

A CHARACTERIZATION OF THE SET OF DE BRANGES MATRICES $\mathfrak E$ FOR WHICH THERE EXISTS A J-INNER MATRIX FUNCTION U SUCH THAT THE SPACES $\mathcal B(\mathfrak E)$ AND $\mathcal H(U)$ COINCIDE

DAMIR Z. AROV AND HARRY DYM

ABSTRACT. In his studies of canonical differential systems L de Branges introduced two classes of reproducing kernel Hilbert spaces of $m \times 1$ vector valued functions that (in our terminology) we refer to as $\mathcal{H}(U)$ spaces based on an $m \times m$ J-inner matrix valued function $U(\lambda)$ and $\mathcal{B}(\mathfrak{E})$ spaces based on an $m \times 2m$ matrix valued function $\mathfrak{E}(\lambda)$ that we call a de Branges matrix. In a previous publication we have shown that every $\mathcal{H}(U)$ space is automatically a $\mathcal{B}(\mathfrak{E})$ space.

The converse is not true. A transparent characterization of those de Branges matrices for which this holds is presented.

1. Introduction

If J is an $m \times m$ signature matrix and U is J-inner with respect to the open upper half-plane \mathbb{C}_+ , then the kernel

(1.1)
$$K_{\omega}^{U}(\lambda) = \frac{J - U(\lambda)JU(\omega)^{*}}{\rho_{\omega}(\lambda)} \quad \text{if } \lambda, \omega \in \mathfrak{h}_{U} \text{ and } \lambda \neq \overline{\omega}$$

in which \mathfrak{h}_U denotes the domain of holomorphy of U in \mathbb{C} and

$$\rho_{\omega}(\lambda) = -2\pi i(\lambda - \overline{\omega}),$$

is positive on $\mathfrak{h}_U \times \mathfrak{h}_U$. Therefore, by the matrix version of a Theorem of Aronszjan (see e.g., Theorem 5.2 and Lemma 5.6 in [1]) $K_{\omega}^U(\lambda)$ is the RK (reproducing kernel) of exactly one RKHS (reproducing kernel Hilbert space) $\mathcal{H}(U)$ of $m \times 1$ vvf's that are holomorphic on \mathfrak{h}_U ; in fact,

$$\mathfrak{h}_U = \bigcap_{f \in \mathcal{H}(U)} \mathfrak{h}_f$$
 (where \mathfrak{h}_f denotes the domain of holomorphy of f).

The RKHS $\mathcal{H}(U)$ is invariant with respect to the generalized backward shift operator R_{α} that is defined by the rule

$$(R_{\alpha}f)(\lambda) = \begin{cases} \frac{f(\lambda) - f(\alpha)}{\lambda - \alpha} & \text{for } \lambda, \alpha \in \mathfrak{h}_f \text{ and } \lambda \neq \alpha \\ f'(\alpha) & \text{for } \lambda, \alpha \in \mathfrak{h}_f \text{ and } \lambda = \alpha. \end{cases}$$

²⁰²⁰ Mathematics Subject Classification. 46E22, 30H15, 47B32.

Moreover, there exists a characterization of the RKHS $\mathcal{H}(U)$ by an identity (see e.g., (4.1) below) that is expressed in terms of R_{α} that is due to de Branges [6] (with an important technical improvement of this characterization due to Rovnyak [9]).

There is another RKHS $\mathfrak{B}(\mathfrak{E})$ that originates with de Branges [7], [8] that plays a significant role in many problems of analysis. The RK of this space

