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enlarged network can be reduced to the reference network in at least rθ different
ways, where θ is the width of original network.

Therefore, if we can compute (globally) optimal selector variables, at an r-fold
increased cost of the larger relaxed optimization problem, we may expect a mini-
mizer comparable to the best of rθ numerical optima from random initializations
of the reference problem. This would allow us to explore an exponential number
of initializations for a non-convex optimization problem in linear time. However
due to this “boosting” it is not at all clear if we can indeed find sufficiently good
optimizers of the selector. Although this paper does not provide an answer for neu-
ral network training, we show that the argument does succeed for other severely
non-convex problems from compressed sensing, where we currently have a richer
theoretical background.

In compressed sensing, we search for the sparsest solution of an under-determined
linear system, i.e. for a measurement matrix A P RmˆN and measurements y P Rm,
we are interested in the solution of the optimization problem

(1.1) min
xPRN

}x}0, s.t. Ax “ y,

where the ℓ0-norm measures the number of non-zero entries. Since this problem is
computationally difficult, it is typically replaced by a ℓp-minimization

(1.2) min
xPRN

}x}pp, s.t. Ax “ y,

with 0 ă p ď 1. The most common choice is p “ 1, for which the optimization
problem is convex and the restricted isometry property (RIP) or similar conditions
on the matrix A guarantee that the solutions of the problems (1.1) and (1.2) coin-
cide, see e.g. [8,9,18,23,32]. Nonetheless, finding sparse solutions is also of interest
in many applications where the RIP is not available. For p ă 1, the ℓp norm re-
sembles the ℓ0 norm more closely and one may expect better sparse recovery results
with less assumptions on the matrix A. Such results have been reported by several
authors [10, 11,22,31,45,49].

For p strictly smaller than one, the optimization problem (1.2) is no longer convex
making its optimization considerably more difficult. In fact, in the worst case the
problem is NP-hard [24, 37]. Nonetheless, there are several iterative algorithms
[10, 12, 16, 22, 33, 53], typically variations of reweighted least squares methods, that
show promising performance on these problems. Due to the non-convex nature of
the problem, the corresponding analysis requires additional assumptions that are
hard to validate practically to provide convergence guarantees.

We analyze the “boosting” strategy for a class of simplified discrete non-convex
compressed sensing problems, which are still NP -hard in general. The main result
demonstrates that we can achieves the rθ fold increased chance to find global optima
by solving a convex optimization problem of size rθ, as described in the motivation
above. Contrary to convex compressed sensing, we only require relatively mild
assumptions on the measurement matrix A, which are considerably weaker than
the usual RIP .

The presented method in itself is not immediately practical, but merely seeks
some insight into highly non-convex minimization problems, for which provably
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tractable optimization methods are still elusive. Nonetheless, the described re-
laxation can be used in combination with reweighted least squares methods and
other optimizers for non-convex compressed sensing. Alternatively, the follow up
paper [52], uses the relaxation argument in combination with a transfer learning
argument to obtain some provable efficient algorithms for non-convex compressed
sensing.

The paper is organized as follows. In Section 2, we state the generic relaxation
method, its application to both compressed sensing and neural network training and
provide some estimates of potential success probabilities. In Section 3, we consider
the relaxation method for compressed sensing more carefully and prove the main
results of the paper.

2. A Relaxation Method

In Section 2.1 and 2.2, we describe a simple relaxation method and in Section
2.3 a variant with added structure. A discussion of the optimization problems and
success probabilities is given in Sections 2.4 and 2.5, respectively.

2.1. Simple Relaxation. We consider the optimization problem

(2.1) min
xPRN

gpxq, s.t. hpxq “ 0,

with objective g and constraint h and solve it with a local search method, e.g. gra-
dient descent or variants thereof for neural networks or reweighted least squares for
compressed sensing. Since we are particularly interested in non-convex problems,
depending on the initial value, this may or may not result in a satisfactory min-
imizer. Probably the simplest idea to enhance our chance of success is to repeat
this optimization for multiple initial values, say xk, k “ 1, . . . , r resulting in local
(numerical) optima x̄k from which we select the best one

(2.2) x “ argmin
k“1,...,r

gpx̄kq.

For simplicity, we drop the equality constraint during this motivation, but all argu-
ments work with it unchanged. In order to relax this problem to a continuous one,
note that with standard unit basis vectors ek P Rr and any splitting gpxq “ ℓpfpxqq,
we can equivalently minimize

min
zPe1,...,er

ℓ

«

r
ÿ

k“1

zkfpx̄kq

ff

.

The vector z serves as a “selector” and picks one guess fpx̄kq and the split of the
objective g into the two components ℓ and f allows some flexibility in the placement
of the selector. In hope to simplify the problem, we remove the discrete constraint
z P e1, . . . , er in favor of a continuous z P Rr and obtain the relaxed problem

(2.3) min
zPRr

ℓ

«

r
ÿ

k“1

zkfpx̄kq

ff

.

Similar relaxation strategies are common for many optimization problems, see e.g.
[7, 38] in general, [15] for integer programming or [51] for optimal transport. Since
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the relaxed problem allows a larger choice of selectors z, its minimum is at least as
small as the un-relaxed one

min
zPRr

ℓ

«

r
ÿ

k“1

zkfpx̄kq

ff

ď min
k“1,...,r

ℓrfpx̄kqs.

As a last step, we reintroduce the optimization of the x variable and obtain

(2.4) min
zPRr

x1,...,xrPRN

ℓ

«

r
ÿ

k“1

zkfpxkq

ff

.

Note that depending on the application, we may be interested in two different
quantities: The first one is the smallest possible value of the objective, e.g. in the
neural network Example 2.1. Alternatively, for some applications one can show that
the optimal selectors z are of the original form z P e1, . . . , er, although optimized
over all of Rr. That allows us to recover the optimal x, as e.g. in the main results
of this paper in Section 3. A more through discussion of the relaxed optimization
problem is given in Section 2.4, but first we consider a variant with some additional
structure.

2.2. Interplay of Two Layers. We apply the relaxation strategy to the optimiza-
tion of weights X P Rθˆn in one layer of a neural network

(2.5) min
X

lossry, g ˝ ReLUrXhss,

with hidden layer h P Rn, downstream network g : Rθ Ñ Rd and data y P Rd. Note
that X are weights, not the network input to be compliant with the compressed
sensing notation later. For simplicity, we ignore the optimization of all other layers,
but it can easily be added to the final problem at the end of this section. Typi-
cally g is a highly non-convex function, which can render this optimization problem
difficult. In this case, we may use the relaxation strategy from the last section by
picking the best out of multiple initial guesses Xk P Rθˆn to arrive at

min
zPe1,...,er

loss

«

y, g ˝ ReLU

«

r
ÿ

k“1

zk b I ReLUpXkhq

ffff

,

where we have used that ReLU ˝ReLU “ ReLU and ignored the optimization of Xk

for the time being. However, the structure of the problem allows us to explore much
bigger search spaces. For example, for each component i, or neuron i, that is fed
into g, we can choose a different combination of the initial components ReLUpXkhqi,
k “ 1, . . . , r by

min
rz1,...zrsPt0,1uθˆr

}rz1,...zrs}8“1

loss

«

y, g ˝ ReLU

«

r
ÿ

k“1

diagpzkqReLUpXkhq

ffff

,

where we optimize over all matrices rz1, . . . , zrs whose rows have exactly one non-
zero entry with value 1. The discrete search space has exponential rθ possible
combinations and is therefore untractable. We address the problem by relaxing
rz1 b I, . . . , zr b Is for the first problem or rdiagpz1q, . . . , diagpzkqs P t0, 1uθˆrθ for
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the second to an arbitrary matrix Z “ rZ1, . . . , Zrs P Rθˆrθ. For both of the above
discrete optimization problems, this yields

(2.6) min
Z,X

lossry, g ˝ ReLUrZ ReLUpXhqs,

where we have reintroduced the optimization of X “ rX1, . . . , Xrs
T and now have a

continuous search space of size rθ2 ` rθn, which can easily be handled by gradient
descent.

Note in particular, that the latter optimization problem is a standard neural net-
work, now with a wider layer for X and one additional layer for Z. This raises the
following question: If the relaxed problem indeed finds a better optimum than the
two discrete problems, is should also be better than optimizing the original network
(2.5) with an exponential number of initial guesses. This would provide some ad-
ditional support to the empirical observation that deeper and wider networks often
train better.

2.3. Block Relaxation. The relaxation strategy from the last section is not con-
fined to neural networks and can easily be applied to other problems as well. To
this end, we assume that the optimization problem minx gpxq from (2.1) can be split
into the block structure

(2.7) min
x1,...,xθ

ℓ
”

f1px1q, . . . , f θpxθq
ı

,

with x “ rx1, . . . , xθs and each block f lpxlq only depending on xl and not any
other xj with j ‰ l. The following two examples describe an application to neural
networks and compressed sensing.

