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Moreover, there exists a characterization of the RKHS H(U) by an identity (see e.g.,
(4.1) below) that is expressed in terms of Rα that is due to de Branges [6] (with an
important technical improvement of this characterization due to Rovnyak [9]).

There is another RKHS B(E) that originates with de Branges [7], [8] that plays
a significant role in many problems of analysis. The RK of this space

(1.2) KE
ω (λ) =

E+(λ)E+(ω)
∗ − E−(λ)E−(ω)

∗

ρω(λ)
if λ, ω ∈ hE and λ ̸= ω

is based on an m × 2m mvf (matrix valued function) E =
[
E− E+

]
with m ×m

components that are of bounded type in each of the two half-planes in C \ R with
matching non tangential limits a.e. on R (i.e., E± ∈ Πm×m, see below (1.7)) and
are such that det E+(λ) ̸≡ 0 in C+ and χ = E−1

+ E− is an m × m inner mvf. We
shall call each such m× 2m mvf E(λ) a de Branges matrix.

In previous publications [3], [5] we identified the de Branges space H(U) with
the de Branges space B(E) based on the de Branges matrix E =

[
E− E+

]
with

m×m components

(1.3) E−(λ) = P− + U(λ)P+ and E+(λ) = P+ + U(λ)P−,

in which P+ = (Im + J)/2 and P− = (Im − J)/2 and explored this connection in
detail in [5]. In particular:

Every J-inner matrix U generates a de Branges matrix E via the recipe (1.3).

However, the converse implication is false: Not every de Branges space B(E) can
be identified as an H(U) space.

The main objective of this note is to establish a transparent characterization
of those de Branges matrices E that may be expressed in terms of J-inner matrices
U via (1.3). This characterization will be established in Section 3. Section 2 is
devoted to some preliminary analysis that reviews and expands upon the conclusions
of [5]. Section 4 presents a sample calculation that illustrates the usefulness of this
characterization.

The rest of this section is devoted to notation.
The symbols C, R, Cp×q, Cp denote the set of complex numbers, real numbers,

p × q complex valued matrices and p × 1 complex valued vectors, respectively; C+

(resp., C−) denotes the open upper (resp., lower) half-plane; hf stands for the
domain of holomorphy of a mvf f , and

h+f = hf ∩ C+, h−f = hf ∩ C−, h0f = hf ∩ R.

The notation

f#(λ) =f(λ)∗ and A ≻ O (A ⪰ O) for

positive definite (resp., semidefinite) matrices A,
(1.4)

will be useful.
The following classes of mvf’s will play a role:
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• Hp×q
2 , the Hardy space of p × q mvf’s f that are holomorphic in C+ for

which

(1.5) ∥f∥2
Hp×q

2

= sup
ν>0

∫ ∞

−∞
trace {f(µ+ iν)∗f(µ+ iν)}dµ < ∞.

Hp×q
2 is a Hilbert space with norm defined as above.

• Hp×q
∞ , the Hardy space of p × q mvf’s f that are holomorphic in C+ for

which

(1.6) ∥f∥∞ = sup
ω∈C+

∥f(ω)∥ < ∞.

Hp×q
∞ is a Banach space with norm defined as above.

• S
p×q
in , the class of p×q inner mvf’s, is the set of mvf’s f that belong to Hp×q

∞
with f(λ)∗f(λ) ⪯ Iq for λ ∈ C+ and f(µ)∗f(µ) = Iq a.e. on R.

• Np×q, the Nevanlinna class of p × q mvf’s f that are meromorphic in C+

and admit a representation of the form

(1.7) f = g−1h with g ∈ H1×1
∞ and h ∈ Hp×q

∞ .

• Πp×q, the class of meromorphic p× q mvf’s f on C \ R such that
(1) the restriction of f to C+ belongs to Np×q,
(2) the restriction of f to C− belongs to the class {f : f# ∈ Nq×p} and
(3) limν↓0 f(µ+ iν) = limν↓0 f(µ− iν) a.e. on R.

The abbreviation Xp = Xp×1 will be used for each of the spaces considered above.
Thus, for example, Hp

2 = Hp×1
2 .

