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[−N1, N1] × · · · × [−Nd, Nd], Nj ∈ N0 := N ∪ {0}, j = 1, . . . , d, N = (N1, . . . , Nd)
we denote

P (N) :=
{
n = (n1, . . . , nd) : nj ∈ N0, 0 ≤ nj ≤ 2Nj , j = 1, . . . , d

}
,

and set

xn :=

(
2πn1

2N1 + 1
, . . . ,

2πnd

2Nd + 1

)
, n ∈ P (N).

Then we can discretize the multivariate convolution of functions from T (Π(N))
using the set of points {xn}n∈P (N). Clearly, this set of points heavily depends on
N. We would like to build a universal discretization of convolution. We formulate
it in a special case. For j ∈ Nd define

R(j) := {k ∈ Zd : |ki| < ji, i = 1, . . . , d}.

Consider the collection C′(N, d) := {T (R(j)), j1 · · · jd ≤ N}. We would like to find
a set of points {ξν}mν=1 with as small m as possible with the following properties.

Property A. For any j, satisfying |j1| · · · |jd| ≤ N , and any f, g ∈ T (R(j)) we
have

(f ∗ g)(x) = 1

m

m∑
ν=1

f(ξν)g(x− ξν).

In particular, for g(x) = DR(j)(x) we have

f(x) =
1

m

m∑
ν=1

f(ξν)DR(j)(x− ξν).

Property B. Let 1 ≤ p < ∞. For any j, satisfying j1 · · · jd ≤ N , and any
f ∈ T (R(j)) we have

∥f∥pp ≤ C(p, d)
1

m

m∑
ν=1

|f(ξν)|p.

In other words we want a universal sampling representation with additional good
properties (Property B).

In Section 2 we prove that in the case d = 2 the Fibonacci point set Fn (with an
appropriate n) provides Properties A and B with the best possible (in the sense of
order) bound on m: m ≤ CN .

In Section 3 we study properties of the following operator

VQr,bn(a)(x) :=
1

bn

bn∑
ν=1

aνVQr(x− yν),

where Qr is the step hyperbolic cross and VQr is the de la Vallée Poussin kernel for
it (see Section 3).

In Section 4 we extend results of Section 2 to the case d ≥ 3. Instead of the Fi-
bonacci point sets we consider the Korobov point sets. We obtain results somewhat
similar to those from Section 2 but not as sharp as results on the Fibonacci point
sets. We show that the Korobov point sets provide suboptimal (up to logarithmic
factors) results for an arbitrary d.
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In Section 5 we present a discussion of known results on universal sampling dis-
cretization and their relations with our new results. Also, we formulate some open
problems.

Main results. We now formulate the main results of the paper. Let {bn}∞n=0,
b0 = b1 = 1, bn = bn−1 + bn−2, n ≥ 2, – be the Fibonacci numbers.

Denote

yµ :=
(
2πµ/bn, 2π{µbn−1/bn}

)
, µ = 1, . . . , bn, Fn := {yµ}bnµ=1.

In this definition {a} is the fractional part of the number a. The cardinality of the
set Fn is equal to bn. Let ℓ

m
p,m be Rm equipped with the norm

∥x∥p,m :=

(
1

m

m∑
i=1

|xi|p
)1/p

, 1 ≤ p < ∞; ∥x∥∞ := max
i

|xi|.

In Section 2 we prove the following result.

Theorem 1.1. Let γ be from Lemma 2.1 and let 1 ≤ p ≤ ∞. The Fibonacci
point set Fn provides the following two properties for the collection C′(N, 2) with
N = [γbn/4].

(I). For any j, satisfying 4j1j2 ≤ γbn, and any f, g ∈ T (R(j)) we have

(f ∗ g)(x) = 1

bn

bn∑
ν=1

f(yν)g(x− yν).

(II). Let Vj(x) be the de la Vallée Poussin kernels for R(j) (see Section 2 for the
definition). Then for any j satisfying 4j1j2 ≤ γbn we have∥∥∥∥∥ 1

bn

bn∑
ν=1

aνVj(x− yν)

∥∥∥∥∥
p

≤ 9∥a∥p,bn , a = (a1, . . . , abn).

In Section 4 we extend Theorem 1.1 to the case of d ≥ 3 by considering the
Korobov point sets instead of the Fibonacci point sets. Results of Section 4 are not
as sharp as results of Section 2 – in the bounds on the number of points m we have
an extra logarithmic factor.

We now formulate one more result in the case d = 2. Let VQr(x) be the hyperbolic
cross de la Vallée Poussin kernel (see the definition in Section 3). We are interested

in studying the operator VQr,bn : ℓbnp,bn → Lp(T2) defined as

VQr,bn(a)(x) :=
1

bn

bn∑
ν=1

aνVQr(x− yν), a = (a1, . . . , abn).

In Section 3 we prove the following result.

Theorem 1.2. Let r ∈ N be such that 2r ≤ γbn. Then we have for
1 ≤ p ≤ ∞

(1.1) ∥VQr,bn∥ℓbnp,bn→Lp
≤ Crθ(p), θ(p) := max(1/p, 1− 1/p),

with an absolute constant C.
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Note that Theorem 1.2 is sharp in the cases 1 ≤ p ≤ 2 and p = ∞. Indeed, let
us take a = (1, 0, . . . , 0). Then for 1 ≤ p ≤ 2 Theorem 1.2 gives

(1.2) ∥b−1
n VQr(x− y1)∥p ≤ Cb−1/p

n r1/p.

