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ABSTRACT. Given a sequence of Marcinkiewicz-Zygmund inequalities in Lo on a
usual compact space M, Grochenig in [11] introduced the weighted least squares
polynomials and the least squares quadrature from pointwise samples of a func-
tion, and obtained approximation theorems and quadrature errors. In this paper
we investigate the problems confined on the sphere and obtain approximation
theorems and quadrature errors which are order optimal. We also give upper
bounds of the operator norms of the weighted least squares operators on the
sphere.

1. INTRODUCTION

Let
d+1
Sti={z = (1,...,2a11) ERM| 2P =) |apP =1} (d>2)
k=1

be the unit sphere in R4 endowed with the rotationally invariant measure g nor-
malized by de dp = 1. We denote by Lo(S?) the usual Hilbert space of square-
integrable functions on S¢ with the inner product

(11) ()= [ Fagta)dnta)

and the norm ||f||2 = (f, £)*/?, and by C(S%) the space of continuous functions on
S% with supremum norm

1A= 1 flloo == sup [f(2)].
zeSd

The space II¢ of spherical polynomials on S? of degree at most n consists of
the restrictions to S¢ of all polynomials on R4*t! of total degree at most n. The
dimension of I1¢ is given by
(2n +d)I'(n +d)

I'd+1)l(n+1)

dy := dim(I1¢) =
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Let S, be the orthogonal projection from L (S%) onto I1¢, i. e., for f € Ly(S?),

(12) Suf(@) = [ 1B g)uts),

where FE,(x,y) is the reproducing kernel for Hz with respect to the inner prod-
uct (1.1). That is, E,(z,y) = ZZ’;lpk(x)pk(y), where {p;|1 < k < d,} is an
orthonormal basis in T1¢.

This paper is concerned with constructive polynomial approximation on S¢ that
uses function values (the samples) at selected well-distributed points (sometimes
called standard information). Here the “well-distributed” points indicate that those
points constitute a Marcinkiewicz-Zygmund (MZ) family on S? defined as follows.

Definition 1.1. Let X = {X,} = {zp 1 :n=1,2,..., k=1,...,l,} be a doubly-
indexed set of points in S and 7 = {7, :n =1,2,..., k= 1,...,l,} C (0,+0)
be a family of positive weights. Then X is called a Marcinkiewicz-Zygmund (MZ)
family with associated weight 7, if there exist constants A, B > 0 independent of n
such that

ln

(1.3) Alpll < 3 Ip(@ai)Prox < Blpl3  for all p e T2,

k=1
The ratio kK = B/A is the global condition number of the Marcinkiewicz-Zygmund
family X, and &,, = {z, 1 : k =1,...,1,} is the nth layer of X.

The MZ inequality (1.3) means that the Lo-norm of a spherical polynomial of
degree at most n is comparable to the discrete version given by the weighted ¢2-norm
of its restriction to X,. It follows from [2,7,19] that such MZ families exist if the
families are dense enough. We remark that Fekete points of degree [n(14-¢)| (¢ > 0)
on the sphere are MZ families with the equal weights 7, = i, see [17], where |a]
is the largest integer not exceeding a € R. Also, sufficient conditions and necessary
density conditions for MZ families with the equal weights 7, = d% on the sphere
are obtained in [18] and [16], respectively.

Given a MZ family on a usual compact space M, Grochenig in [11] introduced the
weighted least squares polynomials and the least squares quadrature from pointwise
samples of a function, and obtained approximation theorems and quadrature errors.
However, the obtained error estimates in [11] are not optimal due to the generality
of M. 1In this paper we confine to the sphere S? and obtain the optimal error
estimates.