(1.2)
$$K_{\omega}^{\mathfrak{E}}(\lambda) = \frac{E_{+}(\lambda)E_{+}(\omega)^{*} - E_{-}(\lambda)E_{-}(\omega)^{*}}{\rho_{\omega}(\lambda)} \quad \text{if } \lambda, \omega \in \mathfrak{h}_{\mathfrak{E}} \text{ and } \lambda \neq \overline{\omega}$$

is based on an $m \times 2m$ mvf (matrix valued function) $\mathfrak{E} = \begin{bmatrix} E_- & E_+ \end{bmatrix}$ with $m \times m$ components that are of bounded type in each of the two half-planes in $\mathbb{C} \setminus \mathbb{R}$ with matching non tangential limits a.e. on \mathbb{R} (i.e., $E_{\pm} \in \Pi^{m \times m}$, see below (1.7)) and are such that det $E_+(\lambda) \not\equiv 0$ in \mathbb{C}_+ and $\chi = E_+^{-1}E_-$ is an $m \times m$ inner mvf. We shall call each such $m \times 2m$ mvf $\mathfrak{E}(\lambda)$ a **de Branges matrix**.

In previous publications [3], [5] we identified the de Branges space $\mathcal{H}(U)$ with the de Branges space $\mathcal{B}(\mathfrak{E})$ based on the de Branges matrix $\mathfrak{E} = \begin{bmatrix} E_- & E_+ \end{bmatrix}$ with $m \times m$ components

(1.3)
$$E_{-}(\lambda) = P_{-} + U(\lambda)P_{+} \text{ and } E_{+}(\lambda) = P_{+} + U(\lambda)P_{-},$$

in which $P_+ = (I_m + J)/2$ and $P_- = (I_m - J)/2$ and explored this connection in detail in [5]. In particular:

Every J-inner matrix U generates a de Branges matrix \mathfrak{E} via the recipe (1.3).

However, the converse implication is false: Not every de Branges space $\mathcal{B}(\mathfrak{E})$ can be identified as an $\mathcal{H}(U)$ space.

The **main objective** of this note is to establish a transparent characterization of those de Branges matrices \mathfrak{E} that may be expressed in terms of J-inner matrices U via (1.3). This characterization will be established in Section 3. Section 2 is devoted to some preliminary analysis that reviews and expands upon the conclusions of [5]. Section 4 presents a sample calculation that illustrates the usefulness of this characterization.

The rest of this section is devoted to notation.

The symbols \mathbb{C} , \mathbb{R} , $\mathbb{C}^{p\times q}$, \mathbb{C}^p denote the set of complex numbers, real numbers, $p\times q$ complex valued matrices and $p\times 1$ complex valued vectors, respectively; \mathbb{C}_+ (resp., \mathbb{C}_-) denotes the open upper (resp., lower) half-plane; \mathfrak{h}_f stands for the domain of holomorphy of a myf f, and

$$\mathfrak{h}_f^+ = \mathfrak{h}_f \cap \mathbb{C}_+, \quad \mathfrak{h}_f^- = \mathfrak{h}_f \cap \mathbb{C}_-, \quad \mathfrak{h}_f^0 = \mathfrak{h}_f \cap \mathbb{R}.$$

The notation

(1.4)
$$f^{\#}(\lambda) = f(\overline{\lambda})^* \quad \text{and} \quad A \succ O \quad (A \succeq O) \quad \text{for}$$
 positive definite (resp., semidefinite) matrices A ,

will be useful.

The following classes of mvf's will play a role:

• $H_2^{p \times q}$, the Hardy space of $p \times q$ mvf's f that are holomorphic in \mathbb{C}_+ for

(1.5)
$$||f||_{H_2^{p\times q}}^2 = \sup_{\nu>0} \int_{-\infty}^{\infty} \operatorname{trace} \{f(\mu+i\nu)^* f(\mu+i\nu)\} d\mu < \infty.$$

 $H_2^{p\times q}$ is a Hilbert space with norm defined as above. • $H_2^{p\times q}$, the Hardy space of $p\times q$ mvf's f that are holomorphic in \mathbb{C}_+ for

(1.6)
$$||f||_{\infty} = \sup_{\omega \in \mathbb{C}_+} ||f(\omega)|| < \infty.$$

 $H_{\infty}^{p \times q}$ is a Banach space with norm defined as above.

