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question of interest is to understand how the small scale pairwise interactions within
the crowd, are self-organized into a large scale patterns of the whole crowd, so that
“the whole is greater than the sum of its parts”. One then refers to the emergent
behavior of the crowd, where the larger patterns are realized by a crowd forming a
flock, reaching a consensus, admitting a synchronized state, aggregate into one or
more clusters, etc.

The class Cucker-Smale alignment models. Pairwise attraction and repulsion
are familiar from particle physics, for example, particle dynamics driven Coulomb
and other singular potentials, [92, 93, 124–126]. Here, we focus our attention on
alignment dynamics, driven by pairwise interactions in which agents steer towards
average heading. We consider the agent-based system in which N agents, identified
with (position, velocity) pairs (xi(t),vi(t)) : R+ 7→ (Ω,Rd) and subject to prescribed
initial conditions, (xi(0),vi(0)) = (xi0,vi0) ∈ (Ω,Rd), are driven by

(1.1)


xi(t+ τ) = xi(t) + τvi(t)

vi(t+ τ) = vi(t) + τ
∑
j∈Ni

mjϕij(t)(vj(t)− vi(t)).

The dynamics is dictated by a symmetric communication kernel,

ϕ(x,x′) = ϕ(x′,x) ⩾ 0.

Its dynamic values, ϕij(t) = ϕ(xi(t),xj(t)), encode the ‘rule of engagement’ between
agents, and in particular the neighborhood Ni = {j : ϕij(t) > 0}, which contributes

to the steering of a ‘boid’ positioned at xi. The spatial domain Ω is either Td or Rd,
so that boundaries are avoided, and τ > 0 is a small, possibly variable time-step,
τ = τ(t). Different agents, (xi,vi), are assumed to have different masses, mi, or
other constant traits attributed to an agent positioned at xi.
We refer to (1.1) as the class of Cucker-Smale (C-S) models for alignment dynamics.
Different models are attached to different ϕ’s and different mi’s. The original model
of Cucker & Smale (C-S) [43, 44] is the canonical model for the class of alignment
dynamics (1.1) with ϕ(x,x′) ∼ (1 + |x − x′|)−β , β > 0, which assumes a uniform
mass distribution mi ≡ 1/N,

(1.2) vi(t+ τ) = vi(t) +
τ

N

∑
j∈Ni

ϕij(t)(vj(t)− vi(t)).

The work of Cucker & Smale attracted a considerable attention in the literature and
motivated the study of many variants of the C-S alignment models; we refer to [9,
33,34,113,116,127,131,137] and the references therein. In particular, a more general
alignment model based on the formation of ‘blobs’ or multi-flocks of agents with
different masses was derived in [136]. In other models, differentmi’s can be identified
with different intrinsic ‘traits’ of different agents, such as degree, temperature, [33,
66,71,85,105]. We further elaborate on one example.

The Motsch-Tadmor model. If each of the terms contributing to the C-S align-
ment on the right of (1.2),

∑
j ϕij(vj −vi), is of the same O(1)-order, then its total

action of order O(N) will peak at time t = O(1/N). Thus, as noted in [136, §2], the
pre-factor 1/N is C-S model (1.2) is in fact a scaling factor, so that the dynamics
peaks at the desired time t ∼ O(1).
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In [105] we advocated a more realistic scaling which is adapted to spatial variability
in the intensity of different alignment terms,

(1.3) vi(t+ τ) = vi(t) +
τ∑

k∈Ni

ϕik(t)

∑
j∈Ni

ϕij(t)(vj(t)− vi(t)).

Here the scaling depends on the degree of different agents,

degi :=
∑
k∈Ni

ϕik(t).

It should be emphasized that the communication array in M-T model,
{

1
degi

ϕij

}
is

not symmetric. Nevertheless, it does fit the general symmetric framework of C-S
class (1.1) with a proper choice of ‘masses’ mi =

1
Ldegi, and symmetric interactions

ϕ̃ij = Lϕij
1

degi
1

degj
, recovering (1.3),

(1.4)

vi(t+ τ) = vi(t) + τ
∑
j∈Ni

mjϕ̃ij(t)(vj(t)− vi(t)),

mi =
1

L
degi, ϕ̃ij =

1

L
ϕij

1

mi

1

mj
.

The scaling parameter L has no effect on the alignment and was introduced here
in order to re-scale the total mass1 so that M :=

∑
imi = O(1). In this case,

however, the degrees vary in time, mi =
1
Ldegi(t) and the discussion below needs

to be modified to include time-dependent masses. This will be further explored in
section 3.3 below.
As another example, we mention a similar situation that arises in the context of
thermodynamic C-S model [33, 66], where mi’s can be identified with the different
temperatures mi = θi(t) of agents with re-scaled velocities 1

θi
vi. Again, one needs to

address the time-dependence of the temperatures which are dictated by a separate
dynamics.

2. Communication kernels

The dynamics of (1.1) is dictated by a symmetric communication kernel, ϕ(·, ·) ⩾
0. Where do these communication kernels come from? they arise from a combi-
nation of empirical and phenomenological considerations. A sample of the large
literature can be found in [41,42,64,65,81,82,89,91,128,139,144–147,149,150] and
the references therein. We mention several primary examples.
A large part of current literature is devoted to the generic class of metric-based
kernels,

ϕ(x,x′) = φ(|x− x′|).
The choice of metric kernels φ(r) = 1[0,R0] and φ(r) = (1 + r)−β , 0 < β < 1 are
found in the seminal works of Vicsek et. al. [143] and respectively Cucker & Smale
[43]. They are motivated by a phenomenological reasoning that the strength of
pairwise interactions is short-range or at least decreasing with the relative distance,
“birds of feather flock together” [101]; this should be contrasted with an opposite

1For example,, in the case of long range all-to-all communication where ϕij = O(1), then
degj = O(N) and we set L = N2 so that M = 1

L

∑
j degj = O(1).
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heterophilous protocol, [106], based on tendency to attract diverse groups so that
φ(r) is increasing over its compact support. A particular sub-class of such metric-
based protocols are the singular kernels, φ(r) = r−β , 0 < β < d+2, which emphasize
near-by neighbors, r � 1, over those farther away, [27,49,103,116,119,132,134]. The
case of non-summable kerenls, β = d+2s, s ∈ (0, 1) correspond to Riesz kernels and
could be properly interpreted as principle values of summation in the commutator
form [132] ∑

j

ϕijmj(vj − vi) =
∑
j

mjvj −mivi

|xj − xi|d+2s
−
∑
j

mj −mi

|xj − xi|d+2s
vi.

