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denotes the logarithmic potential of ν. In other words, any limit measure must
generate in Ω the same logarithmic potential as the equilibrium measure. Now in
the case when K has empty interior and connected complement, i.e., when Pc(K)
has empty interior, then (1.1) implies (see e.g. Carleson’s unicity theorem [10,
Theorem II.4.13]) that ν = ωK , i.e., in this case the limit distribution of the zeros
is the equilibrium distribution, which is a result of H.-P. Blatt, E. B. Saff and M.
Simkani [1] (see also [10, Theorem III.3.6]).

What happens with the zeros when Pc(K) has non-empty interior is a complete
mystery. The simplest such situation is when K = σ is a Jordan curve (homeo-
morphic image of a circle), which we shall assume from now on. If σ is an analytic
Jordan curve, then the zeros stay away from σ (see [9]), and, conversely, if the zeros
do not accumulate at any point of σ, then σ is analytic. More generally, by [5, The-
orem 1.1] if U is a neighborhood of a subarc J of σ and νTn(U) → 0 as n → ∞,
then J is analytic. The converse is not true, if σ has a corner point with outer
angle < π, then by a result of E. B. Saff and N. Stylionopoulos in [8] νn → ωσ in
the weak∗ topology, irrespective if the rest of σ is analytic or not (recall also that
ωσ is supported on σ). In connection with these results Christiansen, Simon and
Zinchenko conjectured ( [5, Conjecture 2.4]) that if σ is a Jordan curve no subarc
of which is analytic, then the asymptotic zero distribution of the zeros of Pn is the
equilibrium distribution ωσ. In this note we show that this is not the case.

Theorem 1.1. There is a Jordan curve σ such that no subarc of σ is analytic (actu-
ally C1), but along some subsequence of the natural numbers the zero distribution of
the n-th Chebyshev polynomial of σ does not converge to the equilibrium distribution
of σ.

It should be mentioned that the construction below gives a σ and a subsequence
of {νn} along which the convergence to ωσ does not take place. It may very well
happen that the Christiansen–Simon–Zinchenko conjecture is true in the sense that
along some subsequence the zero distribution is, indeed, the equilibrium measure.

The construction in Proposition 1.1 is somewhat technical, so first we give a
sketch.

1.1. Outline of the proof. σ will be the limit of some lemniscates σPn = {z |Pn(z)| =
1} for some monic polynomials Pn of some degree Nn. These σPn will be Jordan
curves with a parametrization γPn : C1 → C that uniformly converge to a continu-
ous function γ : C1 → C that gives the parametrization of σ. The curve σ will be
of distance < 1/4 from the unit circle C1, but Pn will have more than half of its
zeros in the disk ∆1/2 of radius 1/2 about the origin, and σPn will be so close to σ
that the same is true for the Nn-th degree Chebyshev polynomial of σ (note that Pn

is the Nn-th Chebyshev polynomial of σPn , and if σ and σPn are sufficiently close,
then so are their Chebyshev polynomials of the given degree Nn). This rules out
that the zero distribution of the Chebyshev polynomials converge to the equilibrium
measure of σ.

There are two other issues to be taken care of. The first is that the limit of Jordan
curves is not necessarily a Jordan curve, and this problem is resolved by ensuring
that the image under γPn of any two points eiu, eiv ∈ C1 that are of distance ≥ 1/j
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is bigger than some δj > 0 for all j ≤ n. Then the same is true for the images under
γ for all j, so γ defines a Jordan curve.

The other issue is to make sure that no part of σ is analytic. This will be achieved
by ensuring that there is a dense set of points wn on σ such that close to any wn

(closer than, say, 1/n) there are two points w̃n,1 and w̃n,2 of σ such that they cut σ
into two arcs both of which are of diameter > n|w̃n,1−w̃n,2| — a property (call it the
crosscut property) that clearly cannot hold if any subarc of σ is analytic (or even
C1). Both the zero accumulation property in ∆1/2 and the just mentioned crosscut
property will be guaranteed for σPn+1 by selecting Pn+1(z) = Pn(z)

mn(z−αn) with
some very large mn and some αn close to wn+1. The main effort will be to ensure
that σPn+1 is a Jordan curve with the described crosscut property around a given
point wn+1. This can be done because σPn+1 is very close to σPn for very large mn,
except for a ”bubble” close to wn+1 containing αn, and the ”neck” of the ”bubble”
can be as narrow as we wish by suitably adjusting αn (see the figures below).