Let r be such that 2r ≍ bn (2r is of order bn). It is known (see, for instance, [25],
p.140) that

(1.3) ∥VQr∥p ≥ c(p)2(1−1/p)rr1/p ≍ b1−1/p
n (log bn)

1/p.

Comparing the above two inequalities, we see that the upper bound in (1.2) provided
by Theorem 1.2 coincides (in the sense of order) with the lower bound in (1.3). The
lower bound in the case p = ∞ is straight forward.

2. The Fibonacci point sets

For the continuous functions of two variables, which are 2π-periodic in each vari-
able, we define cubature formulas

Φn(f) := b−1
n

bn∑
µ=1

f
(
2πµ/bn, 2π{µbn−1/bn}

)
,

called the Fibonacci cubature formulas. Denote

Φ(k) := b−1
n

bn∑
µ=1

ei(k,y
µ).

Then

(2.1) Φn(f) =
∑
k

f̂(k)Φ(k), f̂(k) := (2π)−2

∫
T2

f(x)e−i(k,x)dx,

where for the sake of simplicity we may assume that f is a trigonometric polynomial.
It is clear that (2.1) holds for f with absolutely convergent Fourier series.

It is easy to see that the following relation holds

Φ(k) =

{
1 for k ∈ L(n)

0 for k /∈ L(n),

where

L(n) :=
{
k = (k1, k2) : k1 + bn−1k2 ≡ 0 (mod bn)

}
.

Denote L(n)′ := L(n)\{0}. For N ∈ N define the hyperbolic cross in dimension 2
as follows:

Γ(N) := Γ(N, 2) :=

k ∈ Z2 :
2∏

j=1

max(|kj |, 1) ≤ N

 .

The following lemma is well known (see, for instance, [25], p.274).
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Lemma 2.1. There exists an absolute constant γ > 0 such that for any n > 2 for
the 2-dimensional hyperbolic cross we have

Γ(γbn) ∩
(
L(n)\{0}

)
= ∅

and, therefore, for any f ∈ T (Γ(N)) with N ≤ γbn we have

Φn(f) = (2π)−2

∫
T2

f(x)dx.

Proof of Theorem 1.1. We begin with a proof of part (I) of Theorem 1.1. It
is a direct corollary of Lemma 2.1. For f, g ∈ T (j) we have for each x ∈ T2 that
f(y)g(x − y) ∈ T (2j) and, taking into account our assumption 4j1j2 ≤ γbn, by
Lemma 2.1 we obtain

(f ∗ g)(x) = (2π)−2

∫
T2

f(y)g(x− y)dy = Φn(f(·)g(x− ·))

=
1

bn

m∑
ν=1

f(yν)g(x− yν).

We now proceed to the proof of part (II) of Theorem 1.1. We need some classical
trigonometric polynomials for our further argument (see [26] and [25]). We begin
with the univariate case. The Dirichlet kernel of order j:

Dj(x) :=
∑
|k|≤j

eikx = e−ijx(ei(2j+1)x − 1)(eix − 1)−1

=
(
sin(j + 1/2)x

) /
sin(x/2)

is an even trigonometric polynomial. The Fejér kernel of order j − 1:

Kj(x) := j−1
j−1∑
k=0

Dk(x) =
∑
|k|≤j

(
1− |k|/j

)
eikx

=
(
sin(jx/2)

)2 / (
j(sin(x/2)

)2)
.

The Fejér kernel is an even nonnegative trigonometric polynomial in T (j − 1). It
satisfies the obvious relations

(2.2) ∥Kj∥1 = 1, ∥Kj∥∞ = j.

The de la Vallée Poussin kernel

(2.3) Vj(x) := j−1
2j−1∑
l=j

Dl(x) = 2K2j(x)−Kj(x)

is an even trigonometric polynomial of order 2j − 1.
In the two-variate case define the Fejér and de la Vallée Poussin kernels as follows:

Kj(x) := Kj1(x1)Kj2(x2), Vj(x) := Vj1(x1)Vj2(x2), j = (j1, j2).

The statement of the part (II) of Theorem 1.1 follows from Lemma 2.2.
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Lemma 2.2. Let 1 ≤ p ≤ ∞. Then for any j satisfying 4j1j2 ≤ γbn and any
a = (a1, . . . , abn) we have∥∥∥∥∥ 1

bn

bn∑
ν=1

aνVj(x− yν)

∥∥∥∥∥
p

≤ 9∥a∥p,bn .

Proof. Define the operator Vj : ℓ
bn
p,bn

→ Lp as follows

Vj(a) :=
1

bn

bn∑
ν=1

aνVj(x− yν), a = (a1, . . . , abn).

We treat two extreme cases p = 1 and p = ∞ and then use the classical Riesz-Thorin
interpolation theorem.

