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due to its essential importance in many practical and engineering applications. For-
ward uncertainty quantification problems aim to find the statistics of the solutions
of the partial differential equations given random inputs of the forcing and/or of the
coefficients (see, e.g., [7–9, 27]), while inverse uncertainty quantification problems
recover the uncertain coefficients of the equations given noisy observations on the
solution (see, e.g, [24, 30]).

We consider Bayesian inverse problems to recover the elastic moduli of an isotropic
elastic material. We particularly consider the case where the forward elasticity
equation is written in the mixed form where the stress tensor forms a part of the
solution. Considering the mixed setting of the forward equation is particularly ben-
eficial when observations on the stress tensor are available. In the sampling Markov
Chain Monte Carlo (MCMC) process, solving the mixed forward equation provides
directly the stress tensor corresponding to a particular sample of the unknown elastic
moduli. We consider the Hellinger-Reissner mixed form and the Hellinger-Reissner
dual mixed form in this paper. The Lamé parameters of the underlying isotropic
material are assumed to be of the log-normal form, i.e. their natural logarithms fol-
low a Gaussian distribution and are written in the Kahunen-Loève expansion in the
form of a linear combination of pairwise independent Gaussian random variables.
To sample the posterior probability, we use MCMC where the forward mixed elas-
ticity equation is solved by a stable mixed FE scheme. For the Hellinger-Reissner
mixed forward problem, the P0−P1 stable FE pair is used for the stress tensor and
displacement (σ, u), while for the Hellinger-Reissner dual mixed forward problem,
we use the PEERS FE to resolve the difficulty arising from the symmetry of the
stress tensor in the H(div) space (see, [5]).

It is well known that for Bayesian inverse problems of partial differential equa-
tions, a plain application of MCMC is prohibitively expensive as a large number of
realizations of the forward equation needs to be solved with high accuracy, leading
to a high level of complexity (see [22]). Hoang et al. [22] develop the multilevel
Markov Chain Monte Carlo (MLMCMC) method which approximates the posterior
expectation of quantities of interest within a prescribed level of accuracy with an
essentially optimal complexity level, which is equivalent to that for solving only one
realization of the forward equation to obtain an approximation for the solution with
an equivalent level of accuracy. However, Hoang et al. [22] only shows rigorously
the convergence of the method for the case of a uniform prior distribution where
the solution of the forward equation is uniformly bounded for all the realizations.
For the case of the Gaussian prior as considered in this paper, the solution to the
forward equation is no longer uniformly bounded. Failing to take into account the
unboundedness of the solution to the forward equation may result in a highly inac-
curate approximation of the posterior expectation of quantities of interest by multi-
level algorithms as shown numerically in Hoang et al. [20]. Hoang et al. [20] develop
a novel MLMCMC method for approximating posterior expectation of quantities of
interest for Bayesian inverse problems under the Gaussian prior, essentially modify-
ing the method for the uniform prior in [22]. They show mathematically rigorously
the optimal convergence of the method. The methods are applied to Baysian inverse
problems for inferring the forcing and the initial condition of the forward Navier-
Stokes equation, using mixed FEs to solve the forward equation, in [32]. There has
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been active research on reducing computation cost of MCMC sampling of posterior
probability measures for Bayesian inverse problems of forward partial differential
equations. We mention exemplarily the references [14], [13], [23], and the survey
papers [16] and [17] and the references therein for other multilevel methods, though
to the best of our knowledge, the method developed in [20] is the only one that has
been mathematically rigorously justified for the log-Gaussian prior. High dimen-
sional quadrature rules can also be employed for approximating integrals in the high
dimensional parameter spaces in computing the posterior expectation of a quantity
of interest, though certain levels of smoothness dependence of the integrands on the
parameters are required, see, e.g., [28], [12].

We develop in this paper the optimal mixed FE MLMCMC for Bayesian inverse
problems under the Gaussian prior for mixed elasticity problems with noisy obser-
vation on the stress tensors. The paper shows theoretically and numerically that the
optimal convergence of the MLMCMC method for Bayesian inverse problems with
the Gaussian prior developed for scalar elliptic problems in [22] works equally for
Hellinger-Reissner mixed and dual mixed form elasticity forward equation, where
observations are on the stress tensor. The paper is organized as follows. In the next
section, we consider the Bayesian inverse problem for the Hellinger-Reissner mixed
forward elasticity problem. In particular, in subsection 2.1, we introduce the for-
ward parametric mixed elasticity problem, and establish the realization dependent
bounds for its solution. In subsection 2.2, we set up the Bayesian inverse problem
where observations are on the stress tensor. We show the existence of the posterior
probability measure and its locally Lipschitz continuity with respect to the observa-
tions. In subsection 2.3, we approximate the posterior by considering only a finite
number of terms in the expansions of the Lamé parameters. We show a convergence
rate for this approximation in terms of the expansion’s finite truncation level, given
a decaying rate for the coefficient functions of the expansions. Mixed finite element
approximation for the forward equation is considered in subsection 2.4. An approx-
imation for the posterior probability measure is constructed from the FE solution
of the forward equation, with an error estimate in the Hellinger distance in terms
of the FE mesh size. In section 3, we consider the Hellinger-Reissner dual mixed
forward problem. We introduce the parametric dual mixed problem in subsection
3.1. In subsection 3.2, we show the existence and well-posedness of the Bayesian
inverse problem. Approximation of the posterior probability measure with respect
to finitely truncating the expansion of the Lamé parameters is considered in sub-
section 3.3. FE approximation of the forward problem is studied in subsection 3.4.
Due to the difficulty of constructing symmetric basis functions for the stress tensor
in the H(div) space, we employ the PEERS elements together with a modified form
for the dual mixed problem. From the FE solution of the forward equation, we con-
struct an approximation of the posterior probability measure with an error estimate
in the Hellinger distance which depends on the FE convergence rate. In section 4,
we present the MLMCMC method for approximating the posterior expectation of
quantities of interests for the Bayesian inverse problem of mixed elasticity forward
equation. The method essentially relies on the method for forward elliptic equations
of [20]. In section 5 we present numerical examples on FE MLMCMC sampling for
Bayesian inverse problems for elasticity forward equation of the Hellinger-Reissner
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mixed and dual mixed form. The numerical results support the theoretical error
estimates. Appendix A contains proof of the error estimates for the approxima-
tion of the posterior in the Hellinger distance. We recapitulate the details of the
construction of the MLMCMC method in appendix B.

Throughout the paper, by C and c we denote generic constants whose values may
change between different appearances, and do not depend on the approximation
parameters. Repeated indices indicate summation.

2. Linear elasticity problem in the Hellinger-Reissner mixed form

2.1. Parametric forward problem. Let D be a bounded Lipschitz domain in Rd
(d = 2, 3). We consider the linear isotropic elasticity equation in D. We denote by
C the stiffness tensor, ε and σ the strain tensor and the stress tensor, and u the
displacement vector. Assuming that the material is isotropic, C can be represented
in the following explicit form with the Lamé parameters µ and λ,

(2.1) Cijkl = µ(δikδjl + δilδjk) + λδijδkl,

where δij is the Kronecker symbol (i, j, k, l = 1, ..., d). The relationship between the
stress and strain tensors and the displacement is governed by the following linear
constitutive equations

(2.2)
ε = ∇(s)u,

σ = Cε = {Cijklεkl} = 2µε+ λ(tr(ε))I,

where ∇(s) is the symmetric gradient, which is defined as
(
∇(s)u

)
ij
= 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
with i, j = 1, ..., d. We consider the following forward linear elasticity equation with
Dirichlet boundary,

(2.3)


∇ · σ = −f in D,

σ = C∇(s)u in D,

u = 0 on Γ,

where Γ is the domain boundary and f ∈ [H−1(D)]d. We consider the Bayesian
inverse problem with observation on the stress tensor, so it is convenient to consider
the Hellinger-Reissner mixed form. We note that the compliance tensor C−1 can be
expressed in terms of µ and λ as

(2.4) C−1
ijkl =

1

4µ
(δikδjl + δilδjk) +

(
1

d2λ+ 2dµ
− 1

2dµ

)
δijδkl.

With the given primal form of the linear elasticity equation (2.3), we have the
following equivalent Hellinger-Reissner mixed form: Find σ ∈ [L2(D)]d×d and u ∈
[L2(D)]d such that

(2.5)

{
(C−1σ, τ)− (τ,∇(s)u) = 0 ∀τ ∈ [L2(D)]d×d,

−(σ,∇(s)v) = −(f, v) ∀v ∈ [H1
0 (D)]d,

where (·, ·) denotes the inner product in [L2(D)]d×d and in [L2(D)]d, extended to
the duality pairing between [H−1

0 (D)]d and [H1
0 (D)]d.
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We assume that the Lamé parameters can be represented in the parametric form
as

(2.6)

µ(x, z) = µ∗(x) + exp

µ̄(x) +∑
j≥1

µj(x)zj

 ,

λ(x, z) = λ∗(x) + exp

λ̄(x) +∑
j≥1

λj(x)zj

 ,

where x ∈ D and z = (z1, z2, ...) ∈ RN. We assume the functions µ∗, λ∗ are non-
negative. Hence µ and λ are both positive and can be arbitrary close to 0. We
specify a prior probability measure on the coefficient space by assuming that the
coordinates zj are independently, identically distributed according to the standard
Gaussian measure, i.e. zj ∼ N(0, 1). We denote by γ1 the standard Gaussian
measure in R1. We equip RN with the product σ-algebra B(RN) =

⊗∞
j=1 B(R) where

B is the Borel σ-algebra. The Gaussian probability measure γ on (RN,B(RN)) is
the product measure,

γ =
∞⊗
i=1

γ1.

In section 2.2, we consider a Bayesian inverse problem for inferring the Lamé pa-
rameters µ, λ or a quantity of interest depending on the Lamé parameters from a
set of noisy observations consisting of linear functionals of the stress tensor σ. As
σ, u depend on z, we denote them as σ(x, z) and u(x, z). We impose the following
assumption on the functions µ∗, µ̄, µj and λ∗, λ̄, λj .

Assumption 2.1. The functions µ∗, µ̄, µj and λ∗, λ̄, λj are in L∞(D) and
ess inf µ∗(x) ≥ 0, ess inf λ∗(x) ≥ 0. There are c > 0 and s > 1 such that ‖µj‖L∞(D) ≤
cj−s, ‖λj‖L∞(D) ≤ cj−s.