2. Proof of Theorem 1.1

We shall use the following notations. Let ∆r(z) denotes the open disk of radius
r about z, and set ∆r ≡ ∆r(0) and C1 = ∂∆1(0), which is the unit circle. We use
Ur(E) for the open r-neighborhood of a set E. For a polynomial P we define the
level set

σP = {z |P (z)| = 1}
which we call a lemniscate.

2.1. Jordan lemniscates and their natural parametrization.

Proposition 2.1. Let P be a polynomial of degree N . If σP is a Jordan curve,
then P 1/N is defined and univalent on the domain

{z |P (z)| ≥ c}
for some c < 1. In particular, all zeros of P ′ lie inside σP .

2

Proof. All zeros of P lie inside σP , so if we use the main branch of logarithm,
then P 1/N is defined and single-valued outside σP . As z runs through σP in the
counterclockwise direction, the value P (z) runs through the unit circle N -times, so
there are consecutive arcs σ1, . . . , σN on σP such that they are disjoint except for
their endpoints and P (z) runs through the unit circle once in the counterclockwise

2This last property, which is apparently a folklore result, can also be verified as follows. P ′

cannot have a zero on σP by the assumed Jordan-curve property, and assume, to the contrary, that
for some z0 lying outside σP we have P ′(z0) = 0. Then the lemniscate {z |P (z)| = |P (z0)|} has
a multiple point, so the set {z |P (z)| < |P (z0)|} has at least two components each containing at
least one zero of P . But σP lies inside this set and contains all zeros of P in its interior, which is
impossible.

A third proof follows from the fact that by conformality and |P (z)| = 1 on z ∈ σP , the vector
P (z)/P ′(z) is perpendicular to the curve σP at any z ∈ σP . Hence, its change of argument as we
circle σP once counterclockwise is 1, and so the claim follows from the argument principle. This
proof also shows that if a Jordan curve σ is the level set of a function g that is analytic on and
inside σ, then g has precisely 1 more zeros inside σ than its derivative.

The proofs also give that if σP is the union of k Jordan curves, then inside these curves P ′ has
altogether precisely N − k zeros.
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direction as z runs trough σj , j = 1, . . . , N . At this point all we can say is that
the total change of the argument of P (z) as z runs through σj is 2π, but actually
the argument of P (z) increases monotonically. In fact, if this was not the case,
then there would be a σj and two points zj , z

∗
j in σj that are different from its

endpoints such that P (zj) = P (z∗j ) =: w. But on each other σi there is a point zi
with P (zi) = w, and we would get a contradiction, since then P would take the
value w at least (N + 1)-times (at each zi and also at z∗j ).

Thus, the argument of P monotonically increases3, and hence so is the argument
of P 1/N . Therefore, P 1/N is 1–to–1 on σP , and since the exterior domain of σP
(including the point infinity) is simply connected, it follows from the argument

principle that P 1/N is 1–to–1 also in that exterior domain.
The same can be told instead of σP with any lemniscate

σ∗
P = {z |P (z)| = c}

that lies sufficiently close to σP (see the next subsection), and that proves the claim.

In particular, the derivative of P 1/N cannot vanish on and outside σP , hence all
zeros of P ′ lie inside σP . □

We can take γP (ζ) = (P 1/N )−1(ζ), ζ ∈ C1, as a parametrization of σP , which we
call its natural parametrization.

2.2. How to recognize when σP is a Jordan curve? If T is a connected set
that contains all zeros of P and if |P | < 1 on T , then σP is a Jordan curve. Indeed,
every component of {|P | < 1} must contain a zero of P , so, under the assumption,
this set is connected. In particular, P ′ ̸= 0 on σP (a zero of P ′ on σP would create a
multiple point and then the set {|P | < 1} could not be connected), so σP is locally
an analytic Jordan arc, and since it has only one component, it is a Jordan curve.