Example 2.1. Denoting the rows of X as Xl,¨, the neural network optimization
(2.5) is a special case with

xl “ Xl,¨

f lpxq “ ReLUpx ¨ hq

ℓp¨q “ lossry, gp¨qs.

Example 2.2. For 0 ă p ď 1, matrix A P RmˆN and vector y P Rm consider the
ℓp-minimization

min
xPRN

}x}pp, s.t. Ax “ y.

If we split x into blocks x “ rx1, . . . xθs with xl P Rn and nθ “ N and define

f lpxlq “ }xl}pp, ℓpf1, . . . , f θq “

θ
ÿ

l“1

f l

this problem fits into the general structure (2.7). The additional constraint hpxq “

Ax´y “ 0, can easily be included in the relaxation argument and will be considered
more carefully in Section 3.1 below.

Back to the general problem (2.7), in order to exploit the extra block structure,
we use the same relaxation argument as before. We optimize r times, typically with
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different initial values rx1k, . . . , x
θ
ks to find corresponding local minima rx̄1k, . . . , x̄

θ
ks

from which we select the best one

min
k
ℓ

”

f1px̄1kq, . . . , f θpx̄θkq

ı

.

However, as in the neural network motivation, we can also explore a much bigger
search space

(2.8) min
k1,...kθ

ℓ
”

f1px1k1q, . . . , f θpxθkθq

ı

,

which allows us to make a different selection kl for every block f lpxlq and there-
fore has a much higher chance to include a good choice. Note that we have not
included the result of the optimization xlk Ñ x̄lk because for every fixed k, it couples

the blocks, so that x̄lk depends on all other x̄jk with j ‰ l. Instead, we skip this
optimization for now, but reintroduce it after relaxation.

The discrete optimization (2.8) has rθ possible combinations and is therefore very
costly, which we address by a relaxation argument. We first rewrite the selection as
a linear combination

(2.9) min
zlPte1,...,eru
l“1,...,θ

ℓ

«

r
ÿ

k“1

z1kf
1px1kq, . . . ,

r
ÿ

k“1

zθkf
θpxθkq

ff

,

and then relax it to continuous selectors zl

(2.10) min
zlPRr, l“1,...,θ

ℓ

«

r
ÿ

k“1

z1kf
1px1kq, . . . ,

r
ÿ

k“1

zθkf
θpxθkq

ff

.

Unlike the block-wise selection (2.8) of guesses, the relaxed variant (2.10) also allows
us to replace the optimization of the initial guesses xlk Ñ x̄lk with an optimization

of all blocks xlk in the relaxed optimization

(2.11) min
zlPRr, l“1,...,θ

xlk, k“1,...,r, l“1,...,θ

ℓ

«

r
ÿ

k“1

z1kf
1px1kq, . . . ,

r
ÿ

k“1

zθkf
θpxθkq

ff

.

We may also consider other variables in the optimization such as weights from neural
network layers that have been neglected in Example 2.1.

Remark 2.3. Applied to the neural network Example 2.1, the relaxed problem is

min
Z“rdiagpz1q,...,diagpzrqs

z1,...zrPRθ

lossry, g ˝ ReLUrZ ReLUpXhqs,

where the layer Z has some extra block diagonal structure. In (2.6) this has been
further relaxed to all full matrices rZ1, . . . , Zrs P Rθˆrθ.

2.4. Notes on the optimization problems. Both, the simple relaxation from
(2.4) or the block relaxation from (2.11) can be written in the form

min
x1,...,xr,z

Gpx1, . . . , xr, zq
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with different choices of G, dimensions of z and copies xj of the variable x we want
to optimize. First note that we can choose special values zj of the selector z so that
Gpx1, . . . , xr, zlq “ gpxlq. Therefore we directly have

min
x1,...,xr,z

Gpx1, . . . , xr, zq ď gpx̄jq, j “ 1, . . . , r,

where as before x̄j are numerical local optimizers of g with initial values xj . Of
course to obtain a fair comparison, we also need a numerical solution of the left
hand side. Let x̃j and z̃ be such numerical optimizers for initial values xj , which
may now be coupled among the indices j. What can be said about

Gpx̃1, . . . , x̃r, z̃q

?

¿ gpx̄jq, j “ 1, . . . , r?(2.12)

The left hand side can be strictly smaller, equal or even larger if we do not find the
global minima. Let us first make some simple observations:

(1) In general x̃j ‰ x̄i for all i, j, or in other words we do not necessarily recover
the optimia x̄i of g. The implications depend on the problem at hand. E.g.
for neural networks the relaxed problem is a larger neural network so that
we can expect a smaller training error, which is desirable as long as this
improvement is also reflected in the generalization error.

(2) The relaxed problem computes all fpxjq, j “ 1, . . . , r in parallel, but never
computes the full outputs ℓpfpxjqq for all j. Instead it computes ℓp¨q of one
mixture of the available fpxjq. Therefore, depending on ℓ, it is not clear to
what extend a gradient descent method can steer the selector variable z to
a good choice or balance of the available fpxjq.

(3) Expanding on the last observation, the block relaxation (2.11) never
computes fprx1k1 , ¨ ¨ ¨ , xθkθ sq “ rf1px1k1q, . . . , f θpxθkθqs for all rθ combinations

k1, . . . , kθ. This is essential for the runtime since rθ quickly becomes pro-
hibitively large, but it raises further questions if gradient descent or similar
methods can find the right combination or a good balance.

In summary, the relaxation can significantly reduce the optimization time by
avoiding to test an exponential number rθ of combinations, but we have to answer
the question when it can possibly succeed in finding superior optima.

Some hope comes from our original motivation from deep learning, where it
has been observed that larger networks often perform better than smaller ones,
see e.g. [27, 54]. Also several analytical results [1, 20, 34, 44, 48] show that over-
parametrization helps neural network training. These papers usually work in a
regime where the networks are rich enough to achieve zero training error, and can
be accurately approximated by the linear neural tangent kernel. Neither the zero
training error nor the linearization are necessarily the case for the relaxation method
described above, so that the observations of this paper are targeted to regimes that
are much less well understood. However the idea is related: We increase the number
of network weights and layers in the hope to enable the optimization algorithms to
find better minima.

Although neural networks provide the original motivation for the relaxation idea,
we analyze these methods more rigorously for compressed sensing. This area pro-
vides non-convex optimization problems as well, but the theoretical background is



668 G. WELPER

much better understood. Contrary to (2.12), we consider the simplified problem

Gpx1, . . . , xr, z̃q

?

¿ gpxjq, j “ 1, . . . , r,(2.13)

where we only optimize the selector z. The second and third observation after (2.12)
still apply. In particular, this optimization problem never evaluates all possible rθ

combinations of fprx1k1 , . . . , x
θ
kθ

sq but instead is a convex problem in the rθ dimen-
sional variable z. Nonetheless, in Section 3 we show that the relaxed problem can
find optimal combinations. One may try to incorporate an xj optimization as well
by a perturbation argument, but this is left for future research.

2.5. Comparison of Probabilities. In this section, we compare the probabilities
to find global optimizers either with r random initial values in (2.2) or with the
full block relaxed optimization problem (2.11). The purpose of this discussion is
to better understand the prospects of the latter method and therefore, we only
consider some informal estimates in a highly idealized scenario. We consider a more
rigorous analysis for the compressed sensing in Section 3 below, but for other areas,
such as neural networks, it remains unknown to what extend the given estimates
are legitimate.

For r random initial values in (2.2) some natural assumptions are

(1) There is an “attractor” A of the global minimum, meaning that for each
initial value x P A our optimization method of choice (e.g. gradient descent)
converges to the global optimum minx ℓrfpxqs.

(2) Each initial guess xk is sampled from i.i.d random variables Xk.

For the block relaxed optimization problem (2.11) we assume:

(1) There are sets Bl, l “ 1, . . . , θ such that for each initial choice xl P Bl and
every initial selectors zlk, ℓ “ 1, . . . , θ, k “ 1, . . . , r, the optimization method
of choice (e.g. gradient descent) applied to the block relaxed problem (2.11)
converges to the global optimum minx ℓrfpxqs with probability pselect.

(2) Each initial guess xlk, ℓ “ 1, . . . , θ, k “ 1, . . . , r is sampled from i.i.d random

variables X l
k.

The first assumption is quite severe and entails that for any initial selectors zlk the

optimizer can find an optimal selection of the blocks x1k1 , . . . , x
θ
kθ

among all possible
combinations. This will be analyzed carefully in the compressed sensing example
in Section 3. For neural networks the assumption is unrealistic because the relaxed
network likely has a smaller global minimum than the un-relaxed one. Without
changing the arguments below, one can alternatively assume that the optimization of
the block relaxed problem converges to a minimum that is smaller than minx ℓrfpxqs.
In order to account for the fact that we may not find an optimal balance of the pieces
f lpxlkq, k “ 1, . . . , r, we added the extra probability pselect to do so successfully.