Case p = 1. Using the well known fact, which follows directly from (2.3) and
(2.2), that for the univariate de la Vallée Poussin kernels we have the bound ∥Vj∥1 ≤
3, we obtain ∥∥∥∥∥ 1

bn

m∑
ν=1

aνVj(x− yν)

∥∥∥∥∥
1

≤ 9∥a∥1,bn ,

which means that
∥Vj∥ℓbn1,bn→L1

≤ 9.

Case p = ∞. For any x we have

(2.4)

∣∣∣∣∣ 1bn
bn∑
ν=1

aνVj(x− yν)

∣∣∣∣∣ ≤ ∥a∥∞
1

bn

bn∑
ν=1

|Vj(x− yν)|.

Further,

(2.5) |Vj(y)| ≤ (2K2j1(y1) +Kj1(y1))(2K2j2(y2) +Kj2(y2)).

Using our assumption 4j1j2 ≤ γbn and Lemma 2.1 we obtain from (2.4), (2.5), and
(2.2) that

∥Vj∥ℓbn∞,bn
→L∞

≤ 9.

It remains to use the Riesz-Thorin interpolation theorem and complete the proof.
□

3. Fibonacci points and hyperbolic cross polynomials

Consider the following special univariate trigonometric polynomials. Let s be a
nonnegative integer. Define

A0(x) := 1, A1(x) := V1(x)− 1, As(x) := V2s−1(x)− V2s−2(x), s ≥ 2,

where Vm are the de la Vallée Poussin kernels defined above. Then we have

(3.1)

s∑
j=0

Aj(x) = V2s−1(x), V2−1(x) := 1.

In the multivariate case x = (x1, . . . , xd) and s = (s1, . . . , sd) ∈ Zd
+ define

As(x) := As1(x1) · · · Asd(xd).
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For s ∈ Zd
+ define

ρ(s) := {k ∈ Zd : [2sj−1] ≤ |kj | < 2sj , j = 1, . . . , d}
where [x] denotes the integer part of x. We define the step hyperbolic cross Qr as
follows

Qr := ∪s:∥s∥1≤rρ(s)

and the corresponding set of the hyperbolic cross polynomials as

T (Qr) := {f : f =
∑
k∈Qr

cke
i(k,x)}.

We define the hyperbolic cross de la Vallée Poussin kernels as follows

VQr(x) :=
∑

∥s∥1≤r

As(x).

Using notations xd := (x1, . . . , xd−1), s
d := (s1, . . . , sd−1), and (3.1), we rewrite this

definition as

(3.2) VQr(x) :=
∑

∥sd∥1≤r

Asd(x
d)

r−∥sd∥1∑
sd=0

Asd(xd) =
∑

∥sd∥1≤r

Asd(x
d)V

2r−∥sd∥1−1(xd).

In particular, this implies that

(3.3) ∥VQr∥1 ≤ C(d)rd−1.

We are interested in studying the operator VQr,bn : ℓbnp,bn → Lp(T2) defined as

VQr,bn(a)(x) :=
1

bn

bn∑
ν=1

aνVQr(x− yν).

Relation (3.3) implies

(3.4) ∥VQr,bn∥ℓbn1,bn→L1
≤ C1r.

It is clear that

(3.5) ∥VQr,bn∥ℓbn∞,bn
→L∞

≤ max
x

1

bn

bn∑
ν=1

|VQr(x− yν)|.

Lemma 3.1. Let r ∈ N be such that 2r ≤ γbn. Then we have

max
x

1

bn

bn∑
ν=1

|VQr(x− yν)| ≤ C∞r.

Proof. Represent

(3.6) VNj (t) = 2K2Nj (t)−KNj (t).

By representation (3.2) we write

(3.7)
1

bn

bn∑
ν=1

|VQr(x− yν)| ≤
r∑

s1=0

1

bn

bn∑
ν=1

|As1(x1 − yν1 )V2r−s1−1(x2 − yν2 )|.
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Using the fact that the Fejér kernel is a nonnegative polynomial and applying
Lemma 2.1, we obtain from (3.7)

1

bn

bn∑
ν=1

|VQr(x− yν)| ≤ C∞r.

□
Lemma 3.1 and inequalities (3.4) and (3.5) imply by the Riesz-Thorin interpola-

tion theorem the following proposition.

Proposition 3.2. Let 1 ≤ p ≤ ∞ and let r ∈ N be such that 2r ≤ γbn. Then we
have

(3.8) ∥VQr,bn∥ℓbnp,bn→Lp
≤ Cpr, Cp = C

1/p
1 C1−1/p

∞ .

The following function, which we call the Fibonacci Sum of VQr ,

FSVQr(x) :=
1

bn

bn∑
ν=1

|VQr(x− yν)|

played an important role in the proof of Proposition 3.2. We note the following
interesting property of this function.

Proposition 3.3. Let r ∈ N be such that 2r ≤ γbn. Then we have for all 1 ≤ p ≤ ∞
that

C ′r ≤ ∥FSVQr∥p ≤ C ′′r

with two positive absolute constants C ′ and C ′′.

Proof. The upper bound follows from Lemma 3.1. The lower bound follows from
the known fact (see, for instance, [25], p.140, Lemma 4.2.3)

∥VQr∥1 ≥ C ′r.

□
We now show how inequality (3.8) can be improved in the case 1 < p < ∞. We

begin with the case p = 2 and a simple well known Lemma 3.4.