The converse is also true: if σP is a Jordan curve, then {z |P (z)| < 1} is a
connected set containing all the zeros of P , so these zeros can be connected by a
system of broken lines T on which |P | < 1.

In a similar fashion, if T does not connect all zeros of P , then we can still conclude
that the zeros of P that lie in T lie in one connected component of {|P | < 1}.

2.3. Local inverses and their properties. Let f be analytic on ∆r and assume
that

(2.1) 0 < d ≤ |f ′| ≤ D

there. Assuming f(0) = 0 we can write

f(z) = a1z + · · · , |a1| ≥ d,

and without loss of generality we may assume that a1 is real and a1 ≥ d. We have

f ′(z) = a1 +
∑
j≥2

jajz
j−1

3By an observation of E. Rahmanov, this is also the consequence of the Cauchy-Riemann equa-
tions for logP — with some local branch of the logarithm — at the points of σP
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and here

j|aj | =

∣∣∣∣∣ 1

2πi

∫
|ξ|=r

f ′(ξ)

ξj
dξ

∣∣∣∣∣ ≤ D

rj−1
,

so ∣∣∣∣∣∣
∑
j≥2

jajz
j−1

∣∣∣∣∣∣ ≤ D
∑
j≥2

(|z|/r)j−1 = D
|z|/r

1− |z|/r
≤ d/2

if |z| ≤ dr/4D, and hence

ℜf ′(z) ≥ a1
2

≥ d

2
, |z| ≤ dr

4D
.

Now if u, v ∈ ∆dr/4D are two distinct points, then

|f(u)− f(v)| =
∣∣∣∣∫ v

u
f ′(t)dt

∣∣∣∣ = ∣∣∣∣∫ 1

0
f ′(u+ (v − u)s)(v − u)ds

∣∣∣∣ ≥ d

2
|u− v|

because with ξ = (u− v)/|u− v|

ℜ
{
f ′(u+ (v − u)s)(v − u)/ξ

}
≥ d

2
|u− v|

and |ξ| = 1. This implies, in particular, that f is univalent in ∆dr/4D, and by

Koebe’s 1/4-theorem4 the image of ∆dr/4D under f contains the disk about the
origin and of radius

(dr/4D)|f ′(0)|/4 ≥ d2r/16D,

i.e. ∆d2r/16D ⊆ f(∆dr/4D). In general, for δ ≤ dr/4D the image of ∆δ under f
contains the disk ∆dδ/4. It also follows from the formula for the derivative of inverse
functions that

|(f−1)′(z)| ≤ 1

d
, z ∈ ∆d2r/16D.

Suppose now that, in addition to the f we have been considering, there is another
analytic function g on ∆r such that

|f − g| ≤ θ

with some constant θ. By Cauchy’s formula (applied on disks ∆ρ, ρ < r/2 and then
letting ρ → r/2)

|f ′ − g′| ≤ 2πr

2π

θ

(r − r/2)2
=

4θ

r
, |z| ≤ r/2,

and so
d

2
≤ |g′| ≤ 2D on Dr/2 if θ ≤ dr/8.

Therefore, according to what we have proven above, g is univalent on ∆dr/32D (note
that now instead of r, d,D we have to use r/2, d/2, 2D), and g(0) + ∆d2r/256D is
in the range of g when restricted to ∆dr/32D. Since |g(0)| ≤ θ, it follows that if

4Koebe’s theorem claims that if h(z) = z + · · · is univalent in the unit disk, then the image of
the unit disk under h contains the disk ∆1/4.
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Figure 1. Schematic figure of σP , its arcs J∗ ⊂ J that are the
portions of σ that lie outside the two disks around w, as well as their
images J ∗ ⊂ J under P 1/N on the unit circle with endpoints eit3 ,
eit2 resp. eit4 and eit1

θ ≤ d2r/512D is also satisfied, then ∆d2r/512D is in the common range of f and g
when they are restricted to ∆dr/32D.

Let w ∈ ∆d2r/512D, and set u = g−1(w) and v = f−1(w). As we have seen,

|f(u) − f(v)| ≥ d
2 |u − v|, and if we combine this with |f(u) − g(u)| ≤ θ then we

obtain

0 = |f(v)− g(u)| ≥ d

2
|u− v| − θ,

which implies |u− v| ≤ 2θ/d, i.e.

