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Because this linear operator involves a kernel function h(t−τ) that depends only on
the difference t−τ , we refer to it as a Toeplitz operator.1 In this setting, the behavior
of the Toeplitz operator can be naturally understood in the frequency domain: for
an input signal x(t) with continuous-time Fourier transform (CTFT)

x̂(F ) =

∫ ∞

t=−∞
x(t)e−j2πFt d t, ∀ F ∈ R,(1.3)

the CTFT of the output signal y(t) will satisfy ŷ(F ) = x̂(F )ĥ(F ), where ĥ(F )
denotes the CTFT of the impulse response h(t) and is also known as the frequency
response of the system. The spectrum of the Toeplitz operator H also coincides

with ĥ(F ) [24, Section 7.2]. Note that the spectrum of a linear operator H, a
generalization of the set of eigenvalues of a matrix, is the set of complex numbers
λ such that H− λI (where I denotes the identity operator) is not invertible.

Similar facts hold for discrete-time (DT) LTI systems, where the response to an
input signal x[n] is given by the convolution

y[n] =
∞∑

m=−∞
h[n−m]x[m],(1.4)

where h[n] ∈ ℓ2(Z) is the impulse response of the DT system. Such a system can
equivalently be viewed as a linear operator H : ℓ2(Z) → ℓ2(Z), which corresponds
to multiplication of the input signal x ∈ ℓ2(Z) by the bi-infinite Toeplitz matrix

H =



. . .
. . .

. . .
. . .

. . .
. . . h[0] h[−1] h[−2]

. . .
. . . h[1] h[0] h[−1]

. . .
. . . h[2] h[1] h[0]

. . .
. . .

. . .
. . .

. . .
. . .


.(1.5)

We note that H[m,n] = h[m−n] for all m,n ∈ Z. The behavior of this system can
also be interpreted as multiplication in the discrete-time Fourier transform (DTFT)
domain where the DTFT of the impulse response h[n] is defined as:

ĥ(f) =

∞∑
n=−∞

h[n]e−j2πfn.(1.6)

The spectrum of H also coincides with ĥ(f) [24].

1.2. The effects of time-limiting. Practical systems do not have access to input
or output signals of infinite duration, which motivates the study of time-limited
versions of LTI systems. Consider for example the situation where a CT system
zeros out an input signal outside the interval [0, T ]. (Or similarly, the system may
pad with zeros an input signal that was originally compactly supported on [0, T ].)
The system then computes the convolution shown in (1.2) and finally time-limits

1Our notion of Toeplitz operators follows from the definition of Toeplitz operators in [24, Section
7.2].
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the output signal to the same interval [0, T ]. For such a situation we may define a
new linear operator HT : L2(R) → L2(R) (a “time-limited” version of H), where

HT (x)(t) =

{∫ T
τ=0 h(t− τ)x(τ) d τ, t ∈ [0, T ]

0, otherwise.
(1.7)

An analogous time-limited version of H (from (1.5)) may be defined for DT
systems. Supposing that the input and output signals are time-limited to the index
set {0, 1, . . . , N − 1}, we define the N ×N Toeplitz matrix2 HN as

HN [m,n] = h[m− n], ∀ 0 ≤ m,n ≤ N − 1.(1.8)

Such a matrix can also be viewed as a linear operator on CN .
A natural question is: What effect do the time-limiting operations have on the

system behavior? More precisely, how similar is the spectrum of HT to that of H,

and in what sense do the eigenvalues of HT converge to the frequency response ĥ(F )
as T → ∞? Here HT is compact and thus has a discrete spectrum containing what
we refer to as its eigenvalues; the number of eigenvalues is countable by the spectral
theorem for compact operators [9]. Analogously, how similar is the spectrum of
HN to that of H, and in what sense do the eigenvalues of HN converge to the

frequency response ĥ(f) as N → ∞? As we discuss, the answers to such questions
provide insight into matters such as the capacity (or effective bandwidth) of time-
limited communication channels and the number of degrees of freedom (or effective
dimensionality) of certain related signal families. Answering these questions relies
on deeper insight into the spectrum of Toeplitz operators.

1.2.1. Toeplitz and time-limited Toeplitz operators. In this paper, we distinguish
between Toeplitz operators (such as H and H) and time-limited Toeplitz operators
such as HT and HN .3 We focus primarily on Toeplitz and time-limited Toeplitz
operators that are Hermitian, i.e., h(−t) = h∗(t) for H and HT and h[−n] = h∗[n]
for H and HN .

We note that finite size Toeplitz matrices (such as HN ) are of considerable in-
terest in statistical signal processing and information theory [22,24,33,49,53]. The
covariance matrix of a random vector obtained by sampling a wide-sense stationary
(WSS) random process is an example of such a matrix. More general Toeplitz op-
erators have been extensively studied since O. Toeplitz and C. Carathéodory [6,75];
see [24] for a very comprehensive review. Time-limited convolutions are also impor-
tant in machine learning and computer vision. As an example, modern convolutional
neural networks (CNNs)—which have demonstrated excellent performance in nu-
merous computer vision tasks [40]—contain large numbers of convolutional layers,
each of which mainly involves two-dimensional convolution (that can be written as
a doubly block circulant matrix, which is approximately Toeplitz) applied to the
input.

2Through the paper, finite-dimensional vectors and matrices are indicated by bold characters
and we index such vectors and matrices beginning at 0.

3Our usage of these terms is consistent with the terminology in [24, Section 7.2], although in
that work time-limited Toeplitz operators are referred to as finite Toeplitz operators.
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Unfortunately, there are no simple formulas for the eigenvalues of time-limited
Toeplitz operators such as HT and HN . This stands in contrast to the operators
H and H, whose spectrum was given simply by the frequency response of the cor-
responding LTI system. Notably, although the discrete Fourier transform (DFT)
is the canonical tool for frequency analysis in CN , the DFT basis vectors (complex

exponentials of the form ej2π
nk
N with k ∈ {0, 1, . . . , N − 1}) do not, in general, con-

stitute eigenvectors of the matrix HN , unless this matrix is circulant in addition to
being Toeplitz. Consequently, the spectrum of HN cannot in general be obtained
by taking the DFT of the time-limited impulse response {h[0], h[1], . . . , h[N − 1]}.

Fortunately, in many applications it is possible to relate the eigenvalues of a
time-limited Toeplitz operator to the eigenvalues of the original (non-time-limited)
Toeplitz operator, thus guaranteeing that certain essential behavior of the original
system is preserved in its time-limited version. We discuss these connections, as
well as their applications, in more detail in the following subsections.

1.2.2. Time-frequency limiting operators. Shannon introduced the fundamental con-
cept of capacity in the context of communication in [64], in which we find the answers
to questions such as the capacity of a CT band-limited channel which operates sub-
stantially limited to a time interval [0, T ]. In [64], the answer was derived in a
probabilistic setting, while another notation of ϵ-capacity was introduced by Kol-
mogorov in [74] for approaching a similar question in the deterministic setting of
signal (or functional) approximation. The functional approximation approach was
further investigated by Landau, Pollak, and Slepian, who wrote a series of seminal
papers exploring the degree to which a band-limited signal can be approximately
time-limited [43, 44, 65, 67, 69]. Recently, Lim and Franceschcetti [46, 47] provided
a connection between Shannon’s capacity from the probabilistic setting and Kol-
mogorov’s capacity from the deterministic setting when communication occurs using
band-limited functions.

To give a precise description, consider the case of a CT Toeplitz operator H (as
in (1.2)) that corresponds to an ideal low-pass filter. That is, H = BW , where
BW : L2(R) → L2(R) is a band-limiting operator that takes the CTFT of an
input function on L2(R), sets it to zero outside [−W,W ] and then computes the
inverse CTFT. The impulse response of this system is given by the sinc function

h(t) = sin(2πWt)
πWt , and the frequency response of this system ĥ(F ) is simply the

indicator function of the interval [−W,W ].
Similarly, define TT : L2(R) → L2(R) to be a time-limiting operator that sets a

function to zero outside [0, T ], and finally consider the time-limited Toeplitz opera-
tor HT = TTHTT = TTBWTT . Observe that HT can be viewed as a composition of
time- and band-limiting operators.

The eigenvalues of TTBWTT were extensively investigated in [43, 69], which dis-
cuss the “lucky accident” that TTBWTT commutes with a certain second-order dif-
ferential operator whose eigenfunctions are a special class of functions—the prolate
spheroidal wave functions (PSWFs).

The eigenvalues of the corresponding composition of time- and band-limiting op-
erators in the discrete case, a Toeplitz matrix HN whose entries are samples of a
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digital sinc function, were studied by Slepian in [67]. The eigenvectors of this ma-
trix are time-limited versions of the discrete prolate spheroidal sequences (DPSSs)
which, as we discuss further in Section 4.4, provide a highly efficient basis for rep-
resenting sampled band-limited signals and have proved to be useful in numerous
signal processing applications.

In both the CT and DT settings, the eigenvalues of the time-limited Toeplitz
operator exhibit a particular behavior: when sorted by magnitude, there is a cluster
of eigenvalues close to (but not exceeding) 1, followed by an abrupt transition,
after which the remaining eigenvalues are close to 0. This crudely resembles the
rectangular shape of the frequency response of the original band-limiting operator.
Moreover, the number of eigenvalues near 1 is approximately equal to the time-
frequency area (which equals 2TW in the CT example above). More details on these
facts, including a complete treatment of the DT case, are provided in Section 4.

1.2.3. Szegő’s theorem. For more general Toeplitz operators—beyond ideal low-pass
filters—the eigenvalues of the corresponding time-limited Toeplitz operators can be
described using Szegő’s theorem.

We describe this in the DT case. Consider a DT Hermitian Toeplitz operator H

which corresponds to a system with frequency response ĥ(f), as described in (1.5)
and (1.6). For N ∈ N, let HN denote the resulting time-limited Hermitian Toeplitz
operator, as in (1.8), and let the eigenvalues of HN be arranged as λ0(HN ) ≥
· · · ≥ λN−1(HN ). Suppose ĥ ∈ L∞([0, 1]). Then Szegő’s theorem [24] describes the
collective asymptotic behavior (as N → ∞) of the eigenvalues of the sequence of
Hermitian Toeplitz matrices {HN} as

(1.9) lim
N→∞

1

N

N−1∑
l=0

ϑ(λl(HN )) =

∫ 1

0
ϑ(ĥ(f))df,

where ϑ is any function continuous on the range of ĥ. As one example, choosing
ϑ(x) = x yields

lim
N→∞

1

N

N−1∑
l=0

λl(HN ) =

∫ 1

0
ĥ(f)df.