We emphasize that in assumption 2.1, µ∗ = 0 and λ∗ = 0 are admissible. We
denote by q = s − 1 and bµ := {‖µj‖L∞(D)} ∈ ℓ1(N), bλ := {‖λj‖L∞(D)} ∈ ℓ1(N).
Let bjµ := ‖µj‖L∞(D) and b

j
λ := ‖λj‖L∞(D). Assumption 2.1 implies that the set

U := {z ∈ RN,

∞∑
j=1

bjµ|zj | <∞,

∞∑
j=1

bjλ|zj | <∞} ∈ B(RN)

has full Gaussian measure, i.e. γ(U) = 1, (see [4, 27]). For every z ∈ U , the Lamé
parameters (2.6) are well defined functions of L∞(D). Let Θ denote the restriction
of the product σ-algebra B(RN) to U . The prior probability is the restriction of the
Gaussian measure γ to U ; we denote it also as γ. For z ∈ U , we define

(2.7)

µmax(z) = ess sup
x∈D

µ∗(x) + exp(‖µ̄‖L∞(D) +

∞∑
j=1

‖µj‖L∞(D)|zj |),

λmax(z) = ess sup
x∈D

λ∗(x) + exp(‖λ̄‖L∞(D) +
∞∑
j=1

‖λj‖L∞(D)|zj |),
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and

(2.8)

µmin(z) = ess inf
x∈D

µ∗(x) + exp(ess inf
x∈D

(µ̄)−
∞∑
j=1

‖µj‖L∞(D)|zj |),

λmin(z) = ess inf
x∈D

λ∗(x) + exp(ess inf
x∈D

(λ̄)−
∞∑
j=1

‖λj‖L∞(D)|zj |).

For z ∈ U and for x ∈ D, we note 0 < µmin(z) ≤ µ(x, z) ≤ µmax(z) < ∞ and
0 < λmin(z) ≤ λ(x, z) ≤ λmax(z) < ∞. We observe that µmax(z), λmax(z) and
µmin(z), λmin(z) are (U,Θ) measurable. To formulate the mixed problem (2.5) as
an abstract saddle point problem, we introduce the following two spaces

X = [L2(D)]d×dsym , M = [H1
0 (D)]d.

We define the following two bilinear forms a ∈ L(X ×X,R) and b ∈ L(X ×M,R),

a(z;σ, τ) = (C−1(z)σ, τ)

=

(
1

2µ(z)
σ, τ

)
+

((
1

d2λ(z) + 2dµ(z)
− 1

2dµ(z)

)
tr(σ), tr(τ)

)
,

b(τ, v) = −(τ,∇(s)v),

where (·, ·) denotes the inner product in [L2(D)]d×d, as well as in [L2(D)]d. Then
the Hellinger-Reissner mixed problem can be written as the following saddle point
problem

(2.9)


Seek σ ∈ Xand u ∈M such that

a(z;σ, τ) + b(u, τ) = 0 ∀τ ∈ X,

b(σ, v) = −(f, v) ∀v ∈M.

The well-posedness of the mixed problem is well known. We note the following
inf-sup conditions.

Proposition 2.2. The bilinear operators a(z;σ, τ) and b(τ, v) satisfy the following
inf-sup conditions.

(1)

∃α(z) > 0 such that inf
w∈X

sup
τ∈X

a(z;w, τ)

‖w‖X‖τ‖X
≥ α(z),

(2)

∃β > 0 such that inf
v∈M

sup
τ∈X

b(τ, v)

‖τ‖X‖v‖M
≥ β.
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Proof. We observe that
∑d

i,j=1(τii, τjj) ≤ d
∑d

i,j=1(τii, τii) ≤ d
∑d

i,j=1(τij , τij), for
d = 2, 3. Hence, the coercivity is due to
(2.10)

a(z; τ, τ) =
d∑

i,j=1

(
1

2µ(z)
τij , τij

)
+

d∑
i=1

((
1

d2λ(z) + 2dµ(z)
− 1

2dµ(z)

)
τii, τjj

)

≥
d∑

i,j=1

(
1

2µ(z)
τij , τij

)
+

d∑
i,j=1

((
1

dλ(z) + 2µ(z)
− 1

2µ(z)

)
τij , τij

)
≥ 1

dλmax(z) + 2µmax(z)
‖τ‖2X .

Hence the first inf-sup condition follows. For the second inf-sup condition, we refer
to the proof of lemma 3.6 in Braess [5]. For v ∈ H1

0 (D)d, let τ = −∇(s)v,

−(τ,∇(s)v)

‖τ‖
=

‖∇(s)v‖2

‖∇(s)v‖
≥ c‖v‖1

due to the Korn’s inequality. This establishes the inf-sup condition. □

Given both the inf-sup conditions, the problem is well-posed by theorem 2.34 in [15].
Furthermore, we have the following estimates,

(2.11) ‖σ‖X ≤ c1‖f‖M ′ , ‖v‖M ≤ c2‖f‖M ′ ,

with c1 =
1
β (1+

∥a∥
α(z)) and c2 =

∥a∥
β2 (1+

∥a∥
α(z)). We emphasize that α(z) = 1/(dλmax(z)+

2µmax(z)) is a constant depending on z. We denote by b the sequence with com-

ponents bj = max{bjµ, bjλ}, where b
j
µ, b

j
λ are the components of bµ, bλ. It follows

that,

(2.12)

‖σ(z)‖X ≤ C

(
1 +

dλmax(z) + 2µmax(z)

2µmin(z)

)
‖f‖M ′

≤ C

1 + exp

2
∞∑
j=1

bj |zj |

 .

2.2. Existence and wellposedness of the Bayesian inverse problem. We
present the problem setting for the Bayesian inverse problem. We consider general
observations which are linear functions of the solution of the forward problem. Let
Oi ∈ X ′, i = 1, ..., k be k continuous and bounded linear observation functionals on
X. We define the forward observation map G : U → Rk for all z ∈ U as

(2.13) G(z) := (O1(σ(·, z)),O2(σ(·, z)), ...,Ok(σ(·, z))).

Let ϑ be the observation noise. It is assumed Gaussian and independent of the
parameter z. Thus the random variable ϑ has value in Rk and follows the normal
distributionN(0,Σ), where Σ is a known k×k symmetric positive definite covariance
matrix. The noisy observation data δ is

δ = G(z) + ϑ.
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We define the mismatch function (also known as potential function)

(2.14) Φ(z; δ) =
1

2
|δ − G(z)|2Σ,

where | · |2Σ =
〈
Σ−1/2,Σ−1/2

〉
with 〈·, ·〉 being the inner product in Rk. We have the

following proposition.

Proposition 2.3. The forward map G : U → Rk of the parametric problem (2.9)
is a strongly measurable map from (U,Θ) to (Rk,B(Rk)).

Proof. From equation (2.5), we have, for every τ ∈ X, z, z′ ∈ U ,{
(C−1(z′)σ(z′)− C−1(z)σ(z), τ)− (τ,∇(s)u(z′)−∇(s)u(z)) = 0,

−(σ(z′)− σ(z),∇(s)v) = 0.

Rearranging the equation, we have
(2.15){
(C−1(z′)(σ(z′)− σ(z)), τ)− (τ,∇(s)(u(z′)− u(z))) = ((C−1(z)− C−1(z′))σ(z), τ),

−(σ(z′)− σ(z),∇(s)v) = 0.

With the a priori estimate for saddle point problems from theorem 2.34 in [15], we
have

‖σ(z′)− σ(z)‖X ≤ C

(
1 +

dλmax(z
′) + 2µmax(z

′)

2µmin(z′)

)
‖(C−1(z)− C−1(z′))σ(z)‖X

≤ C

(
1 +

dλmax(z
′) + 2µmax(z

′)

2µmin(z′)

)
‖C−1(z′)− C−1(z)‖L∞(D)‖σ(z)‖X ,

with a constant C independent of z. Next we estimate ‖C−1(z′) − C−1(z)‖L∞(D).

From the formula of the compliance tensor C−1 in (2.4), we have

‖C−1(z′)− C−1(z)‖L∞(D) ≤ C

∥∥∥∥ 1

2µ(z′)
− 1

2µ(z)

∥∥∥∥
L∞(D)

+ C

∥∥∥∥ 1

d2λ(z′) + 2dµ(z′)
− 1

d2λ(z) + 2dµ(z)

∥∥∥∥
L∞(D)

.

We have ∥∥∥∥ 1

2µ(z′)
− 1

2µ(z)

∥∥∥∥
L∞(D)

≤ C

(‖µ(z)− µ(z′)‖L∞(D)

µmin(z)µmin(z′)

)

≤ C

(
1

µmin(z)µmin(z′)

)∥∥∥∥∥∥exp(µ̄+

∞∑
j=1

µjzj)

+ exp(µ̄′ +
∞∑
j=1

µjz
′
j)

∥∥∥∥∥∥
L∞(D)

∥∥∥∥∥∥
∞∑
j=1

µj(zj − z′j)

∥∥∥∥∥∥
L∞(D)

≤ C exp

c ∞∑
j=1

bj(|zj |+ |z′j |)

 ∞∑
j=1

|zj − z′j |.
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Similarly,∥∥∥∥ 1

d2λ(z′) + 2dµ(z′)
− 1

d2λ(z) + 2dµ(z)

∥∥∥∥
L∞(D)

≤C
( ‖λ(z)− λ(z′)‖L∞(D) + ‖µ(z)− µ(z′)‖L∞(D)

(d2λmin(z) + 2dµmin(z))(d2λmin(z′) + 2dµmin(z′))

)

≤ C exp

c ∞∑
j=1

bj(|zj |+ |z′j |)

 ∞∑
j=1

|zj − z′j |.

Hence we have the following bound

(2.16)

‖σ(z)− σ(z′)‖X

≤C
(
1 +

dλmax(z
′) + 2µmax(z

′)

2µmin(z′)

)
‖C−1(z′)− C−1(z)‖L∞(D)‖σ(z)‖X

≤ exp

c ∞∑
j=1

bj(|zj |+ |z′j |)

∑
j≥1

|zj − z′j |.