Let X be a MZ family with associated weight 7. Given the samples { f(xy )} of
a continuous function f on S¢ on the nth layer &X;,, we want to approximate f using
only these samples. For this we solve a sequence of weighted least squares problems
with samples taken from the samples A);:

ln,
(1.4) Lnf =argmin > [f(znr) — p(@n )Tk
pGHﬁ k=1

This procedure yields a sequence {L, f} of the best weighted ¢s-approximation of
the data { f(,,x)} by a spherical polynomial in I1¢ for every f € C(S%). We call L, f
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the weighted least squares polynomial, and L,, the weighted least squares operator.
Clearly, L., is the projection onto Hfll, i.e., L, is a bounded linear operator on C(S%)
satisfying that L2 = L, and the range of L, is II1¢. It follows from (1.3) that for
p € I, p = 0 whenever p(xnk) = 0. This means that usually &, contains more
than d,, = dimII¢ points, so that it is not an interpolating set for II¢. Therefore,
L, f is usually a quasi-interpolant.

Let E,(x,y) be the reproducing kernel of I1¢ with respect to the inner product
(1.1). We note that E,(z,y) satisfies the following properties:

(1) For any z,y € de En(z,y) = En(y, x);

(2) For any fixed y € S¢, E,(-,y) € 11¢;

(3) For any p € 1% and 2 € S¢, p(z) = Sup(z) = (p, En(-, x)).

Then the Marcinkiewicz-Zygmund inequalities (1.3) say that every set {é, :

1/2

E=1,....0,}, énp =T, ek En(-,znk) is a frame for 1¢ with uniform frame bounds
A,B >0, i.e., for all p € II¢, we have

ln

Allpl3 <Y 1(p, &) < Blpll3-
k=1

It follows that the associated frame operator

ln

Tnp() = Z<p; enk enk ZTn kp xnk ( mn,k)

k=1

is invertible on I1¢ for every n € N. We obtain the dual frame {en =T, (Eng), k=
1,...,1,} for HZ with uniform frame bounds B~ and A~!, and every polynomial
p € TI% can be reconstructed from the samples on &, by

In ln
_ ~ 1~ 1/2
b= Tn lTnp = Z<p7 en,k>Tn 1en,k = Z Tn,/k p(xn,k)en,k'
k=1 k=1
The weights for the quadrature rules are defined by

1/2 1/2
Wp | = <Tn7/k enk, 1) = Tn(k /d enk()dp()
S

and the corresponding quadrature rule is defined by

In
(1.5) I(f) = an,kf(xn,k)'
k=1

Such quadrature rules are usually named the least squares quadrature.

Let X be a MZ family with associated weight 7. For a function f in the Sobolev
space H?(S%), o > d/2 (see Subsection 2.1 for definition of H?(S?)), Grochenig
obtained in [11] that

If = Lafllz < e(1+ &5Y20 77492 f|| o,
and

| [ F@)duta) = 10| < 1+ 0202 e
where ¢ depends on d, o, but not on f or x or the MZ family X.
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We remark that the condition o > d/2 is the well known necessary and sufficient
condition for H%(S?) to be continuously embedded in C(S?%), and is unavoidable in
any approximation scheme that employs function values.

In this paper we improve the above results and obtain the optimal estimates.
One of our main results can be formulated as follows.

Theorem 1.2. Let X be a MZ family on S? with associated weight 7 and global
condition number k = B/A, L, be the weighted least squares operators defined
by (1.4), and let I,, be the least squares quadratures defined by (1.5). If f €
H?(S%), o > d/2, then we have

(1.6) If = Lafllz < L+ £330 fl| e
and
(17) | [ 7@ute) = 10| < et 320 e,

where ¢ depends on d, ¢, but not on f or x or the MZ family X.

Remarkably, the convergence rates for the weighted least squares approximation
and for the least squares quadrature errors are optimal (as explained in Remark 1.3
below) in a variety of Sobolev space settings. When the global condition number
Kk = 1, the weighted least squares operators are just the hyperinterpolation operators
on the sphere, and the least squares quadratures are just the positive quadrature
on the sphere (see Subsection 2.5). In this case, the inequality (1.6) and (1.7) were
obtained in [28] and [1], respectively.