In words, this says that as N → ∞, the average eigenvalue of HN converges to

the average value of the frequency response ĥ(f) of the original Toeplitz operator

H. As a second example, suppose ĥ(f) > 0 (and thus λl(HN ) > 0 for all l ∈
{0, 1, . . . , N − 1} and N ∈ N) and let ϑ be the log function. Then Szegő’s theorem
indicates that

lim
N→∞

1

N
log (det (HN )) =

∫ 1

0
log

(
ĥ(f)

)
df.

This relates the determinants of the Toeplitz matrices HN to the frequency response

ĥ(f) of the original Toeplitz operator H.
Szegő’s theorem has been widely used in the areas of signal processing, commu-

nications, and information theory. A paper and review by Gray [22, 23] serve as a
remarkable elementary introduction in the engineering literature and offer a simpli-
fied proof of Szegő’s original theorem. The result has also been extended in several
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ways. For example, the Avram-Parter theorem [3, 52] relates the collective asymp-
totic behavior of the singular values of a general (non-Hermitian) Toeplitz matrix

to the magnitude response |ĥ(f)|. Tyrtyshnikov [76] proved that Szegő’s theorem

holds if ĥ(f) ∈ R and ĥ(f) ∈ L2([0, 1]), and Zamarashkin and Tyrtyshnikov [83]

further extended Szegő’s theorem to the case where ĥ(f) ∈ R and ĥ(f) ∈ L1([0, 1]).
Sakrison [56] extended Szegő’s theorem to higher dimensions. Gazzah et al. [20] and
Gutiérrez-Gutiérrez and Crespo [26] extended Gray’s results on Toeplitz and cir-
culant matrices to block Toeplitz and block circulant matrices and derived Szegő’s
theorem for block Toeplitz matrices.

Similar results also hold in the CT case, with the operators H and HT as defined

in (1.2) and (1.7). Let λℓ(HT) denote the ℓ
th-largest eigenvalue ofHT . Suppose ĥ(F )

is a real-valued, bounded and integrable function, i.e., ĥ(F ) ∈ R, ĥ(F ) ∈ L∞(R),
and ĥ(F ) ∈ L1(R). Then Szegő’s theorem in the continuous case [24] states that
the eigenvalues of HT satisfy

lim
T→∞

#{ℓ : a < λℓ(HT ) < b}
T

=
∣∣∣{F : a < ĥ(F ) < b}

∣∣∣(1.10)

for any interval (a, b) such that |{F : ĥ(F ) = a}| = |{F : ĥ(F ) = b}| = 0. Here
| · | denotes the length (or Lebesgue measure) of an interval. Stated differently, this
result implies that the eigenvalues of the operator HT have asymptotically the same

distribution as the values of ĥ(F ) when F is distributed with uniform density along
the real axis.

We remark that although the collective behavior of the eigenvalues of the time-
frequency limiting operators discussed in Section 1.2.2 can be characterized using
Szegő’s theorem, finer results on the eigenvalues have been established for this
special class of time-limited Toeplitz operators. We discuss Szegő’s theorem for
general operators in Section 3, and we discuss results for time-frequency limiting
operators in Section 4.

1.2.4. Time-limited Toeplitz operators on locally compact abelian groups. One of the
important pieces of progress in harmonic analysis made in last century is the defi-
nition of the Fourier transform on locally compact abelian groups [55]. This frame-
work for harmonic analysis on groups not only unifies the CTFT, n-dimensional
CTFT, DTFT, and DFT (for signal domains, or groups, corresponding to R, Rn,
Z, and ZN := {0, 1, . . . , N − 1}, respectively), but it also allows these transforms
to be generalized to other signal domains. This, in turn, makes possible the anal-
ysis of new applications such as steerable principal component analysis (PCA) [78]
where the domain is the rotation angle on [0, 2π), an imaging system with a pupil
of finite size [15], line-of-sight (LOS) communication systems with orbital angular
momentum (OAM)-based orthogonal multiplexing techniques [80], and many other
applications such as those involving rotations in three dimensions [8, Chapter 5].

In this paper, we consider the connections between Toeplitz and time-limited4

Toeplitz operators on locally compact abelian groups. As we review in Section 2,
one important fact carries over from the classical setting described in Section 1.1:

4Here we use “time” to be consistent with the preceding discussion, but this concept broadly
applies to other domains such as the spatial domain.
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the eigenvalues of any Toeplitz operator on a locally compact abelian group are
given by the generalized frequency response of the system.

In light of this fact, we are once again interested in questions such as: How
does the spectrum of a time-limited Toeplitz operator relate to the spectrum of
the original (non-time-limited) Toeplitz operator? In what sense do the eigenvalues
converge as the domain of time-limiting approaches the entire group? The answers
to such questions will provide new insight into the effective dimensionality of certain
signal families (such as the class of signals that are time-limited and essentially band-
limited) and the amount of information that can be transmitted in space or time
by band-limited functions.

1.3. Contribution and paper organization. This paper focuses on the spectra
of time-limited Toeplitz operators and the resulting implications in signal processing
and information theory, containing part survey and part novel work. In particular,
as new results, we study the spectra of time-frequency limiting operators on locally
compact abelian groups and analyze applications in representation and approxima-
tion of band-limited signals, generalizing the existing results in Section 1.2.2.

The remainder of paper is organized as follows. Section 2 reviews harmonic anal-
ysis on locally compact abelian groups and draws a connection between time-limited
Toeplitz operators and the effective dimensionality of certain related signal families.
Next, Section 3 reviews Szegő’s theorem and its (existing) generalization to locally
compact abelian groups. Applications are discussed in channel capacity, signal rep-
resentation, and numerical analysis. Finally, Section 4 reviews existing results on
the eigenvalues of time-frequency limiting operators and generalizes these results
to locally compact abelian groups. New applications of this unifying treatment
are discussed in relation to channel capacity and in relation to representation and
approximation of signals. This work also opens up new questions concerning ap-
plications and research directions, which we discuss at the ends of Section 3 and
Section 4.

2. Preliminaries

We briefly introduce some notation used throughout the paper. Sets (of variables,
functions, etc.) are denoted in blackboard font as A,B, . . .. Operators are denoted
in calligraphic font as A,B, . . ..

2.1. Harmonic analysis on locally compact abelian groups.

2.1.1. Groups and dual groups. Let G (with a binary operation ◦) denote a lo-
cally compact abelian group, which can be either discrete or continuous, and either
compact or non-compact. A character χξ : G → T of G is a continuous group homo-
morphism from G with values in the circle group T := {z ∈ C : |z| = 1} satisfying

|χξ(g)| = 1, χ∗
ξ(g) = χξ(g

−1), χξ(h ◦ g) = χξ(h)χξ(g),

for any g, h ∈ G. Here χ∗
ξ(g) is the complex conjugate of χξ(g). The set of all

characters on G introduces a locally compact abelian group, called the dual group

of G and denoted by Ĝ if we pair (g, ξ) → χξ(g) for all ξ ∈ Ĝ and g ∈ G. In most
references the character is denoted simply by χ rather than by χξ. However, we use
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here the notation χξ in order to emphasize that the character can be viewed as a

function of two elements g ∈ G and ξ ∈ Ĝ, and for any ξ ∈ Ĝ, χξ is a function of
g. In this sense, χξ(g) can be regarded as the value of the character χξ evaluated
at the group element g. Table 1 lists several examples of groups G, along with the

corresponding binary operation ◦ and dual group Ĝ, that have relevance in signal
processing and information theory. Here mod(a, b) = a

b − ⌊ab ⌋, where ⌊c⌋ is the
largest integer that is not greater than c.

Table 1. Examples of groups G, along with their dual groups Ĝ and
Fourier transforms (FT). Below, CT denotes continuous time, DT
denotes discrete time, FS denotes Fourier series, and DFT denotes
the discrete Fourier transform.

2.1.2. Fourier transforms. The characters {χξ}ξ∈Ĝ play an important role in defin-

ing the Fourier transform for functions in L2(G). In particular, the Pontryagin
duality theorem [55], named after Lev Semennovich Pontryagin who laid the foun-
dation for the theory of locally compact abelian groups, generalizes the conventional
CTFT on L2(R) and CT Fourier series for periodic functions to functions defined
on locally compact abelian groups.

Theorem 2.1 (Pontryagin duality theorem [55]). Let G be a locally compact abelian
group and µ be a Haar measure on G. Let x(g) ∈ L1(G). Then the Fourier trans-
form x̂(ξ) is defined by x̂(ξ) =

∫
G x(g)χ∗

ξ(g) dµ(g). For each Haar measure µ on

G there is a unique Haar measure ν on Ĝ such that the following inverse Fourier
transform holds x(g) =

∫
Ĝ x̂(ξ)χξ(g) d ν(ξ). The Fourier transform satisfies Parse-

val’s theorem:
∫
G |x(g)|2 dµ(g) =

∫
Ĝ |x̂(ξ)|2 d ν(ξ).

With certain technical tricks, the same Fourier transform and Parseval’s theorem
in Theorem 2.1 can be extended to L2(G); see [72, Theorem 59], [55, 1.6.1] and
the references therein for details. Only Haar measures and integrals are considered

throughout this paper. We note that the unique Haar measure ν on Ĝ depends on
the choice of Haar measure µ (which is unique except for positive scaling factors)
on G. We illustrate this point with the conventional DFT as an example where

g = n ∈ G = ZN , ξ = k ∈ Ĝ = ZN , and χξ(g) = ej2π
nk
N . If we choose the counting

measure (where each element of G receives a value of 1) on G, then we must use

the normalized counting measure (where each element of Ĝ receives a value of 1
N )

on Ĝ. The DFT and inverse DFT become

x̂[k] =
N−1∑
n=0

x[n]e−j2π nk
N ; x[n] =

1

N

N−1∑
k=0

x̂[k]ej2π
nk
N .
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One can also choose the semi-normalized counting measure (where each element

receives a value of 1√
N
) on both groups G and Ĝ. This gives the normalized DFT

and inverse DFT:

x̂[k] =
1√
N

N−1∑
n=0

x[n]e−j2π nk
N ; x[n] =

1√
N

N−1∑
k=0

x̂[k]ej2π
nk
N .

For convenience, we rewrite the Fourier transform and inverse Fourier transform
as follows when the Haar measures are clear from context:

x̂(ξ) =

∫
G
x(g)χ∗

ξ(g) d g; x(g) =

∫
Ĝ
x̂(ξ)χξ(g) d ξ.

We also use F : L2(G) → L2(Ĝ) and F−1 : L2(Ĝ) → L2(G) to denote the operators
corresponding to the Fourier transform and inverse Fourier transform, respectively.

For each group G and dual group Ĝ listed in Table 1, the table also includes the
corresponding Fourier transform.