In the following, we use the abbreviations

p :“ P pX1 P Aq, pl :“ P pX l
1 P Blq.
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Since all guessesXk are i.i.d., for the optimization of r repeated trials the probability
of success is

(2.14)

P psuccess r trialsq “ P pDk P t1, . . . , ru : Xk P Aq

“ 1 ´ P p@k P t1, . . . , ru : Xk R Aq

“ 1 ´

r
ź

k“1

P pXk R Aq

“ 1 ´ P pX1 R Aqr

“ 1 ´ p1 ´ pqr.

With the events SELECT that the block relaxation (2.11) finds the global optimum
and INITIAL :“ @l P t1, . . . , θu : Dk P t1, . . . , ru : X l

k P Bl of guessing good initial
values, the probability that the block-relaxed optimization (2.11) is successful is

P psuccess block relaxationq “ P pSELECT X INITIALq

“ P pSELECT |INITIALqP pINITIALq.

The first probability of the right hand side is pselect. With the independence of all
blocks l, the second can be calculated analogously to (2.14), which yields

P pINITIALq “

θ
ź

l“1

P pDk P t1, . . . , ru : X l
k P Blq “

θ
ź

l“1

1 ´ p1 ´ plq
r.

and thus

P psuccess block relaxationq “ pselect

θ
ź

l“1

1 ´ p1 ´ plq
r.

For easier comparison, let us approximate the success probabilities by some simpler
statements. By a first order Taylor expansion for small q we have 1 ´ q « e´q and
1 ´ e´qr « qr and thus

(2.15) 1 ´ p1 ´ qqr « 1 ´ pe´qqr “ 1 ´ e´qr « qr.

Applied to the success probabilities and assuming that pl is independent of l, we
obtain

P psuccess r trialsq « pr

P psuccess block relaxationq « pselectpplrqθ.

For the sake of comparing the two methods, we assume that p « pθl , which can be

justified e.g. if A « B1 ˆ ¨ ¨ ¨ ˆBθ. Then we have

(2.16)
P psuccess r trialsq « pθl r

P psuccess block relaxationq « pθl ppselectr
θq.

In conclusion, for r repeated trials we may achieve an r fold increased chance of
success and using r block relaxations, which amounts to the same number of total
guessed variables, we can hope for a improvement by a factor of pselectr

θ. For
pselect close to one and large θ this success probability can be significantly larger.
However, for the latter result we made quite significant assumptions, which we will
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only discuss for compressed sensing. In other cases it remains open how much of
this potential improvement is realistic.

The above Taylor approximation is a rather crude argument, but in some limiting
scenarios the approximations become exact. In order to define the limits properly,
first note that the quantities p, r and pl typically depend on some problem param-
eters such as the dimension of x. We denote this parameter by γ, so that p “ ppγq

and r “ rpγq and pl “ plpγq.
We now assume that the success probabilities pl (or pq go to zero faster than the

number of guesses r goes to infinity, i.e.

lim
γÑ8

pl “ 0, lim
γÑ8

r “ 8, lim
γÑ8

plr “ 0.

Then, by Lemma A.2 (with q “ 1{r) in the Appendix A.1, the Taylor approximation
(2.15) used in the derivation of the success probabilities (2.16) is accurate in the
limit

lim
γÑ8

1 ´ r1 ´ pls
r

plr
“ 1

and likewise for pl replaced by p.

3. Application to Compressed Sensing

In this section, we consider the block relaxation (2.11) applied to the compressed
sensing problem of Example 2.2 in some more detail. In Section 3.1 we describe
the method and the main result of this paper. Since the result is quite technical,
Section 3.2 provides some more concrete scenarios and connections to the success
probabilities in Section 2.5. Finally, Section 3.3 contains the proof of the main
result.

3.1. Model Problem.

3.1.1. Problem Setup and Relaxation. For 0 ă p ď 1, measurement matrix A P

RmˆN and vector y P Rm consider the ℓp-minimization

(3.1) min
xPRN

}x}pp, s.t. Ax “ y.

Upon possibly rescaling the right hand side y, we assume without loss of generality
that x P r´1, 1sN , which will simplify our analysis below. In the absence of null-
space or restricted isometry properies, we cannot safely replace the non-convex ℓp
by a convex ℓ1-minimization. We therefore aim to increase our chances to find a
global optimizer by the block relaxation strategy from Section 2.3. To this end, we
split x (and for later convenience also the measurement matrix A) into θ blocks

(3.2)
x “

`

x1 ¨ ¨ ¨ xθ
˘

P Rnθ

A “
`

A1 ¨ ¨ ¨ Aθ
˘

P Rmˆnθ.

and make r initial guesses xlk P Rn, k “ 1, . . . , r for each block l. In order to find the

best possible of rθ combination of these initial blocks, we first write the compressed



RELAXATION IN NEURAL NETS AND COMPRESSED SENSING 671

sensing problem in block form

(3.3) min
xPRN

θ
ÿ

l“1

}xl}pp, s.t.
θ

ÿ

l“1

Alxl “ y,

introduce selector variables zl P te1, . . . , eru P Rr for each block l and optimize the
blocks xl “

řr
k“1 x

l
kz
l
k with respect to the selector

(3.4) min
zlPte1,...eru,
l“1,...,θ

θ
ÿ

l“1

˜

r
ÿ

k“1

}xlk}pp|z
l
k|

¸

s.t.
θ

ÿ

l“1

Al

˜

r
ÿ

k“1

xlkz
l
k

¸

“ y,

where we have used that for the given standard basis vectors zl we have }xl}pp “
řr
k“1 }xlk}

p
p|zlk|. This latter identity differers slightly from Example 2.2 and will yield

a convex relaxed optimization problem. Block decompositions similar to (3.3) have
been analyzed in [17], with the different purpose to find fast parallel algorithms for
convex objective functions.

In order to obtain a more compact notation, let X l P Rnˆr be the matrices with
columns xlk, k “ 1, . . . , r. In addition, we replace the tensor z P Rr b Rθ with a

corresponding block vector in Rnθ and obtain the block matrix and vector

X “

¨

˚

˝

X1

. . .

Xθ

˛

‹

‚

P Rnθˆrθ

z “
`

z1 ¨ ¨ ¨ zθ
˘

P Rrθ.

Then, relaxing (3.4) to any zl P Rr, and setting R :“ rθ, we obtain

(3.5) min
zPRR

N
ÿ

j“1

R
ÿ

k“1

|Xjk|p|zk| s.t. AXz “ y.

We have modified the relaxation argument form Example 2.2 so that the z opti-
mization is convex and we can be sure to find a global minimizer. However it is not
immediately clear if this minimization can indeed find the ℓp-minimal combination

of the initial blocks xlk that satisfy the linearity constraint. This poses a sparse
recovery question for the selector and is discussed below.

For simplicity, we ignore the possibility that we can simultaneously optimize the
initial guesses xlk and thus restrain ourselves to the simplified question (2.13) form
the introduction. In order to obtain non-zero success probabilities, we also assume
that the correct solutions are discrete. Although this setup is not immediately
practical, it is still a worthwhile test problem to gain some insight into the relaxation
technique because the problem is still NP hard in general, as shown in Appendix
A.6, and therefore not unduly simplified.

3.1.2. Recovery of the Selectors. Let us now turn to the question if we can find
the best combination of initial blocks xlk. The argument rests on the following
observations:
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(1) The relaxed optimization problem (3.5) for the selectors z is a weighted
ℓ1-minimization [41] with measurement matrix AX. This implies that the
problem is convex and solvable.

(2) If a discrete selection zl P te1, . . . , eru of the initial blocks xlk picks a global
optimizer of the non-convex problem (3.1), by construction, it is θ-sparse
and satisfies the constraints of the relaxed problem.

(3) The initial guesses in X induce some extra randomness into the modified
measurement matrix AX, so that indeed there is some hope of unique θ-
sparse ℓ1 recovery, even if A does not satisfy an RIP [30]. In that case, the
discrete selection zl from the previous item is the unique minimizer of the
relaxed problem.

Hence, if the global optimizer is contained in the sparse combinations of the initial
guesses xlk and the matrix AX does allow unique sparse recovery, then we can find

the best out of rθ combinations by a convex optimization problem of size rθ, giving
a positive answer to the questions raised in the introduction.

Remark 3.1. Although we assume that z can be uniquely recovered by the relaxed
problem (3.5), this does not imply that the solution x of the ℓp minimization problem
(3.1) is unique. If z is unique but x is not, this merely implies that only one solution
x can be sparsly combined from the blocks of X.

Remark 3.2. The argument can be generalized to global optimizers x that are
sparse linear combinations of the blocks xlk as opposed to a selection of one item
per block. A detailed analysis is left for future research.

3.1.3. Main Result. Throughout the article, for a matrix C P Ra,b, and a subset
R Ă t1, . . . , bu, the matrix C¨,R consists of the columns of C with indices in R. In
order to state the main result, let us first setup all required assumptions.

First, note that the measurement matrix AX includes the columns Alxl, l “

1, . . . , θ. Since we only impose rank conditions in Al below, this allows degenerate
cases for unfavorable global optimizers x “ rx1, . . . , xθs, e.g. repeated columns
Alxl “ Akxk, so that unique sparse recovery is impossible. We avoid this problem
by considering non-uniform recovery results for random but unknown x, recovered
from observed right hand sides y “ Ax.