An important source for communication kernels are detailed observations. As a
prime example we mention the class of topologically-based kernels, dictated by the
size of the crowd in between agents positioned at x and x′

(2.1) ϕ(x,x′) = φ(µ(x,x′)), µ(x,x′) :=
1

N
#{k : xk ∈ C(x,x′)}.

Here, C(x,x′) is a pre-determined communication region enclosed between x and
x′. In particular, if C is shifted to R-ball centered at x, one ends up with the

non-symmetric topological kernel [105] ϕ(x,x′) = φ(|x−x′|)
µ(BR(x)) . Topologically-based

communication was observed in starflag project reported in [7, 24, 31, 32], where
birds react to the number of closest neighbors rather than their metric distance, and
in pedestrian dynamics [123], where communication is decreasing in more crowded
regions, and was analyzed in [7, 14, 135].
More on topologically-based kernels can be found in [15,24,70,95,110]
As a third example, we mention random-based communication protocols found in
chemo- and photo-tactic dynamics, [67], the Elo rating system, [52, 80], voter and
related opinion-based models, [11], or a random-batch method and consensus-based
optimization. [25,45,61,86,118]. Another class of communication kernels are those
learned from the data, [22, 99, 100]. Finally, we mention communication kernels
which are derived from ‘higher order’ principles; for example, a minimum entropy
principle [12, 13], and the paradigm of anticipation [63].

3. Long time dynamics

A key aspect in the long time behavior of (1.1) is the decay in time of the
fluctuations of velocities {vi − vj}. Velocity fluctuations can be measured in a
weighted-ℓ2 average sense quantifying energy fluctuations, or in a uniform sense
quantifying the ℓ∞-diameter of the discrete crowd of velocities.

3.1. Energy fluctuations. We let δE (t) denote the energy fluctuations, scaled by
the total mass2

δE (t) :=
1

2M2

∑
i,j

|vi(t)− vj(t)|2mimj , M =
∑
i

mj .

2Here and below, | · | denotes an arbitrary vector norm on Rd.
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Thus, δE (t) is the weighted ℓ2-diameter of the set of velocities {vi}Ni=1 at time t.
Equivalently, we can express it as fluctuations around the mean velocity v

(3.1) δE (t) =
1

M

∑
i

|vi(t)− v(t)|2mi, v :=
1∑
imi

∑
i

mivi(t)

The energy balance encoded in (1.1)2 implies (for simplicity we suppress the time
dependence on t on the right-hand side)

(3.2)


1

M

∑
i

mi|vi(t+ τ)|2 − 1

M

∑
i

mi|vi(t)|2

=
2τ

M

∑
i

〈
mivi,

∑
j

mjϕij(vj − vi)
〉
+
τ2

M

∑
i

mi

∣∣∑
j

mjϕij(vj − vi)
∣∣2.

Since the communication kernel is symmetric, ϕij = ϕji, the total momentum is
conserved

(3.3) M (t+τ)−M (t) =
τ

M

∑
i,j

mimjϕij(vj−vi) = 0, M (t) :=
1

M

∑
i

mivi(t).

This implies that the incremental change in energy of the left of (3.2) is the same
as the incremental change of energy fluctuations. Indeed,

1

M

∑
i

mi|vi(t)|2 ≡
1

2M2

∑
i,j

|vi(t)− vj(t)|2mimj +
1

M2

∣∣∑
i

mivi(t)
∣∣2

= δE (t) +
∣∣M (t)

∣∣2,
and the same applies at t+ τ ,

1

M

∑
i

mi|vi(t+ τ)|2 ≡ δE (t+ τ) +
∣∣M (t+ τ)

∣∣2,
and since the squared terms on the right of the last two equalities are the same, we
find

(3.4a)
1

M

∑
i

mi|vi(t+ τ)|2 − 1

M

∑
i

mi|vi(t)|2 = δE (t+ τ)− δE (t).

We now come to the main point, namely, that the alignment operator of CS dy-
namics is coercive in the sense that

(3.4b)
2

M

∑
i

〈
mivi,

∑
j

mjϕij(vj − vi)
〉
= − 1

M

∑
i,j

ϕij |vi − vj |2mimj .

The weighted fluctuations on the right is identified as the enstrophy. We can bound
the last squared term on the right of (3.2) in terms of the enstrophy and the maximal
weighted degree, deg+(t) := maxi

∑
j ϕij(t)mj

(3.4c)
1

M

∑
i

mi

∣∣∑
j

mjϕij(vj − vi)
∣∣2 ⩽ deg+(t)

1

M

∑
i,j

ϕij |vj − vi

∣∣2mimj ;
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Inserting (3.4) back into the energy balance (3.2) we find

(3.5) δE (t+τ)−δE (t) ⩽ −τ(t)
(
1−deg+(t)·τ(t)

) 1

M

∑
i,j

ϕij(t)|vj(t)−vi(t)
∣∣2mimj .

Observe that we now pay attention to the time dependence on the right; in partic-
ular, the possibly variable time step, τ = τ(t), and the time-dependent communi-
cation weights, ϕij(t) = ϕ(xi(t),xj(t)).
We let A(t) denote the N ×N adjacency matrix A(t) = {ϕij(t)} encoding the edges
of communication at time t, and define ∆mA(t) is the weighted graph Laplacian

(3.6) (∆mA)αβ =


−ϕαβ

√
mαmβ , α 6= β∑

γ ̸=α

ϕαγmγ α = β.