2.1.3. Convolutions. For any x(g), y(g) ∈ L2(G), we define the convolution between
them by

(x ⋆ y)(g) :=

∫
G
y(h)x(h−1 ◦ g) dh.(2.1)

Similar to what holds in the standard CT and DT signal processing contexts, it
is not difficult to show that the Fourier transform on G also takes convolution to
multiplication. That is,

F(x ⋆ y)(ξ) =

∫
G

∫
G
y(h)x(h−1 ◦ g) dh χ∗

ξ(g) d g

=

∫
G

∫
G
x(h−1 ◦ g)χ∗

ξ(h
−1 ◦ g) d g χ∗

ξ(h)y(h) dh = (Fx)(ξ)(Fy)(ξ)

since
∫
G x(h−1 ◦ g) d g =

∫
G x(g) d g for any h ∈ G.

Similar to the fact that Toeplitz operators (1.2) and Toeplitz matrices (1.5) are
closely related to the convolutions in Section 1.1, the convolution (2.1) can be viewed
as a linear operator X : L2(G) → L∞(G) that computes the convolution between
the input function y(g) and x(g):

(Xy)(g) =

∫
G
x(h−1 ◦ g)y(h) dh.

We refer to X as a Toeplitz operator since this linear operator involves a kernel
function x(h−1 ◦ g) that depends only on the difference h−1 ◦ g. We call x̂(ξ), the
Fourier transform of x(g), the symbol corresponding to the Toeplitz operator X .

Finally, let A ∈ G be a subset of G. As explained in Section 1.2, we are also
interested in the time-limited Toeplitz operator5 XA : L2(G) → L2(G), where

(XAy)(g) =

{∫
A x(h−1 ◦ g)y(h) dh, g ∈ A,
0, otherwise.

(2.2)

5XA is also referred to as a Toeplitz operator in [24,27,39,48]. Again, we note that here “time”
refers to the domain in G.
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Recall that the spectrum of a linear operator X is the set of complex numbers λ such
that X−λI (where I denotes the identity operator) is not invertible. Here the time-
limited Toeplitz operator XA is compact and thus has a discrete spectrum containing
what refer to as its eigenvalues. There is no simple formula for exactly expressing
the eigenvalues of XA. Instead, we are interested in questions such as: How does
the spectrum of the time-limited Toeplitz operator XA relate to the spectrum of the
original (non-time-limited) Toeplitz operator X ? In what sense do the eigenvalues
converge as the domain A of time-limiting approaches the entire group G? We
discuss answers to these questions in Section 3 and Section 4.

2.2. The effective dimensionality of a signal family. One of the useful ap-
plications of characterizing the spectrum of time-limited Toeplitz operators is in
computing the effective dimensionality (or the number of degrees of freedom) of
certain related signal families. In this section, we formalize this notion of effective
dimensionality for a set of functions defined on a group G.

2.2.1. Definitions. We begin by defining general sets of time-limited functions that
we are interested in; in later sections we discuss these functions in the context of
communications and signal processing. Specifically, suppose A is a subset of G and

let W(A, ϕ̂(ξ)) ⊂ L2(A) denote the set of functions controlled by a symbol ϕ̂(ξ):

W(A, ϕ̂(ξ)) :=
{
x ∈ L2(A) : x(g) =

∫
Ĝ
α(ξ)ϕ̂(ξ)χξ(g) d ξ,

∫
|α(ξ)|2 d ξ ≤ 1, g ∈ A

}
,

(2.3)

which is a subset of L2(A). We note that in (2.3), the symbol ϕ̂(ξ) is fixed and we
discuss its role soon.

Also let Mn ⊂ L2(G) denote an n-dimensional subspace of L2(G). The distance
between a point x ∈ L2(G) and the subspace Mn is defined as

(2.4)

d(x,Mn) := inf
y∈Mn

∫
(x(g)− y(g))2 d g

=

∫
(x(g)− ( PMnx)(g))

2 d g

= sup
z∈L2(G),z⊥Mn

∣∣∣⟨x, z⟩L2(G)

∣∣∣
∥z∥L2(G)

,

where PMn : L2(G) → L2(G) represents the orthogonal projection onto the subspace

Mn. We define the width d(W(A, ϕ̂(ξ)),Mn) of the set W(A, ϕ̂(ξ)) with respect to
the subspace Mn as follows:

d(W(A, ϕ̂(ξ)),Mn) := sup
x∈W(A,ϕ̂(ξ))

d(x,Mn) = sup
x∈W(A,ϕ̂(ξ))

inf
y∈Mn

∫
(x(g)− y(g))2 d g,

which also represents the largest distance from the elements in W(A, ϕ̂(ξ)) to the

n-dimensional subspace Mn. The Kolmogorov n-width [38], dn(W(A, ϕ̂(ξ))) of
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W(A, ϕ̂(ξ)) in L2(G) is defined as the smallest width d(W(A, ϕ̂(ξ)),Mn) over all
n-dimensional subspaces of L2(G); that is

dn(W(A, ϕ̂(ξ))) := inf
Mn

d(W(A, ϕ̂(ξ)),Mn).(2.5)

In summary, the n-width dn(W(A, ϕ̂(ξ))) characterizes how well the setW(A, ϕ̂(ξ))
can be approximated by an n-dimensional subspace of L2(G). By its definition,

dn(W(A, ϕ̂(ξ))) is non-increasing in terms of the dimensionality n. For any fixed
ϵ > 0, we define the effective dimensionality, or number of degrees of freedom, of the

set W(A, ϕ̂(ξ)) at level ϵ as [19]

N (W(A, ϕ̂(ξ)), ϵ) = min
{
n : dn(W(A, ϕ̂(ξ))) < ϵ

}
.(2.6)

In words, the above definition ensures that there exists a subspace Mn of dimension

n = N (W(A, ϕ̂(ξ)), ϵ) such that for every function x ∈ W(A, ϕ̂(ξ)), one can find at
least one function y ∈ Mn so that the distance between x and y is at most ϵ.

We note that the reason we impose an energy constraint on the elements x of

W(A, ϕ̂(ξ)) in (2.3) is that we use the absolute distance to quantify the proximity
of x to the subspace Mn in (2.4).

2.2.2. Connection to operators. In order to compute N (W(A, ϕ̂(ξ)), ϵ), we may de-

fine an operator A : L2(Ĝ) → L2(A) as

(Aα)(g) =

∫
Ĝ
α(ξ)ϕ̂(ξ)χξ(g) d ξ, g ∈ A.

The adjoint A∗ : L2(A) → L2(Ĝ) is given by (A∗x)(ξ) =
∫
A x(g)ϕ̂∗(ξ)χ∗

ξ(g) d g. The

composition of A and A∗ gives a self-adjoint operator AA∗ : L2(A) → L2(A) as
follows:

(AA∗x)(g) =

∫
Ĝ
ϕ̂(ξ)χξ(g)

∫
A
x(h)ϕ̂∗(ξ)χ∗

ξ(h) dh d ξ

=

∫
A
x(h)

∫
Ĝ

∣∣∣ϕ̂(ξ)∣∣∣2 χξ(h
−1 ◦ g) d ξ dh =

∫
A
x(h)(ϕ ⋆ ϕ∗)(h−1 ◦ g) dh,

(2.7)

where ϕ(g) =
∫
Ĝ ϕ̂(ξ)χξ(g) d ξ is the inverse Fourier transform of ϕ̂. In words,

compared with (2.2), the self-adjoint operator AA∗ can be viewed as a time-limited
Toeplitz operator with the kernel ϕ ⋆ ϕ∗.

The following result will help in computing dn(W(A, ϕ̂(ξ))) and the effective di-

mensionality of W(A, ϕ̂(ξ)) as well as choosing the optimal basis for representing

the elements of W(A, ϕ̂(ξ)).

Proposition 2.2 ([54]). Let the eigenvalues of AA∗ be denoted and arranged as

λ1 ≥ λ2 ≥ · · · . Then the n-width of W(A, ϕ̂(ξ)) can be computed as

dn(W(A, ϕ̂(ξ))) =
√
λn,

and the optimal n-dimensional subspace to represent W(A, ϕ̂(ξ)) is the subspace
spanned by the first n eigenvectors of AA∗.

The proof of Proposition 2.2 is given in Appendix A.
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3. General Toeplitz Operators on Locally Abelian Groups

Let x(g) ∈ L2(G), whose Fourier transform is given by x̂(ξ). Now we are well
equipped to consider the eigenvalue distribution of a general time-limited Toeplitz
operator XA (which is formally defined in (2.2)) on a locally abelian group; in
particular we are interested in the relationship between the spectrum of of the time-
limited Toeplitz operator XA and x̂(ξ). The operator XA is completely continuous
and its eigenvalues are denoted by λℓ(XA). Before presenting the main results, we

introduce new notation for subsets of G (or Ĝ) which are asymptotically increasing
to cover the whole group. This is similar to how we discussed the cases where
T → ∞ and N → ∞ in Section 1.2. To that end, let Aτ , τ ∈ (0,∞) be a system
of Borel subsets of G with boundaries of measure zero such that 0 < µ(Aτ ) < ∞.
The subscript τ is sometimes dropped when it is clear from the context. We can
view Aτ as a set of subsets that depend on the parameter τ . One can also define a
system of subsets with multiple parameters.

3.1. Generalized Szegő’s theorem. Abundant effort [24,27,39,48] has been de-
voted to extending the conventional Szegő’s theorem for a general time-limited
Toeplitz operator XA. Let N (XA; (a, b)) =: # {ℓ : a < λℓ(XA) < b} denote the num-
ber of eigenvalues of XA that are between a and b. We summarize the following
generalized Szegő’s theorem concerning the collective behavior of the eigenvalues of
XA and relating them to x̂(ξ) (the spectrum of the corresponding non-time-limited
operator X ).

Theorem 3.1 (Generalized Szegő’s theorem [24,27,39,48]). Let x(g) ∈ L2(G) and
XAτ be the time-limited Toeplitz operator defined in (2.2). Suppose the following
holds almost everywhere:

lim
τ→∞

Aτ = G.

Then for all intervals (a, b) such that ν ({ξ : x̂(ξ) = a}) = ν ({ξ : x̂(ξ) = b}) = 0, we
have

lim
τ→∞

N (XAτ ; (a, b))

µ(Aτ )
= ν ({ξ : a < x̂(ξ) < b}) .(3.1)

In a nutshell, Theorem 3.1 implies that the eigenvalues of the time-limited Toeplitz
operator XAτ are closely related to x̂(ξ), the spectrum of the corresponding non-
time-limited Toeplitz operator X . Some work instead presents (3.1) as

lim
τ→∞

N (XAτ ; [a, b])

µ(Aτ )
= ν ({ξ : a ≤ x̂(ξ) ≤ b}) .(3.2)

One can understand the equivalence between (3.1) and (3.2) as the boundary of the
interval makes no difference since ν ({ξ : x̂(ξ) = a}) = 0 and ν ({ξ : x̂(ξ) = b}) = 0.