Lemma 3.4. Let a system Um = {ui}mi=1 satisfy the conditions

(3.9) ∥ui∥2 = 1,
m∑
j=1

|⟨ui, uj⟩| ≤ C0, i = 1, . . . ,m.

Then for any a = (a1, . . . , am) ∈ Cm we have

∥
m∑
i=1

aiui∥2 ≤ C
1/2
0 ∥a∥2.

Proof. Consider the Gramm matrix U := [⟨ui, uj⟩]mi,j=1. Then

(3.10) ∥
m∑
i=1

aiui∥22 =
m∑
i=1

ai

m∑
j=1

⟨ui, uj⟩āj = ⟨a, Ūa⟩.
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Consider U as an operator from Cm to Cm. Then

∥U∥ℓm∞→ℓm∞ ≤ max
i

m∑
j=1

|⟨ui, uj⟩| ≤ C0,

and

∥U∥ℓm1 →ℓm1
≤ max

j

m∑
i=1

|⟨ui, uj⟩| ≤ C0.

Therefore, by the Riesz-Thorin interpolation theorem we obtain

(3.11) ∥Ū∥ℓm2 →ℓm2
= ∥U∥ℓm2 →ℓm2

≤ C0.

By (3.10) and (3.11) we conclude

∥
m∑
i=1

aiui∥22 ≤ ∥a∥2∥Ūa∥2 ≤ ∥Ū∥ℓm2 →ℓm2
∥a∥22 ≤ C0∥a∥22,

which completes the proof of Lemma 3.4.
□

Proof of Theorem 1.2. Bound (1.1) with p = ∞ follows directly from (3.5)
and Lemma 3.1. The case p = 1 in (1.1) is covered by (3.4). Let us consider the
case p = 2. We now apply Lemma 3.4 in the case ui(x) = VQr(x − yi)/∥VQr∥2.
Then

⟨ui, uj⟩ = V∗
Qr

(yj − yi)∥VQr∥−2
2 ,

where for f ∈ L2(T2) we denote

f∗(x) := (f ∗ f)(x) := (2π)−2

∫
T2

f(x− y)f(y)dy.

In order to apply Lemma 3.4 we need to satisfy condition (3.9).

Lemma 3.5. Let r ∈ N be such that 2r ≤ γbn. Then we have

max
x

1

bn

bn∑
ν=1

|V∗
Qr

(x− yν)| ≤ C∗
∞r.

Proof. The argument follows the same lines as the proof of Lemma 3.1. We use
representations (3.2) with d = 2 and (3.6), the fact that if f is nonnegative then f∗

is also nonnegative, and the fact that

As ∗ As′ = 0 provided |s− s′| ≥ 2.

□

Then Lemma 3.4 and Lemma 3.5 imply∥∥∥∥∥ 1

bn

bn∑
ν=1

aνVQr(x− yν)

∥∥∥∥∥
2

=

∥∥∥∥∥
bn∑
ν=1

aν∥VQr∥2
bn

uν(x)

∥∥∥∥∥
2

≤ ∥VQr∥−1
2 (bnC

∗
∞r)1/2∥a∥2∥VQr∥2/bn = (C∗

∞r)1/2∥a∥2,bn .
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Thus, we have proved (1.1) in three cases p = ∞, p = 1, and p = 2. Applying the
Riesz-Thorin interpolation theorem two times, for the pairs (1, 2) and (2,∞), we
obtain (1.1) for all 1 ≤ p ≤ ∞ and complete the proof.

Consider now the following kernel, which is closely related to VQr

∆VQr := VQr − VQr−1 =
∑

∥bs∥1=r

As.

It turns out that we can use other technique and prove a better bound in the case
2 < p < ∞ than (1.1).

Theorem 3.6. Let r ∈ N be such that 2r ≤ γbn/4. Then for 1 ≤ p < ∞ we have

∥∆VQr,bn∥ℓbnp,bn→Lp
≤ C(p)rmax(1/p,1/2).

Proof. Rewrite

f(x) :=
1

bn

bn∑
ν=1

aν∆VQr(x− yν) =
∑

∥s∥1=r

1

bn

bn∑
ν=1

aνAs(x− yν).

It is well known that the Littlewood-Paley theorem implies the following inequality
(see, for instance [25], p.513) for 2 < p < ∞

(3.12) ∥f∥2p ≤ C(p)
∑

∥s∥1=r

∥∥∥∥∥ 1

bn

bn∑
ν=1

aνAs(x− yν)

∥∥∥∥∥
2

p

,

and for 1 < p ≤ 2

(3.13) ∥f∥pp ≤ C(p)
∑

∥s∥1=r

∥∥∥∥∥ 1

bn

bn∑
ν=1

aνAs(x− yν)

∥∥∥∥∥
p

p

.

In case p = 1 inequality (3.13) obviously holds as well.
Applying an analog of Lemma 2.2, we obtain

(3.14)

∥∥∥∥∥ 1

bn

bn∑
ν=1

aνAs(x− yν)

∥∥∥∥∥
p

≤ C∥a∥p,bn .