- $\mathcal{S}_{in}^{p\times q}$, the class of $p\times q$ inner mvf's, is the set of mvf's f that belong to $H_{\infty}^{p\times q}$ with $f(\lambda)^* f(\lambda) \leq I_q$ for $\lambda \in \mathbb{C}_+$ and $f(\mu)^* f(\mu) = I_q$ a.e. on \mathbb{R} .
- $\mathbb{N}^{p\times q}$, the Nevanlinna class of $p\times q$ mvf's f that are meromorphic in \mathbb{C}_+ and admit a representation of the form

(1.7)
$$f = g^{-1}h \text{ with } g \in H_{\infty}^{1 \times 1} \text{ and } h \in H_{\infty}^{p \times q}.$$

- $\Pi^{p \times q}$, the class of meromorphic $p \times q$ mvf's f on $\mathbb{C} \setminus \mathbb{R}$ such that
 - (1) the restriction of f to \mathbb{C}_+ belongs to $\mathbb{N}^{p\times q}$,
 - (2) the restriction of f to \mathbb{C}_- belongs to the class $\{f: f^\# \in \mathbb{N}^{q \times p}\}$ and
 - (3) $\lim_{\nu \downarrow 0} f(\mu + i\nu) = \lim_{\nu \downarrow 0} f(\mu i\nu)$ a.e. on \mathbb{R} .

The abbreviation $\mathfrak{X}^p = \mathfrak{X}^{p \times 1}$ will be used for each of the spaces considered above. Thus, for example, $H_2^p = H_2^{p \times 1}$.

2. Preliminaries

Recall that a matrix $J \in \mathbb{C}^{m \times m}$ is a **signature matrix** if $J = J^*$ and $JJ^* = I_m$. We shall make use of the signature matrices

$$j_{pq} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$
 with $p+q=m$ and $j_p=j_{pp}$ with $2p=m$.

An $m \times m$ mvf $U(\lambda)$ that is meromorphic in \mathbb{C}_+ is said to be *J*-contractive in \mathbb{C}_+ if

(1) $U(\lambda)^*JU(\lambda) \leq J$ for every point $\lambda \in \mathfrak{h}_U^+$.

It is well known that every J-contractive mvf $U(\lambda)$ has nontangential limits $U(\mu)$ at a.e. point $\mu \in \mathbb{R}$ (see e.g. pp. 169–170 in [1]). A J-contractive mvf $U(\lambda)$ is said to be *J*-inner if,

(2) $U(\mu)^*JU(\mu) = J$ for a.e point $\mu \in \mathbb{R}$.

If (1) and (2) hold, then $U(\lambda)$ may be extended to \mathbb{C}_- via the formula

$$J=U(\omega)JU(\overline{\omega})^*\quad\text{for }\omega\in\mathbb{C}_-\text{ such that }\overline{\omega}\in\mathfrak{h}_U^+\text{ and det }U(\overline{\omega})\neq0.$$

The *J*-inner $m \times m$ mvf $U(\lambda)$ extended to \mathbb{C}_- belongs to the class $\Pi^{m \times m}$.

Additional information on the classes of myf's listed above and some of their principal applications may be found in [1], [2] and [4] (as well as many other places) and the references cited therein.

A $p \times 2p$ mvf $\mathfrak{E}(\lambda) = \begin{bmatrix} E_{-}(\lambda) & E_{+}(\lambda) \end{bmatrix}$ with $p \times p$ blocks $E_{\pm}(\lambda)$ that belong to $\Pi^{p \times p}$ such that

det
$$E_+(\lambda) \not\equiv 0$$
 in \mathbb{C}_+ and the mvf $\chi = E_+^{-1} E_-$ belongs to $\mathcal{S}_{in}^{p \times p}$

will be called a de Branges matrix.