In words, Theorem 3.1 implies that the eigenvalue distribution of the operator XAτ

asymptotically converges to the distribution of the Fourier transform of x(g). We
now compare Theorem 3.1 with the conventional Szegő’s theorems in Section 1.2.3
that have widely appeared in information theory and signal processing. We note
that (3.1) has exactly the same form as (1.10) for the time-limited operator HT in
(1.7).
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For the Toeplitz matrix HN defined in (1.8), at first glance, (1.9) is slightly
different than what is expressed in (3.1) which implies

lim
N→∞

N (HN ; (a, b))

N
=

∣∣∣{f : f ∈ [0, 1), a < ĥ(f) < b
}∣∣∣(3.3)

for all intervals (a, b) such that
∣∣∣{f : ĥ(f) = a

}∣∣∣ = 0 and
∣∣∣{f : ĥ(f) = b

}∣∣∣ = 0.

In fact, (1.9) and (3.3) are equivalent if we view ĥ : [0, 1) → R as a random
variable and define λHN

: {0, 1, . . . , N − 1} → R to be a discrete random variable
by λHN

[ℓ] = λℓ(HN ). In probabilistic language, set

F
ĥ
(a) :=

∣∣∣{f : f ∈ [0, 1), ĥ(f) ≤ a
}∣∣∣

to be the cumulative distribution function (CDF) associated to ĥ. Also denote the
CDF associated to λHN

by

FλHN
(a) :=

N (HN ; (−∞, a])

N
=

# {ℓ : λℓ(HN ) ≤ a}
N

.

The following result, known as the Portmanteau lemma, gives two equivalent de-
scriptions of weak convergence in terms of the CDF and the means of the random
variables.

Lemma 3.2 ([77, Portmanteau lemma]). The following are equivalent:

(1) limN→∞
1
N

∑N−1
ℓ=0 ϑ(λℓ(HN )) =

∫ 1
0 ϑ(ĥ(f))df for all bounded, continuous

functions ϑ;
(2) limN→∞ FλHN

(a) = F
ĥ
(a) for every point a at which F

ĥ
is continuous.

Note that if F
ĥ
is continuous at a, then

∣∣∣{f : ĥ(f) = a
}∣∣∣ = 0. Thus the equiva-

lence between (1.9) and (3.3) follows from the Portmanteau lemma. In words, (3.3)
implies that certain collective behaviors of the eigenvalues of each Toeplitz matrix

are reflected by the symbol ĥ(f).
We note that (1.9) is one of the descriptions of weak convergence of a sequence

of random variables in the Portmanteau lemma [77] (also see Lemma 3.2). Thus,
throughout the paper, we also refer to the collective behavior (like that characterized
by (1.9)) of the eigenvalues as the distribution of the eigenvalues.

In the following subsections, we discuss applications of the generalized Szegő’s
theorem.

3.2. Application: Subspace approximations.

3.2.1. Convolutions with a pulse. We first consider the set of functions obtained by
time-limiting the convolution between α(g) and a fixed function ϕ(g):

W(A, ϕ(g)) :=
{
x ∈ L2(A) : x(g) =

∫
G
α(h)ϕ(h−1 ◦ g) dh,

∫
G
|α(g)|2 d g ≤ 1, g ∈ A

}
.

(3.4)
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We note that W(A, ϕ(g)) is equivalent to W(A, ϕ̂(ξ)) defined in (2.3) by rewriting
x(g) in (3.4):

x(g) =

∫
G
α(h)ϕ(h−1 ◦ g) dh =

∫
Ĝ
α̂(ξ)ϕ̂(ξ)χξ(g) d ξ,

which is exactly the same form of x(g) in (2.3). This model (3.4) arises in radar sig-
nal processing, channel sensing, and super-resolution of pulses through an unknown
channel. Proposition 2.2 implies that the n-width of W(A, ϕ(g)) is given by

dn(W(A, ϕ(g))) =
√
λn(AA∗),

where AA∗ defined in (2.7) is time-limited Toeplitz operator with the kernel ϕ⋆ϕ∗.
Now Theorem 3.1 along with (2.6) reveals the effective dimensionality, or number
of degrees of freedom, of the set W(A, ϕ(g)) at level ϵ as follows.

Corollary 3.3. Suppose limτ→∞Aτ = G holds almost everywhere. Then for any

ϵ > 0 such that ν
({

ξ : ϕ̂(ξ) = ϵ
})

= 0, we have

lim
τ→∞

N (W(Aτ , ϕ(g)), ϵ)

µ(Aτ )
= ν

({
ξ :

∣∣∣ϕ̂(ξ)∣∣∣ > ϵ
})

.

Proof. By (2.6), we haveN (W(Aτ , ϕ(g)), ϵ) = min
{
n :

√
λn < ϵ

}
= #

{
n :

√
λn ≥ ϵ

}
.

Note that the Fourier transform of ϕ⋆ϕ∗ is
∣∣∣ϕ̂(ξ)∣∣∣2. Then Corollary 3.3 then follows

directly by applying Theorem 3.1 to AA∗ (which is a time-limited Toeplitz operator
with the kernel ϕ ⋆ ϕ∗). □
3.2.2. Shifts of a signal. We now consider a slightly different model where the
function of interest is a linear combination of continuous shifts of a given signal
ϕ(g) ∈ L2(G):

S(A, ϕ(g)) :=
{
x ∈ L2(A) : x(g) =

∫
A
α(h)ϕ(h−1 ◦ g) dh,

∫
A
|α(g)|2 d g ≤ 1

}
.

(3.5)

Define TA : L2(G) → L2(G) as a time-limiting operator that makes a function zero
outside A. We can also rewrite x(g) =

∫
G(TAα)(h)ϕ(h

−1 ◦ g) dh = (TAα) ⋆ϕ for g ∈
A, the convolution between the time-limited function (TAα)(g) and ϕ(g). By zero-
padding the signal x outside A, we may also rewrite it simply as x = TA((TAα) ⋆ϕ).
Analogously, we could express the function x(g) in (3.4) as x = TA(α ⋆ ϕ). Now it
is clear the model for W(A, ϕ(g)) and the one for S(A, ϕ(g)) differs in the location
of the time-limiting operator TA.

To investigate the effective dimension or the number of degrees of freedom for
S(A, ϕ(g)), we define the operator S : L2(A) → L2(G) as:

(Sα)(g) =
∫
A
α(h)ϕ(h−1 ◦ g) dh, g ∈ G.

Its adjoint S∗ : L2(G) → L2(A) is given by

(S∗x)(g) =

∫
G
ϕ∗(g−1 ◦ h)x(h) dh, g ∈ A.
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We then have the self-adjoint operator S∗S : L2(A) → L2(A)

(S∗Sα)(g) =
∫
G
ϕ∗(g−1 ◦ h)

∫
A
α(η)ϕ(η−1 ◦ h) d η dh

=

∫
A

∫
G
ϕ∗(g−1 ◦ h)ϕ(η−1 ◦ h) dhα(η) d η =

∫
A
r(η−1 ◦ g)α(η) d η,

where r(g) :=
∫
G ϕ(h)ϕ(g−1 ◦ h) dh is the autocorrelation function of the function

ϕ. Thus, S∗S is a Toeplitz operator of the form (2.2). Similar to Proposition 2.2,
we can study the effective dimension of the set of shifted signals in (3.5) by looking
at the eigenvalue distribution of the self-adjoint operator SS∗. Note that in this
case SS∗ is not a Toeplitz operator, but it has the same nonzero eigenvalues as
S∗S. Thus, we can exploit the eigenvalue distribution of S∗S to infer the number
of degrees of freedom for the set S(A, ϕ(g)). This is formally established in the
following result.

Proposition 3.4. Let the eigenvalues of S∗S be denoted and arranged as λ1 ≥ λ2 ≥
· · · . Then the n-width of S(A, ϕ(g)) can be computed as dn(S(A, ϕ(g))) =

√
λn, and

the optimal n-dimensional subspace to represent S(A, ϕ(g)) is the subspace spanned
by the first n eigenvectors of SS∗.

Finally, Theorem 3.1 implies that the eigenvalue distribution of the Toeplitz
operator S∗S is asymptotically equivalent to r̂(ξ) =

∫
G r(g)χξ(g) d g, the power

spectrum of ϕ if we view r as the autocorrelation of ϕ.

3.3. Application: Eigenvalue estimation. In many applications such as spec-
trum sensing algorithm for cognitive radio [86], it is desirable to understand the
individual asymptotic behavior of the eigenvalues of time-limited Toeplitz operators
rather than the collective behavior of the eigenvalues provided by Szegő’s theorem
(Theorem 3.1). As a special case, efficiently estimating the spectral norm (i.e., the
largest singular value) of Toeplitz matrices is crucial in certain applications. For ex-
ample, the Lipschitz constant of a CNN has wide implications in understanding the
key properties of the neural network such as its generalization and robustness. Un-
fortunately, computing the exact Lipschitz constant of a neural network is known
to be NP-hard [58]. Recent work [2, 82] proposed methods for computing upper
bounds of the Lipschitz constant for each layer (and hence for the entire network)
by efficiently estimating the spectral norm of the corresponding (block) Toeplitz
matrices. We will review related recent progress on characterizing the individual
behavior of the eigenvalues for Toeplitz matrices. To our knowledge, the individual
behavior of the eigenvalues has only recently been investigated for Toeplitz matrices.

Bogoya et al. [4] studied the individual asymptotic behavior of the eigenvalues of
Toeplitz matrices by interpreting Szegő’s theorem in (1.9) in probabilistic language

and related the eigenvalues to the values obtained by sampling ĥ(f) uniformly in
frequency on [0, 1):

lim
N→∞

max
0≤ℓ≤N−1

∣∣∣∣λℓ(HN )− ĥ(
ρ(ℓ)

N
)

∣∣∣∣ = 0(3.6)

if the range of ĥ(f) is connected. Here ĥ(ρ(ℓ)N ) is the permuted form of ĥ( ℓ
N ) such

that ĥ(ρ(0)N ) ≥ ĥ(ρ(1)N ) ≥ · · · ≥ ĥ(ρ(ℓ)N ). Thus, if the symbol ĥ(f) is known, we can
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sample it uniformly to get reasonable estimates for the eigenvalues of the Toeplitz
matrix.

Despite the power of Szegő’s theorem, in many scenarios (such as certain cod-
ing and filtering applications [22, 53]), one may only have access to HN and not

ĥ. In such cases, it is still desirable to have practical and efficiently computable
estimates of the individual eigenvalues of HN . We recently showed [93] that we can
construct a certain sequence of N ×N circulant matrices such that the eigenvalues
of the circulant matrices asymptotically converge to those of the Toeplitz matri-
ces. Transforming the Toeplitz matrix into a circulant matrix can be performed
extremely efficiently using closed form expressions; the eigenvalues of the circulant
matrix can then be computed very efficiently (in O(N logN) using the fast Fourier
transform (FFT)).