2. Preliminaries

Recall that a matrix J ∈ Cm×m is a signature matrix if J = J∗ and JJ∗ = Im.
We shall make use of the signature matrices

jpq =

[
Ip 0
0 −Iq

]
with p+ q = m and jp = jpp with 2p = m.

An m×m mvf U(λ) that is meromorphic in C+ is said to be J-contractive in
C+ if

(1) U(λ)∗JU(λ) ⪯ J for every point λ ∈ h+U .

It is well known that every J-contractive mvf U(λ) has nontangential limits U(µ)
at a.e. point µ ∈ R (see e.g. pp. 169–170 in [1]). A J-contractive mvf U(λ) is said
to be J-inner if,

(2) U(µ)∗JU(µ) = J for a.e point µ ∈ R.
If (1) and (2) hold, then U(λ) may be extended to C− via the formula

J = U(ω)JU(ω)∗ for ω ∈ C− such that ω ∈ h+U and det U(ω) ̸= 0.

The J-inner m×m mvf U(λ) extended to C− belongs to the class Πm×m.
Additional information on the classes of mvf’s listed above and some of their

principal applications may be found in [1], [2] and [4] (as well as many other places)
and the references cited therein.
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A p × 2p mvf E(λ) =
[
E−(λ) E+(λ)

]
with p × p blocks E±(λ) that belong to

Πp×p such that

det E+(λ) ̸≡ 0 in C+ and the mvf χ = E−1
+ E− belongs to S

p×p
in

will be called a de Branges matrix.
If E is a de Branges matrix, then the space

B(E) = {p× 1 vvf’s f : E−1
+ f ∈ Hp

2 ⊖ χHp
2}

= {p× 1 vvf’s f : E−1
+ f ∈ Hp

2 and E−1
− f ∈ (H⊥

2 )p}
(2.1)

(here H⊥
2 = L2 ⊖H2) with inner product

(2.2) ⟨f, g⟩B(E) = ⟨E−1
+ f,E−1

+ g⟩st =
∫ ∞

−∞
g(µ)∗∆E(µ)f(µ)dµ,

where ⟨·, ·⟩st denotes the standard inner product in Lp
2 and

(2.3) ∆E(µ) = {E+(µ)E+(µ)
∗}−1 a.e. on R

is a RKHS of p × 1 vvf’s that are holomorphic in hE with RK given by (1.2).
Moreover, B(E) ⊂ Πp, and hE ⊆ hf for every f ∈ B(E); see e.g., Theorem 5.65
in [1].

The next theorem recalls the identification of the RKHS H(U) of m × 1 vvf’s
based on a J-inner mvf U as a de Branges space B(E) based on an m × 2m de
Branges matrix that is defined in terms of U .

Theorem 2.1. The RKHS H(U) with RK given by formula (1.1) coincides with
the de Branges space B(E) based on the de Branges matrix E =

[
E− E+

]
with

m×m components

(2.4) E−(λ) = P− + U(λ)P+ and E+(λ) = P+ + U(λ)P−,

in which

P+ =
Im + J

2
and P− =

Im − J

2
.

Moreover,

(2.5) E−1
+ ∈ Hm×m

∞ , (E#
− )−1 ∈ Hm×m

∞

and the inner product

(2.6) ⟨f, g⟩H(U) =

∫ ∞

−∞
g(µ)∗∆E(µ)f(µ)dµ for f, g ∈ H(U),

where

(2.7) ∆E(µ) = {E+(µ)E+(µ)
∗}−1 a.e. on R.

Furthermore, U(λ) and J can be recovered from E(λ) by the formulas

(2.8) U(λ) = E−(λ) + E+(λ)− Im = E(λ)

[
Im
Im

]
− Im

and

(2.9) E+ − E− = (Im − U)J = (2Im − E+ − E−)J,

respectively.
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Proof. This theorem coincides with Theorem 3.1 in [5] except for the addition of
(2.9), which is self-evident from (2.4). □

There is a converse that builds upon the observation that the mvf’s defined in
(2.4) satisfy the condition E±P± = P±:

Theorem 2.2. If E =
[
E− E+

]
is a de Branges matrix of size m × 2m and

P± ∈ Cm×m are complementary orthogonal projections (i.e., P 2
± = P±, P

∗
± = P±

and P+ + P− = Im) such that E+P+ = P+ and E−P− = P− then:

(1) U = E+ + E− − Im is J-inner with respect to the signature matrix J =
P+ − P−.