If £ is a de Branges matrix, then the space

(2.1)
$$\mathcal{B}(\mathfrak{E}) = \{ p \times 1 \text{ vvf's } f : E_{+}^{-1} f \in H_{2}^{p} \ominus \chi H_{2}^{p} \}$$
$$= \{ p \times 1 \text{ vvf's } f : E_{+}^{-1} f \in H_{2}^{p} \quad and \quad E_{-}^{-1} f \in (H_{2}^{\perp})^{p} \}$$

(here $H_2^{\perp} = L_2 \ominus H_2$) with inner product

(2.2)
$$\langle f, g \rangle_{\mathcal{B}(\mathfrak{E})} = \langle E_+^{-1} f, E_+^{-1} g \rangle_{st} = \int_{-\infty}^{\infty} g(\mu)^* \Delta_{\mathfrak{E}}(\mu) f(\mu) d\mu,$$

where $\langle \cdot, \cdot \rangle_{st}$ denotes the standard inner product in L_2^p and

(2.3)
$$\Delta_{\mathfrak{E}}(\mu) = \{E_{+}(\mu)E_{+}(\mu)^{*}\}^{-1}$$
 a.e. on \mathbb{R}

is a RKHS of $p \times 1$ vvf's that are holomorphic in $\mathfrak{h}_{\mathfrak{E}}$ with RK given by (1.2). Moreover, $\mathfrak{B}(\mathfrak{E}) \subset \Pi^p$, and $\mathfrak{h}_{\mathfrak{E}} \subseteq \mathfrak{h}_f$ for every $f \in \mathfrak{B}(\mathfrak{E})$; see e.g., Theorem 5.65 in [1].

The next theorem recalls the identification of the RKHS $\mathcal{H}(U)$ of $m \times 1$ vvf's based on a J-inner mvf U as a de Branges space $\mathcal{B}(\mathfrak{E})$ based on an $m \times 2m$ de Branges matrix that is defined in terms of U.

Theorem 2.1. The RKHS $\mathfrak{H}(U)$ with RK given by formula (1.1) coincides with the de Branges space $\mathfrak{B}(\mathfrak{E})$ based on the de Branges matrix $\mathfrak{E} = \begin{bmatrix} E_- & E_+ \end{bmatrix}$ with $m \times m$ components

(2.4)
$$E_{-}(\lambda) = P_{-} + U(\lambda)P_{+} \quad and \quad E_{+}(\lambda) = P_{+} + U(\lambda)P_{-},$$

in which

$$P_{+} = \frac{I_m + J}{2} \quad and \quad P_{-} = \frac{I_m - J}{2}.$$

Moreover,

(2.5)
$$E_{+}^{-1} \in H_{\infty}^{m \times m}, \quad (E_{-}^{\#})^{-1} \in H_{\infty}^{m \times m}$$

and the inner product

(2.6)
$$\langle f, g \rangle_{\mathcal{H}(U)} = \int_{-\infty}^{\infty} g(\mu)^* \Delta_{\mathfrak{E}}(\mu) f(\mu) d\mu \quad \text{for } f, g \in \mathcal{H}(U),$$

where

(2.7)
$$\Delta_{\mathfrak{E}}(\mu) = \{ E_{+}(\mu) E_{+}(\mu)^{*} \}^{-1} \quad a.e. \ on \ \mathbb{R}$$

Furthermore, $U(\lambda)$ and J can be recovered from $\mathfrak{E}(\lambda)$ by the formulas

(2.8)
$$U(\lambda) = E_{-}(\lambda) + E_{+}(\lambda) - I_{m} = \mathfrak{E}(\lambda) \begin{bmatrix} I_{m} \\ I_{m} \end{bmatrix} - I_{m}$$

and

(2.9)
$$E_{+} - E_{-} = (I_{m} - U)J = (2I_{m} - E_{+} - E_{-})J,$$

respectively.

Proof. This theorem coincides with Theorem 3.1 in [5] except for the addition of (2.9), which is self-evident from (2.4).