When the sequence h[n] is not symmetric about the origin, the Avram-Parter
theorem [3,52], a generalization of Szegő’s theorem, relates the collective asymptotic
behavior of the singular values of a general (non-Hermitian) Toeplitz matrix to the

absolute value of its symbol, i.e., |ĥ(f)|. Bogoya et al. [4] also showed that the

singular values of HN asymptotically converge to the uniform samples of |ĥ(f)|
provided the range of the symbol |ĥ(f)| is connected.

3.4. Questions. Inspired by the applications listed above, we raise two questions
concerning the generalized Szegő’s theorem (Theorem 3.1). The first question con-
cerns the individual behavior of the eigenvalues.

Question 1. Is it possible to extend the result (3.6) concerning the individual be-
havior of the eigenvalues for Toeplitz matrices to general Toeplitz operators?

We note that both the conventional Szegő’s theorem listed in Section 1.2.3 and
the generalized Szegő’s theorem (Theorem 3.1) characterize asymptotic behavior of
the eigenvalues.

Question 2. Is it possible to establish a non-asymptotic result concerning the eigen-
value behavior (either collective or individual) for the general Toeplitz operators
XAτ ?

4. Time-Frequency Limiting Operators on Locally Compact Abelian
Groups

In this section, we consider a special case of time-limited Toeplitz operators:
time-frequency limiting operators on locally compact abelian groups, to be formally
defined soon. As we have briefly explained in Section 1.2, time-frequency limiting
operators in the context of the classical groups where G are the real-line, Z, and
ZN play important roles in signal processing and communication. By considering
time-frequency limiting operators on locally compact abelian groups, we aim to
(i) provide a unified treatment of the previous results on the eigenvalues of the
operators resulting in PSWFs, DPSSs, and periodic DPSSs (PDPSSs) [25,32]; and
(ii) extend these results to other signal domains such as rotations in a plane and
three dimensions [8, Chapter 5]. In particular, we will investigate the eigenvalues of
time-frequency limiting operators on locally compact abelian groups and show that
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they exhibit similar behavior to both the conventional CT and DT settings: when
sorted by magnitude, there is a cluster of eigenvalues close to (but not exceeding) 1,
followed by a relatively sharp transition, after which the remaining eigenvalues are
close to 0. This behavior also resembles the rectangular shape of the frequency re-
sponse of the original band-limiting operator. Although this collective behavior can
be characterized using Szegő’s theorem, finer results (particularly non-asymptotic
results) on the eigenvalues have been established in special cases, which we will
review in detail. We will also discuss the applications of this unifying treatment in
relation to channel capacity and to representation and approximation of signals.

To introduce the time-frequency limiting operators, consider two subsets A⊂G
and B⊂Ĝ. Recall that TA : L2(G) → L2(G) is a time-limiting operator that makes
a function zero outside A. Also define BB = F−1TBF : L2(G) → L2(G) as a band-
limiting operator that takes the Fourier transform of an input function on L2(G),
sets it to zero outside B, and then computes the inverse Fourier transform. The
operator BB acts on L2(G) as a convolutional integral operator:

(BBx)(g) =

∫
B
x̂(ξ)χξ(g) d ξ =

∫
B

(∫
G
x(h)χ∗

ξ(h) dh

)
χξ(g) d ξ

=

∫
G
KB(h

−1 ◦ g)x(h) dh,

where

KB(h
−1 ◦ g) =

∫
B
χ∗
ξ(h)χξ(g) d ξ =

∫
B
χξ(h

−1 ◦ g) d ξ.(4.1)

It is of interest to study the eigenvalues of the following operators which we refer
to as time-frequency limiting operators

OA,B = TABBTA, and BBTABB.(4.2)

Utilizing the expression for BB, the operator TABBTA acts on any x ∈ L2(G) as
follows

(TABBTAx) (g) =

{∫
AKB(h

−1 ◦ g)x(h) dh, g ∈ A
0, otherwise.

The operator OA,B is symmetric and completely continuous and we denote its eigen-
values by λℓ(OA,B). Due to the time- and band-limiting characteristics of the opera-
tor OA,B, the eigenvalues of OA,B are between 0 and 1. To see this, let x(g) ∈ L2(A):

⟨(OA,Bx)(g), x(g)⟩ =
〈∫

A

∫
B
χξ(h

−1 ◦ g) d ξx(h) dh, x(g)
〉

=

∫
B

(∫
A

∫
A
χξ(h

−1 ◦ g)x(h)x∗(g) dh d g
)
d ξ =

∫
B
|x̂(ξ)|2 d ξ ≥ 0.

On the other hand, we have
∫
B |x̂(ξ)|

2 d ξ ≤
∫
Ĝ |x̂(ξ)|2 d ξ =

∫
G |x(g)|2 d g.

4.1. Eigenvalue distribution of time-frequency limiting operators. To in-
vestigate the eigenvalues of the operator OA,B = TABBTA, we first note that without
the time-limiting operator TA, the eigenvalues of BB are simply given by the Fourier
transform of KB(g), and thus they are either 1 or 0. Our main question is how
the spectrum of the time-frequency limiting operator relates to the spectrum of the
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band-limited operator. Based on the binary spectrum of BB and the intuition from
Szegő’s theorem in Theorem 3.1, we expect that the eigenvalues of OA,B to have a
particular behavior: when sorted by magnitude, there should be a cluster of eigen-
values close to (but not exceeding) 1, followed by an abrupt transition, after which
the remaining eigenvalues should be close to 0. Moreover, the number of effective
(i.e., relatively large) eigenvalues should be essentially equal to the time-frequency
area |A||B|. These results are confirmed below and reveal the dimensionality (or
the number of degrees of freedom) of classes of band-limited signals observed over a
finite time, which is fundamental to characterizing the performance limits of com-
munication systems.

We note that similar to how we discussed the cases where T → ∞ and N → ∞ in
Section 1.2, we will use Aτ , τ ∈ (0,∞) to define the subsets of G that depend on τ .
The subscript τ is often dropped when it is clear from the context. We now present
one of our main results concerning the asymptotic behavior for the eigenvalues of
the time-frequency limiting operators OAτ ,B when Aτ approaches G.

Theorem 4.1. Suppose B is a fixed subset of Ĝ and let ϵ ∈ (0, 12). Let

N (OAτ ,B; (a, b)) := # {ℓ : a < λℓ(OAτ ,B) < b}
denote the number of eigenvalues of TAτBBTAτ that are between a and b. Then if

lim
τ→∞

Aτ = G(4.3)

holds almost everywhere, we have∑
ℓ

λℓ(OAτ ,B) = |Aτ ||B|,
∑
ℓ

λ2
ℓ (OAτ ,B) = |Aτ ||B| − o(|Aτ ||B|),(4.4)

and

lim
τ→∞

N (OAτ ,B; [1− ϵ, 1])

|Aτ |
= |B|, N (OAτ ,B; (ϵ, 1− ϵ)) = o

(
|Aτ ||B|
ϵ(1− ϵ)

)
.(4.5)

Here | · | denotes the Haar measure, and o(·) refers to the asymptotic behavior as
τ → ∞ for any fixed ϵ ∈ (0, 12).

The proof of Theorem 4.1 is given in Appendix B. The limit in (4.3) is in the sense
of convergence in measure on each compact set of G. There are no specific shape
constraints in Aτ except that their boundaries are measure zero, though we note
that in many cases of interest Aτ is a closed set as in bandlimited signals [41], a union
of closed sets as in multiband signals [92], or a scaling of a fixed set as in [19] where
QτA = {Qτg : g ∈ A} whereG is Rn, A is a fixed set of Rn with boundary of measure
zero, and Qτ ∈ Rn×n depends on τ such that limτ→∞QτA = Rn. Theorem 4.1
formally confirms that the spectra of the time-frequency limiting operators resemble
the rectangular shape of the spectrum of the band-limiting operator. As guaranteed
by (4.5), the number of effective eigenvalues of the time-frequency limiting operator
is asymptotically equal to the time-frequency area |Aτ ||B|. Similar results for time-
frequency limiting operators in the context of classical groups where G is Rn are
given in [19, 41]. We discuss the applications of Theorem 4.1 in channel capacity
and representation and approximation of signals in more detail in the following
subsections.
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As mentioned before, the time-frequency limiting operators in the context of the
classical groups where G are the real-line, Z, and ZN were first studied by Landau,
Pollak, and Slepian who wrote a series of papers regarding the dimensionality of
time-limited signals that are approximately band-limited (or vice versa) [43,44,65,
67,69] (see also [66,68] for concise overviews of this body of work). After that, a set
of results concerning the number of eigenvalues within the transition region (0, 1)
have been established in [17, 30, 37, 45, 51, 87]. which will be reviewed in detail in
the following remarks.

Remark 1. Using the explicit expressions for the character function χξ(g) and
the kernel KB(g) and applying integration by parts for (B.2), one can improve the
second term in (4.4) to O(log(|Aτ ||B|)) for many common one-dimensional cases:

• Suppose G = R and Ĝ = R. Let AT = [−T
2 ,

T
2 ] (where τ = T in (4.3)) and

B = [−1
2 ,

1
2 ] without loss of generality. Then the kernel KB(t) turns out to be

KB(t) =
∫ 1

2

− 1
2

ej2πFt dF = 2 sin(πt)
πt . Plugging in this form into (B.2) gives [28]∑

ℓ(λℓ(OAT ,B))
2 = T − O(log(T )). In this case, the operator OAT,B is equivalent

to the time-limited Topelitz operator HT in Section 1.2.2 and the corresponding
eigenfunctions are known as PSWFs.

• As an another example, suppose G = Z, Ĝ = [−1
2 ,

1
2 ] and let AN = {0, 1 . . . , N−1}

(where τ = N in (4.3)), B = [−W,W ] with W ∈ (0, 12). In this case, the kernel

KB(n) becomes KB[n] =
∫W
−W ej2πfn d f = sin(2πWn)

πWn . Then plugging in this form

into (B.2) gives [92, Theorem 3.2]
∑

ℓ(λℓ(OAN ,B))
2 = 2NW −O(log(2NW )). We

note that in this case, the operator OAN ,B is equivalent to the N × N prolate
matrix BN,W with entries

BN,W [m,n] :=
sin (2πW (m− n))

π(m− n)
(4.6)

for all m,n ∈ {0, 1, . . . , N − 1}. The eigenvalues and eigenvectors of the matrix
BN,W are referred to as the DPSS eigenvalues and DPSS vectors, respectively.