(2.2) |g−1 − f−1| ≤ 2θ

d
on ∆d2r/512D.

So far we have assumed that f(0) = 0. If f(0) ̸= 0, then f(0) + ∆d2r/512D is
in the range of both f and g when restricted to ∆dr/32D, and (2.2) is true when
∆d2r/512D is replaced by f(0) + ∆d2r/512D.

2.4. Properties of the natural parametrization. Let P , σP as before, and
choose ρ0 so small that for each w ∈ σP the intersection σP ∩∆ρ(w) is a Jordan arc

for all ρ < 2ρ0, all zeros of P
′ lie of distance > 2ρ0 from σP , and P 1/N is univalent

on the 2ρ0-neighborhood U2ρ0(σP ) of σP (see Section 2.1). Choose d > 0, D > 1 so

that d ≤ |(P 1/N )′| ≤ D on U2ρ0(σP ), and finally choose a number 0 < ρ < ρ0d/4D.
Let w ∈ σP be given, and consider the arcs J = σP \∆ρ(w) and J∗ = σP \∆2ρ(w).

The function P 1/N maps J into an arc J of the unit circle, and it maps J∗ into a
subarc J ∗ of J , see Figure 1. If P (w)1/N = eit0 and the endpoints of J resp. J ∗ in
their counterclockwise orientation are eit3 , eit2 resp. eit4 and eit1 , then what we have
shown in Section 2.3 implies that with some c1, c2 > 0 we have for all ρ < ρ0d/4D

(2.3) c1ρ ≤ t2 − t1, t0 − t2, t3 − t0, t4 − t3 ≤ c2ρ.

We have also seen that if θ ≤ d2ρ/1024D is given and for an analytic function g

we have |g − P 1/N | ≤ θ on Uρ/2(J), then

(2.4) |g−1 − γP | ≤
2θ

d
on J .
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For a large number V (to be selected below) we set R(z) = P (z)m(z −α), where
m is a large number and |α− w| < ρ/4V will be selected later. The degree of R is
mN + 1 and

(2.5) R(z)1/(mN+1) = P (z)m/(mN+1)(z − α)1/(mN+1).

We also request that if θ ≤ d2ρ/1024D is given, then the m in the definition of R
be so large that irrespectively of the actual choice of α (with |α− w| < ρ/4V )

: 1) |R| > 1 in the unbounded component of C \ Uρ/2V (σP ),

: 2) |R| < 1 in the bounded component of C \ Uρ/2V (σP ).

: 3) with the main branch of the logarithm in defining the powers P 1/N andR1/mN+1

we have

(2.6) |P 1/N −R1/(mN+1)| < θ on Uρ/2(J)

(note that any z ∈ Uρ/2(J) and α ∈ ∆ρ/4V (w) are at least of distance ρ/4 apart).
Therefore, according to what we have just said in (2.4), it follows that if σR is also
a Jordan curve, then

(2.7) |γP − γR| ≤
2θ

d
on J .

This is an estimate on the two parametrizations γP and γR only on the arc J of
the unit circle, and note that it is independent of the actual choice of |α−w| < ρ/4V
and ρ < ρ0d/4D. On the whole of C1 we prove

Claim 2.2. If θ < min{d2ρ/1024D, c1ρ/8}, then
(2.8) |γP − γR| ≤ 4ρ, on C1.

Here c1 is from (2.3).

Proof. The inequality
|γP (eit)− γR(e

it)| ≤ 4ρ

follows from (2.7) if eit ∈ J because θ < dρ, so in what follows we may assume that
eit ̸∈ J , i.e. t2 < t < t3. In that case |γP (eit)−w| ≤ ρ, therefore if |γR(eit)−w| ≤ 3ρ
is also true, then (2.8) follows. We shall show that for sufficiently large V this is
indeed the case.