There is a converse that builds upon the observation that the mvf's defined in (2.4) satisfy the condition $E_{\pm}P_{\pm} = P_{\pm}$:

Theorem 2.2. If $\mathfrak{E} = \begin{bmatrix} E_- & E_+ \end{bmatrix}$ is a de Branges matrix of size $m \times 2m$ and $P_{\pm} \in \mathbb{C}^{m \times m}$ are complementary orthogonal projections (i.e., $P_{\pm}^2 = P_{\pm}$, $P_{\pm}^* = P_{\pm}$ and $P_{+} + P_{-} = I_{m}$) such that $E_{+}P_{+} = P_{+}$ and $E_{-}P_{-} = P_{-}$ then:

- (1) $U = E_{+} + E_{-} I_{m}$ is J-inner with respect to the signature matrix J = $P_{+} - P_{-}.$ (2) $\mathcal{H}(U) = \mathcal{B}(\mathfrak{E}).$

Proof. It suffices to show that the (numerators of) the reproducing kernels $K^U_{\omega}(\lambda)$ (defined in (1.1)) and $K_{\omega}^{\mathfrak{E}}(\lambda)$ (defined in (1.2)) coincide. Under the given assumptions, $UP_{+} = E_{-}P_{+}$ and $UP_{-} = E_{+}P_{-}$. Consequently, for every pair of points $\lambda, \omega \in \mathfrak{h}_{\mathfrak{E}},$

$$E_{+}(\lambda)E_{+}(\omega)^{*} - E_{-}(\lambda)E_{-}(\omega)^{*} = E_{+}(\lambda)P_{+}E_{+}(\omega)^{*} - E_{-}(\lambda)P_{-}E_{-}(\omega)^{*}$$
$$+ E_{+}(\lambda)P_{-}E_{+}(\omega)^{*} - E_{-}(\lambda)P_{+}E_{-}(\omega)^{*}$$
$$= P_{+} - P_{-} + U(\lambda)(P_{-} - P_{+})U(\omega)^{*}$$
$$= J - U(\lambda)JU(\omega)^{*}.$$

Therefore, (1) and (2) hold.

We remark that the Potapov-Ginzburg transform

(2.10)
$$S = (P_{+} + UP_{-})^{-1}(P_{-} + UP_{+}) = E_{+}^{-1}E_{-}$$

which maps the class $\mathcal{U}(J)$ of J-inner mvf's onto the set

(2.11)
$$\{S \in \mathcal{S}_{in}^{m \times m} : \det(P_{+} + SP_{-}) \not\equiv 0\}$$

(see e.g., Subsection 2.2 in [1] for the existence of the indicated inverses for transforms of the form (2.10)). The formulas in (2.10) imply that U can be recovered from \mathfrak{E} via the formula

$$U = (P_+ + SP_-)^{-1}(P_- + SP_+)$$
 with $S = E_+^{-1}E_-$.

3. A parametrization of those \mathfrak{E} for which $\mathfrak{B}(\mathfrak{E}) = \mathfrak{H}(U)$

Theorem 3.1. If $\mathfrak{F} = \begin{bmatrix} F_- & F_+ \end{bmatrix}$ is an $m \times 2m$ de Branges matrix such that

- (1) $\mathcal{B}(\mathfrak{F}) = \mathcal{H}(U)$ for some $m \times m$ J-inner mvf U with signature matrix $J \in$ $\mathbb{C}^{m \times m}$ and
- (2) $K_{\omega}^{\mathfrak{F}}(\omega) \succ O$ for at least one (and hence every) point $\omega \in \mathfrak{h}_{\mathfrak{F}}$, then

$$\begin{bmatrix} F_{-} & F_{+} \end{bmatrix} = \begin{bmatrix} E_{-} & E_{+} \end{bmatrix} V$$

for some j_m -unitary matrix $V \in \mathbb{C}^{2m \times 2m}$ and some de Branges matrix $\mathfrak{E} = \begin{bmatrix} E_- & E_+ \end{bmatrix}$ with blocks E_{\pm} for which

(3.2)
$$E_{+}P_{+} = P_{+}, \quad E_{-} = E_{-}P_{-} \quad where \quad P_{+} = (I_{m} \pm J)/2.$$