The weighted graph Laplacian, weighted by the masses m = (m1, . . . ,mN ), has
real eigenvalues, λ1 = 0 ⩽ λ2 ⩽ . . . λN . This generalizes the usual notion of
graph Laplacian, e.g., [35, 102], corresponding to the case of uniform weight, mi =
O(1/N). We now summarize the computations above, quantifying the decay of
energy fluctuations in terms of the spectral gap, λ2

(
∆mA(t)

)
.

Theorem 3.1 (Decay of energy fluctuations). Consider the C-S dynamics (1.1)
with time-steps small enough such that

(3.7) τ(t) ·max
i

∑
j

ϕij(t)mj ⩽
1

2
.

Then the following bound of energy fluctuations holds

(3.8)
δE (tn) ⩽ exp

{
−

n−1∑
k=0

λ2(tk)τ(tk)
}
δE 0,

λ2(t) = λ2

(
∆mA(t)

)
, tk+1 = tk + τ(tk).

Proof. We return to the energy fluctuations bound (3.5). It remains to relate the
enstrophy on the right of (3.5) to the energy fluctuations on the left. To this end,
we use the following sharp lower bound on the enstrophy [72, §3], expressed in terms
of its spectral gap λ2(t) = λ2

(
∆mA(t)

)
,

(3.9)

∑
i,j

ϕij(t)|vj(t)− vi(t)
∣∣2mimj ⩾

λ2(t)

M

∑
i,j

|vj(t)− vi(t)
∣∣2mimj ,

λ2 = λ2(∆mA).

Inserted into (3.5), the time-step restriction (3.7) and (3.9) yield

δE (t+ τ) ⩽ δE (t)− τ(t)

2
λ2(t)

1

M2

∑
i,j

|vj(t)− vi(t)
∣∣2mimj

=
(
1− τ(t)λ2(t)

)
δE (t) ⩽ e−τ(t)λ2(t)δE (t),

and (3.8) follows. □
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Remark 3.2 (Graph connectivity). The weighted graph Laplacian ∆mA is sym-
metrizable, with real eigenvalues λ1 = 0 ⩽ λ2 ⩽ . . . ⩽ λN . The weighted Poinacré
inequality (3.9) provides a sharp lower bound on the enstrophy in terms of the spec-
tral gap λ2(∆mA) > 0, which reflects the connectivity of the weighted graph (V,E),
where vertices of V tag the positions {xi} and the edges E quantify the connections
{ϕij}. The intricate aspect here is the interplay between the graph which is time
dependent, (V(t),E(t)), hence its various properties are dictated by the alignment
dynamics on the graph, and at the same time, as we observe in theorem 3.1, the
fluctuations of alignment dynamics are dictated by the connectivity of the underly-
ing graph.
The spectral gap, λ2(∆mA), generalizes the usual notions of graph connectivity in
terms of the Fiedler number in case of uniform weights mi ≡ 1/N. In particular, we
point out that the weighted Poincaré bound (3.9) depends only on the total mass
M but otherwise is independent of the condition number, maxi mi

mini mi
.

Theorem 3.1 describes the long time behavior of a fully-discrete C-S dynamics
(1.1) under a general setup based on symmetric communication kernel, ϕij = ϕji,
which involves variable spatial weights mi and variable time stepping, τ = τ(tk)
satisfying a CFL-like time-step restriction (3.7). In particular, letting maxk τ(tk) →
0 we recover the semi-discrete CS model

(3.10)


d

dt
xi(t) = vi(t)

d

dt
vi(t) =

∑
j∈Ni

mj(t)ϕij(t)(vj(t)− vi(t)).

and theorem 3.1 tells that

(3.11) δE (t) ⩽ exp
{
−

∫ t

0
λ2(s)ds

}
δE 0.

3.2. Fluctuations revisited— ℓ∞-diameter of fluctuations. We measure the
fluctuations of velocities in terms of the the ℓ∞-diameter of the collection of velocities
{vi}

δV (t) := max
i,j

|vi(t)− vj(t)|.

It will be convenient to trace the scalar components which form this diameter. To
this end we fix an arbitrary unit vector3, |ω|∗ = 1. Since |v| = max|ω|∗=1〈v,ω〉 then

δV (t) := max
|ω|∗=1

max
p,q

(
vp(t)− vq(t)

)
, vp(t) := 〈vp(t),ω〉.

We now trace the decay of these scalar components of velocity fluctuations, con-
sidering an arbitrary (p, q) pair, vp(t) − vq(t), where as before we suppress the

3The vector norm | · | is assumed to have it dual |ω|∗ = sup|v|=1⟨v,ω⟩.
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dependence on time t on the right,

vp(t+ τ)− vq(t+ τ)

= vp − vq + τ
∑
j

mjϕpj(vj − vp)− τ
∑
j

mjϕqj(vj − vq)

=
(
1− τ

∑
j

mjϕpj

)
vp −

(
1− τ

∑
j

mjϕqj

)
vq

+ τ
∑
j

mjϕpjvj − τ
∑
j

mjϕqjvj

=
(
1− τ

∑
j

mjϕpj

)
vp −

(
1− τ

∑
j

mjϕqj

)
vq

+ τ
∑
j

mj(ϕpj − cj)vj − τ
∑
j

mj(ϕqj − cj)vj .