• As a final example, we consider G = ZN , Ĝ = ZN and the Fourier transform is
the conventional DFT. Suppose M,K ≤ N . Let τ = M in (4.3) and

AM = {0, 1, . . . ,M − 1} , B = {0, 1, . . . ,K − 1} ,(4.7)

In this case, χk[n] = ej2π
nk
N and the kernel KB[n] is KB[n] =

∑K−1
k=0 ej2π

nk
N =

ejπn
K−1
N

sin(π nK
N

)

sin(π n
N
) . Then plugging in this form into (B.2) gives [17, 87]∑

ℓ(λℓ(OAM ,B))
2 = MK

N −O(log(MK
N )).

Through the above examples, one may wonder whether we can in general replace the
second term in (4.4) by O(log(|Aτ ||B|)) with a finer analysis of

∑
ℓ(λℓ(OAτ ,B))

2. We
utilize a two-dimensional example to answer this question in the negative: Suppose

G = Z2, Ĝ = [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] and let A = {0, 1 . . . , N − 1} × {0, 1 . . . , N − 1},B =

[−W,W ]× [−W,W ] with W ∈ (0, 12). In this case, the kernel KB[n1, n2] is

KB[n1, n2] =

∫ W

−W

∫ W

−W
ej2πf1n1ej2πf2n2 d f1 d f2 =

sin(2πWn1)

πWn1

sin(2πWn2)

πWn2
.
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The eigenvectors of the corresponding operator OA,B are known as the two-dimen-
sional DPSSs. For this case, we have

∑
ℓ(λℓ(OAτ ,B))

2 = 4N2W 2−O(NW log(NW )).
In other words, in this case, we can only improve the second term in (4.4) to
O(NW log(NW )) rather than O(log(4N2W 2)).

Remark 2. We note that the transition region in (4.5) depends on ϵ in the form of
1

ϵ(1−ϵ) . A better understanding of the transition region requires further complicated

analysis. In the literature, finer results on the transition region are known for several
common cases:

• The results for the eigenvalue distribution of the continuous time-frequency local-

ization operator (where G = R, Ĝ = R, AT = [−T
2 ,

T
2 ] and B = [−1

2 ,
1
2 ]) has a rich

history. As one example, for any ϵ ∈ (0, 1), Landau and Widom [45] provided the
following asymptotic result N (OAT ,B; [ϵ, 1]) = T+

(
1
π2 log

1−ϵ
ϵ

)
log πT

2 +o
(
log πT

2

)
.

This asymptotic result ensures the O(log(1ϵ ) log(T )) dependence on ϵ and time-
frequency area T . Recently, Osipov [51] proved that N (OAT ,B; [ϵ, 1]) ≤ T +
C log(T )2 log(1/ϵ), where C is a constant. Israel [30] provided a non-asymptotic
bound on the number of eigenvalues in the transition region. Fix η ∈ (0, 1/2].
Given ϵ ∈ (0, 1/2) and T ≥ 2, then [30]

N (OAT ,B; (ϵ, 1− ϵ)) ≤ 2Cη

(
log

(
log T

ϵ

))1+η

log

(
T

ϵ

)
,(4.8)

where Cη is a constant dependent on η ∈ (0, 12 ].
• The earliest result on the eigenvalue distribution of the discrete time-frequency

localization operator (where G = Z, Ĝ = [−1
2 ,

1
2), AN = {0, 1, . . . , N − 1} and

B = [−W,W ] with W ∈ (0, 12)) comes from Slepian [67], who showed that for any

b ∈ R, asymptotically the DPSS eigenvalue λℓ(O(AN ,B)) → 1
1+eπb as N → ∞ if

ℓ = ⌊2NW + b
π logN⌋. This implies the asymptotic result: N (OAN ,B; (ϵ, 1− ϵ)) ∼

2
π2 logN log

(
1
ϵ − 1

)
. Recently, by examining the difference between the operator

OAN ,B and the one formed by a partial DFT matrix, we have shown [36, 37] the

following nonasymptotic result characterizing the O(logN log 1
ϵ ) dependence:

N (OAN ,B; (ϵ, 1− ϵ)) ≤
(

8

π2
log(8N) + 12

)
log

(
15

ϵ

)
.(4.9)

The right hand side is further improved to 2
π2 log(4N) log

(
4

ϵ(1−ϵ)

)
in [34].

• We [87] have also provided similar results for the eigenvalue distribution of discrete
periodic time-frequency localization operator with sets AM and B defined in (4.7):

(4.10)

N (OAM ,B; (ϵ, 1− ϵ)) ≤
(

8

π2
log(8N) + 12

)
log

(
15

ϵ

)

+ 4max

− log
(

π
32

((
M
N

)2 − 1
)
ϵ
)

log
(
M
N

) , 0

 .

From the above examples, one may wonder whether we can in general improve the
dependence on ϵ in the second bound of (4.5) from 1/(ϵ(1 − ϵ)) to a logarithmic
function of 1/ϵ. We leave this as an open question in Section 4.5 (see Question 3).
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Remark 3. It is also of particular interest to have a finer result on the number of
eigenvalues that is greater than 1

2 since this together with the size of the transition
region gives us a complete understanding of the eigenvalue distribution.

• Landau [42] establishes the number of PSWF eigenvalues that are greater than 1
2

as follows

λ(⌊T ⌋−1)(OAT ,B) ≥
1

2
≥ λ(⌈T ⌉)(OAT ,B).(4.11)

• We [92] provided a similar result for the DPSS eigenvalues.

In the following two subsections, we review some applications of Theorem 4.1.

4.2. Application: Communications. In [19], Franceschetti extended Landau’s
theorem [41] for simple time and frequency intervals to other time and frequency
sets of complicated shapes. Lim and Franceschetti [47] related the number of de-
grees of freedom of the space of band-limited signals to the deterministic notions of
capacity and entropy. Now we apply Theorem 4.1 to the effective dimensionality
of the “band-limited signals” observed over a finite set A by utilizing the result in

Section 2.2. To that end, we plug ϕ̂(ξ) = 1B(ξ) =

{
1, ξ ∈ B
0, ξ /∈ B , the indicator function

on B, into (2.3) and get the following set of band-limited functions observed only
over A:

W(A, 1B(ξ)) :=
{
x ∈ L2(A) : x(g) =

∫
B
α(ξ)χξ(g) d ξ,

∫
|α(ξ)|2 ≤ 1, g ∈ A

}
.

When A ⊂ R2 represents a subset of time and space, the number of degrees of free-
dom in the set W(A, 1B(ξ)) determines the total amount of information that can
be transmitted in time and space by multiple-scattered electromagnetic waves [19].
Now we turn to compute the effective dimensionality of the general set W(A, 1B(ξ)).
In this case, |ϕ̂(ξ)|2 = 1B(ξ) and the corresponding operator AA∗ defined in (2.7)
is equivalent to the time-frequency limiting operator OA,B in (4.2). Now Proposi-

tion 2.2 implies that the effective dimensionality N (W(A, ϕ̂(ξ)), ϵ) is equal to the
number of eigenvalues of OA,B that are greater than ϵ, which is given by Theo-
rem 4.1. In words, the effective dimensionality of the set W(A, 1B(ξ)) is essentially
|A||B|, and is insensitive to the level ϵ (as illustrated in (4.8)-(4.10), in many cases,
this dimensionality only has log( 1ϵ ) dependence on ϵ).

4.3. Application: Signal representation. In addition to the eigenvalues of the
time-frequency limiting operator TABBTA, the eigenfunctions of TABBTA are also
of significant importance, owing to their concentration in the time and frequency
domains. To see this, let uℓ(g) be the ℓ-th eigenfunction of TABBTA, corresponding
to the ℓ-th eigenvalue λℓ(TABBTA). Denoting the Fourier transform of uℓ(g) by
ûℓ(ξ), we have

∫
B
|ûℓ(ξ)|2 d ξ = ⟨TBFuℓ, TBFuℓ⟩ =

〈
F−1TBFuℓ, uℓ

〉
=

〈
F−1TBFTAuℓ, TAuℓ

〉
=

〈
TAF−1TBFTAuℓ, TAuℓ

〉
= λℓ(TABBTA)∥TAuℓ∥2,

(4.12)
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where the third equality follows because uℓ(g) is a time-limited signal (i.e., TA(uℓ) =
uℓ), and the last equality utilizes TAF−1TBFTAuℓ = TABBTAuℓ = λℓ(TABBTA)uℓ. In
words, (4.12) states that the eigenfunctions uℓ have a proportion λℓ(TABBAA) of
energy within the band B, implying that even though the eigenfunctions are not
exactly band-limited, their Fourier transform is mostly concentrated in the band
B when λℓ(TABBAA) is close to 1. Thus, the first ≈ |A||B| eigenfunctions can be
utilized as window functions for spectral estimation, and as a highly efficient basis
for representing band-limited signals that are observed over a finite set A.

Recall that W(A, 1B(ξ)) (defined in (2.3)) consists of band-limited signals ob-
served over a finite set A. Applying Proposition 2.2, we compute the n-width of the
set W(A, 1B(ξ)) as follows:

dn(W(A, 1B(ξ))) =
√
λn(AA∗) =

√
λn(OA,B).

By the definition of (2.5), we know for any x(g) ∈ W(A, 1B(ξ)),∫
A
|x(g)− ( PUnx)(g)|

2 d g ≤
√
λn(OA,B),

where Un is the subspace spanned by the first n eigenvectors of OAτ ,B, i.e.,

Un := span{u0(g), u1(g), . . . , un−1(g)}.(4.13)

Now we utilize Theorem 4.1 to conclude that the representation residual
√
λn(OA,B)

is very small when n is chosen slightly larger than |A||B|.
We now investigate the basis Un for representing time-limited version of charac-

ters χξ(g) and band-limited signals.

4.3.1. Approximation quality for time-limited characters χξ(g). We first restrict our
focus to the simplest possible “band-limited signals” that are observed over a finite
period: pure characters χξ(g) when g is limited to A. Without knowing the exact
frequency ξ in advance, we attempt to find an efficient low-dimensional basis for
capturing the energy in any signal χξ(g). To that end, we let Mn ⊂ L2(A) denote
an n-dimensional subspace of L2(A). We would like to minimize∫

B
∥χξ − PMnχξ∥2L2(A) d ξ.(4.14)

The following result establishes the degree of approximation accuracy in a mean-
squared error (MSE) sense provided by the subspace Un for representing the “time-
limited” version of characters χξ(g) (where g is limited to Aτ ).