Remark 1.3. For N € N, the sampling numbers (or the optimal recovery) of the
Sobolev classes BH?(S?) (the unit ball of the space H?(S%)) in Ly(S?) are defined
by
gN(BHO(S7), La(8) := it sup [If = o(f(&0)s--- s FEN) 2,
£1,-,ENESY  feBHO(S)
©: RN Lo (S%)

where the infimum is taken over all N points &1, ...,&y in S? and all mappings ¢
from RY to Ly(S?). The optimal quadrature errors of the Sobolev classes BH (S?)
are defined by

N
en(Int; BH?(S%) := _ inf sup f(@) dp(z) - )\~f(£<)‘.
2\1,...,6)\N€€SI§f€BHo(Sd) sd ]; J J
1,--SN

It follows from [31], [1] and [13] that
(1.8) gN(BH?(S%), Ly(S%) < N=9/% and  en(Int; BH?(S?)) < N~7/%,
where the notation A(N) =< B(N) means that A(N) < B(N) and A(N) > B(N),
A(N) < B(N) means that there exists a positive constant ¢ independent of N such
that A(N) < ¢B(N), and A(N) > B(N) means B(N) < A(N).

According to [16-18] there exist MZ families with I, < d,, < N =< n?. For such
MZ families it follows from (1.8) that

sup ||f — Ln(f)]l2 < N7/ < gn(BH(S?), Lo(S%),
FEBHo (S9)
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which implies that the weighted least squares operators L,, are order optimal algo-
rithms in the sense of optimal recovery. Also, we have

9 F(@)dp(z) — I(f)| < N~9/% < en(Int; BH? (SY)),

sup
feBHo(S)

which means that the least squares quadrature rules are the order optimal quadra-
ture formulas.

For a linear operator L on C(S?), the operator norm ||L|| of L is given by

L]l := sup{|ILf|| | £ € CSY), If] < 13-
The quantity ||L|| of a projection L is also called the Lebesgue constant of L and

the estimation of ||L|| is extremely important in numerical computation. We use
the Christoffel functions to get the following estimation.

Theorem 1.4. Let X be a MZ family on S¢ with associated weight 7 and global
condition number £ = B/A, and let L, be the weighted least squares operators
defined by (1.4). Then we have

nl@=02 < ||L,|| < &2,

Remark 1.5. When « = 1, the weighted least squares operators are just the
hyperinterpolation operators on the sphere (see Subsection 2.5). In this case, we
have (see [10,20,23])

| L || < nld=1/2,

Hence, we conjecture that the upper bound of the operator norm of L, is n(d—1)/2
multiplied by a positive constant independent of n. However, we have not been able
to prove it.

Remark 1.6. Since the weighted least squares operator L, is the projection onto
I1¢, by the Lebesgue theorem the hyperinterpolation error in the uniform norm can
be estimated as

I1f = La(F)Il < A+ [|Lnl) En(f) < 6702 By (),

where

En(f) = inf [|f —p
pelld
is the best approximation of f by II¢.

This paper is organized as follows. Section 2 contains 5 subsections. In Subsec-
tions 2.1 we introduce some basic facts about spherical harmonics and the definition
of the Sobolev spaces H?(S%). Subsection 2.2 is devoted to giving two examples of
MZ families on the sphere. In Subsections 2.3 and 2.4 we give the formal expres-
sion of the weighted least squares polynomial L, f and show that the least squares
quadrature I,,(f) is just the integration of the weighted least squares polynomial
L, f. In Subsection 2.5 we show that the hyperinterpolation is just the weighted
least squares polynomial for a MZ family with the global condition number x = 1.
Finally, in Section 3 we give the proofs of Theorems 1.2 and 1.4.

We remark that the results of Subsections 2.3-2.5 can be extended to a general
compact space M.
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2. PRELIMINARY

This section is devoted to giving some basic facts about spherical harmonics (see
for example, [7]) and some preliminary knowledge.

2.1. Harmonic analysis on the sphere.

Let S¢ = {z € R¥! | |z| = 1} denote the unit sphere in R4, where (z,y) = z-y
is the usual inner product and |z| = (z,)"/? is the Euchdean norm. We denote
by ’H;l the space of all spherical harmonics of degree [ on S, i.e., the space of the
restrictions to S% of all harmonic homogeneous polynomials of exact degree ¢ on
R4L Tt is well known that the dimension of H is

. d ]-, lf f — O,
N(d,0) =dimHy = (204d—1) (¢+d—2)! $ f—19
o e=12
The spaces H?, £=0,1,2,... are just the eigenspaces corresponding to the eigen-

values —((¢ + d — 1) of the Laplace-Beltrami operator A on the sphere S¢ and are
mutually orthogonal with respect to the inner product

0 = [ f@a@ua).