It remains to substitute (3.14) in (3.12) and in (3.13) and complete the proof.
□

4. The Korobov point sets

In this section we extend results of Section 2 to the case d ≥ 3. Instead of
the Fibonacci point sets we consider the Korobov point sets. We obtain results
somewhat similar to those from Section 2 but not as sharp as results on the Fibonacci
point sets. It is a well known phenomenon in numerical integration. Here we study
the Korobov cubature formulas instead of the Fibonacci cubature formulas. We
prove a conditional result under the assumption that the Korobov cubature formulas
are exact on a certain subspace of trigonometric polynomials with frequencies from
a hyperbolic cross. There are results that guarantee existence of such cubature
formulas.
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Let m ∈ N, h := (h1, . . . , hd), h1, . . . , hd ∈ Z. We consider the cubature formulas

Pm(f,h) := m−1
m∑

µ=1

f

(
2π

{
µh1
m

}
, . . . , 2π

{
µhd
m

})
,

which are called the Korobov cubature formulas. In the case d = 2, m = bn,
h = (1, bn−1) we have

Pm(f,h) = Φn(f) :=
1

bn

∑
y∈Fn

f(y).

Denote

wµ :=

(
2π

{
µh1
m

}
, . . . , 2π

{
µhd
m

})
, µ = 1, . . . ,m, Rm(h) := {wµ}mµ=1.

The set Rm(h) is called the Korobov point set. Further, denote

S(k,h) := Pm

(
ei(k,x),h

)
= m−1

m∑
µ=1

ei(k,w
µ).

Note that

(4.1) Pm(f,h) =
∑
k

f̂(k)S(k,h), f̂(k) := (2π)−d

∫
Td

f(x) e−i(k,x)dx,

where for the sake of simplicity we may assume that f is a trigonometric polynomial.
It is clear that (4.1) holds for f with absolutely convergent Fourier series.

It is easy to see that the following relation holds

(4.2) S(k,h) =

{
1 for k ∈ L(m,h),

0 for k /∈ L(m,h),

where

L(m,h) :=
{
k : (h,k) ≡ 0 (mod m)

}
, L(m,h)′ := L(m,h)\{0}.

For N ∈ N define the hyperbolic cross by

Γ(N, d) :=

k = (k1, . . . , kd) ∈ Zd :
d∏

j=1

max(|kj |, 1) ≤ N

 .

Denote

T (N, d) :=

f : f(x) =
∑

k∈Γ(N,d)

cke
i(k,x)

 .

It is easy to see that the condition

(4.3) Pm(f,h) = f̂(0), f ∈ T (N, d),

is equivalent to the condition

(4.4) Γ(N, d) ∩ L(m,h)′ = ∅.

Definition 4.1. We say that the Korobov cubature formula Pm(·,h) is exact on
T (N, d) if condition (4.3) (equivalently, condition (4.4)) is satisfied.



638 VLADIMIR TEMLYAKOV

Special Korobov point sets. Let L ∈ N be given. Clearly, we are interested
in as small m as possible such that there exists a Korobov cubature formula, which
is exact on T (L, d). In the case of d = 2 the Fibonacci cubature formula is an
ideal in a certain sense choice. There is no known Korobov cubature formulas in
case d ≥ 3, which are as good as the Fibonacci cubature formula in case d = 2.
We now formulate some known results in this direction. Consider a special case
h = (1, h, h2, . . . , hd−1), h ∈ N. In this case we write in the notation of Rm(h) and
Pm(·,h) the scalar h instead of the vector h, namely, Rm(h, d) and Pm(·, h, d). The
following Lemma 4.2 is a well known result (see, for instance [25], p.285).

Lemma 4.2. Let m and L be a prime and a natural number, respectively, such that

(4.5)
∣∣Γ(L, d)∣∣ < (m− 1)/d.

Then there is a natural number h ∈ [1,m) such that for all k ∈ Γ(L, d), k ̸= 0

(4.6) k1 + hk2 + · · ·+ hd−1kd ̸≡ 0 (mod m).

Therefore, for any f ∈ T (L, d) we have

Pm(f, h, d) = (2π)−d

∫
Td

f(x)dx.

Note that the cardinality of Γ(L, d) is of order L(logL)d−1 and, therefore, the
largest L, satisfying (4.5), is of order m(logm)1−d.

In the same way as Theorem 1.1 was derived from Lemma 2.1 in Section 2 the
following Theorem 4.3 can be derived for special Korobov point sets. We do not
present this proof here.

Theorem 4.3. Let the Korobov cubature formula Pm(·,h) be exact on T (L, d) and
let 1 ≤ p ≤ ∞. Then the Korobov point set Rm(h) provides the following two
properties for the collection C′(L, d).

(I). For any j ∈ Nd, satisfying 2d
∏d

i=1 ji ≤ L, and any f, g ∈ T (R(j)) we have

(f ∗ g)(x) = 1

m

m∑
ν=1

f(wν)g(x−wν).

(II). Let Vj(x) :=
∏d

i=1 Vji(xi) be the de la Vallée Poussin kernels for R(j). Then

for any j satisfying 2d
∏d

i=1 ji ≤ L we have∥∥∥∥∥ 1

m

m∑
ν=1

aνVj(x−wν)

∥∥∥∥∥
p

≤ 3d∥a∥p,m, a = (a1, . . . , am).