In the last step we introduced arbitrary scalars cj ’s — their contribution to the
last two terms on the right cancel out. By the CFL condition (3.7), the first two
parenthesis on the right are positive. We now set cj := minp,q{ϕpj , ϕqj} — with this
choice the last two parenthesis on the right are also non-negative. Hence, if we let
v+ and v− denote the extreme values v+ := maxp vp and v− := minq vq we conclude

vp(t+ τ)− vq(t+ τ)

⩽
(
1− τ

∑
j

mjϕpj

)
v+ −

(
1− τ

∑
j

mjϕqj

)
v−

+ τ
∑
j

mj(ϕpj − cj)v+ − τ
∑
j

mj(ϕqj − cj)v−

= v+ − v− − τ
∑
j

mjcj(v+ − v−) =
(
1− τ

∑
j

mjcj

)(
max

p
vp −min

q
vq

)
=

(
1− τκ(A)

)
max
p,q

(
vp − vq), κ(A) :=

∑
j

mj min
p,q

{ϕpj , ϕqj}.

Since (p, q) is an arbitrary pair we conclude

(3.12) δV (t+ τ) = max
|ω|∗=1

max
p,q

(
vp(t+ τ)− vq(t+ τ)

)
⩽

(
1− τκ(A(t)

)
δV (t).

Theorem 3.3 (Decay of uniform fluctuations). Consider the C-S dynamics
(1.1) with time-steps small enough such that (3.7) holds

τ(t) ·max
i

∑
j

ϕij(t)mj(t) ⩽
1

2
.

Then the following bound of the diameter of fluctuations holds

(3.13)

δV (tn) ⩽ exp
{
−

n−1∑
k=0

κ
(
A(tk)

)
τ(tk)

}
δV0,

κ
(
A(t)

)
=

∑
j

mj(t)min
p,q

{ϕpj(t), ϕqj(t)}.
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We emphasize that the bound (3.13) applies to C-S dynamics with general com-
munication, {mj(t)ϕij}, which need not be symmetric, as it allows for time-dependent
masses. In particular, it applies to both the Cucker-Smale alignment model with
symmetric interactions, (1.2), mj = 1/N and the Motsch-Tadmor alignment model
with non-symmetric, time-dependent interactions (1.3), mi(t) =

1
Ldegi(t).

In case of a uniform-in-time lower bound κ
(
A(tk)

)
⩾ η > 0, e.g., see the particular

case of all-to-all connectivity in (3.16), we end up with the exponential decay

(3.14) δV (t) ⩽ e−ηtδV0, η = min
tk

∑
j

mj(tk)min
p,q

{ϕpj(tk), ϕqj(tk)}.

Remark 3.4 (Spectral gap vs. coefficient of ergodicity). The role of spectral
gap in the present context of connectivity of graph goes back to Fiedler [58,59]. In
the case of equal weights, the so-called Fiedler number λ2(∆A) > 0 quantifies the
algebraic connectivity of the graph (V,E) supported at vertices V = {i : xi} with
weighted edges E = {(i, j) : ϕij > 0}.
The inequality (3.9) is sharp in the sense that

1

M
λ2(∆mA) = min

∑
i,j ϕij |vi − vj |2mimj∑
i,j |vi − vj |2mimj

.

The obvious bound that follows,

(3.15) λ2(∆mA) ⩾ M min
i,j

ϕij ,

shows that ϕij(t) > 0 ; λ2(∆mA)(t) > 0. This is the scenario of a global, all-to-
all connectivity between every pair of agents. The bound (3.15) is not sharp: we
may have certain edges vanish while still maintaining a connected graph, that is,
the strict inequality λ2 > M minij ϕij = 0 holds. A positive coefficient of ergodicity
allows more general scenarios, in which pairs of agents, positioned at say xp and
xq, may lack direct communication, ϕpq = 0, but they still communicate through
an intermediate agent positioned at xk. That is, for each (p, q) there exists (at
least) one agent positioned at xk, k = k(p, q), which is the‘ go between ’agent
so that4 min{ϕpk, ϕqk} > 0. This one-layer of communication is captured by the
refined lower-bound

(3.16) λ2(∆mA) ⩾ κ(A) =
∑
j

mj min
p,q

{ϕpj , ϕqj} ⩾ M min
i,j

ϕij .

The estimate (3.12) in its ℓ1-dual form for goes back to Dobrushin [50], quantify-
ing the contractivity of column-stochastic matrices in terms of the so-called coeffi-
cient of ergodicity, denoted here κ(A), [79]. It was revisited in many follow-up works,
e.g., its used to quantify the relative entropy in discrete Markov processes [37, 38]
scrambling in models of opinion dynamics [89,90] and flocking dynamics [106, §2.1].

3.3. Energy fluctuations revisited — time dependent masses. The study
of long time behavior based on ℓ∞-diameter of velocity fluctuations enjoyed the
advantage of addressing time-dependent masses. In contrast, our study of energy
fluctuations in section 3.1 was restricted to constant masses. Here we observe that

4Of course the special case k = p recovers the direct pairwise communication.
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the proof of theorem 3.1 can be adapted to include the case of time-dependent
masses, mi = mi(t). Indeed, the time variability of the masses enters at precisely
in two places: the time invariant total momentum in (3.3)

(3.17a) M (t+ τ) = M (t), M (t) :=
∑
i

mi(t)vi(t),

and the evaluation of the incremental energy fluctuations (3.4a)

(3.17b) δE (t+ τ)− δE (t) =
∑
i

mi(t+ τ)|vi(t+ τ)|2 −
∑
i

mi(t)|vi(t)|2.

To pursue our line of proof when mi = mi(t), the momentum M (t+ τ) and energy
fluctuations δE (t + τ) need to be weighted by mi(t + τ) rather than mi(t). Thus,
the two qualities above admit the additional terms∑

i

|mi(t+ τ)−mi(t)| · |vi(t+ τ)|,

and, respectively, ∑
i

|mi(t+ τ)−mi(t)| · |vi(t+ τ)|2,

so one needs to control the incremental changes
∑

i |mi(t + τ) − mi(t)|. Consider
the example of the M-T model (1.3) with metric kernel ϕ(x,x′) = φ(|x−x′|) where
the time-dependent masses are then given by the degrees

mi(t) =
1

L
degi(t) =

∑
j

ϕij(t), ϕij(t) = φ(|xi(t)− xj(t)|).