Theorem 4.2. For any n ∈ Z+, the optimal n-dimensional subspace which mini-
mizes (4.14) is Un. Furthermore, with this choice of subspace, we have

1

|B|

∫
B

∥χξ − PUnχξ∥2L2(A)

∥χξ∥2L2(A)
d ξ = 1−

∑n−1
ℓ=0 λℓ(OA,B)

|A||B|
,

where | · | denotes the Haar measure.

The proof of Theorem 4.2 is given in Appendix C. Combined with Theorem 4.1,
Theorem 4.2 implies that by choosing n ≈ |A||B|, on average the subspace spanned
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by the first n eigenfunctions of TABBTA is expected to accurately represent time-
limited characters within the band of interest. We note that the representation
guarantee for time-limited characters {TAχξ, ξ ∈ B} can also be used for most
band-limited signals that are observed over a finite set A. To see this, suppose x(g)
is a band-limited function which can be represented as

x(g) =

∫
B
x̂(ξ)χξ(g) d ξ.

An immediate consequence of the above equation is that one can view {TAχξ, ξ ∈ B}
as the atoms for building TAx:

TAx =

∫
B
x̂(ξ)TAχξ d ξ.

4.3.2. Approximation quality for random band-limited signals. We can also approach
the representation ability of the subspace Un (defined in (4.13)) from a probabilistic
perspective by generalizing [12, Theorem 4.1].

Theorem 4.3. Let x(g) = χξ(g), g ∈ Aτ be a random function where ξ is a random
variable with uniform distribution on B. Then we have

E
[
∥x− PUnx∥2L2(A)

]
E
[
∥x∥2L2(A)

] = 1−
∑n−1

ℓ=0 λℓ(OA,B)

|A||B|
.

The proof of Theorem 4.3 is given in Appendix D. With this result, we show
that in a certain sense, most band-limited signals, when time-limited, are well-
approximated by a signal within the subspace Un. In particular, the following
result which generalizes [12, Theorem 4.1] establishes that band-limited random
processes, when time-limited, are in expectation well-approximated.

Corollary 4.4. Let x(g), g ∈ G be a zero-mean wide sense stationary random
process over the group G with power spectrum

Px(ξ) =

{ 1
|B| , ξ ∈ B,
0, otherwise.

Suppose we only observe x over the set Aτ . Then we have

E
[
∥x− PUnx∥2L2(A)

]
E
[
∥x∥2L2(A)

] = 1−
∑n−1

ℓ=0 λℓ(OA,B)

|A||B|
.

As in our discussion following Theorem 4.1, the term 1−
∑n−1

ℓ=0 λℓ(OA,B)
|A||B| appearing

in Theorem 4.3 and Corollary 4.4 can be very small when we choose n slightly larger
than |A||B|. This suggests that in a probabilistic sense, most band-limited functions,
when time-limited, will be well-approximated by a small number of eigenfunctions
of the operator OA,B.
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4.4. Applications in the common time and frequency domains. We now
review several applications involving the time-frequency limiting operator OA,B in
the common time and frequency domains, where the eigenfunctions correspond to
DPSSs, PSWFs, and PDPSSs.

It follows from (4.12) that, among all the functions that are time-limited to the
set A, the first eigenfunction u0(g) is maximally concentrated in the subset B of
the frequency domain. Motivated by this result, the first DPSS vector is utilized
as a filter for super-resolution [18]. In [73], the first ≈ 2NW DPSS vectors are
utilized as window functions (a.k.a. tapers) for spectral estimation. The multitaper
method [73] averages the tapered estimates with the DPSS vectors, and has been
used in a variety of scientific applications including statistical signal analysis [10],
geophysics and cosmology [11]. By exploiting the fact that the number of DPSS
eigenvalues in the transition region grows like O(logN log 1

ϵ ) as in (4.9), the very
recent work [35] provided nonasymptotic bounds on some statistical properties of the
multitaper spectral estimate as well as a fast algorithm for evaluating the estimate.

By exploiting the concentration behavior of the PSWFs in the time and fre-

quency domains (where G = R and Ĝ = R), Xiao et al. [79] utilized the PSWFs
to numerically construct quadratures, interpolation and differentiation formulae for
band-limited functions. Gosse [21] constructed a PSWF dictionary consisting of
the first few PSWFs for recovering smooth functions from random samples. The
connection between time-frequency localization of multiband signals and sampling
theory for such signals was investigated in [31]. In [62,63], the authors also consid-
ered a PSWF dictionary for reconstruction of electroencephalography (EEG) signals
and time-limited signals that are also nearly band-limited from nonuniform samples.
Chen and Vaidyanathan [7] utilized the PSWFs to represent the clutter subspace
(and hence mitigate the clutter), facilitating space-time adaptive processing for
multiple-input multiple-output (MIMO) radar systems; see also [16,81].

DPSSs, the discrete counterpart of PSWFs, also have proved to be useful in
numerous signal processing applications since they provide a highly efficient basis
for representing sampled band-limited signals. DPSSs can be utilized to find the
minimum energy, infinite-length band-limited sequence that extrapolates a given
finite vector of samples [67]. In [84, 85], Zemen et al. expressed the time-varying
subcarrier coefficients in a DPSS basis for estimating time-varying channels in wire-
less communication systems. A similar idea is also utilized for channel estimation
in Orthogonal Frequency Division Multiplexing (OFDM) systems [70], for receiver
antenna selection [57], etc. The modulated DPSSs can also be useful for mitigat-
ing wall clutter and detecting targets behind the wall in through-the-wall radar
imaging [90, 91], and for interference cancellation in a wideband compressive ra-
dio receiver (WCRR) architecture [13]. The performance (such as the detection
probability) of the DPSS basis (and other similar bases corresponding to the time-
frequency limiting operator OA,B) for identifying unresolved targets was recently
analyzed in [5]. By modulating the baseband DPSS vectors to different frequency
bands and then concatenating these dictionaries, one can construct a new dictio-
nary that provides an efficient representation of sampled multiband signals [12,92].
Sejdić et al. [61] proposed one such dictionary to provide a sparse representation
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for fading channels and improve channel estimation accuracy. The multiband mod-
ulated DPSS dictionaries have been utilized for the recovery of sampled multiband
signals from random measurements [12], and for the recovery of physiological sig-
nals from compressive measurements [60]. Such dictionaries are also utilized for
cancelling wall clutter [1].

The periodic DPSSs (PDPSSs, where G = ZN and Ĝ = ZN ) are the finite-length
vectors whose discrete Fourier transform (DFT) is most concentrated in a given
bandwidth (as appearing in (4.7)). The PDPSSs have been utilized for extrapola-
tion and spectral estimation of periodic discrete-time signals [32], for limited-angle
reconstruction in tomography [25], for Fourier extension [50], and in [29], the band-
pass PDPSSs were used as a numerical approximation to the bandpass PSWFs for
studying synchrony in sampled EEG signals.

Finally, the eigenvalue concentration behavior in Theorem 4.1 can also be ex-
ploited for solving a linear system involving the Toeplitz operator OA,B: y = OA,Bx.
Since the operator OA,B has a mass of eigenvalues that are very close to 0, the sys-
tem is often solved by using the rank-K pseudoinverse of OA,B where K ≈ |A||B|.
In the case where the Toeplitz operator is the prolate matrix BN,W defined in (4.6),
its truncated pseudoinverse is well approximated as the sum of B∗

N,W (which is
equal to BN,W ) and a low-rank matrix [37, 50] since most of the eigenvalues of
B∗

N,W are very close to either 1 or 0. By utilizing the fact that BN,W is a Toeplitz
matrix and BN,Wx has a fast implementation via the FFT, an efficient method for
solving the system y = BN,Wx can be developed; such a method has been utilized
for linear prediction of band-limited signals based on past samples and the Fourier
extension [37,50].

4.5. Questions. Inspired by the applications listed above, we raise several ques-
tions concerning Theorems 4.1 and 4.2. Following from the two remarks after The-
orem 4.1, two natural questions are:

Question 3. Can we improve the second terms in (4.4) or (4.5)? Furthermore,
what nonasymptotic result (like (4.8) for the PSWF eigenvalues and (4.9) for the
DPSS eigenvalues) can we obtain for the number of eigenvalues of the Toeplitz
operator OA,B within the transition region (ϵ, 1− ϵ)?

Question 4. Can we extend (4.11) to the general time-frequency limiting operator
OA,B?

Another related important question concerns how accurately the subspace spanned
by the first n eigenfunctions of TABBTA can represent each individual time-limited
character TAχξ with ξ ∈ B. Theorem 4.2 ensures that accuracy is guaranteed in the
MSE sense if one chooses n ≈ |A||B| such that the sum of the remaining eigenvalues
of TABBTA is small. We suspect that a uniform guarantee for each TAχξ can also be
obtained since the derivative of ∥χξ∥2L2(A) is bounded, given a finer result concerning

the eigenvalue distribution for TABBTA. Using the approach utilized in [88,89] with
a theorem of Bernstein for trigonometric polynomials [59], we [88] can have an ap-
proximation guarantee for the DPSS basis in representing each complex exponential

ef :=
[
ej2πf0 · · · ej2πf(N−1)

]T
with frequency f inside a band of interest; this

provides a non-asymptotic guarantee which improves upon our previous work [92].
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Theorem 4.5 (Representation guarantee for pure sinusoids with DPSSs [88]). Let
N ∈ N and W ∈ (0, 12) be given. Also let [S]K be an N × K matrix consisting of

the first K DPSS vectors. Then for any ϵ ∈ (0, 12), the orthobasis [S]K satisfies

∥ef − [S]K [S]∗Kef∥22
∥ef∥22

≤ ϵ

for all f ∈ [−W,W ] with

K = 2NW +O

(
log(N) log

(
1

ϵ2

))
.

Question 5. More generally, what uniform guarantee can we have for each time-
limited character TAχξ in the subspace spanned by the first n eigenfunctions of
TABBTA?
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Appendix A. Proof of Proposition 2.2

Proof of Proposition 2.2. We have

dn(W(A, ϕ̂(ξ))) = inf
Mn

sup
x∈W(A,ϕ̂(ξ))

inf
y∈Mn

∥x− y∥L2(A)

= inf
Mn

sup
∥α∥≤1

∥Aα− PMn∥

= inf
Mn

sup
z⊥Mn

sup
∥α∥≤1

|⟨Aα, z⟩|
∥z∥

= inf
Mn

sup
z⊥Mn

sup
∥α∥≤1

|⟨α,A∗z⟩|
∥z∥

= inf
Mn

sup
z⊥Mn

∥A∗z∥
∥z∥

= inf
Mn

sup
z⊥Mn

√
⟨AA∗z, z⟩
∥z∥

=
√

λn,

where the last line follows from the Weyl-Courant minimax theorem. □

Appendix B. Proof of Theorem 4.1

Proof of Theorem 4.1. We first note that χξ(0) = 1 for all ξ ∈ Ĝ. Thus, we have∑
ℓ

λℓ(OAτ ,B) =

∫
Aτ

KB(0) dh = |Aτ |
∫
B
χξ(0) d ξ = |Aτ ||B|,(B.1)
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where the first equality follows because OAτ ,B is a trace class operator [14]. We
write the operator (TAτBBTAτ )

2 as

(TAτBBTAτBBTAτx)(g) =

∫
Aτ

KB(h̃
−1 ◦ g)

(∫
Aτ

KB(h
−1 ◦ h̃)x(h) dh

)
d h̃

=

∫
Aτ

(∫
Aτ

KB(h̃
−1 ◦ g)KB(h

−1 ◦ h̃) d h̃
)
x(h) dh.