Remark 4.4. Lemma 4.2 implies that for any L ∈ N there exist h and m ≤
C(d)L(logL)d−1 with some positive C(d) such that statements (I) and (II) of The-
orem 4.3 hold.

5. Discussion

The property of a numerical method of approximation or presentation (recovery)
to be universal is very important. The classical concept of unsaturated methods
(see, for instance, [1]) is the universality property with respect to smoothness. Later,
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universality with respect to anisotropy was introduced (see [16]). Study of univer-
sality in numerical integration (see [17], [18], and the book [25], section 6.8) and
in linear approximation (see [16] and [25], section 5.4) brought new phenomena.
Universality concept under the names adaptive learning and distribution-free theory
of regression is very important in learning theory (see [7] and [20], Chapter 4).

Recently, because of demand on nonlinear approximation importance of the uni-
versality property has increased. We illustrate it on the example of sparse ap-
proximation. Suppose we have a finite dictionary Dn := {gj}nj=1 of functions from

Lp(Ω, µ). Applying the strategy of sparse m-term approximation with respect to
Dn we obtain a collection of all subspaces spanned by at most m elements of Dn as a
possible source of approximating (representing) elements. Therefore, we would like
to build a discretization scheme, which works well for all such subspaces. This kind
of discretization is called universal discretization. There are some known results on
universal discretization, which show that it is a very interesting and deep area of
research (see, for instance, [22], [5], [4]).

For a more detailed discussion of universality in approximation and learning
theory we refer the reader to [16], [18], [6], [23], [7], [3], [19].

5.1. Discretization. It is well known and easy to check that for centrally symmet-
ric Q the problem of discretization of the convolution on T (Q): For any f, g ∈ T (Q)

(2π)−d

∫
Td

f(y)g(x− y)dy =
1

m

m∑
ν=1

f(ξν)g(x− ξν)

is equivalent to the problem of exact discretization of the L2 norm on T (Q): For
any f ∈ T (Q)

∥f∥22 =
1

m

m∑
ν=1

|f(ξν)|2.

Thus, part (I) of Theorem 1.1 is equivalent to the exact discretization of the L2

norm on T (R(j)).
We now discuss part (II) of Theorem 1.1. We prove the following conditional

statement.

Proposition 5.1. Suppose that for a given Q ⊂ Zd the point set {ξν}mν=1 has the
following properties. There exists an even function VQ such that for any f ∈ T (Q)
we have

(5.1) f(x) = (2π)−d

∫
Td

f(y)VQ(x− y)dy =
1

m

m∑
ν=1

f(ξν)VQ(x− ξν)

and for a given 1 ≤ p ≤ ∞ we have for all a = (a1, . . . , am) and for q = p and
q = p′, where p′ is dual to p (1/p+ 1/p′ = 1)

(5.2)

∥∥∥∥∥ 1

m

m∑
ν=1

aνVQ(x− ξν)

∥∥∥∥∥
q

≤ C(d, p)∥a∥q,m.
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Then, the following sampling discretization inequalities hold for all f ∈ T (Q)

(5.3) C1(d, p)∥f∥pp ≤
1

m

m∑
ν=1

|f(ξν)|p ≤ C2(d, p)∥f∥pp.

Proof. The left inequality in (5.3) with C1(d, p) = C(d, p)−p directly follows from
(5.2) and (5.1). We prove the right inequality in (5.3). Using (5.1) and (5.2), we
obtain (εν := sign f(ξν))

1

m

m∑
ν=1

|f(ξν)|p = 1

m

m∑
ν=1

f(ξν)εν
∣∣f(ξν)∣∣p−1

=

= (2π)−d

∫
Td

f(x)
1

m

m∑
ν=1

εν
∣∣f(ξν)∣∣p−1VQ(x− ξν)dx ≤

≤ ∥f∥p

∥∥∥∥∥ 1

m

m∑
ν=1

εν
∣∣f(ξν)∣∣p−1VQ(x− ξν)

∥∥∥∥∥
p′

.

Using (5.2), we see that the last term is

≤ C(d, p)∥f∥p

(
1

m

m∑
ν=1

∣∣f(ξν)∣∣p)(p−1)/p

,

which implies the required inequality with C2(d, p) = C(d, p)p. □

The above discussion shows that instead of the universal discretization in a style
of Theorem 1.1 the universal simultaneous (of the L2 and Lp norms) sampling
discretization problem can be considered. We give a precise formulation of this
problem in a general setting. We begin with the known settings.

Sampling discretization. Let Ω be a compact subset of Rd with the probability
measure µ. We say that a linear subspace XN (index N here, usually, stands for
the dimension of XN ) of Lq(Ω, µ), 1 ≤ q < ∞, admits the sampling discretization
with parameters m ∈ N and q and positive constants C1 ≤ C2 if there exist a set
{ξν}mν=1 such that for any f ∈ XN we have

C1∥f∥qq ≤
1

m

m∑
ν=1

|f(ξν)|q ≤ C2∥f∥qq.

In the case q = ∞ we define L∞ as the space of continuous functions on Ω and ask
for

C1∥f∥∞ ≤ max
1≤ν≤m

|f(ξν)| ≤ ∥f∥∞.