Let J ∈ N. For z ∈ U let zJ = (z1, z2, ..., zJ , 0, 0, ...) ∈ U . We define σJ(z) = σ(zJ)
and GJ(z) = G(zJ). Regarding σJ as a map from RJ 3 (z1, ..., zJ) 7→ σJ(z) ∈
[L2(D)]d×dsym, from equation (2.16), it is continuous. Thus GJ regarded as a map

from RJ 3 (z1, ..., zJ) 7→ GJ(z) ∈ Rk is continuous. Therefore, for each E ∈ B(Rk),
there exists a set E−1 ∈ B(RJ) such that the preimage (GJ)−1(E) is the set of
z ∈ U such that (z1, ..., zJ) ∈ E−1. This set is in the σ-algebra Θ. Thus GJ is a
measurable function from U to Rk. From equation (2.16) with z′ = zJ , we deduce
that for z ∈ U ,

lim
J→∞

‖σJ(z)− σ(z)‖X = 0,

and

lim
J→∞

|GJ(z)− G(z)|Rk = 0.

As G(z) is the pointwise limit of a sequence of measurable maps, G : U 3 z 7→
G(z) ∈ RN is measurable. □

Proposition 2.4. The posterior γδ is absolutely continuous with respect to the prior
γ. The Radon-Nikodym derivative is given by

(2.17)
dγδ

dγ
∝ exp(−Φ(z; δ)).

Proof. As the forward map G is measurable, from theorem (2.1) in [10], γδ is abso-
lutely continuous with respect to the prior γ. □

Next we show the continuity in the Hellinger distance of the posterior measure with
respect to the observation data, which will imply the well-posedness of the posterior
measure.
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Proposition 2.5. The measure γδ depends locally Lipschitz continuously on the
data δ with respect to the Hellinger metric: for every r > 0 and every δ, δ′ ∈ Rd
such that for |δ|Σ, |δ′|Σ ≤ r, there exists C = C(r) > 0 such that

dHell(γ
δ, γδ

′
) ≤ C(r)|δ − δ′|Σ.

We include the proof in appendix A.

2.3. Posterior approximation by finitely truncating the Lamé parameters.
Next, we consider the approximation of the forward equation by truncating the series
expansion (2.6) for the Lamé parameters after J terms. We consider

(2.18)

µJ(x, z) = µ∗(x) + exp

µ̄(x) + J∑
j=1

µj(x)zj

 ,

λJ(x, z) = λ∗(x) + exp

λ̄(x) + J∑
j=1

λj(x)zj

 ,

with x ∈ D, z ∈ U . We consider the truncated problem,

(2.19)


Find (σJ , uJ) ∈ X ×Msuch that

(C−1
J (z)σJ , τ)− (τ,∇(s)uJ) = 0 ∀ τ ∈ X

−(σJ ,∇(s)v) = −(f, v) ∀ v ∈M,

where the truncated compliance tensor C−1
J is,

(2.20) (C−1
J )ijkl =

1

4µJ
(δikδjl + δilδjk) +

(
1

d2λJ + 2dµJ
− 1

2dµJ

)
δijδkl.

Proposition 2.6. Under assumption 2.1, there are positive constants C and c such
that the solution (σJ , uJ) to problem (2.19) satisfies the following estimates,

‖σ − σJ‖X ≤ C

∑
j>J

bj |zj |

 exp

c ∞∑
j=1

bj |zj |

 ,

‖u− uJ‖M ≤ C

∑
j>J

bj |zj |

 exp

c ∞∑
j=1

bj |zj |

 .

Proof. By subtracting equation (2.5) from equation (2.19), we find that (σJ−σ, uJ−
u) is the solution of the saddle point problem
(2.21){

(C−1
J (z)(σJ − σ), τ)− (τ,∇(s)(uJ − u)) = ((C−1(z)− C−1

J (z))σ, τ) ∀ τ ∈ X,

−(σJ − σ,∇(s)v) = 0 ∀ v ∈M.
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With theorem 2.34 from [15], we have the following estimate,

‖σ(z)− σJ(z)‖X ≤ C

(
1 +

‖a‖
α(z)

)
‖(C−1(z)− C−1

J (z))σ(z)‖X

≤ C

1 + exp

2
∞∑
j=1

bj |zj |

 ‖C−1(z)− C−1
J (z)‖L∞(D)‖σ(z)‖X .

Similarly to the proof of Proposition 2.3 we have

‖C−1(z)− C−1
J (z)‖L∞(D)

≤ C
(
‖λJ(z)− λ(z)‖L∞(D) + ‖µJ(z)− µ(z)‖L∞(D)

)
exp

c ∞∑
j=1

bj |zj |

 .

Next we establish bounds for the truncated error of the Lamé parameters. We have

‖µ− µJ‖L∞(D) =

∥∥∥∥∥∥exp
µ̄+

∞∑
j=1

zjµj

− exp

µ̄+
J∑
j=1

zjµj

∥∥∥∥∥∥
L∞(D)

≤

∑
j>J

bj |zj |

∥∥∥∥∥∥exp
µ̄+

∞∑
j=1

zjµj

+ exp

µ̄+

J∑
j=1

zjµj

∥∥∥∥∥∥
L∞(D)

≤ C

∑
j>J

bj |zj |

 exp

 ∞∑
j=1

bj |zj |

 .

Similarly we have

‖λ− λJ‖L∞(D) ≤ C

∑
j>J

bj |zj |

 exp

 ∞∑
j=1

bj |zj |

 .

From equation (2.12), we have the following bound

‖σ(z)− σJ(z)‖X ≤ C

1 + exp

2
∞∑
j=1

bj |zj |

 ‖C−1 − C−1
J ‖L∞(D)‖σ(z)‖X

≤ C

∑
j>J

bj |zj |

 exp

c ∞∑
j=1

bj |zj |

 .

Similarly, we also have

‖u(z)− uJ(z)‖M ≤ C

1 + exp

2

∞∑
j=1

bj |zj |

 ‖(C−1 − C−1
J )σ(z)‖L∞(D)‖σ(z)‖X

≤ C

∑
j>J

bj |zj |

 exp

c ∞∑
j=1

bj |zj |

 .
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□

We define the approximated forward map by

(2.22) GJ(z) = (O1(σ
J(z)), ...,Ok(σ

J(z))).

The approximated posterior measure γJ,δ is defined as,

dγJ,δ

dγ
∝ exp(−ΦJ(z; δ)),

where ΦJ(z; δ) is the potential function,

(2.23) ΦJ(z; δ) =
1

2
|δ − GJ(z)|2Σ.

The measure γJ,δ is an approximation of the Bayesian posterior. Next we estimate
the error of this posterior approximation by the solution of the truncated equation
in the Hellinger metric.

Proposition 2.7. Under assumption 2.1, there is a constant C(δ) > 0 such that
for every J,

(2.24) dHell(γ
δ, γJ,δ) ≤ C(δ)J−q.

We present the proof in appendix A.

2.4. FE approximation of the truncated problem. We describe the FE ap-
proximation of the solution (σJ , uJ) of (2.19) with the truncated coefficients in
(2.18). In the Lipschitz polyhedron domain D with plane sides, we define the
following nested family {T l}∞l=0 of regular simplicial partition of D. The nested
sequence of simplices is defined recursively as: the domain D is first subdivided into
a regular family T 0 of simplices T ; then for l ≥ 1, each simplex in T l is obtained by
dividing each simplex in T l−1 into 2d congruent subsimplices. Hence the mesh size
hl = max{diam(T ) : T ∈ T l} of T l is hl = 2−lh0. We define the following nested
multi-level family of spaces of piecewise constant and continuous piecewise linear
functions on T l as

X l = {σ ∈ X : σ|T ∈ [P0(T )]
2×2
sym ∀T ∈ T l},

M l = {u ∈M : u|T ∈ [P1(T )]
2 ∀T ∈ T l},

where P0(T ) denotes the set of constant functions in simplex T ∈ T l and P1(T )
denotes the set of linear polynomials. With the FE approximation space defined,
we consider the FE approximation of the truncated problem in spaces X l and M l,

(2.25)


Seek σJ,l ∈ X l and uJ,l ∈M l such that

aJ(z;σJ,l, τ l) + b(uJ,l, τ l) = 0 ∀τ l ∈ X l,

b(σJ,l, vl) = −(f, vl) ∀vl ∈M l,

where aJ(z;σJ,l, τ l) = (C−1
J (z)σJ,l, τ l). With the coercivity of the bilinear operator

aJ , we have the same inf-sup condition in proposition 2.2 for the bilinear form aJ .
Hence problem (2.25) is well-posed. Consequently we have the following estimate
(lemma 2.44 of [15]).
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Lemma 2.8. Under the inf-sup condition in proposition 2.2, the solution (σJ,l, uJ,l)
to problem (2.25) satisfies the following estimates

‖σJ − σJ,l‖X ≤ c1 inf
τ l∈Xl

‖σJ − τ l‖X + c2 inf
vl∈M l

‖uJ − vl‖M

‖uJ − uJ,l‖M ≤ c3 inf
τ l∈Xl

‖σJ − τ l‖X + c4 inf
vl∈M l

‖uJ − vl‖M

with c1 = (1 + ∥a∥
α(z))(1 + ∥b∥

β ), c2 = ∥b∥
α(z) , c3 = c1

∥a∥
β , c4 = 1 + ∥b∥

β + c2
∥a∥
β , where

‖a‖ = ‖a‖X,X and ‖b‖ = ‖b‖X,M .

We emphasize that α(z) = 1/(dλmax(z) + 2µmax(z)) is a constant dependent on
z, but independent of J and l. We make the following assumption on the regularity
of the solution.

Assumption 2.9. We assume µ∗, µ̄, µj , λ∗, λ̄, λj ∈ W 1,∞(D). Let b∗j =

max{‖µj‖W 1,∞(D), ‖λj‖W 1,∞(D)}. We further assume
∑

j≥1 b
∗
j <∞. For J ∈ N, so-

lution σJ(·, z) is in W1 := [H1(D)]d×dsym and uJ(·, z) is in W2 := [H2(D)]d ∩ [H1
0 (D)]d

for all z ∈ U . We further assume the following bound from the classical regularity
theory for elasticity problem [25,31],

‖σJ‖W1 ≤ C exp

c J∑
j=1

bj |zj |

1 +

J∑
j=1

b∗j |zj |


‖uJ‖W2 ≤ C exp

c J∑
j=1

bj |zj |

1 +

J∑
j=1

b∗j |zj |

 .

Remark 2.10. We consider f ∈ L2(D). For a polygonal domain, the solution to
the elasticity equation may not possess the H2 regularity. It may have singularity
behaviour at the corners. Finite element spaces with a graded mesh at the singu-
larities achieve the finite element convergence rate O(N−1/d), where N is the total
number of degrees of freedom (see, e.g., Nistor and Schwab [26]). For a uniform
mesh as considered above, when the solution only belongs to H1+t(D) for t < 1,

the FE convergence rate is O(h−tl ), i.e. O(N−t/d) in terms of the total number
of degrees of freedom N . The MLMCMC method achieves the convergence rate
O(N−t/d) for the total number of degrees of freedom N (apart from a possible
logarithmic multiplying factor), which is optimal (see remark 4.1).