Assume that φ is a smooth metric communication kernel satisfying a localized Lip
bound in the sense that

|φ(r)− φ(s)| ⩽ C1max{|φ(r)|, |φ(s)|}|r − s|.

For this large class of localized Lip bounded φ’s (which includes for example, φ(r) =
(1 + r)−β with C1 = β), we have

|mi(t+ τ)−mi(t)|

⩽
∑
j

(
φ(|xi(t+ τ)− xj(t+ τ)|)− φ(|xi(t)− xj(t)|)

)
⩽ C1

∑
j

max{ϕij(t+ τ), ϕij(t)} ·
∣∣(xi(t+ τ)− xj(t+ τ)

)
−
(
xi(t)− xj(t)

)∣∣,
and hence∑

i

|mi(t+ τ)−mi(t)| · |vi(t+ τ)|

⩽ C1

∑
i,j

max{ϕij(t+ τ), ϕij(t)} · τ |vi(t)− vj(t)| · |vi(t+ τ)|.
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Now, using a uniform bound on the velocities, maxi |vi(t+τ)| ⩽ C2, the exponential

decay of δV (t), (3.14), and recalling ϕij = Lϕ̃i,jmimj in (1.4), we find∑
i

|mi(t+ τ)−mi(t)| · |vi(t+ τ)|

⩽ C1C2τ · δV (t)
∑
i,j

max
{
ϕ̃ij(t)mi(t)mj(t), ϕ̃ij(t+ τ)mi(t+ τ)mj(t+ τ)

}
⩽ C ′C2τe

−ηt, C ′ := C1M
2 ·max |ϕ| · δV0.

Hence, the equalities (3.17) in the case of constant masses are now replaced by the
corresponding

(3.18a) |M (t+ τ)− M (t)| ⩽ C ′τe−ηt,

and, respectively,

(3.18b)

∣∣∣(δE (t+ τ)−
∑
i

mi(t+ τ)|vi(t+ τ)|2
)
−
(
δE (t)−

∑
i

mi(t)|vi(t)|2
)∣∣∣

⩽ C ′C2
2τe

−ηt.

Thus, presence of smoothly varying time-dependent masses, accounts for additional
terms which have a bounded accumulated effect. One can then study the long time
behavior based on energy fluctuations in the presence of time-dependent masses,
similar to our discussion in the next section, of flocking/swarming phenomena with
constant masses.

4. Flocking and Swarming

The phenomena of flocking or swarming require the emergence of coordinated
long time behavior of velocities, while the crowd of agents remains contained within
finite diameter

(4.1) D(t) := max
i,j

|xi(t)− xj(t)| ⩽ D+ < ∞.

The emerging behavior of velocities in intimately linked to the decay bounds of
energy fluctuations. Indeed, (3.8) and its corresponding semi-discrete (3.11) imply
that if the weighted graph of communication remains sufficiently strongly connected
in the sense that λ2(t) has diverging tail, then by (3.1)∫ ∞

λ2(s)ds = 0 ;
∑
i

|vi(t)− v(t)|2mi ⩽ exp
{
−
∫ t

0
λ2(s)ds

}
δE 0

t→∞−→ 0.(4.2)

In particular, since the mean velocity is an invariant of the flow,

v(t) :=
1

M

∑
j

mjvj(t) = v0,

(4.2) tells us that a heavy-tailed λ2(t) implies the long time behavior of the velocities

that align along the initial mean, vi(t)
t→∞−→ v0
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Remark 4.1 (Emerging velocity in presence of time-dependent masses).
In case of constant masses, the mean velocity v(t) remains invariant in times, and
the decay of velocity fluctuations implies the emergence of v0 as the limiting velocity.
The presence of time-dependent masses, however, leaves open the question of what
is the emerging velocity. Thus, for example, in case of the M-T dynamics (1.3), we
expect that velocities will align along the corresponding mean v

|vi(t)− v(t)| t→∞−→ 0, v(t) :=
1∑

j degj(t)

∑
j

degj(t)vj(t).

The question is if and when the emerging limiting velocity,
limt→∞

1∑
j degj(t)

∑
j degj(t)vj(t), exists.

4.1. Long-range interactions. But when does λ2(t) satisfy the ‘heavy-tail’ con-
dition sought in (4.2)? this is a central question for tracing the phenomenon of
flocking. It was addressed in many references, starting with the original [43, 44]
followed by [68, 69]; see [30, 131] and the references therein. A definitive answer is
provided in case of long-range kernels,

(4.3) ϕ(x,x′) ≳ 1

(1 + |x− x′|)β
, β > 0.

In this case we bound the tail of the spectral gap, λ2(t) = λ2

(
∆mA(t)

)
,

(4.4) λ2

(
∆mA(t)

)
⩾ M minϕij(t) ≳

M(
1 +D(t)

)β ⩾ M

(1 +D0 + δV0 · t)β
.

The first inequality on the right follows from (3.15), the second follows from (4.3)
and the third follows from a uniform bound on the diameter of velocities5,

D(t) ⩽ D0 +

∫ t

δV (s)ds ⩽ D0 + δV0 · t,

and hence the heavy-tailed bound, λ2(t) ≳ (1 + t)−β for β ⩽ 1. We conclude
that the C-S dynamics (1.1) with long-range communication (4.3), β ⩽ 1, admits
unconditional flocking

∑
i

|vi(t)− v0|2mi ≲


exp

{
− M

(1−β)δV0

(
1 +D0 + δV0 · t

)1−β}
β < 1

(
1 +D0 + δV0 · t

)−M/δV0 β = 1

 t→∞−→ 0.