Universal sampling discretization. This problem is about finding (proving
existence) of a set of points, which is good in the sense of the above sampling
discretization for a collection of linear subspaces (see [23]). We formulate it in an

explicit form. Let XN := {Xj
Nj

}kj=1, N = (N1, . . . , Nk), be a collection of linear

subspaces Xj
Nj

of the Lq(Ω, µ), 1 ≤ q ≤ ∞. We say that a set {ξν}mν=1 provides

universal sampling discretization for the collection XN if, in the case 1 ≤ q < ∞,
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there are two positive constants Ci = Ci(Ω, q), i = 1, 2, such that for each j ∈ [1, k]

and any f ∈ Xj
Nj

we have

C1∥f∥qq ≤
1

m

m∑
ν=1

|f(ξν)|q ≤ C2∥f∥qq.

In the case q = ∞ for each j ∈ [1, k] and any f ∈ Xj
N we have

C1∥f∥∞ ≤ max
1≤ν≤m

|f(ξν)| ≤ ∥f∥∞.

Universal simultaneous sampling discretization. Let 1 ≤ p1 < p2 ≤ ∞ be

given. Let XN := {Xj
Nj

}kj=1, N = (N1, . . . , Nk), be a collection of linear subspaces

Xj
Nj

of the Lp2(Ω, µ). We say that a set {ξν}mν=1 provides universal simultaneous

sampling discretization for the collection XN if, in the case 1 < p2 < ∞, there are
four positive constants Ci,r(Ω, pr), i = 1, 2, r = 1, 2, such that for each j ∈ [1, k]

and any f ∈ Xj
Nj

we have

(5.4) C1,r(Ω, pr)∥f∥prpr ≤ 1

m

m∑
ν=1

|f(ξν)|pr ≤ C2,r(Ω, pr)∥f∥prpr .

In the case p2 = ∞ for each j ∈ [1, k] and any f ∈ Xj
N we have (5.4) for r = 1 and

for r = 2 we have

C1,2(Ω)∥f∥∞ ≤ max
1≤ν≤m

|f(ξν)| ≤ ∥f∥∞.

Note that the case of exact discretization corresponds to the case C1,r = C2,r.
We now discuss universal discretization for a specific collection of subspaces. In

[23] we studied the universal sampling discretization for the collection of subspaces
of trigonometric polynomials with frequencies from parallelepipeds (rectangles). We
now formulate the corresponding result from [23]. For s = (s1, . . . , sd) ∈ Zd

+ define

R(2s) := {k = (k1, . . . , kd) ∈ Zd : |ki| < 2si , i = 1, . . . , d}.

Consider the collection C(n, d) := {T (R(2s)) : ∥s∥1 = n}.
We proved in [23] the following result.

Theorem 5.2 ([23]). For every 1 ≤ q ≤ ∞ there exists a positive constant C(d, q),
which depends only on d and q, such that for any n ∈ N there is a set {ξν}mν=1 ⊂ Td,
with m ≤ C(d, q)2n that provides universal discretization of the Lq norm for the
collection C(n, d).

Theorem 5.2 basically solves the universal discretization problem for the collection
C(n, d). It provides the upper bound m ≤ C(d, q)2n with 2n being of the order of the
dimension of each T (R(2s)) from the collection C(n, d). Obviously, the lower bound
for the cardinality of a set, providing the sampling discretization for T (R(2s)) with
∥s∥1 = n, is ≥ C(d)2n.

The proof of Theorem 5.2 from [23] is based on special nets, which we define
below.
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Definition 5.3. A (t, r, d)-net (in base 2) is a set T of 2r points in [0, 1)d such that
each dyadic box [(a1 − 1)2−s1 , a12

−s1) × · · · × [(ad − 1)2−sd , ad2
−sd), 1 ≤ aj ≤ 2sj ,

j = 1, . . . , d, of volume 2t−r contains exactly 2t points of T .

A construction (which is a very nontrivial construction) of such nets for all d and
t ≥ Cd, where C is a positive absolute constant, r ≥ t is given in [15].

It was proved in [24] that in the case d = 2 a very simple point sets, namely the
Fibonacci point sets, provide Theorem 5.2. Here is the corresponding result.

Theorem 5.4 ([24]). The Fibonacci point set Fn provides the universal discretiza-
tion in Lq, 1 ≤ q ≤ ∞, for the collection C(r, 2) with r satisfying the condition
9 · 2r ≤ γbn.

In this paper it is more convenient for us to consider instead of the collection
C(n, d) of dyadic rectangles a collection of all rectangles C′(N, d).

The following variant of Theorem 5.4 follows from its proof in [24].

Theorem 5.5. The Fibonacci point set Fn provides the universal discretization in
Lq, 1 ≤ q ≤ ∞, for the collection C′(N, 2) with N satisfying the condition 9N ≤ γbn.

As we pointed out above our requirement of discretization of the convolution is
equivalent to the exact sampling discretization of the L2 norm. It is known that
the property of the exact sampling discretization of the L2 norm is much stronger
than just sampling discretization with some constants C1 and C2. We now explain
this in more detail.