The regularity assumption holds when D is a smooth domain. When D is con-
vex, to solve the problem, we can construct a convex polygonal domain Dl that
is inscribed in D. The affine parts of the boundary of Dl are of the same size
as the mesh size hl which is O(2−l). To construct our family of simplices T l, we
first divide D into simplices each with a curvilinear boundary segment which is a
subset of ∂D. Then we refine the simplices by dividing each of them into 2d sub-
simplices as described at the beginning of this section. However for each simplex
at the boundary with a curvilinear boundary segment, we divide them into 2d sub-
simplices where 2d−1 are with a curvilinear segment which is a subset of ∂D. We
denote by Dl the convex polygonal domain whose vertices are the ones of T l on
∂D. We then solve problem (2.25) with D being replaced by Dl. For a domain
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with a sufficiently smooth boundary, the solution of the elasticity equation u be-
longs to H2(D)d. Examining the H2(D) regularity proof of u in [25], ‖u‖H2(D)d

is bounded by a polynomial of ‖λ(z)‖W 1,∞(D), ‖µ(z)‖W 1,∞(D), |λmax(z)|,|µmax(z)|,
| 1
λmin(z)

|, | 1
µmin(z)

|. Hence assumption 2.9 holds for smooth domains.

From this assumption, we have the following discretization error which is a con-
sequence of the approximation property of X l and M l: There exists a positive
constant C > 0 which is independent of l such that for every l ∈ N holds

inf
τ l∈Xl

‖σJ − τ l‖X ≤ Chl‖σJ‖W1

inf
vl∈M l

‖uJ − vl‖M ≤ Chl‖uJ‖W2 ,

where hl = O(2−l) and the constant C depends only on T 0. Further, we have the
following error bound.

Proposition 2.11. Consider the FE approximation of the truncated mixed problem,
under assumption 2.9. There is a constant C > 0 such that for every J, l ∈ N and
for every z ∈ U , the following error bound holds

‖σ(·, z)− σJ,l(·, z)‖X ≤ C exp

c ∞∑
j=1

bj |zj |

∑
j>J

bj |zj |+

1 +
J∑
j=1

b∗j |zj |

 2−l

 ,

‖u(·, z)− uJ,l(·, z)‖M ≤ C exp

c ∞∑
j=1

bj |zj |

∑
j>J

bj |zj |+

1 +
J∑
j=1

b∗j |zj |

 2−l

 .

The proposition is a direct consequence of proposition 2.6 and the FE error
estimate. Next we consider the FE approximation of the posterior measure. We
denote the vector of observable from the FE approximation of the forward map by

(2.26) GJ,l(z) = (O1(σ
J,l(z)), ...,Ok(σ

J,l(z))) : U → Rk.

The approximated potential function is defined as

(2.27) ΦJ,l(z; δ) =
1

2
|δ − GJ,l(z)|2Σ.

Now we define the approximated posterior probability measure γJ,l,δ on the mea-
surable space (U,Θ) as

dγJ,l,δ

dγ
∝ exp(−ΦJ,l(z; δ)).

In the Hellinger metric, the error of this approximation of the posterior measure is
as in the following theorem.

Theorem 2.12. Under assumption 2.1 and assumption 2.9, there exists a positive
constant C(δ) depending only on the data δ such that for every J and l

dHell(γ
δ, γJ,l,δ) ≤ C(δ)(J−q + 2−l).

The proof is similar to that of proposition 2.7.
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3. Linear elasticity problem in the Hellinger-Reissner dual mixed
form

3.1. Parametric forward problem. We consider the elasticity problem (2.3) in
section 2.1. Assuming that the material is isotropic, we consider the stiffness matrix
C in equation (2.1) and the constitutive equations (2.2). In this section, we consider
the Hellinger-Reissner dual mixed form with the Dirichlet boundary condition. We
introduce the following space,

H(div, D) := {τ ∈ [L2(D)]d×d; div τ ∈ [L2(D)]d},

with the norm ‖τ‖H(div,D) := (‖τ‖2
[L2(D)]d×d + ‖divτ‖2

[L2(D)]d
)1/2. We denote

H(div, D, S) the closure of C∞(D, S) with respect to the norm ‖τ‖H(div,D), where

S = Rd×dsym . With this space, we consider the following Hellinger-Reissner dual mixed
problem,

(3.1)


Find σ ∈ H(div, D, S), u ∈ [L2(D)]d such that

(C−1σ, τ) + (divτ, u) = 0 ∀τ ∈ H(div, D, S),
(divσ, v) = −(f, v) ∀v ∈ [L2(D)]d,

where f ∈ [L2(D)]d. In section 3.2, we consider a Bayesian inverse problem for
inferring the Lamé parameters µ, λ or a quantity of interest depending on the Lamé
parameters from a set of noisy observations consisting of linear functionals of the
stress tensor σ. The well-posedness of mixed problem (3.1) is well known (see [5]).
However, ensuring the symmetry of the stress tensor σ is often a major challenge
in numerically solving problem (3.1). To avoid the difficulties arising from the
symmetry of the stress tensor, the following weakly symmetric weak form is often
solved instead of the original Hellinger-Reissner dual mixed form,

(3.2)


Find σ ∈ H(div, D), u ∈ [L2(D)]d and η ∈ L2(D), such that

(C−1σ, τ) + (divτ, u) + (as(τ), η) = 0 ∀τ ∈ H(div, D),

(divσ, v) = −(f, v) ∀v ∈ [L2(D)]d,

(as(σ), ψ) = 0. ∀ψ ∈ L2(D),

where as(τ) := τ − τ⊤ ∈ [L2(D)]d×d is the anti-symmetric part. For d = 2, we
have (as(τ), ψ) :=

∫
D(τ12 − τ21)ψdx. With lemma 4.1 of chapter 6 in [5], problem

(3.2) is equivalent to problem (3.1). We introduce the kernel space W = {τ ∈
H(div, D); (divτ, v) = 0 for v ∈ [L2(D)]d, (as(τ), ψ) = 0 for ψ ∈ L2(D)}, and the
following operators a and b′,

(3.3)

a(z;σ, τ) = (C−1(z)σ, τ)

=

(
1

2µ(z)
σ, τ

)
+

((
1

d2λ(z) + 2dµ(z)
− 1

2dµ(z)

)
tr(σ), tr(τ)

)
,

b′(τ, (v, ψ)) = (divτ, v) + (as(τ), ψ).
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We denote the space for v and ψ by A = [L2(D)]d, B = L2(D) and N = A × B.
Let X = H(div, D). We have the saddle point problem,

(3.4)


Seek σ ∈ X and (u, η) ∈ N such that

a(z;σ, τ) + b′(τ, (u, η)) = 0 ∀τ ∈ X

b′(σ, (v, ψ)) = −(f, v) ∀(v, ψ) ∈ N.

Let ‖(v, ψ)‖N = ‖v‖A + ‖ψ‖B. We show that the inf-sup conditions are satisfied in
the following proposition.

Proposition 3.1. The bilinear operators a(z;σ, τ) and b′(τ, (v, ψ)) satisfy the fol-
lowing inf-sup conditions:

(1)

∃α(z) > 0 such that inf
w∈W

sup
τ∈W

a(z;w, τ)

‖w‖X‖τ‖X
≥ α(z),

(2)

∃β > 0 such that inf
(v,ψ)∈N

sup
τ∈X

b′(τ, (v, ψ))

‖τ‖X‖(v, ψ)‖N
≥ β.

Proof. These inf-sup conditions are standard. Since divτ = 0, ∀τ ∈ W , we derive
the following coercivity and boundedness of a in the kernel space W as in the proof
of proposition 2.2,

(3.5)

a(z; τ, τ) ≥ 1

dλmax(z) + 2µmax(z)
(‖τ‖2L2(D) + ‖divτ‖2L2(D))

=
1

dλmax(z) + 2µmax(z)
‖τ‖2H(div,D).

The inf-sup condition of a then follows. The inf-sup condition of b′ is proved in
page 320 of [5]. □
With these inf-sup conditions, problem (3.4) is well-posed by theorem 2.34 in [15].
Furthermore, we have the estimates,

(3.6) ‖σ‖X ≤ c1‖f‖A′ , ‖(u, η)‖N ≤ c2‖f‖A′

with c1 =
1
β

(
1 + ∥a∥

α(z)

)
and c2 =

∥a∥
β2

(
1 + ∥a∥

α(z)

)
. Thus

(3.7)

‖σ(z)‖X ≤ C

(
1 +

dλmax(z) + 2µmax(z)

2µmin(z)

)
‖f‖A′ ≤ C

1 + exp

2
∞∑
j=1

bj |zj |

 .

3.2. Existence and wellposedness of the Bayesian inverse problem. We
present the setting for the Bayesian inverse problem for the Hellinger-Reissner dual
mixed forward problem with Gaussian prior. Let X = H(div, D), we recall the
definitions in section 2.2 for the linear functionals Oi ∈ X ′, i = 1, ..., k, the forward
observation map G, observation noise ϑ, the noisy observation data δ and mismatch
function Φ(z; δ). We have the following proposition.

Proposition 3.2. The parametric forward map G : U → Rk is strongly measurable
from (U,Θ) to (Rk,B(Rk)).
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The proof is similar to that of proposition 2.3. With theorem 2.1 in [10], we have
the following proposition.

Proposition 3.3. The posterior γδ is absolutely continuous with respect to the prior
γ. The Radon-Nikodym derivative is given by

dγδ

dγ
∝ exp(−Φ(z; δ)).

Next we show the continuity of the posterior in the Hellinger distance with respect
to the observation data, which implies the well-posedness of the posterior measure.

Proposition 3.4. The measure γδ depends locally Lipschitz continuously on the
data δ with respect to the Hellinger metric: for every r > 0 and δ, δ′ ∈ Rd such that
for |δ|Σ, |δ′|Σ ≤ r, there exists C = C(r) > 0 such that

dHell(γ
δ, γδ

′
) ≤ C(r)|δ − δ′|Σ.

The proof is similar to that for proposition 2.5.