We can now use a bootstrap argument — the fractional exponential decay of the
fluctuations of order 1−β > 0 implies that the diameter remains uniformly bounded

5The result follows without appealing to the bound on diameter of velocities (3.12). Instead, a
simpler maximum principle argument follows from the CFL condition (3.7),

|vi(t+ τ)| ⩽
(
1− τ

∑
j

ϕijmj

)
|vi(t)|+ τ

∑
j

ϕijmj |vj(t)| ⩽ max
j

|vj(t)| ⩽ . . . ⩽ v+(0),

v+(0) = max
i

|vi(0)|,

and integration of (1.1)1, and likewise, (3.10)1 in the semi-discrete case, imply D(t) ⩽ D0+2v+(0)·t.
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and hence uniform bounded connectivity

D(t) ⩽ D0 +

∫ t

δV (s)ds ⩽ D+ ; λ2(t) ⩾ η :=
1

(1 +D+)β
.

Revising (4.4) with a finite diameter ⩽ D+, yields the improved exponential bound
≲ e−ηt. A similar argument applies in the borderline case of β = 1: clearly, if
δV0 < M then the finite tail of ≲ (1 + t)−M/δV0 will lead to a finite diameter; and
indeed, since δV (t) is decaying, we will eventually reach the threshold δV (tc) < M
and exponential decay follows thereafter. We summarize.

Theorem 4.2 (Flocking/swarming with long range kernels). Consider the
C-S dynamics (1.1) driven by long-range kernel (4.3), β ⩽ 1. Then the crowd of
agents has finite support D+ and there is exponential decay of fluctuations around
the mean velocity,

(4.5)
∑
i

|vi(t)− v0|2mi ≲ e−ηtδE 0, η =
1

(1 +D+)β
.

The precise exponential bound, η = η(β,D0, v+), was captured in [68] using an
elegant argument based on a proper Liapunov functional for C-S with metric kernel
and uniform masses.

Remark 4.3 (No uniform bound). We distinguish between two types of bounds
on velocity fluctuations — the ℓ2-based energy fluctuations, theorem 3.1, and the
ℓ∞ bounds, theorem 3.3 or at least the uniform bound on velocities, see footnote
5. Suppose we try to pursue a purely ℓ2-based argument for flocking behavior. The
energy bound (3.8) implies the uniform-in-time bound maxi |vi(t) − v0| ⩽ C

√
N

which in turn yields a bound on the diameter D(t) ⩽ D0 + 2C
√
Nt. We now use

the same bootstrap argument as before to find a uniform-in-time bound on the

diameter D(t) ≲ D+(N) := N
β

2(1−β) . We conclude an exponential flocking of rate∑
i

|vi(t)− v0|2mi ≲ D+(N)e−D+(N)t, D+(N) = N
β

2(1−β) .

As expected, the fluctuations bound grows with N . However, the point to note
here is that the exponential decay in time enforces exponential alignment bound,

uniform in t and N when t � N
β

2(1−β) . For example, β = 1/4 requires a moderate

time of t � N 1/6 before exponential decay takes place.

Theorem 4.2 was derived based on considerations of energy fluctuations. Simi-
larly, we can proceed using the ℓ∞-diameter fluctuations of theorem 3.3. Its semi-
discrete limit maxk τ(tk) → 0 reads

max
i,j

|vi(t)− vj(t)| ⩽ exp
{
−
∫ t

0

∑
j

mj(s)min
p,q

{ϕpj(s), ϕqj(s)}ds
}
δV0.

Here, we generalize theorem 4.2 to the case of time-dependent masses. Using a
bootstrap argument as before we end up with
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Theorem 4.4 (Flocking/swarming with long range kernels — time-de-
pendent masses). Consider the C-S dynamics (1.1) with possibly time-dependent
masses, mi = mi(t), driven by long-range kernel (4.3), β ⩽ 1. Then the crowd
of agents has finite support D+ and there is exponential decay of fluctuations of
velocities,

(4.6) max
i,j

|vi(t)− vj(t)| ≲ exp
{
− η

∫ t

0

∑
j

mj(s)ds
}
δV0, η =

1

(1 +D+)β
.

Observe that in the example of M-T model (1.3) the scaling alluded in footnote 1,

M = O(1), implies

∫ t

0

∑
j

mj(s)ds ⩾ Ct and hence we end up with an exponential

decay e−ηCt.

The arguments that led to theorem 4.2 and the new theorem 4.4 demonstrate
a rather general methodology for studying flocking, swarming and more general
emerging phenomena in alignment based dynamics. It consists of two main ingre-
dients:

• Decay of energy fluctuations. This is tied to spectral analysis of the dy-
namic graph

(
V(t),E(t)

)
. In typical cases, the dynamics is equipped with

an intrinsic ‘energy’ and energy fluctuations.
• Bound on the velocities — either a uniform bound on velocities or on ℓ∞-
diameter of velocities fluctuations. In either case, the purpose is to trace
the size of the spatial diameter and show that the crowd does not disperse,
D(t) ⩽ D+. In general, this is the more intricate bound to prove.

As an example we mention alignment dynamics with external forcing [129]. Other
examples include C-S dynamics with matrix communication kernels, and C-S dy-
namics in which both, alignment and attraction, take place. We continue with this
example in the context of anticipation dynamics.

4.2. From anticipation to Cucker-Smale dynamics. Particles are driven by
the external forces induced by the environment and/or by other particles. The
dynamics of social particles, on the other hand, is driven by probing the environ-
ment — living organisms, human interactions and sensor-based agents have senses
and sensors, with which they actively probe the environment (and hence they are
commonly viewed as ‘active particles’ [9]). A distinctive feature of active particles
in probing the environment is anticipation — the dynamics is not driven instanta-
neously, but reacts to positions xτ (t) := x(t) + τv(t), anticipated at t + τ , where
τ > 0 is an anticipation time increment. A general framework for anticipation dy-
namics, driven by pairwise interactions induced by radial potential U = U(r), reads

d

dt
xi(t) = vi(t)

d

dt
vi(t) = − 1

N

N∑
j=1

∇U(|xτ
i (t)− xτ

j (t)|), xτ
k(t) := xk(t) + τvk(t).
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The alignment is encoded here in the anticipated time — indeed, expanding the
RHS in (the assumed small) τ we obtain, [130],

(4.7)
d

dt
vi(t) =

repulsion+attraction︷ ︸︸ ︷
− 1

N

∑
j

∇U(|xj − xi|)+

alignment︷ ︸︸ ︷
τ

N

∑
j∈Ni

Φij(vj − vi),

Φij = D2U(|xi − xj |).