Proof. If $\mathcal{B}(\mathfrak{F}) = \mathcal{H}(U)$, then, in view of Theorems 5.65 and 5.49 in [1],

$$\mathfrak{h}_{\mathfrak{F}}\subseteq\bigcap_{f\in\mathfrak{B}(\mathfrak{F})}\mathfrak{h}_f=\bigcap_{f\in\mathfrak{H}(U)}\mathfrak{h}_f=\mathfrak{h}_U$$

and hence, as $\mathcal{H}(U)$ is R_{α} invariant for every point $\alpha \in \mathfrak{h}_{U}$, $\mathcal{B}(\mathfrak{F})$ is also R_{α} invariant for every point $\alpha \in \mathfrak{h}_{\mathfrak{F}}$. Therefore, Lemma 2.4 of [5] guarantees that if $K_{\omega}^{\mathfrak{F}}(\omega) \succ O$ for at least one point $\omega \in \mathfrak{h}_{\mathfrak{F}}$, then $K_{\omega}^{\mathfrak{F}}(\omega) \succ O$ for every point $\omega \in \mathfrak{h}_{\mathfrak{F}}$.

In view of Theorem 2.1, $\mathcal{H}(U) = \mathcal{B}(\mathfrak{E})$, where the blocks E_{\pm} of \mathfrak{E} are specified in terms of U and P_{\pm} by the formulas

(3.3)
$$E_{+} = P_{+} + UP_{-} \text{ and } E_{-} = P_{-} + UP_{+},$$

which clearly meet the conditions in (3.2). Thus, $\mathcal{B}(\mathfrak{F}) = \mathcal{H}(U) = \mathcal{B}(\mathfrak{E})$, Theorem 2.3 of [5] ensures that (3.1) holds for some j_m -unitary matrix $V \in \mathbb{C}^{2m \times 2m}$.

Remark 3.2. Theorem 3.1 admits a self-evident converse: If $\mathfrak{F} = \begin{bmatrix} F_- & F_+ \end{bmatrix}$ and $\mathfrak{E} = \begin{bmatrix} E_- & E_+ \end{bmatrix}$ are de Branges matrices with blocks F_\pm and E_\pm of size $m \times m$ such that (3.1) holds for some j_m -unitary matrix $V \in \mathbb{C}^{2m \times 2m}$ and there exist a pair of complementary projections $P_\pm \in \mathbb{C}^{m \times m}$ such that (3.2) holds for the blocks of \mathfrak{E} , then $\mathfrak{B}(\mathfrak{F}) = \mathfrak{H}(U)$, where $U = E_+ + E_- - I_m$ is J-inner with respect to the signature matrix $J = P_+ - P_-$.

This follows from the fact that

$$-\mathfrak{F}(\lambda)j_m\mathfrak{F}(\omega)^* = -\mathfrak{E}(\lambda)j_m\mathfrak{E}(\omega)^* = J - U(\lambda)JU(\omega)^*.$$

4. A SAMPLE CALCULATION

A de Branges space $\mathcal{B}(\mathfrak{E})$ can be identified as an $\mathcal{H}(U)$ space for some *J*-inner myf U if and only if $\mathcal{B}(\mathfrak{E})$ is invariant under R_{α} for every point $\alpha \in \mathfrak{h}_{\mathfrak{E}}$ and the de Branges identity

$$(4.1) \qquad \langle R_{\alpha}f, g \rangle_{\mathcal{B}(\mathfrak{E})} - \langle f, R_{\beta}g \rangle_{\mathcal{B}(\mathfrak{E})} - (\alpha - \overline{\beta}) \langle R_{\alpha}f, R_{\beta}g \rangle_{\mathcal{B}(\mathfrak{E})} = 2\pi i g(\beta)^* Jf(\alpha)$$

is in force for every pair of points $\alpha, \beta \in \mathfrak{h}_{\mathfrak{E}}$ and every pair of vvf's $f, g \in \mathcal{B}(\mathfrak{E})$ (see e.g., Theorem 5.21 in [1] for a characterization of $\mathcal{H}(U)$).