In fact, suppose to the contrary that γR(e
it) lies outside ∆3ρ(w). It definitely lies

in Uρ/V (σP ) by properties 1)–2) above (note that |R(γR(e
it))| = 1), so it lies in a

ball of radius ρ/V about a point z0 ∈ J∗: |z0 − γR(e
it)| ≤ ρ/V . Then

|P 1/N (z0)− P 1/N (γR(e
it))| ≤ D

ρ

V
,

|P 1/N (γR(e
it))−R1/(mN+1)(γR(e

it))| ≤ θ,

which imply, in view of R1/(mN+1)(γR(e
it)) = eit, the inequality

|P 1/N (z0)− eit| ≤ c1(ρ/4),

provided V > 8D/c1 and θ < c1ρ/8, where c1 is the constant from (2.3). However,

this is impossible, since P 1/N (z0) ∈ J ∗, so its distance from any point of the arc
{eit t2 ≤ t ≤ t3} is at least c1ρ/2 by the choice of c1 in (2.3). This contradiction
proves the claim. □
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We summarize this section: if ε > 0 is given, then choosing ρ < ε/4 so that it
satisfies all the requirements above as well as choosing θ < min{d2ρ/1024D, c1ρ/8}
we get that if P and R are related as in (2.5)–(2.6), then, assuming that σR is a
Jordan curve, we have

(2.9) |γP − γR| < ε.

The order of the choice of the parameters for a given ε is: ρ < ε/4, θ <
min(d2ρ/1024D, c1ρ/8), and m so large that 1)–3) are true where V > 8D/c1 is
a fixed number.

2.5. The choice of R. As before, let w ∈ σP be given. In this section we shall
choose α in R(z) = P (z)m(z − α) close to w: |w − α| ≤ ρ/4V (see the previous
section).

We shall consider the polynomials Rβ(z) = P (z)m(z − β) with |w − β| ≤ ρ/4V .
First of all, for a given ε > 0 choose a ρ < ε/4, θ and m1 so that when α is replaced
by β, everything we have discussed is valid for m ≥ m1, irrespectively of the actual
choice of β with |w − β| < ρ/4V , except for the property that σRβ

is a Jordan
curve. For R = Rα that Jordan curve property has been assumed in the discussion
above, and in what follows we have to verify it during our process of selecting α. In
general, for Rβ we do not need this property.

We may also assume ρ > 0 so small that P ′(z) ̸= 0 in the 2ρ-neighborhood of σP
(this is possible for P ′ is not zero on σP ).

Let wa be the outer normal segment to σP at w of some length |w − a| < ρ/8V ,
and parametrize wa as w+t(a−w), 0 ≤ t ≤ 1. Let, furthermore, a∗ be the reflection
of a onto w. For small |w − a| the point a lies in the outer, and the point a∗ lies
in the inner domain to σP . Select a this way, and we consider the polynomials Rβ

with β ∈ wa. Connect by a system T of broken lines the point a∗ with all zeros of
P and P ′ inside the inner domain to σP (recall Section 2.1 that this is possible).
There is an m2 ≥ m1 such that for m ≥ m2 we have

: a) |Rβ | < 1 on T irrespectively of the choice of β ∈ wa,
: b) |Ra(z)| > 1 for all z ∈ Σ where Σ is the set of points that lie outside σP and

are of distance |a − w|/2 from σP , as well as |Ra(z)| > 1 for all z lying in
the outer domain to σP that are of distance ≥ |a− w|/2 from both σP and
a.

: c) for all β ∈ wa we have |Rβ(z)| > 1 when z lies outside σP and is of distance
≥ ρ/2 from σP and |Rβ(z)| < 1 when z lies inside σP and is of distance
≥ ρ/2 from σP ,

: d) for all β ∈ wa we have R′
β(z) ̸= 0 when z lies in the ρ/2-neighborhood of σP

and |z − a| ≥ ρ/2.

That for sufficiently large m properties a)–c) can be achieved is simple to see, and
for property d) consider that

R′
β(z) = P (z)m−1

(
mP ′(z)(z − β) + P (z)

)
and recall that |P ′(z)| has a positive lower bound in the ρ-neighborhood of σP by
the choice of ρ (note also that |z − a| ≥ ρ/2 implies |z − β| ≥ ρ/4 for all β ∈ wa
because |w − a| < ρ/8V ≤ ρ/8).