(A1) Let x “ rx1, . . . , xθs P r´1, 1sN be a vector with i.i.d random entries on a
deterministic but unknown support S Ă t1, . . . , Nu with

Erxjs “ 0, Erx2j s “ px, j P S(3.6)

and let Sl be the indices of S in block l “ 1, . . . , θ.

Next, we guess the blocks xlk, or equivalently the matrices X l, given that we know

that the blocks xl of the correct solution are already contained in some guesses
with unknown index kl. This is quite unlikely to happen, but the current scheme
should merely “boost” our chances to find good initial guesses and not be a complete
method in itself, as discussed further in Section 3.2. In addition, the assumption on
the sensing matrix A still allow polynomial-time reductions of NP -hard problems
to ℓ0-minimization, although only smaller instances than for general matrices A, see
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Appendix A.6. Hence, we can expect some gains, but not necessarily a polynmial
time algorithm for the global optimizer without any significant assumptions.

(A2) Let X l P r´1, 1snˆr be matrices that contain the vectors xl in unknown
columns kl and with remaining entries i.i.d. random numbers with

ErX l
j,ks “ 0, Er|X l

j,k|s “ ν, k ‰ kl, l “ 1, . . . , θ.(3.7)

For abbreviation, let T “ tkl| l “ 1, . . . , θu.

Note that ν can be fairly small, e.g. |Sl|{n in the discussion (3.12), which al-
lows products of Bernoulli and Subgaussian entries to generate columns of X l with
sparsity comparable to xl. Finally, we require the following assumptions on the
measurement matrix:

(A3) Define the constants

FSpAq2 :“ min
l“1,...,θ

}Al
¨,Sl}

2
F , MpAq2 :“ max

l“1,...,θ
}Al}2(3.8)

and

(3.9) s :“ max
!

|Sl| : l P t1, . . . , θu

)

.

The quantity FSpAq2{MpAq2 is related to the stable rank }Al}2F {}Al}2 of a matrix

and is equal to minl |Sl| if all blocks Al have orthonormal columns, see e.g. [30]
for more information. Note that all constants that depend on A only do so via
individual blocks Al and are independent of any relation between different blocks
Al and Aj , j ‰ l. Therefore, the given conditions are much weaker than the RIP
and allow e.g. repetitions Al “ U of identical unitary matrices. We are now ready
to state the main theorem of this article.

Theorem 3.3. Let Assumptions (A1), (A2) and (A3) be satisfied, y “ Ax for the
unknown x from (A1) and let z be the solution of the block relaxed problem (3.5),
with right hand side y. Then for any α ě 0 and 0 ď δ ď 1 related by

(3.10) 1 ´ δ “

a

|T |s

αFSpAq
?
px

with probability at least

(3.11) 1 ´

«

2pR ´ |T |q exp

ˆ

´
ν2n2

n` 2MpAq2α2

˙

` 2

ˆ

12

δ

˙|T |

exp

ˆ

´c
FSpAq2

MpAq2
min

"

p2xδ
2

4K4
,
pxδ

2K2

*˙

ff

for some positive absolute constants c and K, we have x “ Xz, and hence can
recover x.

Since X is known and z is the solution of a convex optimization problem, the
theorem allows us to recover the sparse unknown vector x from observations y.
However, the theorem merely requires that x is |S|-sparse, not that it is the global
optimizer of the non-convex compressed sensing problem (3.1). We can ensure the
latter by requiring that |S|-sparse solutions are unique.
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(A4) Assume that for all y the system Ax “ y has at most one |S|-sparse solution.

This is equivalent to all selections of 2|S| columns of A being non-singular [23]
and considerably weaker than the RIP, which requires tight bounds on the singular
values of these sub-matrices.

Corollary 3.4. Let the Assumptions (A1), (A2), (A3) and (A4) be satisfied. Then
the unknown vector x is a global optimizer of the ℓ0-minimization problem (1.1) and
with probability at least (3.11) the solution z of the relaxed optimization problem
(3.5) satisfies x “ Xz.

With suitable modifications of Assumption (A4) and ℓp-recovery results in [10,11,
22,45,49] one can also obtain analogous statements for the ℓp minimization problem
(3.1).

In conclusion, this result provides a positive answer to the question raised in the
introduction: For the non-convex compressed sensing problem (1.1), the relaxation
strategy of this section can indeed find the best of rθ possible combinations of the
initial guess xlk by solving a convex optimization problem of non-exponential size
rθ.

3.2. Recovery Probability. In order to disentangle all requirements and state-
ments in Theorem 3.3, in this section, we consider some more specific scenarios. To
this end, in the following let Á, À and „ denote greater, smaller and equivalence
up to some generic constants independent of the problem dimensions, sparsity and
expectations such as ν or px.

First, we assume that the support S is equidistributed among the blocks, i.e.
that there is some s with |S| “ θs and

|Sl| „ s.

If we choose S uniformly at random, this is satisfied with high probability for
sufficiently large s. Indeed, |Sl| is distributed by a hypergeometric distribution so
that the observation easily follows from Chebyshev’s inequality.

Next, assume that m “ n, so that the blocks Al are square matrices, and that
the columns of Al are (almost) orthonormal. This implies that

}Al} „ 1, }Al}2F „ n, }Al
¨,Sl}

2
F „ s

and therefore

FSpAq2 „ s, s „ s, MpAq „ 1,
FSpAq2

MpAq2
„ s.

There are no relations between the columns of different blocks, so e.g. it is legitimate
to choose all blocks equal, which clearly violates the RIP condition.

Finally, we assume that we have some good a-priory knowledge of the size |S|

and choose

ν „ s{n, px „ 1.(3.12)

The second probability of px states that given the information that we are on the
support of x, the entries are not overly strongly clustered around zero. With these
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constants, the probability of recovery failure of Theorem (3.3) is at most
(3.13)

2 exp

ˆ

´c
s2

n`MpAq2α2
` lnpRq

˙

` 2 exp

ˆ

´csmin

"

p2xδ
2

4K4
,
pxδ

2K2

*

` |T | ln

ˆ

12

δ

˙˙

for some generic constant c, which may differ from the one in the theorem and
change in the calculations below. The algorithm does not depend on the choice of
α and δ, which we can now choose to bound this failure probability. To this end,
let us choose δ „ p1 ´ δq „ 1 so that by (3.10) and |T | “ θ, we have

1 „ p1 ´ δq „

a

|T |s

αFSpAq
„

?
θs

α
ô α „

?
θs.

Thus, the failure probability reduces to

(3.14) 2 exp

ˆ

´c
s2

n`MpAq2θs
` lnpRq

˙

` 2 exp p´cs` Cθq “: pIq ` pIIq

for some new generic constant C. UsingMpAq „ 1, we have s2

n`MpAq2θs
Á min

!

s2

n ,
s
θ

)

,

which must be larger than lnpRq “ lnprθq for the exponent of pIq to be negative.
Therefore, we must have

(3.15) r À min

"

1

θ
e

s
θ ,

1

θ
e

s2

n

*

.

The first component of the minimum ensures that s Á θ, which implies that also
pIIq has a negative exponent.

First note that the condition (3.15) limits the number r “ R{θ of possible trials.
Depending on the relative sizes of s, n and θ, this number can be exponentially
large and the block relaxed scheme is able to correctly select an exponentially large
number of pieces xlk1 , . . . , x

l
kθ

contained in the guesses X l for a non-linear problem.

Second, the condition (3.15) implies that the sparsity s per block cannot be too
small. The reason is that we have very limited assumptions on A. In particular the
sensing matrix AX contains the columns Alxl. If xl is overly sparse, this does not
guarantee enough randomness to ensure sparse recovery.

With the probabilities pl that the blocks of X
l contain the solution blocks xl and

the success probability pselect of sparse recovery from (3.14), by the arguments in
Section 2.5, we have the probabilities

P psuccess r trialsq « pθl r

P psuccess block relaxationq « pθl ppselectr
θq

to recover a |S|-sparse vector with constraint Ax “ y, with very weak conditions on
A. If this matrix allows unique sparse recovery from ℓp-minimization, it is also the
global minimizer of (3.1). Given the conditions in (3.15), we can ensure that pselect
is close to one so that the block relaxation provides a rθ{r enhanced chance to find
the solution over r repeated guesses.

In order for the probability pl to be non-zero, we need to sample xl and X l from
discrete distributions. Even with this restrictive assumption, pl is still of negligible
size and the resulting success probability of block relaxation is excessively small.
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This is not fully unexpected because with the given assumptions on the sensing
matrix A and discrete x in e.g. t´1,´1{2, 0, 1{2, 1u the ℓp-minimization problem
is still NP -hard in general, see Appendix A.6. Also recall that for a practical
algorithm we would incorporate the blocks X l into the optimization as in (2.11),
which removes the requirement to correctly guess the blocks xl in one shot and with
it the requirement of xl to be discrete. Alternatively, the followup paper [52], uses
the relaxation argument together with a learning algorithm that increase the chance
pl to find good initial guesses, resulting in a tractable scheme to find global optima
for some non-convex compressed sensing problems.