3.3. Posterior approximation by finitely truncating the Lamé parameters.
Next, we consider the approximation of the forward equation by truncating the
series expansion (2.6) for the Lamé parameters after J terms, with the truncated
expansion (2.18) in section 2.3. Under assumption 2.1, we consider the truncated
problem,

(3.8)


Find (σJ , uJ , ηJ) ∈ X ×A×B such that

(C−1
J (z)σJ , τ) + (∇ · τ, uJ) + (as(τ), ηJ) = 0 τ ∈ X

(∇ · σJ , v) = (f, v) v ∈ A,

(as(σJ), ψ) = 0, ψ ∈ B.

Proposition 3.5. Under assumption 2.1, there is a positive constant C such that
the solution (σJ , uJ , ηJ) to problem (3.8) satisfies the following estimates,

‖σ(z)− σJ(z)‖X ≤ C

∑
j>J

bj |zj |

 exp

c ∞∑
j=1

bj |zj |

 ,

‖u(z)− uJ(z)‖A + ‖η(z)− ηJ(z)‖B ≤ C

∑
j>J

bj |zj |

 exp

c ∞∑
j=1

bj |zj |

 .

The proof is similar to that of proposition 2.6. We recall the definition in section
2.3 for the approximated forward map GJ(z) in (2.22), the approximated potential
function ΦJ(z; δ) in (2.23) and the approximated posterior measure γJ,δ. We have
the error estimate for this posterior approximation by the solution of the truncated
equation in the Hellinger metric.

Proposition 3.6. Under assumption 2.1, there is a constant C(δ) > 0 such that
for every J , it holds

(3.9) dHell(γ
δ, γJ,δ) ≤ C(δ)J−q.

The proof is similar to that of proposition 2.7.
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3.4. FE approximation of the truncated problem. In this section we describe
the FE approximation of the solution (σJ , uJ , ηJ) in (3.8). As mentioned earlier,
it is not trivial to find a proper finite element space to solve problem (3.1). The
challenge arises from the symmetry of the stress tensor σ. Arnold and Winther [2]
establish a FE space for the stress tensor σ with full symmetry. However there are
24 local degrees of freedom for a two dimensional problem and to our best knowledge
there are no better FE spaces in H(div, D) which are fully symmetric but with less
degrees of freedom. An alternative way to avoid difficulty from the symmetry of the
stress tensor is to consider the problem with weak symmetry. To solve this problem,
the PEERS element is developed by Arnold, Brezzi and Douglas [1] and the BDM
element is developed by Brezzi, Douglas and Marini [6]. More detailed analysis of
mixed FE for the elasticity problem can also be found in [29]. In this paper, we
use the PEERS element. We work with a two dimensional domain D but the three
dimensional case can be considered similarly.

In the two dimensional Lipschitz polyhedron domain D with plane sides, we define
the nested family {T l}∞l=0 of regular simplicial partition of D as in section 2.4. We
introduce the following spaces for two dimensional PEERS element method,
(3.10)

Mk,l := {v ∈ L2(D); v|T ∈ Pk(T ) ∀T ∈ T l},

Mk,l
0 := Mk,l ∩H1(D), Mk,l

0,0 := Mk,l ∩H1
0 (D),

RT lk := {v ∈ (Mk+1,l)2 ∩H(div, D); v|T =

(
p1
p2

)
+ p3

(
x1
x2

)
, p1, p2, p3 ∈ Pk(T )},

Bl
3 := {v ∈ M3,l

0 ; v(x) = 0on every edge of the triangulation}.

where Pk(T ) denotes the set of polynomials of degree k in simplex T ∈ T l. We define
the following nested multi-level family of spaces of the simplest PEERS element on
T l as

(3.11)

X l := [RT l0]
2 ⊕ [curl(Bl

3)]
2,

Al := [M0,l]2,

Bl := M1,l
0 .

Remark 3.7. The PEERS element is initially developed for two dimensional plane
elasticity problem in [1]. In this section, we present our theory in two dimensions.
However, the PEERS element could be extended to three dimensions easily with

X l := [RT l0]
3 ⊕ [curl(Bl

4)]
3, Al := [M0,l]3, Bl := [M1,l

0 ]3,

where

RT lk := {v ∈ (Mk+1,l)3∩H(div, D); v|T =

p1p2
p3

+p4

x1x2
x3

 , p1, p2, p3, p4 ∈ Pk(T )}.

The analysis in this section is valid for the three dimensional version of the PEERS
element. One can refer to example 1 in [3] for more details of the three dimensional
version of the PEERS element.
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With the FE approximation space defined, we consider the FE approximation of
the truncated problem in spaces X l, Al and Bl, which are subspaces of X, A and
B:

(3.12)


Seek σJ,l ∈ X l, uJ,l ∈ Al and ηJ,l ∈ Bl such that

aJ(z;σJ,l, τ l) + b′(τ l, (uJ,l, ηJ,l)) = 0 ∀τ l ∈ X l,

b′(σJ,l, (vl, ψl)) = −(f, vl) ∀vl ∈ Al, ∀ψl ∈ Bl,

where aJ(z;σJ,l, τ l) = (C−1
J (z)σJ,l, τ l). We denote by W l = {τ l ∈ X l : divτ l =

0, (as(τ l, ψl) = 0 ∀ψl ∈ Bl} the kernel space. With the coercivity of the bilinear
operator aJ on the kernel, we have the following inf-sup conditions in the approxi-
mation space.

Proposition 3.8. The bilinear operators aJ(z;wl, τ l) and b′(τ l, (vl, ψl)) satisfy the
following inf-sup conditions.

(1)

∃α(z) > 0, inf
wl∈W l

sup
τ l∈W l

aJ(z;wl, τ l)

‖wl‖Xl‖τ l‖Xl

≥ α(z),

(2)

∃β > 0, inf
vl∈Al

ψl∈Bl

sup
τ l∈Xl

b′(τ l, (vl, ψl))

‖τ l‖Xl(‖vl‖Al + ‖ψl‖Bl)
≥ β.

The constant α(z) is as in proposition 2.2. Proof of the second inf-sup condition
can be found in [1]. Applying lemma 2.44 from [15], we have the following estimate.

Lemma 3.9. Under the inf-sup condition from proposition 3.8, the solution
(σJ,l, uJ,l, ηJ,l) to problem (3.12) satisfies the following estimates

‖σJ − σJ,l‖X
≤ c1 inf

τ l∈Xl
‖σJ − τ l‖X + c2( inf

vl∈Al
‖uJ − vl‖A + inf

ψl∈Bl
‖ηJ − ψl‖B),

‖uJ − uJ,l‖A + ‖ηJ − ηJ,l‖B
≤ c3 inf

τ l∈Xl
‖σJ − τ l‖X + c4( inf

vl∈Al
‖uJ − vl‖A + inf

ψl∈Bl
‖ηJ − ψl‖B),

with c1 = (1 + ∥aJ∥
α(z) )(1 +

∥b∥
β ), c2 = ∥b∥

α(z) , c3 = c1
∥aJ∥
β , c4 = 1 + ∥b∥

β + c2
∥aJ∥
β where

‖aJ‖ = ‖aJ‖X,X and ‖b‖ = ‖b‖X,(A,B).
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With assumption 2.9 and remark 2.10, we have

‖σJ − σJ,l‖X

≤ C

1 + exp

c J∑
j=1

bj |zj |

(hl‖σJ‖H1 + hl‖f‖H1 + hl‖uJ‖H1 + hl‖ηJ‖H1

)

≤ C exp

c J∑
j=1

bj |zj |

1 +

J∑
j=1

b∗j |zj |

 2−l,

‖uJ − uJ,l‖A + ‖ηJ − ηJ,l‖B

≤ C

1 + exp

c J∑
j=1

bj |zj |

(hl‖σJ‖H1 + hl‖f‖H1 + hl‖uJ‖H1 + hl‖ηJ‖H1

)

≤ C exp

c J∑
j=1

bj |zj |

1 +

J∑
j=1

b∗j |zj |

 2−l.

Hence we have the following proposition by the triangle inequality.

Proposition 3.10. Consider the FE approximation of the truncated mixed problem,
under assumption 2.9. There is a constant C > 0 such that for z ∈ U the following
error bound holds

‖σ(·, z)− σJ,l(·, z)‖X ≤ C exp

c ∞∑
j=1

bj |zj |

∑
j>J

bj |zj |+

1 +
J∑
j=1

b∗j |zj |

 2−l

 ,

‖u(·, z)− uJ,l(·, z)‖A + ‖η(·, z)− ηJ,l(·, z)‖B

≤ C exp

c ∞∑
j=1

bj |zj |

∑
j>J

bj |zj |+

1 +
J∑
j=1

b∗j |zj |

 2−l

 .

We recall the definitions of GJ,l(z), ΦJ,l(z; δ) and γJ,l,δ in section 2.4. We have the
following result.

Theorem 3.11. Under assumption 2.1 and assumption 2.9, there exists a positive
constant C(δ) depending only on the data δ such that for every J and l

dHell(γ
δ, γJ,l,δ) ≤ C(δ)(J−q + 2−l).

The proof is similar to that of proposition 2.7.