Thus, we derive a general class of 3Zone models (4.7), where the first terms on the
right account for repulsion/attraction, depending whether their scalar amplitudes
U ′
ij := U ′(|xi−xj |) < 0 or, respectively, U ′

ij > 0, while the second term on the right

accounts for an alignment with matrix coefficients, Φij = D2U(|xi−xj |), see figure
4.1.

Figure 4.1. Potential U(r)

This leads us to consider an even larger class of 3Zone models with repulsion/attraction
induced by potential U and alignment term induced by a separate scalar symmetric
kernel, ϕij = ϕ(xi,xj) (independent of U),

(4.8)
d

dt
vi(t) = − 1

N

∑
j

∇U(|xj − xi|) +
τ

N

∑
j:ϕij>0

ϕ(xi,xj)(vj − vi).

The special case of metric-based kernel ϕij = φ(|xi−xj |) recovers the C-S dynamics
(1.2), mi ≡ 1/N. For the special case of anticipation (4.7) we have Φij ⩾ U ′′(|xi −
xj |)I.

The energy fluctuations associated with (4.8)

δE (t) :=
1

2N

∑
i

|vi(t)− v|2 + 1

2N2

∑
i,j

U(|xi(t)− xj(t)|),

are dissipated due to alignment at a precise rate dictated by local velocity fluctua-
tions,

d

dt
δE (t) = − τ

2N2

∑
i,j

ϕij(t)|vi − vj |2.
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We assume a smooth radial potential so that U ′(0) = U(0) = 0. It follows that the
class of convex potentials and ‘fat-tailed’ kernels such that

(4.9) U ′′(|xi − xj |) + ϕij ≳ 〈|xi − xj |〉−γ , γ < 4/5,

guarantee decay of energy fluctuations, δE (t) ⩽ C0exp{−t
4−5γ
4−3γ }, which in turn im-

plies asymptotic flocking towards the average velocity, v = 1
N

∑
j vj , [130]. More-

over, agents asymptotically congregate in space, forming a traveling wave dictated
by the presence of an attractive potential U , e.g., a quadratic U leads to a limiting
harmonic oscillator. [129].

Open questions. The arguments above exclude two important features in collec-
tive dynamics: since (4.9) implies U is increasing, it does not address the role of
repulsion in shaping the emergent behavior. The large time behavior of 2Zone
repulsion-attraction models were discussed in, e.g., [28, 29, 36, 46, 55, 56]. The cor-
responding question for the full 3Zone model, in which attraction, alignment and
repulsion co-exist, is mostly open.

Another key aspect is the long-range alignment sought by the ’heavy-tailed’ ker-
nels in (4.9) which does not address the local character of self-organized dynamics.
The long time collective behavior based on short-range protocols hinges on the graph
connectivity of the crowd, realized by the adjacency matrix A(t) := {ϕij(t)}. Short-
range interactions may lead to instability. This can be traced by the graph Laplacian
∆A(t): while the initial configuration of the crowd is assumed to form one connected
cluster expressed by the positivity of its spectral gap λ2(∆A(0) > 0, it may break
down into two or more disconnected clusters at a finite time when λ2(∆A(tc) = 0.
Flocking analysis with short-range kerenls can be found in [26,48,62,83,104,135,138].

5. Large crowd dynamics

The question of instability for a fixed number of N agents governed by short-range
alignment is better addressed in the context of large crowd dynamics of N � 1
agents. The latter is realized by the empirical distribution

fN (t,x,v) :=
1

M

∑
i

miδ(x− xi(t))⊗ δ(v − vi(t)).

The large crowd dynamics is captured by its first two v moments which are assumed
to exist, [131]:

ρ(t,x) = lim
N→∞

∫
fN (t,x,v)dv, ρu(t,x) = lim

N→∞

∫
vfN (t,x,v)dv

These are the density and momentum which encode the macroscopic description of
the agents based (4.8) (we abbreviate □ = □(t,x),□′ = □(t,x′))

(5.1)


ρt +∇x · (ρu) = 0

(ρu)t +∇x · (ρu⊗ u+ P) = τ

∫
x′∈Ω

ϕ(x,x′)(u′ − u)ρρ′dx′ − ρ∇U ∗ ρ(t,x)
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There are several ingredients in the macroscopic description: the pressure (Reynolds
stress) tensor, P(t,x) := limN→∞

∫
(v−u)(v−u)⊤fN (t,x,v)dv, encodes the second-

order v moments of fN . The closure of (5.1) is imposed by assuming a limiting dis-
tribution at thermal equilibrium – a Maxwellian. But there is no generic closure in
the present context of collective dynamics, since agents maintain their own detailed
energy balance which is beyond the realm of collective motion. The two terms on
the right capture scalar alignment and respectively attraction/repulsion induced by
the potential U .

5.1. Short-range interactions. For simplicity, we ignore the role of attraction/
repulsion and conclude with three examples which trace the flocking behavior of the
purely alignment hydrodynamics (5.1) with U ≡ 0.

Non-vacuous dynamics. In the first example, we consider the dynamics in the 2π-
torus driven by bounded short-range kernels, ϕ(x,x′), localized along the diagonal

(5.2)
1

Λ
1R0(|x− x′|) ⩽ ϕ(x,x′) ⩽ Λ12R0(|x− x′|), R0 � π.

It follows that strong solutions with non-vacuous density ρ(t, ·) ≳ (1 + t)−1/2 flock
around the limiting velocity v due to the decay of energy fluctuations δE (t) → 0,
[135, Theorem 1.1]. As we noted in [138, theorem 3.3], the decay of energy fluctu-
ations is independent of the specific closure of the pressure — what really matters
is the non-vanishing density, the connectivity of the suppρ(t, ·) which enables to
propagate information of alignment.