In this section we shall indicate how to verify (4.1) for de Branges matrices of the form (2.4) when $J = j_{pq}$ by exploiting the following result, which is Corollary 5.3 in [5]:

Theorem 4.1. If \mathfrak{E} is a de Branges matrix such that $\mathfrak{B}(\mathfrak{E})$ is R_{α} -invariant for every point $\alpha \in \mathfrak{h}_{\mathfrak{E}}$, then the de Branges identity (4.1) holds in $\mathfrak{B}(\mathfrak{E})$ if and only if

(4.2)
$$\int_{-\infty}^{\infty} \frac{g(\overline{\alpha})^* \Delta_{\mathfrak{E}}(\mu) f(\mu) - g(\mu)^* \Delta_{\mathfrak{E}}(\mu) f(\alpha)}{\mu - \alpha} d\mu = 2\pi i g(\overline{\alpha})^* J f(\alpha)$$

for all vvf's $f, g \in \mathcal{B}(\mathfrak{E})$ and all points $\alpha \in \mathfrak{h}_{\mathfrak{E}}$ such that $\overline{\alpha} \in \mathfrak{h}_{\mathfrak{E}}$.

Discussion Suppose that (3.2) and (3.3) hold with $J = j_{pq}$, p + q = m and $U = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$. Then

$$E_{+} = \begin{bmatrix} I_p & u_{12} \\ O & u_{22} \end{bmatrix} \quad \text{and} \quad E_{-} = \begin{bmatrix} u_{11} & O \\ u_{21} & I_q \end{bmatrix}.$$

Then

$$E_{+}^{-1}E_{-} = \begin{bmatrix} u_{11} - u_{12}u_{22}^{-1}u_{21} & -u_{12}u_{22}^{-1} \\ u_{21}^{-1}u_{21} & u_{22}^{-1} \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \in \mathbb{S}_{in}^{m \times m}$$

and

$$\Delta_{\mathfrak{E}} = (E_+ E_+^*)^{-1} = \begin{bmatrix} I_p & s_{12} \\ s_{12}^* & I_q \end{bmatrix}$$
 a.e. on \mathbb{R} .

Therefore, the vvf $f = \operatorname{col}(f_1, f_2)$ with components $f_1 \in \Pi^p$ and $f_2 \in \Pi^q$ belongs to $\mathfrak{B}(\mathfrak{E})$ if and only if

$$E_{+}^{-1}f = \begin{bmatrix} I_p & -u_{12}u_{22}^{-1} \\ O & u_{22}^{-1} \end{bmatrix} f = \begin{bmatrix} I_p & s_{12} \\ O & s_{22} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \in H_2^m$$

and

$$\langle E_{+}^{-1}f, (E_{+}^{-1}E_{-})g\rangle_{st} = 0$$
 for every $g \in H_2^m$.

Thus, if $g = \operatorname{col}(g_1, g_2)$ with $g_1 \in H_2^p$ and $g_2 \in H_2^q$, then

$$\left\langle \begin{bmatrix} f_1 + s_{12}f_2 \\ s_{22}f_{22} \end{bmatrix}, \begin{bmatrix} s_{12} \\ s_{22} \end{bmatrix} g_2 \right\rangle_{st} = 0$$

for every $g_2 \in H_2^q$. Thus,

$$f_1 + s_{12}f_2 \in H_2^p$$
 and $\langle \left[s_{12}^*(f_1 + s_{12}f_2) + s_{22}^* s_{22}f_2 \right], g_2 \rangle_{st} = 0$

for every $g_2 \in H_2^q$. Since $s_{12}(\mu)^* s_{12}(\mu) + s_{22}(\mu)^* s_{22}(\mu) = I_q$ a.e. on \mathbb{R} , the second

equality implies that $s_{12}^{\#}f_1 + f_2 \in (H_2^{\perp})^q$. We are now ready to evaluate the integral in (4.2). We assume that $\alpha \in \mathfrak{h}_{\mathfrak{E}}^+$ and $\overline{\alpha} \in \mathfrak{h}_{\mathfrak{E}}^-$. Then