4. Multilevel MCMC for Gaussian prior

We now consider the multi-level Markov Chain Monte Carlo (MLMCMC) for
sampling the posterior probability under Gaussian prior. We follow the MLM-
CMC method developed in [20]. We denote the solution of the forward problem as
s = (σ, u). We consider the MLMCMC approach for approximating the posterior
expectation of ℓ(s(·, z)), where ℓ is a bounded linear map on X×M . To balance the
contribution of the truncation error and the FE error in theorem 2.12 and theorem
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3.11, we choose J s.t. J−q = O(2−l), i.e. J = Jl = d2l/qe. Then we denote the FE
solution of the truncated problem as sl = (σJl,l, uJl,l). Similarly, for convenience,
we denote ΦJl,l as Φl and γJl,l,δ as γl. The MLMCMC sampling procedure for
Gaussian prior probability measure is developed in [20]. We recapitulate the details

in appendix B. The MLMCMC estimator EMLMCMC
L [ℓ(s)] of Eγδ [ℓ(s)] is

EMLMCMC
L (ℓ(s))

=

L∑
l=1

L′(l)∑
l′=1

[
Eγ

l

Mll′

[
All

′
1

]
+ Eγ

l−1

Mll′

[
All

′
2

]
+ Eγ

l

Mll′

[
Al3

]
· Eγ

l−1

Mll′

[
All

′
4 +All

′
8

]
+Eγ

l−1

Mll′

[
Al5

]
· Eγ

l

Mll′

[
All

′
6 +All

′
7

]]
+

L∑
l=1

[
Eγ

l

Ml0

[
Al01

]
+ Eγ

l−1

Ml0

[
Al02

]
+ Eγ

l

Ml0

[
Al3

]
· Eγ

l−1

Ml0

[
Al04 +Al08

]
+Eγ

l−1

Ml0

[
Al5

]
· Eγ

l

Ml0

[
Al06 +Al07

]]
+

L′(0)∑
l′=1

Eγ
0

M0l′

[
ℓ
(
sl

′ − sl
′−1
)]

+ Eγ
0

M00

[
ℓ
(
s0
)]

where

All
′

1 =
(
1− exp

(
Φl(z; δ)− Φl−1(z; δ)

))
Q(z)I l(z),

All
′

2 =
(
exp

(
Φl−1(z; δ)− Φl(z; δ)

)
− 1
)
Q(z)

(
1− I l(z)

)
,

Al3 =
(
exp

(
Φl(z, δ)− Φl−1(z, δ)

)
− 1
)
I l(z),

All
′

4 = Q(z)I l(z),

Al5 =
(
1− exp

(
Φl−1(z, δ)− Φl(z, δ)

))(
1− I l(z)

)
,

All
′

6 = exp
(
Φl(z, δ)− Φl−1(z, δ)

)
Q(z)I l(z),

All
′

7 = Q(z)
(
1− I l(z)

)
,

All
′

8 = exp
(
Φl−1(z, δ)− Φl(z, δ)

)
Q(z)

(
1− I l(z)

)
,

with Q(z) = ℓ(sl
′−sl′−1) when l′ ≥ 1 and Q(z) = ℓ(s0) when l′ = 0. The truncation

function is

I l(z) =

{
1 if Φl(z; δ)− Φl−1(z; δ) ≤ 0,

0 if Φl(z; δ)− Φl−1(z; δ) > 0.

Here Eγ
l

Mll′
denotes the MCMC sample average of the Markov chain generated by

MCMC sampling procedure with Mll′ samples, and with the acceptance probability

αl(z, z′) = 1 ∧ exp(Φl(z; δ)− Φl(z′; δ)), z, z′ ∈ U

for the independence sampler and the preconditioned Crank-Nicolson (pCN) sam-
pler [18]. Let EL denote the expectation with respect to the probability space of the
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Markov chains generated in the MLMCMC sampling process. With the following
sampling choices,

L′(l) := L− l, and Mll′ := (l + l′)a22(L−(l+l′)) for l ≥ 1, l′ ≥ 1

we have the following estimates for the error EL{|Eγδ [ℓ(s)] − EMLMCMC
L [ℓ(s)]|}

from [20]. The proof of these error estimates in the case of independence sampler

Table 1. Total MLMCMC error and total degrees of freedom with
different sample size choices for Gaussian prior

a Mll′ , l, l
′ > 1 Ml0 =M0l M00 Total error Total DOFs

0 22(L−(l+l′)) 22(L−l)/L2 22L/L4 O
(
L22−L

)
O(2dL)

2 (l + l′)2 22(L−(l+l′)) 22(L−l) 22L/L2 O
(
L logL2−L

)
O(L22dL)

3 (l + l′)3 22(L−(l+l′)) l22(L−l) 22L/L O
(
L1/22−L

)
O(L32dL)

4 (l + l′)4 22(L−(l+l′)) l222(L−l) 22L/
(
logL2

)
O
(
logL2−L

)
O(L42dL)

follows the same lines of [20]. For the pCN sampler, if we assume that spectral gap
results of Hairer et al. [18], the error estimates can be shown rigorously as in [20].

Remark 4.1. If the FE convergence rate is O(2−tl) for the FE mesh size O(2−l)
for 0 < t < 1 (e.g. when the solution to the forward equation only possesses the

H1+t(D) regularity), with the MCMC sample size Mll′ = (l+ l′)a22t(L−l−l
′), we get

the optimal convergence rate O(N−t/d) for the total number of degrees of freedom
N (with a possible logarithmic factor).

5. Numerical experiments

5.1. Linear elasticity problem in the Hellinger-Reissner mixed form. We
present numerical experiments that support the theoretical error estimate for the
MLMCMC method developed for the Bayesian inverse problem of the forward elas-
ticity equation in the Hellinger-Reissner mixed form. We restrict our consideration
to the periodic boundary condition as this allows for a reference solution to be com-
puted highly accurately with the spectral collocation method [19]. The reference
posterior expectation is computed by the Gauss-Hermite quadrature method with
128 quadrature points. We consider the case where the Lamé parameters depend
on one random variable where we can compute a highly accurate reference posterior
expectation for the purpose of comparison. The MLMCMC method works equally
in the general case but a highly accurate reference posterior expectation cannot be
obtained by Gaussian quadratures. We first consider the Hellinger-Reissner mixed
forward problem in the (0, 1)× (0, 1) square domain D in two dimensions with the
periodic boundary condition,

(5.1)

{
(C−1σ, τ)− (τ,∇(s)u) = 0 ∀τ ∈ [L2(D)]2×2,

−(σ,∇(s)v) = −(f, v) ∀v ∈ [H1(D)]2,

where, with x ∈ D, the forcing f is given as{
f1 = 200 sin(2πx1),

f2 = 200 sin(2πx2).
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The random Lamé parameters depend on a random variable z ∼ N(0, 1) as such,

(5.2)

{
µ = exp(z cos(2πx1) sin(2πx2)),

λ = exp(z sin(2πx1) cos(2πx2)).

We consider the following observation functional,

(5.3) G(z) =
∫
D
(x

1
2
1 σ22 + x

1
2
2 σ11)dx.

The quantity of interest is,

(5.4) ℓ(u(z)) =

∫
D

(
x

1
2
1

∂u1
∂x1

+ x
1
2
2

∂u2
∂x2

)
dx.

We assume that the random noise is distributed according to N(0, 1). In the MLM-
CMC approximation, we solve the linear system by GMRES method with Schur
complement preconditioner. A random realization of the forward equation is gen-
erated. With an additional randomly generated Gaussian noise we have the obser-
vation δ = −0.9676561. We ran the MLMCMC with independent sampler for each
Markov chain. The average absolute errors of 80 runs of MLMCMC is plotted in
figure 1 and figure 2 against the finest mesh size hL with the constant a = 2, 3 in
Table 1. The theoretical convergence rate is plotted as a reference to the numerical
convergence curve. We see that the error of the MLMCMC approximation behaves
as numerically predicted.
We also present the CPU time for these experiments in Table 2. We record the

Figure 1. MLMCMC error for the Hellinger-Reissner mixed form, a=2

CPU time for MLMCMC with sample numbers from Table 1 with a = 2 and a = 3.
To demonstrate the optimal complexity of the MLMCMC sampling method, we
compare the CPU time to that required by the plain MCMC method where the for-
ward equation is solved with high resolution level O(2−L) for every sample. WithM

samples, the MCMC sample error is O(M−1/2) so to balance the MCMC sampling
error and the FE O(2−L) error, we choose M = 22L in this experiment (see, [22]).
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Figure 2. MLMCMC error for the Hellinger-Reissner mixed form, a=3

The CPU time presented in table 2 is the average CPU time of 5 independent runs.
The experiments are performed on a computer with Intel Xeon E5-2620 CPU. The
computational advantage of the MLMCMC method over the plain MCMC is clear.
The CPU time for the plain MCMC grows so fast that it become intractable rather
quickly, while the MLMCMC method’s CPU time grows much slower for both cases
with a = 2 and a = 3.
Next we present the results from MLMCMC with the preconditioned Crank-

Table 2. CPU time of MLMCMC and plain MCMC for problems
in mixed form

L 1 2 3 4 5 6
MLMCMC CPU time for a = 2 0.022 0.089 0.489 3.26 25.3 202
MLMCMC CPU time for a = 3 0.022 0.131 0.949 8.83 85.4 908

plain MCMC CPU time 0.013 0.099 1.77 41.8 1180 36000

Nicolson (pCN) sampler. Independence sampler is known for low acceptance rate
in practice. In the following numerical experiment, independence sampler has a low
acceptance rate which is less than 10%. Hence we adopted the pCN sampler for
each MLMCMC chain, where the proposal ω(k) is generated by

ω(k) =
√
1− β2z(k) + βξ,

with ξ ∼ N(0, 1). We choose β = 0.3. The acceptance rate of all chains in MLM-
CMC is raised to 40-50%. We solve problem (5.1) with forcing,{

f1 = 1000 sin(2πx1),

f2 = 1000 sin(2πx2).

The random Lamé parameters which depend on random variable z ∼ N(0, 1) are
defined as in equation (5.2). We consider the same observation functional (5.3) and
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quantity of interest (5.4). We ran the MLMCMC with pCN sampler for each Markov
chain. The average MLMCMC absolute errors of 80 independent runs are plotted
in figure 3 and figure 4 against the finest mesh size hL with the constant a = 2, 3 in
Table 1. The theoretical convergence rate is plotted as a reference to the numerical
convergence curve. We see that the error of the MLMCMC approximation behaves
as numerically predicted.
We now present a numerical experiment for the case where the forcing f depends on

Figure 3. MLMCMC error for the Hellinger-Reissner mixed form
by pCN sampler, a=2

Figure 4. MLMCMC error for the Hellinger-Reissner mixed form
by pCN sampler, a=3

25 random variables. We consider the same problem and forcing as in equation (5.1).
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Let {ϕn(t)}5n=1 = {1, sin(2πt), cos(2πt), sin(4πt), cos(4πt)}, we have the following
expansion of µ and λ,

(5.5)

µ = exp
(∑5

i=1

∑5
j=1 cijzijϕi(x)ϕj(y)

)
,

λ = exp
(∑5

i=1

∑5
j=1 cijzijϕj(x)ϕi(y)

)
,

where cij are constants which represent the decaying rate of the power of −1.5
for the 25 coefficients as listed in table 3; and zij ∼ N(0, 1). We consider the
observation and quantities of interest as in equation (5.3) and equation (5.4). Due
to the high dimensionality of the probability space, we are not able to get a highly
accurate reference by quadrature rules for integrals. To obtain a reference value
for the posterior expectation, we average several plain MCMC runs with a large
number of samples, where the forward equation is solved with a highly accurate
spectral collocation solver. The reference value is -0.957102, with a noisy observation
δ = 0.592839. With the reference value mentioned above, we perform MLMCMC
for L = 1 to 6. The average absolute errors of 16 MLMCMC runs are listed in table
4. These indicate a clear trend of convergence which agrees with our theory.