Thus, ∑
ℓ

λ2
ℓ (OAτ ,B) =

∫
Aτ

∫
Aτ

KB(h̃
−1 ◦ h)KB(h

−1 ◦ h̃) d h̃ dh

=

∫
Aτ

∫
Aτ

∣∣∣KB(h
−1 ◦ h̃)

∣∣∣2 d h̃ dh,
where we use the fact that KB(h

−1 ◦ g) =
∫
B χξ(h

−1 ◦ g) d ξ = (
∫
B χξ(g

−1 ◦ h) d ξ)∗

since χξ(−g) = χ∗
ξ(g). Applying the change of variable h̃ = h ◦ h, we obtain∑

ℓ

λ2
ℓ (OAτ ,B) =

∫
Aτ

∫
Aτ−h

∣∣KB(h)
∣∣2 dh dh =

∫
Aτ

κAτ ,B(h) dh,(B.2)

where κAτ ,B(h) =
∫
Aτ−h

∣∣KB(h)
∣∣2 dh ≥ 0. The function κAτ ,B(h) is dominated as

κAτ ,B(h) ≤
∫
G

∣∣KB(h)
∣∣2 dh =

∫
G

∣∣∣∣∫
B
χξ(h) d ξ

∣∣∣∣2 dh =

∫
Ĝ
1ξ∈B d ξ = |B|,

where we use Parseval’s theorem by viewing
∫
B χξ(h) d ξ as the inverse Fourier trans-

form of a window function supported on B, i.e. 1ξ∈B =

{
1, ξ ∈ B,
0, otherwise,

.

On the other hand, we have limτ→∞ κAτ ,B(h) =
∫
G
∣∣∫

B χξ(h) d ξ
∣∣2 dh = |B| for all

h ∈ G. It follows that limτ→∞
∑

ℓ λ
2
ℓ (OAτ ,B) =

∫
Aτ

|B| dh = |Aτ ||B|. Thus, we have∑
ℓ

λ2
ℓ (OAτ ,B) = |Aτ ||B| − o(|Aτ ||B|).(B.3)

Subtracting (B.3) from (B.1) gives∑
ℓ

λℓ(OAτ ,B) (1− λℓ(OAτ ,B)) = o(|Aτ ||B|).(B.4)

Utilizing the fact that 0 ≤ λℓ(OAτ ,B) ≤ 1, we have

ϵ(1− ϵ)N (OAτ ,B; (ϵ, 1− ϵ)) ≤
∑
ℓ

λℓ(OAτ ,B) (1− λℓ(OAτ ,B)) = o(|Aτ ||B|).

On the other hand, (B.4) also implies that∑
ℓ:λℓ(OAτ ,B)<1−ϵ

ϵλℓ(OAτ ,B) <
∑
ℓ

λℓ(OAτ ,B) (1− λℓ(OAτ ,B)) = o(|Aτ ||B|).(B.5)
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Plugging this term into (B.1) gives

|Aτ ||B| =
∑
ℓ

λℓ(OAτ ,B) =
∑

ℓ:λℓ(OAτ ,B)≥1−ϵ

λℓ(OAτ ,B) +
∑

ℓ:λℓ(OAτ ,B)<1−ϵ

λℓ(OAτ ,B)

=
∑

ℓ:λℓ(OAτ ,B)≥1−ϵ

λℓ(OAτ ,B) + o(|Aτ ||B|).

Similarly, plugging (B.5) into (B.3) gives

|Aτ ||B| =
∑

ℓ:λℓ(OAτ ,B)≥1−ϵ

λ2
ℓ (OAτ ,B) + o(|Aτ ||B|).

Combining the above two equations and the fact that λℓ(OAτ ,B) ≤ 1, we have∑
ℓ:λℓ(OAτ ,B)≥1−ϵ

λℓ(OAτ ,B)− λ2
ℓ (OAτ ,B) = o(|Aτ ||B|).(B.6)

On one hand, combining (B.6) with∑
ℓ:λℓ(OAτ ,B)≥1−ϵ

λℓ(OAτ ,B)− λ2
ℓ (OAτ ,B) ≤

∑
ℓ:λℓ(OAτ ,B)≥1−ϵ

1− λℓ(OAτ ,B)

gives

N (OAτ ,B; [1− ϵ, 1])−
∑

ℓ:λℓ(OAτ ,B)≥1−ϵ

λℓ(OAτ ,B) =
∑

ℓ:λℓ(OAτ ,B)≥1−ϵ

1− λℓ(OAτ ,B)

≥ o(|Aτ ||B|),

which further implies

N (OAτ ,B; [1− ϵ, 1]) ≥ |Aτ ||B| − o(|Aτ ||B|).

On the other hand, using (B.6) and∑
ℓ:λℓ(OAτ ,B)≥1−ϵ

λℓ(OAτ ,B)− λ2
ℓ (OAτ ,B) ≥ (1− ϵ)

∑
ℓ:λℓ(OAτ ,B)≤1−ϵ

1− λℓ(OAτ ,B),

we also have

N (OAτ ,B; [1− ϵ, 1])−
∑

ℓ:λℓ(OAτ ,B)≥1−ϵ

λℓ(OAτ ,B)

=
∑

ℓ:λℓ(OAτ ,B)≥1−ϵ

1− λℓ(OAτ ,B) ≤ o(|Aτ ||B|),

which further implies N (OAτ ,B; [1 − ϵ, 1]) ≤ |Aτ ||B| + o(|Aτ ||B|). Thus,

lim limτ→∞
N (OAτ ,B;[1−ϵ,1])

|Aτ | = |B|.
□
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Appendix C. Proof of Theorem 4.2

Proof of Theorem 4.2. We first recall the eigendecompostion of OAτ ,B =
∑

ℓ≥0 λℓuℓu
∗
ℓ ,

where λℓ is short for λℓ(OAτ ,B). Utilizing the fact that uℓ, ℓ = 0, 1, . . . is a complete
orthonormal basis for L2(Aτ ), we rewrite the function in (4.14):

∥χξ(g)− PMnχξ(g)∥2L2(Aτ )
=

∑
ℓ

∣∣∣⟨(I − PMn)χξ(g), uℓ(g)⟩L2(Aτ )

∣∣∣2
=

∑
ℓ

〈〈
(I − PMn)χξ(g)χ

∗
ξ(h), u

∗
ℓ (h)

〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

=
∑
ℓ

〈〈
(I − PMn)χξ(h

−1 ◦ g), u∗ℓ (h)
〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

where the second equality utilized the fact that PMn is the orthogonal projector

onto the subspace Mn, and
∑

ℓ

〈〈
(I − PMn)χξ(g)χ

∗
ξ(h), u

∗
ℓ (h)

〉
L2(Aτ )

, uℓ(h)

〉
L2(Aτ )

is equivalent to the trace of (I− PMn)χξ(g)χ
∗
ξ(h). Plugging this equation into (4.14)

gives ∫
B
∥χξ(g)− PMnχξ(g)∥2L2(Aτ )

d ξ

=

∫
B

∑
ℓ

〈〈
(I − PMn)χξ(θ

−1 ◦ g), u∗ℓ (h)
〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

d ξ

=
∑
ℓ

∫
B

〈〈
(I − PMn)χξ(θ

−1 ◦ g), u∗ℓ (h)
〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

d ξ

=
∑
ℓ

⟨(I − PMn)OAτ ,Buℓ, uℓ⟩L2(Aτ )
=

∑
ℓ

λℓ ⟨(I − PMn)uℓ, uℓ⟩L2(Aτ )

where the second line follows from monotone convergence theorem (since each term
inside the summation is nonnegative). Thus, we conclude that the optimal n-
dimensional subspace which minimizes the last term in the above equation is Un

(which is spanned by the first n eigenfunctions). With this choice of subspace and
(4.4) that

∑
ℓ λℓ = |Aτ ||B|, we have∫
B
∥χξ(g)− PUnχξ(g)∥2L2(Aτ )

d ξ =
∑
ℓ≥n

λℓ = |Aτ ||B| −
n−1∑
ℓ=0

λℓ

The proof is completed by noting that ∥χξ(g)∥2L2(Aτ )
= |Aτ | for any ξ ∈ B. □

Appendix D. Proof of Theorem 4.3

Proof of Theorem 4.3. First let ν be a random variable with uniform distribution
on [0, 2π). We define the random vector

r(g) = r(g; ξ, ν) = χξ(g)e
jν ,
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where the term ejν acts as a phase randomizer and ensures that r is zero-mean:

E [r(g)] =
1

|B|2π

∫
B
χξ(g)e

jν d ξ d ν =
1

|B|2π

∫
B
χξ(g) d ξ

∫ 2π

0
ejν d ν = 0

for all g ∈ Aτ .
Now we compute the autocorrelation R of the random variable r as

R(g, h) = E [r(g)r∗(h)] = E
[(
χξ(g)e

jν
) (

χ∗
ξ(h)e

−jν
)]

= E
[
χξ(h

−1 ◦ g)
]

=
1

|B|

∫
B
χξ(h

−1 ◦ g) d ξ =
1

|B|
KB(h

−1 ◦ g)
(D.1)

for all h, g ∈ Aτ . Here KB is defined in (4.1). Note that KB(h
−1◦g) with h, g ∈ Aτ is

the kernel of the Toeplitz operator OAτ ,B. Now it follows from the Karhunen-Loève
(KL) transfrom [71] that

E
[
∥r − PUnr∥2L2(Aτ )

]
=

1

|B|
∑
ℓ≥n

λℓ(OAτ ,B) = |B| −
n−1∑
ℓ=0

λℓ(OAτ ,B).

We then compute the expectation for the energy of r as

E
[
∥r∥2L2(Aτ )

]
=

1

|B|
1

2π

∫
B
|χξ(g)e

jν |2 d ξ d ν = |Aτ |.

The proof is completed by noting that E
[
∥r − PUnr∥2L2(Aτ )

]
= E

[
∥x− PUnx∥2L2(Aτ )

]
and E

[
∥r∥2L2(Aτ )

]
= E

[
∥x∥2L2(Aτ )

]
. □
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