(2) H(U) = B(E).

Proof. It suffices to show that the (numerators of) the reproducing kernels KU
ω (λ)

(defined in (1.1)) and KE
ω (λ) (defined in (1.2)) coincide. Under the given assump-

tions, UP+ = E−P+ and UP− = E+P−. Consequently, for every pair of points
λ, ω ∈ hE,

E+(λ)E+(ω)
∗ − E−(λ)E−(ω)

∗ = E+(λ)P+E+(ω)
∗ − E−(λ)P−E−(ω)

∗

+ E+(λ)P−E+(ω)
∗ − E−(λ)P+E−(ω)

∗

= P+ − P− + U(λ)(P− − P+)U(ω)∗

= J − U(λ)JU(ω)∗.

Therefore, (1) and (2) hold. □

We remark that the Potapov-Ginzburg transform

(2.10) S = (P+ + UP−)
−1(P− + UP+) = E−1

+ E−

which maps the class U(J) of J-inner mvf’s onto the set

(2.11) {S ∈ Sm×m
in : det (P+ + SP−) ̸≡ 0}

(see e.g., Subsection 2.2 in [1] for the existence of the indicated inverses for trans-
forms of the form (2.10)). The formulas in (2.10) imply that U can be recovered
from E via the formula

U = (P+ + SP−)
−1(P− + SP+) with S = E−1

+ E−.

3. A parametrization of those E for which B(E) = H(U)

Theorem 3.1. If F =
[
F− F+

]
is an m× 2m de Branges matrix such that

(1) B(F) = H(U) for some m × m J-inner mvf U with signature matrix J ∈
Cm×m and

(2) KF
ω(ω) ≻ O for at least one (and hence every) point ω ∈ hF,

then

(3.1)
[
F− F+

]
=

[
E− E+

]
V

for some jm-unitary matrix V ∈ C2m×2m and some de Branges matrix E =
[
E− E+

]
with blocks E± for which

(3.2) E+P+ = P+, E− = E−P− where P± = (Im ± J)/2.
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Proof. If B(F) = H(U), then, in view of Theorems 5.65 and 5.49 in [1],

hF ⊆
∩

hf
f∈B(F)

=
∩

hf
f∈H(U)

= hU

and hence, as H(U) is Rα invariant for every point α ∈ hU , B(F) is also Rα invariant
for every point α ∈ hF. Therefore, Lemma 2.4 of [5] guarantees that if KF

ω(ω) ≻ O
for at least one point ω ∈ hF, then KF

ω(ω) ≻ O for every point ω ∈ hF.
In view of Theorem 2.1, H(U) = B(E), where the blocks E± of E are specified in

terms of U and P± by the formulas

(3.3) E+ = P+ + UP− and E− = P− + UP+,

which clearly meet the conditions in (3.2). Thus, B(F) = H(U) = B(E), Theorem
2.3 of [5] ensures that (3.1) holds for some jm-unitary matrix V ∈ C2m×2m.

□
Remark 3.2. Theorem 3.1 admits a self-evident converse: If F =

[
F− F+

]
and

E =
[
E− E+

]
are de Branges matrices with blocks F± and E± of size m×m such

that (3.1) holds for some jm-unitary matrix V ∈ C2m×2m and there exist a pair
of complementary projections P± ∈ Cm×m such that (3.2) holds for the blocks of
E, then B(F) = H(U), where U = E+ + E− − Im is J-inner with respect to the
signature matrix J = P+ − P−.

This follows from the fact that

−F(λ)jmF(ω)∗ = −E(λ)jmE(ω)∗ = J − U(λ)JU(ω)∗.