$$\int_{-\infty}^{\infty} \frac{g(\overline{\alpha})^* \Delta_{\mathfrak{E}}(\mu) f(\mu)}{\mu - \alpha} d\mu = 2\pi i \left\langle \begin{bmatrix} f_1 + s_{12} f_2 \\ s_{12}^* f_1 + f_2 \end{bmatrix}, \frac{1}{\rho_{\alpha}} \begin{bmatrix} g_1(\overline{\alpha}) \\ g_2(\overline{\alpha}) \end{bmatrix} \right\rangle_{st}$$
$$= 2\pi i g_1(\overline{\alpha})^* [f_1(\alpha) + s_{12}(\alpha) f_2(\alpha)]$$

since $f_1 + s_{12}f_2 \in H_2^p$ and $s_{12}^{\#}f_1 + f_2 \in (H_2^{\perp})^q$.

The next step is to observe that

$$\int_{-\infty}^{\infty} \frac{f(\alpha)^* \Delta_{\mathfrak{E}}(\mu) g(\mu)}{\mu - \overline{\alpha}} d\mu = \int_{-\infty}^{\infty} \frac{f_1(\alpha)^* [g_1(\mu) + s_{12}(\mu) g_2(\mu)]}{\mu - \overline{\alpha}} d\mu + \int_{-\infty}^{\infty} \frac{f_2(\alpha)^* [s_{12}^{\#}(\mu) g_1(\mu) + g_2(\mu)]}{\mu - \overline{\alpha}} d\mu = 0 - 2\pi i f_2(\alpha)^* [s_{12}^{\#}(\overline{\alpha}) g_1(\overline{\alpha}) + g_2(\overline{\alpha})].$$

Thus,

$$\int_{-\infty}^{\infty} \frac{g(\mu)^* \Delta_{\mathfrak{E}}(\mu) f(\alpha)}{\mu - \alpha} d\mu = \left(\int_{-\infty}^{\infty} \frac{f(\alpha)^* \Delta_{\mathfrak{E}}(\mu) g(\mu)}{\mu - \overline{\alpha}} d\mu \right)^*$$
$$= 2\pi i [g_1(\overline{\alpha})^* s_{12}(\alpha) + g_2(\overline{\alpha})^*] f_2(\alpha)$$

and hence (4.2) with $J = j_{pq}$ follows by combining these evaluations.

References

- [1] D. Z. Arov and H. Dym, *J-Contractive Matrix Valued Functions and Related Topics*, Cambridge University Press, Cambridge, 2008.
- [2] D. Z. Arov and H. Dym, Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations, Cambridge University Press, Cambridge, 2012.
- [3] D. Z. Arov and H. Dym, de Branges spaces of vector valued functions, in: Operator Theory, (D. Alpay, ed.) Springer 2015, pp. 721–752.
- [4] D. Z. Arov and H. Dym, Multivariate Prediction, de Branges Spaces, and Related Extension and Inverse Problems, Birkhauser, Basel, 2018.
- [5] D. Z. Arov and H. Dym, Two classes of de Branges spaces that are really one, Pure and Applied Functional Analysis, 7 (2022), 1–26.
- [6] L. de Branges, Some Hilbert spaces of analytic functions I, Trans. Amer. Math. Soc., 106 (1963), 445–668.
- [7] L. de Branges, Hilbert Spaces of Entire Functions, Prentice Hall, London, 1968.
- [8] L. de Branges, The expansion theorem for Hilbert spaces of entire functions, in: Entire functions and related parts of analysis, Proc. Sympos. Pure Math., American Mathematical Society, Providence, Rhode Island, 1968, pp. 79–148.
- [9] James Rovnyak, Characterizations of spaces $\mathbf{K}(M)$, unpublished manuscript, 1968; http://people.virginia.edu/ jlr5m/

Manuscript received April 14 2022 revised May 10 2022

Damir Z. Arov

South Ukranian National Pedagogical University, Odessa 65020, Ukraine *E-mail address*: damir.arov1@gmail.com

HARRY DYM

Department of Mathematics, The Weizmann Institute of Science, Rehovot 7610001, Israel $E\text{-}mail\ address$: Harry.Dym@weizmann.ac.il