Topological interactions. The non-vacuous lower bound (1+ t)−1/2 is not sharp.
As a second example we mention a topologically-based singular communication
kernel, corresponding to (2.1)

(5.3) ϕ(x,x′) ∼ 1R0(|x− x′|)× 1

distdρ(x,x
′)
,

which involves the density weighted distance distρ(x,x
′) =

( ∫
C(x,x′) dρ(t, z)

)1/d
. it

follows that smooth solutions satisfying the relaxed non-vacuous condition, ρ(t, ·) ≳
(1 + t)−1, must flock, [135]. Again, no vacuum is a key aspect which enables the
propagation of information: as long as no vacuous islands are formed, alignment
dictates flocking behavior.

Multi-species. Our third example involves multi-species dynamics
(ρα)t +∇x · (ραuα) = 0

(ραuα)t +∇x · (ραuα ⊗ uα + Pα) = τ

∫
x′∈Ω

φαβ(|x− x′|)(u′
β − uα)ραρ

′
βdx

′.

In this case, different species tagged by the identifiers α, β ∈ I, are distinguished
by their different protocol of communication with the environment of other species,
ϕαβ . In [72] it was shown that if the different species maintain non-vacuous densities
ρα(t, ·) ≳ (1 + t)−1 and if the communication array A(r) := {ϕαβ(r)} forms a

connected graph, λ2

(
∆A(r)

)
≳ (1 + r)−β with heavy-tail, β < 1, then flocking

follows, uα
t→∞−→ u := 1

|I|
∑

α∈I uα.
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collective dynamics emerge from conflicting imperatives in sheep herds, PNAS 112 (2015),
12729–12734.

[65] V. Grimm and S. F Railsback, Individual-Based Modeling and Ecology, Princeton Univ Press,
2005.

[66] S-Y. Ha, J. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker–Smale par-
ticles, SIMA 50 (2018), 3092–3121.

[67] S. Y Ha and D. Levy, Particle, kinetic and fluid models for phototaxis, Discrete Cont. Dy-
namical Systems Ser. B. 12 (2009), 77–108.



LONG TIME AND LARGE CROWD DYNAMICS OF CUCKER-SMALE MODELS 623

[68] S. Y Ha and J. G Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field
limit, Communications in Mathematical Sciences 7 (2009), 297–325.

[69] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,
Kinetic and Related Models 1 (2008), 415–435.

[70] J. Haskovec, Flocking dynamics and mean field limit of the Cucker-Smale-type model with
topological interactions, Phys. D 261 (2013), 42–51.

[71] J. Haskovec, A simple proof of asymptotic consensus in the Hegselmann–Krause and Cucker-
Smale Models with normalization and delay SIADS 20 (2021), 130–148.

[72] S. He and E. Tadmor, A game of alignment: collective behavior of multi-species, AIHP (c)
Nonlinear Analysis 38 (2021), 1031–1053.

[73] R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: models, analysis
and simulation, J. Artificial Societies and Social Simulation 5 (2002).

[74] D. Helbing, Traffic and related self-driven many particle systems, Reviews of Modern Physics
73 (2001), 1067–1141.

[75] D. Helbing, Pattern formation, social forces, and diffusion instability in games with success-
driven motion, Eur. Phys. J. B 67 (2009), 345–356.

[76] D. Helbing, Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction
Processes Springer-Verlag, 2010.

[77] C. K Hemelrijk and H. Hildenbrandt, Self-organized shape and frontal density of fish schools
Ethology 114 (2008), 245–254.

[78] E. Hensor, I. D. Couzin and J. Krause, Modelling density-dependent fish shoal distributions
in the laboratory and filed, OIKOS 110 (2005), 344–352.

[79] I. Ipsen and T. Selee, Ergodicity coefficients defined by vector norms, SIAP 32 ( 2011), 153–
200.

[80] P.-E. Jabin and S. Junca, A continuous model for ratings, SIMA 75 (2015), 420–442.
[81] M. O. Jackson, Social and Economic Networks, Princeton University Press, 2010.
[82] A. Jadbabaie, J. Lin, and A.S. Morse, Coordination of groups of mobile autonomous agents

using nearest neighbor rules, IEEE Trans. Automat. Control 48 (2003), 988–1001.
[83] M. Ji and M. Egerstedt, Distributed coordination control of multi-agent systems while pre-

serving connectedness, IEEE Trans. Robot. 23 (2007), 693–703.
[84] L. Jiang, L. Giuggioli, A. Perna, R. Escobedo, V. Lecheval, C. Sire, Z. Han and Gu. Theraulaz,

(Identifying influential neighbors in animal flocking, PLoS Comput Biol 13 (2017): e1005822.
[85] C. Jin, Flocking of the Motsch-Tadmor model with a cut-off interaction function, J Stat Phys

171 (2018), 345–360.
[86] S. Jin, L. Li and J.-G. Liu, Random batch methods (RBM) for interacting particle systems,

JCP 400 (2020): 108877
[87] E. W. Justh and P. S. Krishnaprasad, Extremal Collective Behavior, in: Proc. 49th IEEE

Conf. Decision and Control, 2010, pp. 5432–5437.
[88] D. A. Kessler and H. Levine, Pattern formation in dictyostelium via the dynamics of cooper-

ative biological entities, Phys. Rev. E 48 (1993), 4801–4804.
[89] U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, Com-

munications in Difference Equations (2000), 227–236.
[90] U. Krause, Positive Dynamical Systems in Discrete Time, Studies in Mathematics, De

Gruyter, 2015.
[91] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in: Inter-

national Symposium on Mathematical Problems in Mathematical Physics, Lecture Notes in
Physics, vol. 39, Springer, 1975, pp. 420–422.
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