} \Delta_{\mathfrak{E}}(\mu) g(\mu)}{\mu-\bar{\alpha}} d \mu & =\int_{-\infty}^{\infty} \frac{f_{1}(\alpha)^{*}\left[g_{1}(\mu)+s_{12}(\mu) g_{2}(\mu)\right]}{\mu-\bar{\alpha}} d \mu \\
& +\int_{-\infty}^{\infty} \frac{f_{2}(\alpha)^{*}\left[s_{12}^{\#}(\mu) g_{1}(\mu)+g_{2}(\mu)\right]}{\mu-\bar{\alpha}} d \mu \\
& =0-2 \pi i f_{2}(\alpha)^{*}\left[s_{12}^{\#}(\bar{\alpha}) g_{1}(\bar{\alpha})+g_{2}(\bar{\alpha})\right] .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{g(\mu)^{*} \Delta_{\mathfrak{E}}(\mu) f(\alpha)}{\mu-\alpha} d \mu & =\left(\int_{-\infty}^{\infty} \frac{f(\alpha)^{*} \Delta_{\mathfrak{E}}(\mu) g(\mu)}{\mu-\bar{\alpha}} d \mu\right)^{*} \\
& =2 \pi i\left[g_{1}(\bar{\alpha})^{*} s_{12}(\alpha)+g_{2}(\bar{\alpha})^{*}\right] f_{2}(\alpha)
\end{aligned}
$$

and hence (4.2) with $J=j_{p q}$ follows by combining these evaluations.

References

[1] D. Z. Arov and H. Dym, J-Contractive Matrix Valued Functions and Related Topics, Cambridge University Press, Cambridge, 2008.
[2] D. Z. Arov and H. Dym, Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations, Cambridge University Press, Cambridge, 2012.
[3] D. Z. Arov and H. Dym, de Branges spaces of vector valued functions, in: Operator Theory, (D. Alpay, ed.) Springer 2015, pp. 721-752.
[4] D. Z. Arov and H. Dym, Multivariate Prediction, de Branges Spaces, and Related Extension and Inverse Problems, Birkhauser, Basel, 2018.
[5] D. Z. Arov and H. Dym, Two classes of de Branges spaces that are really one, Pure and Applied Functional Analysis, 7 (2022), 1-26.
[6] L. de Branges, Some Hilbert spaces of analytic functions I, Trans. Amer. Math. Soc., 106 (1963), 445-668.
[7] L. de Branges, Hilbert Spaces of Entire Functions, Prentice Hall, London, 1968.
[8] L. de Branges, The expansion theorem for Hilbert spaces of entire functions, in: Entire functions and related parts of analysis, Proc. Sympos. Pure Math., American Mathematical Society, Providence, Rhode Island, 1968, pp. 79-148.
[9] James Rovnyak, Characterizations of spaces $\mathbf{K}(M)$, unpublished manuscript, 1968; http://people.virginia.edu/ jlr5m/

Manuscript received April 142022
revised May 102022

Damir Z. Arov
South Ukranian National Pedagogical University, Odessa 65020, Ukraine
E-mail address: damir.arov1@gmail.com
Harry Dym
Department of Mathematics, The Weizmann Institute of Science, Rehovot 7610001, Israel E-mail address: Harry.Dym@weizmann.ac.il

[^0]: 2020 Mathematics Subject Classification. 46E22, 30H15, 47B32