First, we note that for all j such that
∏d

i=1 ji ≤ N we have the embedding
R(j) ⊂ Γ(N, d). Therefore, for the universal exact discretization of the L2 norm for
the collection C′(N, d) it would be sufficient to provide the exact discretization of
the L2 norm for one subspace T (N, d). It is known (see [5], section 3.5) that for that
we need at least m of order N2 points. It is also known (see [21], section 4) that

there exists a number theoretical construction of m ≤ C(d)N2(logN)2(d−1) points,
which provide the exact discretization of the L2 norm for the subspace T (N, d).
We point out that our Theorem 1.1 provides in the case d = 2 optimal in the sense
of order result for the universal sampling discretization for the collection C′(N, d)
simultaneously exact in case of L2 and non-exact in Lp. Theorem 4.3 provides in
case of general d suboptimal results (up to the logarithmic factor).

Second, in the case of non-exact sampling discretization of the L2 norm the
following optimal in the sense of order result is known.

Theorem 5.6 ([21]). There are three positive absolute constants C1, C2, and C3

with the following properties: For any d ∈ N and any Q ⊂ Zd there exists a set of
m ≤ C1|Q| points ξν ∈ Td, ν = 1, . . . ,m, such that for any f ∈ T (Q) we have

C2∥f∥22 ≤
1

m

m∑
ν=1

|f(ξν)|2 ≤ C3∥f∥22.

Theorem 5.6 was derived from results of the paper by S. Nitzan, A. Olevskii, and
A. Ulanovskii [14], which in turn is based on the paper of A. Marcus, D.A. Spielman,
and N. Srivastava [12]. The breakthrough results in sampling discretization of the
L2 norm (see [21], [11]) and in sampling recovery in the L2 norm (see [9], [10], [13])
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are based on results by A. Marcus, D.A. Spielman, and N. Srivastava from [12] (see
Corollary 1.5 with r = 2 there) obtained for solving the Kadison-Singer problem.
Also, results from [2] play a fundamental role in sampling discretization of the L2

norm. The approach, based on [12] allows us to obtain optimal (in the sense of
order) results for discretization of the L2 norm (see [21] and [11]). For the first time
it was done in [21] with the help of a lemma from [14]. The corresponding lemma
from [14] was further generalized in [11] for proving optimal in the sense of order
sampling discretization results. A version of the corresponding lemma from [11] was
used in [13] for the sampling recovery. The first application of the results from [2]
in the sampling discretization of the L2 norm was done in [22]. The reader can find
a detailed discussion of these results in [8], Section 2.6.

5.2. Representation and discretization. We now give a general formulation of
variants of the setting that was studied in this paper.

Sampling shift representation (SSR). We say that a linear subspace XN of
L∞(Ω), admits the SSR with parameter m ∈ N if there exist a function φ ∈ L∞(Ω)
and a set of points {ξν}mν=1 such that for any f ∈ XN we have

f(x) =
1

m

m∑
ν=1

f(ξν)φ(x− ξν).

We also say that the above set of points {ξν}mν=1 provides SSR for XN .
Universal sampling shift representation (USSR). We say that a set of

points {ξν}mν=1 provides USSR for the collection XN := {Xj
Nj

}kj=1,N = (N1, . . . , Nk),

if for each j ∈ [1, k] there exists a function φj ∈ L∞(Ω) such that for any f ∈ Xj
Nj

we have

f(x) =
1

m

m∑
ν=1

f(ξν)φj(x− ξν).

Shift p-representation (SpR). We say that a linear subspace XN of Lp(Ω),
admits the SpR with parameter m ∈ N if there exist a function φ ∈ Lp(Ω) and
a set of points {ξν}mν=1 such that for any f ∈ XN there is a vector a(f) =
(a1(f), . . . , am(f)) ∈ Rm, which gives a representation

f(x) =
1

m

m∑
ν=1

aν(f)φ(x− ξν)

and satisfies the bound

∥f∥p ≤ C(Ω, p)∥a∥p,m.

We also say that the above set of points {ξν}mν=1 provides SpR for XN .
Universal shift p-representation (USpR).We say that a set of points {ξν}mν=1

provides USpR for the collection XN if this set of points provides SpR for each Xj
Nj

from the collection XN.
Universal sampling shift p-representation (USSpR). We say that a set of

points {ξν}mν=1 provides USSpR for the collection XN if this set of points provides

SpR for each Xj
Nj

from the collection XN with a(f) = (f(ξ1), . . . , f(ξm)).

For instance, a version of Theorem 1.1 gives the following result.
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Theorem 5.7. The Fibonacci point set Fn provides the USSpR, 1 ≤ p ≤ ∞, for
the collection C′(N, 2) with N satisfying the condition 9N ≤ γbn.

Open problem 1. Let d ∈ N, d ≥ 3. Is there a constant C(d) such that
there exists a point set {ξν}mν=1 with m ≤ C(d)N , which provides the USSR for the
collection C′(N, d)?

Open problem 2. Let d ∈ N, d ≥ 3, and 1 ≤ p ≤ ∞ be given. Is there a
constant C(d, p) such that there exists a point set {ξν}mν=1 with m ≤ C(d, p)N ,
which provides the USSpR for the collection C′(N, d)?

Open problem 3. Let d ∈ N, d ≥ 3. Is there a constant C(d) such that there
exists a point set {ξν}mν=1 with m ≤ C(d)N , which provides the USSpR for all
1 ≤ p ≤ ∞ for the collection C′(N, d)?
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