ZEROS OF CHEBYSHEV POLYNOMIALS 655

For β = a the lemniscate σRβ
has two connected components: one containing all

zeros of Pm (by property a) and Section 2.2 these zeros lie in the same component
of all {|Rβ | < 1}), and one containing the point a. In fact, the set Σ in part b)
separates these two components. On the other hand, for β = w the lemniscate
σRβ

has only one component because of property a) and because of the fact that

|Rβ | < 1 on the segment a∗w (note that T ∪ a∗w connects all zeros of Rβ for
β = w). Therefore, there must be a smallest t0 ∈ [0, 1] with the property that for
all t0 < t ≤ 1 and for β = w + t(a− w) the lemniscate σRβ

has two components (it
cannot have more by property a) and the fact that T connects all zeros of Pm).

Let α0 = w + t0(a − w). Then the lemniscate σRα0
is connected (otherwise for

all t < t0 sufficiently close to t0 and for β = w + t(a − w) the lemniscate σRβ

would also be disconnected, but this contradicts the definition of t0). Moreover,
σRα0

is not a Jordan curve. Indeed, if it was, then by Section 2.2 there would be
a connected set T1 of broken lines inside σRα0

that connects the zeros of Rα0 such

that |Rα0 | ≤ 1−κ on T1 with some κ > 0. But then for t > t0 sufficiently close to t0
and for β = w+ t(a−w) we would have |Rβ | < 1 on T1∪α0β, and this set connects
the zeros of Rβ . This would mean that σRβ

is connected, which is impossible again
by the definition of t0.

Thus, σRα0
is connected but it is not a Jordan curve, so it has a multiple point

W , where necessarily R′
α0
(W ) = 0. We have

R′
α0
(z) = P (z)m−1

[
mP ′(z)(z − α0) + P (z)

]
,

and this has (m− 1)N zeros at the zeros of P . Furthermore, by Rouche’s theorem,
the expression in the square bracket has a zero (counting multiplicity) close to
any zero of P ′ provided m is sufficiently large, and these N − 1 zeros lie in the
component of {|Rα0 | < 1} that contain the zeros of P (recall that |Rα0 | < 1 on T
which connects the zeros of P and P ′) for all m ≥ m3 with some m3 ≥ m2. So,
assuming m ≥ m3, we conclude that R′

α0
has mN − 1 zeros in the just mentioned

component, and as a consequence we conclude that W can only be a simple zero
of R′

α0
. Then in a neighborhood U of W the intersection U ∩ σRα0

consists of two
analytic arcs intersecting at W at right angle.

Note that α0 and the other zeros of Rα0 lie in different components of {|Rα0 | < 1}.
Consider the “cross” ABCD with center at W , where AC and BD bisects the
angles between the two tangent lines to σRα0

at W , and where C lies in the same

component of {|Rα0 | < 1} as α0 (and then A lies in the other component of this
set), see Figure 2. Connect now α0 and C by a broken line T2, and A and a zero
of P by a broken line T3 inside {|Rα0 | < 1} (T2 and T3 lie in different components
of this set) so that |Rα0 | < 1 on T2 ∪ T3. Let α be on the segment α0W lying close
to α0. If α is sufficiently close to α0 and the cross ABCD is sufficiently small, then
|z − α| < |z − α0| is true for all z ∈ AC. Therefore, if α is sufficiently close to α0,
then |Rα| < 1 on T ∪ T2 ∪ T3 ∪ AC ∪ α0α. But this latter set is connected and
contains all zeros of Rα, hence σRα is a Jordan curve by Section 2.2.

On the other hand, |Rα0(B)| > 1 and |Rα0(D)| > 1, so if α is sufficiently close to
α0, then we have |Rα(B)| > 1 and |Rα(D)| > 1. But on the segment BD we have
|Rα| < 1 at the point W ∈ AC, so σRα must intersect the segments BW and WD
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Figure 2. Schematic figure of σRα0
and the cross ABCD with cen-

ter at the double point W on the left figure. The final choice α is
close to α0 on the segment α0W , and the resulting Jordan curve σRα

is depicted on the right figure.

in some points, say w1 and w2. So w1 and w2 are two different points on σRα such
that |w1 − w2| < |D −B|.