3.3. Proof of Theorem 3.3. In this section, we prove Theorem 3.3. The proof
follows standard lines for sparse recovery results, with some slight twists for the
added structure. In Section 3.3.1, we first introduce some notations and setup used
throughout the entire section. Then, we show concentration estimates (Section
3.3.2), RIP type results for fixed sparse subsets S (Section 3.3.3) and then finally
combine these results for a non-uniform recovery argument in Section 3.3.4.

3.3.1. Notations and Setup. Let all assumptions from Theorem 3.3 be satisfied. We
calculate the sparse recovery probability given that the blocks xl are contained in
the columns of the respective matrices X l. W.l.o.g, we assume that xl are always
the first columns so that X has the block structure

X “

¨

˚

˝

x1 X̄1

. . .
. . .

xθ X̄θ

˛

‹

‚

, xl P Rnˆ1, X̄ l P Rnˆr´1,(3.16)

where X̄ l are i.i.d. random matrices.

Remark 3.5. In Theorem 3.3, we show a sparse recovery result only with high
probability. Therefore, we must ensure that the matrices X with a given sparsity
pattern S in one column xl are not included in the low probability set where spare
recovery fails. Hence, we make this patter explicit in our proof.

By assumptions (3.6) and (3.7) of Theorem 3.3, we have the following expectation,
variances and ψ2-norms:

(3.17)

Erxjs “ 0, Erx2j s “ px, }xj}ψ2 ď K, j P S

ErX l
jks “ 0, ErpX l

jkq2s “ pX , }X l
jk}ψ2 ď K,

j “ 1, . . . , n,
k “ 1, . . . r ´ 1

,

for some pX ě 0 constant K ą 0 and ψ2-norm defined by }x}ψ2 :“

supaě1 a
´1{2pEr|x|asq1{a, see e.g. [43]. Note that all variances and ψ2 norms are

bounded because by assumption the entries of X l, including the first column xl, are
in the interval r´1, 1s.

3.3.2. Concentration Estimates. In this section, we state concentration estimates
for }AXu} for some u P RR. To this end, let us split an arbitrary vector u P RR
according to the block structure (3.16) of X as

u :“
`

v1 u1 ¨ ¨ ¨ vθ uθ
˘T
,
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with vl P R and ul P Rr´1. Then the concentration inequality is shown with respect
to the weighted norm

(3.18) }u}2A :“ }WAu} :“
θ

ÿ

l“1

!

px}A¨,Sl}
2
F |vl|2 ` pX}Al}2F }ul}2

)

.

with diagonal weight matrix

(3.19) WA “ diagp
?
px}A¨,S1}F ,

?
pX}A1}F , . . . ,

?
px}A¨,Sθ}F ,

?
pX}Aθ}F q.

Recall that Sl are the indices in S contained in the block X l ofX. For the remainder
of this section c denotes a positive absolute constant.

Proposition 3.6. Let A and X be the matrices defined in (3.2) and (3.16) with
independent sub-Gaussian entries satisfying (3.17). Then, for every u P RR and
ϵ ě 0,

Pr
“ˇ

ˇ}AXu}2 ´ }u}2A
ˇ

ˇ ě ϵF 2
‰

ď 2 exp

ˆ

´c
FSpAq2

MpAq2
min

"

ϵ2

K4
,
ϵ

K2

*˙

with

F 2 “

θ
ÿ

l“1

!

}A¨,Sl}
2
F }vl}2 ` }Al}2F }ul}2

)

and FSpAq and MpAq defined in (3.8).

We only need a corollary of this proposition for u restricted to the support set T
of the selectors z.

Corollary 3.7. Let A and X be the matrices defined in (3.2) and (3.16) with inde-
pendent sub-Gaussian entries satisfying (3.17). Then, for every u P RR supported
on T and ϵ ě 0

Pr
“ˇ

ˇ}AXu}2 ´ }u}2A
ˇ

ˇ ě ϵ}u}2A
‰

ď 2 exp

ˆ

´c
FSpAq2

MpAq2
min

"

p2xϵ
2

K4
,
pxϵ

K2

*˙

,

with FSpAq and MpAq defined in (3.8) and px defined in (3.6).

Proof. Since u is supported on T , we have }ul}22 “ 0 for all l “ 1, . . . , θ and therefore
the definition of F in Proposition 3.6 and the definition (3.18) of the } ¨ }A-norm
yield

F 2 “

θ
ÿ

i“1

}A¨,Sl}
2
F }vl}2, }u}2A, “

θ
ÿ

i“1

px}A¨,Sl}
2
F }vl}2.

Thus, we have pxF
2 “ }u}2A, which proves the corollary. □

The proof of Proposition 3.6 is similar to [30], and uses the following corollary of
the Hanson-Wright inequality, see Appendix A.2 for more details.

Corollary 3.8. Let v P Rd be a vector with independent components with Ervis “ 0
and }vi}ψ2 ď K and CTC P Rdˆd be a matrix. Then, for every t ě 0,

Pr
“ˇ

ˇvTCTCv ´ ErvTCTCvs
ˇ

ˇ ě ϵ}C}2F
‰

ď 2 exp

ˆ

´c
}C}2F
}C}2

min

"

ϵ2

K4
,
ϵ

K2

*˙

.



678 G. WELPER

In order to apply the corollary, we construct a vectorization X̂ of the matrix X
and a matrix B with X̂TBTBX̂ “ }AXu}2. Let us first consider this vectorization
for a generic matrix M P Raˆb, vector w P Rc and random matrix R P Rbˆc with
i.i.d entries, expectation Errijs “ 0 and variance Err2ijs “ V . By Appendix A.3, we

identify R with the tensor R̂ P Rb b Rc and have

(3.20) MRw “ pM b wT qR̂

and

(3.21) E
“

}MRw}2
‰

“ V }M}2F }w}2.

Let us now construct the vectorization X̂ and B with BX̂ “ AXu. Instead of
applying the last two identities directly, we are a little more careful with regard to
the block structure. X̂ is defined by

X̂ :“
`

x̂1 X̂1 ¨ ¨ ¨ x̂θ X̂θ
˘

P

θ
ą

l“1

´

R|Sl| ˆ Rnpr´1q
¯

where the x̂l and X̂ l :“ ˆ̄X l are the vectorizations of the restriction xl
Sl of x

l to its

support Sl, and X l, respectively. Likewise, B is defined by

B :“
`

A¨,S1 b pv1qT A1 b pu1qT ¨ ¨ ¨ A¨,Sθ b pvθqT Aθ b puθqT
˘

.(3.22)

where vl is considered as a 1 ˆ 1 matrix. Then, by (3.20) the vectorization of the
product AXu is given by

(3.23) BX̂ “

θ
ÿ

l“1

pA¨,SlbpvlqT qx̂l`pAlbpulqT qX̂ l “

θ
ÿ

l“1

A¨,SlxlSlv
l`AlX lul “ AXu.

This allows us to prove Proposition 3.6 with Corollary 3.8 of the Hanson-Wright
inequality.

Proof of Proposition 3.6. From the vectorization (3.23) we have

}AXu}2 “ }BX̂}2 “ X̂TBTBX̂.

so that we can use Corollary 3.8 of the Hanson-Wright inequality to show concen-
tration inequalities for }AXu}2. To this end, in the following we compute all terms
in the Corollary. We start with the expectation value:

E
“

}AXu}2
‰

“ E

»

–

›

›

›

›

›

θ
ÿ

l“1

!

Alxlvl `AlX̄ lul
)

›

›

›

›

›

2
fi

fl

“

θ
ÿ

l“1

"

E
„

›

›

›
Alxlvl

›

›

›

2
ȷ

` E
„

›

›

›
AlX̄ lul

›

›

›

2
ȷ*

,

where we have used that because of independence and zero mean of the entries, all
cross terms

@

AlX̄ lul, AjX̄juj
D

and
@

Alxlvl, Ajxjvj
D

for l ‰ j and
@

AlX̄ lul, Ajxjvj
D

for all l, j vanish.
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Using the zero-mean property and the variances defined in (3.17) and applying
(3.21) yields

E
„

›

›

›
Alxlvl

›

›

›

2
ȷ

“ E
„

›

›

›
A¨,SlxlSlv

l
›

›

›

2
ȷ

“ px}A¨,Sl}
2
F |vl|2

E
”

}AlX̄ lul}2
ı

“ pX}Al}2F }ul}2.

In conclusion, we have

(3.24) E
“

}AXu}2
‰

“

m
ÿ

i“1

!

px}A¨,Sl}
2
F |vl|2 ` pX}Al}2F }ul}2

)

“ }u}2A.