Table 3. Constant cij

i=1 i=2 i=3 i=4 i=5
j=1 1−1.5 2−1.5 4−1.5 7−1.5 11−1.5

j=2 3−1.5 5−1.5 8−1.5 12−1.5 16−1.5

j=3 6−1.5 9−1.5 13−1.5 17−1.5 20−1.5

j=4 10−1.5 14−1.5 18−1.5 21−1.5 23−1.5

j=5 15−1.5 19−1.5 22−1.5 24−1.5 25−1.5

Table 4. MLMCMC error for the mixed forward problem with 25
random variables

L 1 2 3 4 5 6
error for a = 2 0.4317 0.6370 0.4503 0.2040 0.2010 0.0891
error for a = 3 0.4317 0.3669 0.1666 0.1198 0.0708 0.0372

5.2. Linear elasticity problem in the Hellinger-Reissner dual mixed form.
Next we present numerical experiments that support the theoretical error estimates
for Bayesian inverse problem of the Hellinger-Reissner dual mixed form of the elas-
ticity problem with Gaussian prior. We consider the Hellinger-Reissner dual mixed
forward problem in the (0, 1)× (0, 1) square domain D in two dimensions with the
periodic boundary condition,

(5.6)


(C−1σ, τ) + (∇ · τ, u) + (as(τ), η) = 0 ∀τ ∈ H(div, D)

(∇ · σ, v) = −(f, v) ∀v ∈ [L2(D)]2

(as(σ), ψ) = 0 ∀ψ ∈ L2(D).

With x = (x1, x2) ∈ D, the forcing f is given as
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{
f1 = 200 sin(2πx1),

f2 = 200 sin(2πx2).

The random Lamé parameters depend on a random variable z ∼ N(0, 1) as,

(5.7)

{
µ = exp(z cos(2πx1) sin(2πx2)),

λ = exp(z sin(2πx1) cos(2πx2)).

We consider the following observation functional,

(5.8) G(z) =
∫
D
(x

1
2
1 σ22 + x

1
2
2 σ11)dx.

The quantity of interest is,

(5.9) ℓ(u(z)) = 100

∫
D

(
x

1
2
1 u1 + x

1
2
2 u2

)
dx.

We assume that the random noise is distributed according to N(0, 1). A random
sample of z and a Gaussian noise is generated by random generator. We get the
observation δ = −1.374767. In the MLMCMC experiment, the solution of the for-
ward problem is approximated with PEERS element. We solve the linear system
with GMRES method with Schur complement preconditioner. The MLMCMC ap-
proximation experiment is ran with independent sampler for each Markov chain.
The average MLMCMC errors of 80 independent runs are plotted in figure 5 and
figure 6 against the finest mesh size hL with the constant a = 2, 3 in table 1. The
theoretical convergence rate is plotted as a reference to the numerical convergence
curve. We see that the error of the MLMCMC approximation behaves as numeri-
cally predicted.

Figure 5. MLMCMC error for the Hellinger-Reissner dual mixed
form, a=2
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Figure 6. MLMCMC error for the Hellinger-Reissner dual mixed
form, a=3

We present the CPU time for the numerical experiments of the dual mixed form
in table 5. CPU time for MLMCMC with sample number from table 1 with a = 2
and a = 3 is presented. CPU time for plain MCMC with sample number of 22L is
also included. From the table, the MLMCMC clearly outperforms plain MCMC in
terms of computational efficiency.
Next, we present the results from MLMCMC approximation where each Markov

Table 5. CPU time of MLMCMC and plain MCMC for problems
in dual mixed form

L 1 2 3 4 5 6
MLMCMC CPU time for a = 2 0.096 0.552 2.94 21.0 149 1110
MLMCMC CPU time for a = 3 0.105 0.781 5.90 49.9 494 4600

plain MCMC CPU time 0.076 0.629 10.5 237 6550 194000

chain is generated with pCN sampler. We choose β = 0.5 and the acceptance rate
of all chains in MLMCMC is raised to 40-50%. With the same setting, we find that
the independence sampler has acceptance rate less than 10%. We solve problem
(5.6) with the forcing, {

f1 = 500 sin(2πx1),

f2 = 500 cos(2πx2).

The random Lamé parameters depend on a random variable z ∼ N(0, 1) as in equa-
tion (5.7). We consider the same observation functional (5.8) and the quantity of
interest (5.9). We run the MLMCMC with pCN sampler for each Markov chain

with sample sizes Mll′ = (l + l′)a22(L−(l+l′)) from table 1 for a = 2, 3. The average
MLMCMC absolute errors of 80 independent runs are plotted in figure 7 and fig-
ure 8 against the finest mesh size hL. The theoretical convergence rate is plotted
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as a reference to the numerical convergence curve. We see that the error of the
MLMCMC approximation behaves as numerically predicted.

Figure 7. MLMCMC error for the Hellinger-Reissner dual mixed
form by pCN sampler, a=2

Figure 8. MLMCMC error for the Hellinger-Reissner dual mixed
form by pCN sampler, a=3
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Appendix A

Before we present the proof for proposition 2.5 and proposition 2.7, we note the
following inequalities whose proof can be found in [21]. For s > 0, the following
inequalities hold

(5.10)

∫ ∞

−∞
exp

(
−t2/2 + |t|s

) dt√
2π

≤ c exp
(
s2/2

)
exp(s

√
2/π),∫ ∞

−∞
t2 exp

(
−t2/2 + |t|s

) dt√
2π

≤ c exp
(
s2/2

) (
1 + s2

)
,∫ ∞

−∞
|t| exp

(
−t2/2 + |t|s

) dt√
2π

≤ c exp
(
s2/2

)
(1 + s).

Proof for proposition 2.5. The normalizing constant in (2.17) is

(5.11) Z(δ) =

∫
U
exp(−Φ(z; δ))dγ(z).

We first show that for each r > 0, there is a positive constant K(r) such that
Z(δ) ≥ K(r) when |δ|Σ ≤ r. We note that for given data δ,

∀z ∈ U : |Φ(z; δ)| ≤ 1

2
(|δ|Σ + |G(z)|Σ)2.

From (5.10), we have∫
U
Φ(z; δ)dγ(z)

≤ C

|δ|2Σ +

∫
U
|δ|Σ exp

 ∞∑
j=1

bj |zj |

 dγ(z) +

∫
U
exp

2

∞∑
j=1

bj |zj |

 dγ(z)


< Λ(r),

where Λ(r) is a constant depending on r. For each positive constant Λ, there exists
c > 0 such that γ(z ∈ U : Φ(z, δ) > c) < Λ/c. Thus the measure of the set of all
z ∈ U such that Φ(z, δ) ≤ c is larger than 1− Λ/c. It follows that when |δ|Σ ≤ r,

(5.12) Z(δ) > (1− Λ/c) exp(−c) =: K(r) > 0.

Using the inequality | exp(x) − exp(y)| ≤ |x − y|(exp(x) + exp(y)) for all x and y,
we find

(5.13) |Z(δ)− Z(δ′)| ≤
∫
U
|Φ(z; δ)− Φ(z; δ′)|dγ(z).

We note that for every z ∈ U ,

|Φ(z; δ)− Φ(z; δ′)| ≤ 1

2

∣∣∣〈Σ−1/2(δ + δ′ − 2G(z)),Σ−1/2(δ − δ′)
〉∣∣∣

≤ 1

2
(|δ|Σ + |δ′|Σ + 2|G|Σ)|δ − δ′|Σ

≤ c

(
r +

dλmax(z) + 2µmax(z)

µmin(z)

)
|δ − δ′|Σ.
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Let G(r, z) = c
(
r + dλmax(z)+2µmax(z)

µmin(z)

)
, we have

(5.14) |Φ(z; δ)− Φ(z; δ)| ≤ G(r, z)|δ − δ′|Σ.

Next we write the Hellinger distance as
(5.15)

2dHell(γ
δ, γδ

′
)2 =

∫
U
(Z(δ)−1/2 exp(

1

2
Φ(z; δ))− Z(δ′)−1/2 exp(

1

2
Φ(z; δ′)))2dγ(z)

≤ I1 + I2,

where

I1 =
2

Z(δ)

∫
U
(exp(−1

2
Φ(z; δ))− exp(−1

2
Φ(z; δ′)))2dγ(z)

I2 = 2|Z(δ)−1/2 − Z(δ′)−1/2|2
∫
U
exp(−Φ(z; δ′))dγ(z).

With inequalities (5.12), (5.13) and (5.14), we have

I1 ≤ K(r)

∫
U
|Φ(z; δ)− Φ(z; δ′)|2dγ(z)

≤ K(r)

∫
U
(G(r, z))2dγ(z)|δ − δ′|2Σ ≤ K(r)|δ − δ′|2Σ,

Similarly, we have the same bound for I2. □

Proof for proposition 2.7. Here write the Hellinger distance as in (5.15). We first
consider the bound for I1, given data δ, for every z ∈ U∣∣∣∣exp(−1

2
Φ(z; δ))− exp(−1

2
ΦJ(z; δ))

∣∣∣∣ ≤ 1

2
|Φ(z; δ)− ΦJ(z; δ)|

≤ C(2|δ|+ |G(z)|+ |GJ(z)|)|G(z)− GJ(z)|

≤ C(δ)

∑
j>J

bj |zj |

 exp

c ∞∑
j=1

bj |zj |


Thus with lemma 5.10, we have

I1 ≤ C(δ)

∫
U
exp

c ∞∑
j=1

|zj |bj

∑
j>J

|zj |bj

2

dγ(z).
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Consider the right hand size of the equation, we have

∫
U
exp

c ∞∑
j=1

|zj |bj

∑
j>J

|zj |bj

2

dγ(z)

=

∫
U
exp

c ∞∑
j=1

|zj |bj

∑
i,j>J

bibj |zi||zj |

 dγ(z)

≤
∑
i>J

b2i

∫ ∞

−∞
exp(cbi|zi|)z2i dγ1(zi)

∞∏
k=1
k ̸=i

∫ ∞

−∞
exp(cbk|zk|)dγ1(zk)

+
∑
i,j>J

bibj

∫ ∞

−∞
exp (cbi |zi|) |zi| dγ1 (zi) ·

∫ ∞

−∞
exp (cbj |zj |) |zj | dγ1 (zj)

·
∞∏
k=1
k ̸=i,j

∫ ∞

−∞
exp (cbk |zk|) dγ1 (zk) .