Let τ be the smaller of the diameters of the two components of σRα0
\ {W}.

If α lies sufficiently close to α0, then the two components of σRα \ {w1, w2} have
diameters > τ/2. Now if M is arbitrarily given, and the cross is so small that
|D − B| < τ/2M , then it follows that both components of σRα \ {w1, w2} have
diameters bigger than M |w1−w2|, i.e. the small crosscut w1w2 of σRα is producing
two large components relative to the length |w1 − w2| of the crosscut.

Finally, since we had |α0 − w| < ρ/4V , we can choose α so close to α0 on the
segment α0W that |α− w| < ρ/4V is also satisfied.

This completes the choice of α, for which σRα is a Jordan curve.
Let us summarize our findings.

Claim 2.3. Given w ∈ σP , ε > 0, δ > 0 and M , there is a polynomial R(z) =
P (z)m(z−α) such that σR is a Jordan curve, |γR− γP | < ε, and σR has two points
w1, w2 in ∆δ(w) such that both components of σRα \ {w1, w2} have diameters bigger
than M |w1 − w2|.

Indeed, all we need to do is to set ρ < min(ε/4, δ/4), |a − w| < δ/2 in the
construction above, choose m large (independently of |α−w| < ρ/4V ) then choose
the cross ABCD small, and finally choose α sufficiently close to α0. All statements
in Claim 2.3 were obtained during the construction except for w1, w2 being in ∆δ(w).
This last property follows from the requirements c) and d) in Section 2.5. Indeed,
by c) the lemniscate σRα0

lies in the ρ/2-neighborhood of σP , and then by property

d) the point W (where R′
α0

is zero) on that lemniscate must satisfy |a−W | ≤ ρ/2.
Therefore, if α lies sufficiently close to α0, then w1 and w1 lie in ∆3ρ/4(a), which is
part ∆δ(w).

2.6. Proof of Theorem 1.1. σ will be the limit of a sequence of Jordan curves
σPn with Pn a polynomial of degree Nn having the following properties:
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I. If γPn is the natural parametrization of σPn , then

(2.10) |γPn − γPn+1 | ≤ εn, n = 1, 2, . . . ,

where εn < 1/4n will be selected later so that they also satisfy

(2.11)
∞∑
n=1

εn < 1/4,
∑
m>n

εm < εn for all n = 1, 2, . . ..

II. More than half of the zeros of Pn lie in ∆1/2.
III. |Pn| ≥ δ∗n on |z| = 1/2 with some δ∗n > 0.

We start from P1(z) = z, σP1 = C1, ε1 = 1/8, δ∗1 = 1/3, and once Pn is defined,
we choose Pn+1(z) = Pn(z)

mn(z − αn) as in the preceding sections so that they
satisfy the properties to be discussed below.

In view of (2.10) the functions γPn uniformly converge to some γ : C1 → C,

(2.12) γ = lim
n→∞

γPn = γP1 +
∞∑
n=1

(γPn+1 − γPn),

for which

|γ − γPn | ≤
∞∑

m=n

|γPm+1 − γPm | ≤
∞∑

m=n

εm < 2εn.

In particular, if σ is the continuous curve that γ describers, then σ lies in the 1/4-
neighborhood of C1. Below we shall detail the construction so that σ becomes a
Jordan curve (that does not have to be so just from σ being the limit of the Jordan
curves σPn), and then ∆1/2 lies in the interior of σ.

We mention first of all that Pn is the Nn-th degree Chebyshev polynomial for
σPn . Indeed, if S(z) = zNn + · · · is an arbitrary monic polynomial of degree Nn,
then, since

lim
z→∞

S(z)

Pn(z)
= 1,

it follows from the maximum principle that in the exterior of σPn that ∥S∥σPn
≥ 1,

meaning that Pn has the smallest norm on σPn among such polynomials.
From the unicity of Chebyshev polynomials for a compact set (consisting of in-

finitely many points) it follows that there is an εn,1 > 0 such that if σ is a Jordan
curve such that the Hausdorff distance dist(σ, σPn) is smaller than εn,1, then for the
Chebyshev polynomial T σ

Nn
of degree Nn of σ we have

(2.13) |T σ
Nn

− Pn| <
δ∗n
2

on σPn .