Note that if we could normalize both }A¨,Sl}F and }Al}F to one, the right hand side

would reduce to }u}2. However that is not possible because A¨,Sl is a sub-matrix of

Al.
The next quantity in Corollary 3.8 is the Frobenius norm

(3.25) }B}2F “

θ
ÿ

l“1

!

}A¨,Sl}
2
F }vl}2 ` }Al}2F }ul}2

)

“ F 2.

The spectral norm can easily be computed with (A.2) in the appendix, which yields

}B}2 ď

θ
ÿ

l“1

}A¨,Sl}
2}vl}2 ` }Al}2}ul}2.

Together with (3.25) and using that }A¨,Sl}F ď }Al}F and }A¨,Sl} ď }Al} this yields

(3.26)
}B}2F
}B}2

ě
minl“1,...,θ }A¨,Sl}2F

maxl“1,...,θ }Al}2
“
FSpAq2

MpAq2
.

We have calculated all terms in Corollary 3.8 of the Hanson-Wright inequality, which
implies

Pr
“ˇ

ˇ}AXu}2 ´ }u}2A
ˇ

ˇ ě ϵ}B}2F
‰

ď 2 exp

ˆ

´c
}B}2F
}B}2

min

"

ϵ2

K4
,
ϵ

K2

*˙

,

which by (3.25) and (3.26) proves the proposition. □

3.3.3. RIP Type Estimates. We show a RIP like estimate, only for one fixed sparse
set T Ă t1, . . . , Ru. The result and proof are identical to [5, Lemma 5.1] only with
the ℓ2-norm replaced by the } ¨ }A-norm.

Lemma 3.9. Let all assumptions of Corollary 3.7 be satisfied. Then for the set
T Ă t1, . . . , Ru containing the columns xl and 0 ă δ ă 1, we have

p1 ´ δq}u}A ď }AXu} ď p1 ` δq}u}A

for all u P RR supported on T with probability at least

(3.27) 1 ´ 2

ˆ

12

δ

˙|T |

exp

ˆ

´c
FSpAq2

MpAq2
min

"

p2xδ
2

4K4
,
pxδ

2K2

*˙

.
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Proof. Let UT Ă RR be the vectors with support contained in T . Then, there
is a δ{4 cover QT of the unit sphere in UT with respect to the } ¨ }A-norm with

|QT | ď p12{δq|T |, see e.g. [23, 35]. From the concentration inequality Corollary 3.7
with ϵ “ δ{2, together with a union bound, we have that

ˆ

1 ´
δ

2

˙

}u}2A ď }AXu}
2

ď

ˆ

1 `
δ

2

˙

}u}2A

with probability at least (3.27). This is analogous to [5, (5.4)]. Using the remainder
of the proof in the reference verbatim, shows that

p1 ´ δq}u}A ď }AXu} ď p1 ` δq}u}A

for all u supported on T , which completes the proof. □

Corollary 3.10. Let all assumptions of Lemma 3.9 be satisfied and assume that
the weight matrix WA of the } ¨ }A-norm defined in (3.19) is invertible. Then, with
probability at least (3.27) the singular values σi of the matrix pAXW´1

A q¨,T satisfy

1 ´ δ ď σi ď 1 ` δ.

Proof. With the definition (3.19) of WA, Lemma 3.9 implies that

p1 ´ δq}WAu} ď }AXu} ď p1 ` δq}WAu}

with the given probability (3.27) for all u with support T . With z :“ WAu, this
implies

p1 ´ δq}z} ď }AXW´1
A z} ď p1 ` δq}z}.

Choosing right singular vectors of AXW´1
A restricted to columns in T for z, directly

yields the result. □

3.3.4. Sparse Recovery. The remaining proof of the sparse recovery Theorem 3.3,
is analogous to non-uniform sparse recovery as in e.g. [23, Theorem 9.16].

By the assumptions of Theorem 3.3, the vectors xl are contained as columns in
the blocks X l. We denote the indices of these columns as T Ă 1, . . . , R. In (3.16)
above, we have w.l.o.g. assumed that these are the first columns in the respective
blocks X l. Note, however, that this choice was only for notational convenience and
in general T is unknown, except for some rudimentary properties like t :“ |T | “ θ.
In addition, note that the set T coincides with the support of the selector z and the
major goal of the sparse recovery problem (3.5) is to find this vector.

In the following, let Wℓ P RRˆR be the diagonal matrix with pWℓqkk “ }X¨,k}
p
p,

which constitutes the weights in the weighted ℓ1-minimization (3.5) and WℓT the
restriction to the index set T . On this special index set, we have

(3.28) pWℓqkk “ }X¨,k}pp “ }xl}pp ď |Sl|,

if k is in the block l, where we have used that xl has entries in the interval r´1, 1s

on its support.
In order to simplify notations, for any matrix C, let C`˚ “ pC˚q` “ pC`q˚ be

the adjoint of the pseudo inverse.
Before we prove the main result Theorem 3.3, we need two more lemmas.
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Lemma 3.11. For any α ě 0 and 0 ď δ ď 1 satisfying (3.10) and for any u P RR
with support on T , we have

(3.29) P
`

α ď }pAXT q`˚WℓT signpuT q}
˘

ď 2

ˆ

12

δ

˙|T |

exp

ˆ

´c
FSpAq2

MpAq2
min

"

p2xδ
2

4K4
,
pxδ

2K2

*˙

for constants c,K from Corollary 3.10.

Proof. Let us use the abbreviations

v :“ pAXT q`˚WℓT signpuT q, WAT :“ pWAq¨,T , F :“ FSpAq

for the weight matrix WA of the } ¨ }A norm defined in (3.19). Then, the left hand
side of (3.29) becomes P pα ď }v}q. Before we estimate this probability, we calculate
an estimate for }v}. By the definition (3.8) of F “ FSpAq and the definition of T
we have }W´1

AT } ď 1{pF
?
pxq. Let σmin be the smallest singular value of AXTW

´1
AT .

Since WAT is invertible, we have

v P rangerpAXT q`˚s “ kerrpAXT q˚sK “ kerrW´1
AT pAXT q˚sK “ kerrpAXTW

´1
AT q˚sK

and therefore

}v} ď
1

σmin
}pAXTW

´1
AT q˚v} “

1

σmin
}W´1

AT pAXT q˚v} ď
1

σminF
?
px

}pAXT q˚v}.

Plugging in the definition of v and using that pAXT q˚pAXT q`˚ is an orthogonal
projector with matrix norm bounded by one, we conclude that

}v} ď
1

σminF
?
px

}WℓT signpuT q} ď
s

σminF
?
px

} signpuT q} “

a

|T |s

σminF
?
px
,

where in the second inequality we have used (3.28) and the definition (3.9) of s.
We now proceed with the estimate of the probability in the left hand side of

(3.29). For any α ě 0, we have

α ď }v} ď

a

|T |s

σminF
?
px

and thus using the assumption (3.10) in the last identity

P
`

α ď }pAXT q`˚WℓT signpuT q}
˘

“ P pα ď }v}q

ď P

˜

α ď

a

|T |s

σminF
?
px

¸

“ P

˜

σmin ď

a

|T |s

αF
?
px

¸

“ P pσmin ď 1 ´ δq.

The latter probability is smaller, than the probability that there is any singular
value that is not contained in the interval r1 ´ δ, 1 ` δs and thus Corollary 3.10
implies (3.29). □

Lemma 3.12. Let x P r´1, 1sd, d ě 1 be a random vector with zero mean and
expectation Er|xi|s “ ν, i “ 1, . . . , d. Then for any v P Rd, we have

P
`

xx, vy ě }x}pp
˘

ď 2 exp

ˆ

´
ν2d2

d` 2}v}22

˙

.
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Proof. Since ´1 ď xi ď 1 and p ď 1, we have |xi|
p ě |xi| so that }x}

p
p ě }x}1 and

therefore

P
`

| xx, vy | ě }x}pp
˘

ď P p| xx, vy | ě }x}1q

ď P pxx, vy ě }x}1q ` P px´x, vy ě }x}1q .

It suffices to estimate the first summand in the right hand side, the other follows
analogously. We have

P pxx, vy ě }x}1q “ P

˜

d
ÿ

i“1

rxivi ´ |xi| ` νs ě νd

¸

“: P

˜

d
ÿ

i“1

Xi ě νd

¸

,

with Xi :“ xivi ´ |xi| ` ν. By construction, Xi has zero mean and from Xi ´ ν “

|xi|psignpxiqvi ´ 1q and ´1 ď xi ď 1, we obtain

´|vi| ´ 1 ď Xi ´ ν ď maxt0, |vi| ´ 1u

so that Xi is contained in an interval of length

wi “ maxt1 ` |vi|, 2|vi|u.

It follows that w2
i ď 2 ` 4v2i and therefore, Hoeffding’s inequality implies

P pxx, vy ě }x}1q ď exp

ˆ

´
ν2d2

d` 2}v}22

˙

.