With the inequalities from (5.10), we have

(5.16)

∫
U
exp

c ∞∑
j=1

bj |zj |

∑
j>J

bj |zj |

2

dγ(z)

≤C
∑
i>J

b2i
(
1 + b2i

)
exp

( ∞∑
k=1

c2b2k/2 + cbk
√
2/π

)

+ C
∑
i,j>1

bibj (1 + bi) (1 + bj) exp

( ∞∑
k=1

c2b2k/2 + cbk
√

2/π

)

≤C

∑
j>J

bi

2

≤ CJ−2q.

Conclude the estimation for both I1 and I2, we have

dHell(γ
δ, γJ,δ) ≤ C(δ)J−q.

□

Appendix B

For completeness, we present the derivation of MLMCMC for the Gaussian prior
in [20] in this appendix. We follow the setting in section 4. There is a positive
constant C independent of L such that

(5.17) |Eγδ [ℓ(s)]− Eγ
δ
[ℓ(sL)]| ≤ C2−L.
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Before we derive the MLMCMC, we introduce the following indication function to
deal with the unboundedness of exp(Φl(z; δ)− Φl−1(z; δ)). We denote by

(5.18) I l(z) =

{
1 if Φl(z; δ)− Φl−1(z; δ) ≤ 0,

0 if Φl(z; δ)− Φl−1(z; δ) > 0.

Let Q(z) be the quantity of interest. Let Z l =
∫
U exp(−Φl(z; δ))dγ(z). For l ≥ 1,

we have

Eγ
l
[Q(z)]− Eγ

l−1
[Q(z)]

=
1

Z l

∫
U
exp

(
−Φl(z; δ)

)
Q(z)I l(z)dγ(z)

− 1

Z l−1

∫
U
exp

(
−Φl−1(z; δ)

)
Q(z)I l(z)dγ(z)

+
1

Z l

∫
U
exp

(
−Φl(z; δ)

)
Q(z)

(
1− I l(z)

)
dγ(z)

− 1

Z l−1

∫
U
exp

(
−Φl−1(z; δ)

)
Q(z)

(
1− I l(z)

)
dγ(z)

=
1

Z l

∫
U

(
exp

(
−Φl(z; δ)

)
− exp

(
−Φl−1(z; δ)

))
Q(z)I l(z)dγ(z)

+

(
1

Z l
− 1

Z l−1

)∫
U
exp

(
−Φl−1(z; δ)

)
Q(z)I l(z)dγ(z)

− 1

Z l−1

∫
U

(
exp

(
−Φl−1(z; δ)

)
− exp

(
−Φl(z; δ)

))
Q(z)

(
1− I l(z)

)
dγ(z)

+

(
1

Z l
− 1

Z l−1

)∫
U
exp

(
−Φl(z; δ)

)
Q(z)

(
1− I l(z)

)
dγ(z).

Let Al1 =
(
1− exp

(
Φl(z; δ)− Φl−1(z; δ)

))
Q(z)I l(z). We have

1

Z l

∫
U

(
exp

(
−Φl(z; δ)

)
− exp

(
−Φl−1(z; δ)

))
Q(z)I l(z)dγ(z)

= Eγ
l
[(

1− exp
(
Φl(z; δ)− Φl−1(z; δ)

)
Q(z)I l(z)

)]
= Eγ

l
[
Al1

]
.

Let Al2 =
(
exp

(
Φl−1(z; δ)− Φl(z; δ)

)
− 1
)
Q(z)

(
1− I l(z)

)
. We write

− 1

Z l−1

∫
U

(
exp

(
−Φl−1(z; δ)

)
− exp

(
−Φl(z; δ)

))
Q(z)

(
1− I l(z)

)
dγ(z)

= Eγ
l−1
[(

exp
(
Φl−1(z; δ)− Φl(z; δ)

)
− 1
)
Q(z)

(
1− I l(z)

)]
= Eγ

l−1
[
Al2

]
.
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We note that

1

Z l
− 1

Z l−1

=
1

Z lZ l−1

∫
U

(
exp

(
−Φl−1(z; δ)

)
− exp

(
−Φl(z; δ)

))(
I l(z) + 1− I l(z)

)
dγ(z)

=
1

Z lZ l−1

∫
U
exp

(
−Φl(z; δ)

)(
exp

(
Φl(z; δ)− Φl−1(z; δ)

)
− 1
)
I l(z)dγ(z)

+
1

Z lZ l−1

∫
U
exp

(
−Φl−1(z; δ)

)(
1− exp

(
Φl−1(z; δ)− Φl(z; δ)

))(
1− I l(z)

)
dγ(z)

=
1

Z l−1
Eγ

l
[(

exp
(
Φl(z; δ)− Φl−1(z; δ)

)
− 1
)
I l(z)

]
+

+
1

Z l
Eγ

l−1
[(

1− exp
(
Φl−1(z; δ)− Φl(z; δ)

))(
1− I l(z)

)]
.

Thus

(
1

Z l
− 1

Z l−1

)∫
U
exp

(
−Φl−1(z; δ)

)
Q(z)I l(z)dγ(z)

=Eγ
l
[(

exp
(
Φl(z; δ)− Φl−1(z; δ)

)
− 1
)
I l(z)

]
·

1

Z l−1

∫
U
exp

(
−Φl−1(z; δ)

)
Q(z)I l(z)dγ(z)

+ Eγ
l−1
[(

1− exp
(
Φl−1(z; δ)− Φl(z; δ)

))(
1− I l(z)

)]
·

1

Z l

∫
U
exp

(
−Φl(z; δ)

)
exp

(
Φl(z; δ)− Φl−1(z; δ)

)
Q(z)I l(z)dγ(z)

=Eγ
l
[
Al3

]
Eγ

l−1
[
Al4

]
+ Eγ−1

[
Al5

]
Eγ

l
[
Al6

]
,

where

Al3 =
(
exp

(
Φl(z; δ)− Φl−1(z; δ)

)
− 1
)
I l(z)

Al4 = Q(z)I l(z)

Al5 =
(
1− exp

(
Φl−1(z; δ)− Φl(z; δ)

))(
1− I l(z)

)
Al6 = exp

(
Φl(z; δ)− Φl−1(z; δ)

)
Q(z)I l(z).

Similarly, defining for l ≥ 1

Al7 = Q(z)
(
1− I l(z)

)
and Al8 = exp

(
Φl−1(z; δ)− Φl(z; δ)

)
Q(z)

(
1− I l(z)

)
,
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we have

(
1

Z l
− 1

Z l−1

)∫
U
exp

(
−Φl(z; δ)

)
Q(z)

(
1− I l(z)

)
dγ(z)

=Eγ
l−1
[(

1− exp
(
Φl−1(z; δ)− Φl(z; δ)

))(
1− I l(z)

)]
.

1

Z l

∫
U
exp

(
−Φl(z; δ)

)
Q(z)

(
1− I l(z)

)
dγ(z)

+ Eγ
l
[(

exp
(
Φl(z; δ)− Φl−1(z; δ)

)
− 1
)
I l(z)

]
.

1

Z l−1

∫
U
exp

(
−Φl−1(z; δ)

)
exp

(
Φl−1(z; δ)− Φl(z; δ)

)
Q(z)

(
1− I l(z)

)
dγ(z)

=Eγ
l−1
[
Al5

]
Eγ

l
[
Al7

]
+ Eγ

l
[
Al3

]
Eγ

l−1
[
Al8

]
.

We conclude that, for every l ≥ 1,

Eγ
l
[Q(z)]− Eγ

l−1
[Q(z)]

=Eγ
l
[
Al1

]
+ Eγ

l−1
[
Al2

]
+ Eγ

l
[
Al3

]
· Eγl−1

[
Al4 +Al8

]
+ Eγ

l−1
[
Al5

]
· Eγl

[
Al6 +Al7

]
.

When Q = ℓ(sl
′ − sl

′−1), we denote Al1 as All
′

1 , A
l
2 as All

′
2 , A

l
4 as All

′
4 , A

l
6 as All

′
6 , A

l
7

as All
′

7 and Al8 as All
′

8 . In the case of Q = ℓ
(
s0
)
, we denote Al1 as Al01 , A

l
2 as Al02 , A

l
4

as Al04 , A
l
6 as Al06 , A

l
7 as Al07 and Al8 as Al08 .

We therefore approximate EγL [ℓ(s(z))] by

L∑
l=1

L′(l)∑
l′=1

[
Eγ

l
[
All

′
1

]
+ Eγ

l−1
[
All

′
2

]
+ Eγ

l
[
Al3

]
· Eγl−1

[
All

′
4 +All

′
8

]
+Eγ

l−1
[
Al5

]
· Eγl

[
All

′
6 +All

′
7

]]
+

L∑
l=1

[
Eγ

l
[
Al01

]
+ Eγ

l−1
[
Al02

]
+ Eγ

l
[
Al3

]
· Eγl−1

[
Al04 +Al08

]
+Eγ

l−1
[
Al5

]
· Eγl

[
Al06 +Al07

]]
+

L′(0)∑
l′=1

Eγ
0
[
ℓ
(
sl

′ − sl
′−1
)]

+ Eγ
0 [
ℓ
(
s0
)]
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The Multilevel Markov Chain Monte Carlo estimator is now defined by replacing
the expectations in the preceding expression by finite sample MCMC averages, i.e.

EMLMCMC
L (ℓ(s))

=

L∑
l=1

L′(l)∑
l′=1

[
Eγ

l

Mll′

[
All

′
1

]
+ Eγ

l−1

Mll′

[
All

′
2

]
+ Eγ

l

Mll′

[
Al3

]
· Eγ

l−1

Mll′

[
All

′
4 +All

′
8

]
+Eγ

l−1

Mll′

[
Al5

]
· Eγ

l

Mll′

[
All

′
6 +All

′
7

]]
+

L∑
l=1

[
Eγ

l

Ml0

[
Al01

]
+ Eγ

l−1

Ml0

[
Al02

]
+ Eγ

l

Ml0

[
Al3

]
· Eγ

l−1

Ml0

[
Al04 +Al08

]
+Eγ

l−1

Ml0

[
Al5

]
· Eγ

l

Ml0

[
Al06 +Al07

]]
+

L′(0)∑
l′=1

Eγ
0

M0l′

[
ℓ
(
sl

′ − sl
′−1
)]

+ Eγ
0

M00

[
ℓ
(
s0
)]

where Eγ
l

Mll′
denotes the Mll′ sample average of the MCMC chain. As the FE error

estimate of the forward equation is Gaussian integrable, we derive the same error
estimate for the MLMCMC estimator as in Table 1, following the procedure in [20].
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