4. A sample calculation

A de Branges space B(E) can be identified as an H(U) space for some J-inner
mvf U if and only if B(E) is invariant under Rα for every point α ∈ hE and the de
Branges identity

(4.1) ⟨Rαf, g⟩B(E) − ⟨f,Rβg⟩B(E) − (α− β)⟨Rαf,Rβg⟩B(E) = 2πig(β)∗Jf(α)

is in force for every pair of points α, β ∈ hE and every pair of vvf’s f, g ∈ B(E) (see
e.g., Theorem 5.21 in [1] for a characterization of H(U)).

In this section we shall indicate how to verify (4.1) for de Branges matrices of
the form (2.4) when J = jpq by exploiting the following result, which is Corollary
5.3 in [5]:

Theorem 4.1. If E is a de Branges matrix such that B(E) is Rα-invariant for
every point α ∈ hE, then the de Branges identity (4.1) holds in B(E) if and only if

(4.2)

∫ ∞

−∞

g(α)∗∆E(µ)f(µ)− g(µ)∗∆E(µ)f(α)

µ− α
dµ = 2πig(α)∗Jf(α)

for all vvf ’s f, g ∈ B(E) and all points α ∈ hE such that α ∈ hE.

Discussion Suppose that (3.2) and (3.3) hold with J = jpq, p + q = m and U =[
u11 u12
u21 u22

]
. Then

E+ =

[
Ip u12
O u22

]
and E− =

[
u11 O
u21 Iq

]
.
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Then

E−1
+ E− =

[
u11 − u12u

−1
22 u21 −u12u

−1
22

u−1
22 u21 u−1

22

]
=

[
s11 s12
s21 s22

]
∈ Sm×m

in

and

∆E = (E+E
∗
+)

−1 =

[
Ip s12
s∗12 Iq

]
a.e. on R.

Therefore, the vvf f = col (f1, f2) with components f1 ∈ Πp and f2 ∈ Πq belongs to
B(E) if and only if

E−1
+ f =

[
Ip −u12u

−1
22

O u−1
22

]
f =

[
Ip s12
O s22

] [
f1
f2

]
∈ Hm

2

and

⟨E−1
+ f, (E−1

+ E−)g⟩st = 0 for every g ∈ Hm
2 .

Thus, if g = col (g1, g2) with g1 ∈ Hp
2 and g2 ∈ Hq

2 , then⟨[
f1 + s12f2
s22f22

]
,

[
s12
s22

]
g2

⟩
st

= 0

for every g2 ∈ Hq
2 . Thus,

f1 + s12f2 ∈ Hp
2 and ⟨

[
s∗12(f1 + s12f2) + s∗22s22f2

]
, g2⟩st = 0

for every g2 ∈ Hq
2 . Since s12(µ)

∗s12(µ) + s22(µ)
∗s22(µ) = Iq a.e. on R, the second

equality implies that s#12f1 + f2 ∈ (H⊥
2 )q.

We are now ready to evaluate the integral in (4.2). We assume that α ∈ h+E and

α ∈ h−E . Then∫ ∞

−∞

g(α)∗∆E(µ)f(µ)

µ− α
dµ = 2πi

⟨[
f1 + s12f2
s∗12f1 + f2

]
,
1

ρα

[
g1(α)
g2(α)

]⟩
st

= 2πig1(α)
∗[f1(α) + s12(α)f2(α)]

since f1 + s12f2 ∈ Hp
2 and s#12f1 + f2 ∈ (H⊥

2 )q.
The next step is to observe that∫ ∞

−∞

f(α)∗∆E(µ)g(µ)

µ− α
dµ =

∫ ∞

−∞

f1(α)
∗[g1(µ) + s12(µ)g2(µ)]

µ− α
dµ

+

∫ ∞

−∞

f2(α)
∗[s#12(µ)g1(µ) + g2(µ)]

µ− α
dµ

= 0− 2πif2(α)
∗[s#12(α)g1(α) + g2(α)].

Thus, ∫ ∞

−∞

g(µ)∗∆E(µ)f(α)

µ− α
dµ =

(∫ ∞

−∞

f(α)∗∆E(µ)g(µ)

µ− α
dµ

)∗

= 2πi[g1(α)
∗s12(α) + g2(α)

∗]f2(α)

and hence (4.2) with J = jpq follows by combining these evaluations.
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