Using the same estimate for P px´x, vy ě }x}1q, concludes the proof. □
We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. The proof is a variant of [23, Theorem 9.16]. We start by
estimating the probability that the sparse recovery in (3.5) fails. According to the
optimality criteria (A.3) for weighted compressed sensing, with the weight Wℓ de-
fined before (3.28) and the complement T̄ of T , the probability of failure is bounded
by

P
`

Dk P T̄ : |
@

AX¨,k, pAX¨,T q`˚WℓT signpzT q
D

| ě pWℓqkk
˘

“ P
´

Dk P T̄ : |

A

AlpkqX
lpkq

¨,k , pAX¨,T q`˚WℓT signpzT q

E

| ě pWℓqkk

¯

,

where we have used the block structure of X and lpkq is the number of the block l
that contains the index k P t1, . . . , rθu. With v :“ pAX¨,T q`˚WℓT signpzT q we can
estimate this by

P
´

Dk P T̄ : |

A

X
lpkq

¨,k , pAlpkqq˚v
E

| ě pWℓqkk

¯

ď P
´

Dk P T̄ : |

A

X
lpkq

¨,k , pAlpkqq˚v
E

| ě pWℓqkk

ˇ

ˇ

ˇ
}v} ď α

¯

` P p}v} ě αq.

Note that the columns of X involved in v and X
lpkq

¨,k are mutually exclusive, so that

these two objects are independent. Therefore, using pWℓqkk “ }X¨,k}
p
p “ }X

lpkq

¨,k }
p
p

and Er|X
lpkq

j,k |s “ ν for k P T̄ from assumption (3.7) by Lemma 3.12, we have

P
´

|

A

X
lpkq

¨,k , pAlpkqq˚v
E

| ě pWℓqkk

ˇ

ˇ

ˇ
}v} ď α

¯

ď 2 exp

ˆ

´
ν2n2

n` 2}pAlpkqq˚v}2

˙

.
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Since by (3.8) we }pAlpkqq˚v} ď MpAq}v} ď MpAqα and we have R ´ |T | possible
choices for k, applying a union bound yields

P
´

Dk P T̄ : |

A

X
lpkq

¨,k , pAlpkqq˚v
E

| ě pWℓqkk

¯

ď 2pR ´ |T |q exp

ˆ

´
ν2n2

n` 2MpAq2α2

˙

.

Finally, estimating P p}v} ě αq by Lemma 3.11, we conclude that

P precovery failq ď 2pR ´ |T |q exp

ˆ

´
ν2n2

n` 2MpAq2α2

˙

` 2

ˆ

12

δ

˙t

exp

ˆ

´c
FSpAq2

MpAq2
min

"

p2xδ
2

4K4
,
pxδ

2K2

*˙

where by the assumption (3.10) of Lemma 3.11 the constants are related by

1 ´ δ “

a

|T |s

αFSpAq
?
px
,

which completes the proof. □

Appendix A. Appendix

A.1. Probability Limits.

Lemma A.1. Assume that p “ ppγq ě 0, q “ qpγq ą 0 are two functions and that
limγÑ8 p “ limγÑ8 q “ 0. Then

lim
γÑ8

r1 ´ ps1{q “

"

1 if limγÑ8
p
q “ 0

0 if limγÑ8
p
q “ 8

.

Proof. By r1 ´ ps1{q “ exp
´

1
q lnp1 ´ pq

¯

it is sufficient to compute the limit of the

exponent. l’Hospital’s rule yields:

lim
γÑ8

lnp1 ´ pq

q
“ lim

γÑ8

´1
1´pp

1

q1
“

ˆ

lim
γÑ8

1

1 ´ p

˙

looooooomooooooon

“1

ˆ

lim
γÑ8

´
p1

q1

˙

.

Applying l’Hospital’s rule again to the remaining term on the left hand side, we
obtain

lim
γÑ8

lnp1 ´ pq

q
“ lim

γÑ8
´
p1

q1
“ lim

γÑ8
´
p

q
.

which directly implies the statement of the lemma. □

Lemma A.2. Assume that p “ ppγq ě 0, q “ qpγq ą 0 are two functions and that

lim
γÑ8

p “ 0, lim
γÑ8

q “ 0, lim
γÑ8

p

q
“ 0.

Then

lim
γÑ8

1 ´ r1 ´ ps1{q

p{q
“ 1
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Proof. By l’Hospital’s rule we have

lim
γÑ8

1 ´ r1 ´ ps1{q

p{q
“ lim

γÑ8
´

r1 ´ ps1{q
´

lnp1´pq

q

¯1

pp{qq1

“

ˆ

lim
γÑ8

r1 ´ ps1{q

˙

looooooooomooooooooon

“1 by Lemma (A.1)

¨

˚

˝

lim
γÑ8

´

´

p
q
lnp1´pq

p

¯1

pp{qq1

˛

‹

‚

Since limγÑ8
lnp1´pq

p “ ´1 and the assumption limγÑ8
p
q “ 0, we can apply the 0

0

case of l’Hospital’s rule in reverse to the remaining part on the right hand side and
obtain

lim
γÑ8

1 ´ r1 ´ ps1{q

p{q
“ lim

γÑ8
´

´

p
q
lnp1´pq

p

¯1

pp{qq1
“ lim

γÑ8
´

p
q
lnp1´pq

p

p{q
“ 1.

□

A.2. Hanson-Wright Inequality. For the Hanson-Wright Inequality, see e.g. [30,
43] and the references therein.

Theorem A.3 (Hanson-Wright Inequality, [43, Theorem 1.1]). Let v P Rd be a
vector with independent components with Ervis “ 0 and }vi}ψ2 ď K and M P Rdˆd

be a matrix. Then, for every t ě 0,

Pr
“ˇ

ˇvTMv ´ ErvTMvs
ˇ

ˇ ě t
‰

ď 2 exp

ˆ

´cmin

"

t2

K4}M}2F
,

t

K2}M}

*˙

for a positive absolute constant c.

For convenience, we restate Corollary 3.8.

Corollary A.4. Let all assumptions of Theorem A.3 be true, and let CTC P Rdˆd.
Then, we have

Pr
“ˇ

ˇvTCTCv ´ ErvTCTCvs
ˇ

ˇ ě ϵ}C}2F
‰

ď 2 exp

ˆ

´c
}C}2F
}C}2

min

"

ϵ2

K4
,
ϵ

K2

*˙

.

Proof. Setting M :“ CTC and t “ ϵ}C}2F in the Hanson-Wright inequality, we
obtain

Pr
“ˇ

ˇvTCTCv ´ ErvTCTCvs
ˇ

ˇ ě ϵ}C}2F
‰

ď 2 exp

ˆ

´cmin

"

ϵ2}C}4F
K4}CTC}2F

,
ϵ}C}2F

K2}CTC}

*˙

.

Thus, using that

}CTC}2F ď }CT }2}C}2F “ }C}2}C}2F

}CTC} ď }C}2,

we obtain the claimed inequality. □
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A.3. Vectorization.

Lemma A.5. Let M P Raˆb and R P Rbˆc be matrices and w P Rc a vector. Then

(1) Identifying the matrix R P Rbˆc with the tensor R̂ P Rb b Rc, we have

(A.1) MRw “ pM b wT qR̂.

(2) If in addition R is a random matrix with i.i.d entries and

Errijs “ 0, Err2ijs “ V

for some V ě 0, we have

E
“

}MRw}2
‰

“ V }M}2F }w}2.

Proof. We first identify the matrix R P Rbˆc with the tensor product R̂ P Rb b Rc
via a linear extension of rsT Ñ r b s. Then, we have

pM b wT qpr b sq “ Mr b wT s
loomoon

PR

“ pMrqwT s “ MprsT qw,

where in the second equality, we have identified RnbR with Rn. By linear extension,
we thus have (A.1).

In order to calculate E
“

}MRw}2
‰

note that ErR̂R̂T sij,kl “ Errijrkls “ V δikδjl so
that

ErR̂R̂T s “ V Id,

with identity matrix Id P Rb b Rb. It follows that

E
“

}MRw}2
‰

“ E
”

}pM b wT qR̂}2
ı

“ E
”

R̂T pMT b wqpM b wT qR̂
ı

“ E
”

tr
´

R̂T pMTM b wTwqR̂
¯ı

“ E
”

tr
´

R̂R̂T pMTM b wTwq

¯ı

“ tr
´

E
”

R̂R̂T
ı

pMTM b wTwq

¯

“ V tr
`

MTM b wTw
˘

“ V }M}2F }w}2.

□

A.4. Matrix Norms. A block matrix C “
`

C1 ¨ ¨ ¨ Cθ
˘

has spectral norm

(A.2) }C}2 ď

θ
ÿ

l“1

}Cl}
2.

Indeed for any block vector v “ pv1 ¨ ¨ ¨ vθq we have

}Cv} “

›

›

›

›

›

θ
ÿ

l“1

Clvl

›

›

›

›

›

ď

θ
ÿ

l“1

}Clvl} ď

θ
ÿ

l“1

}Cl}}vl} ď

˜

θ
ÿ

l“1

}Cl}
2

¸1{2 ˜

θ
ÿ

l“1

}vl}
2

¸1{2

.
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A.5. Weighted Compressed sensing. This section provides optimality criteria
for weighted compressed sensing, analogous to [23, Theorems 4.26, 4.30, Corollary
4.28] for the unweighted case.