Then, by the maximum principle, the same inequality holds on |z| = 1/2 (this
circle lies inside every σPn), and by property III. and Rouche’s theorem we can
conclude that for εn < εn,1/2 the polynomials Pn and T σ

Nn
have the same number

of zeros in ∆1/2, so T σ
Nn

has more than half of its zeros in ∆1/2. This shows that
the zero counting measures of T σ

Nn
, n = 1, 2, . . ., do not converge to the equilibrium

distribution of σ (which lies on σ).
Next, suppose that for some numbers δj , j = 1, 2, . . . , n we have

(2.14) min
|eiu−eiv |≥1/j

|γPn(e
iu)− γPn(e

iv)| > δj , j = 1, 2, . . . , n.
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Then there is an εn,2 > 0 such that if for some function γ : C1 → C we have
|γPn − γ| < εn,2, then

(2.15) min
|eiu−eiv |≥1/j

|γ(eiu)− γ(eiv)| > δj , j = 1, 2, . . . , n,

is also true. If εn < εn,2/2 is also satisfied, then this will hold for the γ in (2.12).
Since the inequality in (2.15) is true for all j, it follows that γ defines a Jordan
curve σ.

Assume now that wn ∈ σPn is a point on σPn such that there are wn,1, wn,2 ∈
∆1/n(wn) distinct points on σPn with the property that if H1(wn,1, wn,2;σPn) and

H2(wn,1, wn,2;σPn) are the two components of σPn \ {wn,1, wn,2}, then

min
(
diam(H1(wn,1, wn,2;σPn)), diam(H2(wn,1, wn,2;σPn))

)
> n|wn,1 − wn,2|.

Assume that wn,1 = γPn(e
itn,1) and wn,2 = γPn(e

itn,2). Then there exists an εn,3 >
0 such that if γ : C1 → C is a parametrization of a Jordan curve σ such that
|γPn − γ| < εn,3, then for w̃n,j = γ(eitn,j ) we have

(2.16) min
(
diam(H1(w̃n,1, w̃n,2;σ)), diam(H2(w̃n,1, w̃n,2;σ)

)
> n|w̃n,1 − w̃n,2|,

and of course we shall require of our εn that εn < εn,3/2 hold, so the just discussed
property is true for the γ from (2.12). Let {tk} be an enumeration of the rational
numbers on R, and assume that wn = γPn(e

itn) for all n. Then

|w̃n,j − γ(eitn)| ≤ |w̃n,j − wn,j |+ |wn,j − γPn(e
itn)|+ |γPn(e

itn)− γ(eitn)|

≤ 2εn +
1

n
+ 2εn <

2

n
.

But the points γ(eitn), n = 1, 2 . . ., form a dense set on σ, therefore (2.16) shows
that no subarc of σ is analytic (or even C1).

To complete the induction, set

εn =
1

4
min(εn,1, εn,2, εn,3, εn−1),

and Pn+1(z) = Pn(z)
mn(z − αn) of degree Nn+1 = mnNn + 1, where this poly-

nomial is constructed in Section 2.5 for the numbers ε = εn and for the point
w = σPn(e

itn) ∈ σPn (with an αn lying close to wn as in Section 2.5). Then (2.12)
defines a Jordan curve σ with all the discussed properties. If Pn has more than Nn/2
of its zeros in ∆1/2, say ≥ Nn

2 +qn zeros with qn > 0, then Pn+1(z) = Pn(z)
mn(z−αn)

has at least

mn(
Nn

2
+ qn) >

mnNn + 1

2
zeros in ∆1/2 provided mn is so large that mnqn > 1/2, so the assumption II. on
the zeros is preserved when going from Pn to Pn+1.

Finally, if we set

δ∗n+1 = min
|z|=1/2

|Pn+1(z)| ≥ (δ∗n)
mn

1

4

and

δn+1 = min
|eiu−eiv |≥1/(n+1)

|γPn+1(e
iu)− γPn+1(e

iv)|,
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then property III., as well as (2.14) are preserved while going from Pn to Pn+1, and
this completes the proof.
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