Lemma A.6. Let A P RdˆD, x P RD, y P RD and W P RDˆD be a diagonal
weight matrix with non-negative diagonal entries. Let S be the support of x and S̄
its complement. If A¨,S is injective, Ax “ y and

|
@

A¨,j , pA
˚
¨,Sq`W¨,S d signpxSq

D

| ă Wjj , j P S̄,(A.3)

then x is the unique minimizer of the weighted compressed sensing problem

min
x

}Wx}1 “

D
ÿ

i“1

wi|xi|, Ax “ y.(A.4)

Proof. Define h “ pA˚
¨,Sq`W¨,S d signpxSq. Since A˚

¨,S is surjective, we have A˚
¨,Sh “

W¨,S signpxSq and (A.3) yields | xA¨,j , hy | ă Wjj for j P S̄, so that in summary we
have

h˚A¨,j “ Wjj signpxjq, j P S

h˚A¨,j P p´Wjj ,Wjjq, j P S̄,

which are the KKT conditions for Lagrangian L “ }Wx}1 ´ h˚pAx ´ yq of the
optimization problem (A.4) with Lagrange multiplier h. Since the optimization
problem is convex, the KKT conditions are sufficient, and x is a minimizer, see
e.g. [38, Theorem 3.1.27].

To show uniqueness, we consider an elementary proof of this statement. Let
gS̄ “ A˚

¨,S̄
h. Then for any z P RD satisfying the constraint Az “ y “ Ax and using

the KKT conditions, we have

0 “ xh,Apz ´ xqy “ xW¨,S signpxSq, zS ´ xSy ` xgS̄ , zS̄ ´ xS̄y .

The first term can be estimated by

xW¨,S signpxSq, zS ´ xSy “
ÿ

jPS

Wjjrsignpxjqzj ´ signpxjqxjs

ď
ÿ

jPS

Wjjr|zj | ´ |xj |s “ }WzS}1 ´ }WxS}1

and using xS̄ “ 0 and the KKT condition, the second by

xgS̄ , zS̄ ´ xS̄y “ xgS̄ , zS̄y ă }WzS̄}1 “ }WzS̄}1 ´ }WxS̄}1,

with a strict inequality for zS̄ ‰ 0. In conclusion, we have

0 “ xh,Apz ´ xqy ď }Wz}1 ´ }Wx}1

with with a strict inequality if zS̄ ‰ 0. This shows that x is a minimizer. In case
zS̄ “ 0, we have y “ Az “ ASzS ` AS̄zS̄ “ ASzS and because AS is injective
zS “ xS . This implies that z “ x, which shows that x is indeed the unique
minimizer. □



RELAXATION IN NEURAL NETS AND COMPRESSED SENSING 687

A.6. NP -hardness. It is well known that the ℓp-minimization problem (3.1) is
NP -hard in general. For the results of the paper, we consider extra conditions on
the sensing matrix A and some constraints on the solution vector x. In this section,
we show that these conditions do not generally render the problem tractable.

We consider the following three problems. The first two are known to be NP -
hard and reduced to the compressed sensing problem with additional constraints
used in this paper.

(1) Exact cover by 3-set (X3Cm,θ): Given a collection C l, i “ 1, . . . , θ of three
element subsets of t1, . . . ,mu does there exits a sub-collection that is a
cover of t1, . . . ,mu? I.e. we want to find indices J Ă t1, . . . , θu such that
Ť

jPJ C
l “ t1, . . . ,mu and C l X Ck “ H for all l, k P J with l ‰ k.

(2) Partition Problem (PPm): Given: integer or rational numbers a1, . . . , am,
can one partition t1, . . . ,mu into two sets S1 and S2 such that

ř

iPS1
ai “

ř

iPS2
ai?

(3) ℓp-minimization (LP pm,N ): For 0 ď p ď 1, given a sensing matrix A P RmˆN

and measurements y P Rm, find the minimizer

min
xPRN

}x}pp, s.t. Ax “ y.

For the following discussion, we assume the usual block structure

A “
“

A1 ¨ ¨ ¨Aθ
‰

, Al P Rmˆn.

with N “ nθ.
We first consider the assumptions in the main result Theorem 3.3 on the sensing

matrix A or their simplified variants in Section 3.2. Since the theorem states a sparse
recovery result instead of directly addressing the ℓp-minimization (3.1), we consider
reductions from the covering problem to ℓ0-minimization. For general matrix A,
the covering problem X3Cm,N is polynomial-time reducible to LP 0

m,N . With the
given restrictions on A a reduction is still possible, at least for the smaller problem
X3Cm,θ. Note however that Theorem 3.3 cannot deal with any instance in the
following lemma because the solution vector x is contained in the probabilistic part
of the statement.

Lemma A.7. For n ă m ´ 2, there is a polynomial-time reduction from X3Cm,θ
to LP 0

m`n´1,nθ with blocks of size Al P Rm`n´1ˆn that satisfy

|Sl| ď }Al}2
¨,Sl ď 3|Sl|, 1 ď }Al} ď

?
3

for all index sets Sl Ă t1, . . . , nu.

Proof. Given an instance of X3Cm,θ, let us define the vectors al P Rm such that

alj “ 1 if j P C l and alj “ 0 else, let U l P Rn´1ˆn´1 be orthogonal matrices and
define the sensing matrix blocks

Al “

„

al

U l

ȷ

P Rm`n´1ˆn

and measurement vector

y “
“

ȳ, ŷ
‰

, ȳ “
“

1 ¨ ¨ ¨ 1
‰T

P Rm, ŷ “
“

0 ¨ ¨ ¨ 0
‰T

P Rn´1
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Since all blocks al and U l decouple, the matrix A satisfies all given requirements.
We next show that X3Cn,θ has a solution if and only if the sparsest solution

of Ax “ y satisfies }x}0 “ m{3. We first split x “ rx1, . . . , xls with xl “ rvl, uls
according to the block structure of A. This leads to the two decoupled systems

θ
ÿ

l“1

alvl “ ȳ,
θ

ÿ

l“1

U lul “ ŷ.

It directly follows that ul “ 0, l “ 1, . . . , θ. The remaining problem is identical to
the original proof in [37] or in the book [23]. Since each column al has exactly three
non-zero components, we must have }x}0 ě m{3 to obtain a right hand side ȳ with
all entries one, with equality if and only if there is a cover J and vl “ 1 if l P J and
zero else. □

In this paper, we also consider the case where the solution x comes from a discrete
set only. Whereas replacing a continuous variable by a discrete one often makes a
problem harder, if we restrict the variables too severely, it might become trivial.
With discrete x, a reduction from PPm to LP pm`1,2m is particularly simple. Unlike
Theorem 3.3 this is a ℓp-minimization for p ą 0 so that a direct connection between
the theorem and the following lemma can only be made if A allows sparse recovery
by ℓp-minimization. Nonetheless, the result indicates that the discrete sets used in
Section 3.2 are not overly simple.

Lemma A.8. For 0 ă p ă 1, there is a polynomial-time reduction from PPm to
LP pm`1,2m with blocks Al P Rm,n with

|Sl| ď }Al}2
¨,Sl ď 2|Sl|,

c

1 ´
1

2
ď }Al} ď

c

1 `
1

2

for any n and even θ with nθ “ 2m, for all index sets Sl Ă t1, . . . , nu and solution
vector x restricted to t´1,´1{2, 0, 1{2, 1u.

Proof. The proof is identical to [24, equation (9)], we only trace the matrix proper-
ties. Given an instance of PPm, define the matrix

A “

„

I I
aT ´aT

ȷ

, y “
“

1 ¨ ¨ ¨ 1 0
‰

,

where in the following I denotes the identity matrix of suitable dimensions. Since
θ is even, it follows that each block Al has the form

Al “

»

—

—

–

0
I
0

˘bT

fi

ffi

ffi

fl

for some vector b that consists of suitable components of a. Upon possibly rescaling
the last row of A, the blocks Al satisfy all requirements of the lemma.

Let x be a ℓp minimizer with Ax “ y. We show that the partition problem has
a solution if and only if }x}

p
p “ m “ nθ{2. Let us split the solution as x “ ru, vs

with u, v P Rm according to the block structure of A. For each component we have
ui ` vi “ 1 and therefore |ui|

p ` |vi|
p ě 1 with equality if and only if ui “ 0 or
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vi “ 0. Hence we have }x}
p
p ě m with equality if and only if ui “ 0 and vi “ 1 or

ui “ 1 and vi “ 0 for all i, which directly implies the equivalence to the partition
problem.

The restriction of x to the given discrete set does not change the argument. Note
that the equation Ax “ y always has at least the solution xi “ 1{2 for all i. □
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F. d’Alché Buc, E. Fox, and R. Garnett (eds.), vol. 32, Curran Associates, Inc., 2019.
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