{Yer =Y [ k=1,...,N(d,0)}

be a fixed orthonormal basis for 7—[?. We have the addition theorem for the spherical
harmonics of degree ¢:

Let

d—1
9

L+ A
an Yvﬁk ) by Cé\('ry)7 ac,yESd,)\: dZQv

where C\(t) is the usual ultraspherical (Gegenbeuer) polynomial of order A normal-

is
ized by C’g (1) = % and generated by

F o< 1).
(1—2275—!-22 ch )2 (0s2<1)

(See ( 26, p. 81]).
Since the space Hfl can be expressed as a direct sum of

=HiDHID - D

{(Yer | k=1,...,N(d,0), £=0,1,...,n}

forms an Lo-orthonormal basis of Hﬁ. Hence, the Lo-reproducing kernel E,(x,y) of
112 has the explicit expression:

we obtain that

n N(d,l)

£+ A d—1
E,( Z Z Yor(x)Yor(y) = Z \ —LCMz-y), A= — z,y €S
=0 k=1 =0
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Specifically, we have

A TE+2)) . d-1 d
(2.1) En(:v,x)—zz 3 F(Q)\)F(€+1)An, A= 5 x € S%

We remark that
(Yor | k=1,...,N(d,0), £=0,1,2,...}

is an orthonormal basis for the Hilbert space Lo(S?). Thus any f € La(S?) can be
expressed by its Fourier (or Laplace) series:
oo N(d)\t)

ED DD IR A AN
=0 k=1
where
(F, Yin) = / F(2) Y () dpu(a)
Sd

are the Fourier coefficients of f. The Sobolev space H?(S?%), where o > 0, is defined
as the space of all functions in Ly(S?) for which the norm

I£ne = (3 (1 16+ - 1))° Z ¥l )
=0
is finite. The space H?(S?) is a Hilbert space with the inner product
0o - N(d,f)
<fag>Hff :Z(1+£(£+d_1)) Z <fa}/€,k> <.gv}/€,k>’
(=0 k=1

which induces the norm || - ||zo. It is easily seen that for f € H(S%),

(2.2) If = Snfllz < en™ (| fllze,

where S, f is given by (1.2).
If 0 > d/2, then the space H°(S%) is continuously embedded in C(S%) and is a
reproducing kernel Hilbert space with the reproducing kernel

N0

Kow,y) =Y (140 +d-1)) " ZYM o).

=0

2.2. Two examples of MZ families.

We shall give two examples of MZ families with equal weights. Let X be a finite
subset of S? with cardinality d,, := dimI1¢. The points &1, ...,&q, in X maximizing
a Vandermonde-type determinant

are called Fekete points of degree n for S? (these points are sometimes called ex-
tremal fundamental systems of points, as in [24]), where @;, ¢ = 1,...,d, are a
basis of II. It is known that Fekete points are independent of the choice of the
polynomial basis. For any fixed ¢ > 0, if X = {X,} and X, are Fekete points
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of degree [n(1 + ¢)] for S¢, then X is a MZ family with equal weights 7, = i

(see [17]).
Let X be a finite subset of S?. The mesh norm of X is defined by

X) = inf d(u, ),
p(X) sup inf (u, 2)

where d(z,y) denotes the standard geodesic distance arccos -y between two points
r and y on S% Let X = {X,} = {zpr:n=12,...,k=1,...,0,} be a doubly-
indexed set of points in S?. We say that X is uniformly separated if there is a
positive number £ > 0 such that

ATy gor Tng) > —— if kA1
n

+1
for all n € N. Let X = {X,,} be a uniformly separated array in S? such that for all
n>1,
n
where 7 < 7/2. Then X is a MZ family with the equal weights 7, 1, = i (see [18]).
However, in [17] and [18], the authors did not give estimates of the global condi-
tion numbers of two MZ families on the sphere.

2.3. The weighted least squares polynomials L, f.
Now let X be a MZ family with associated weight 7. We use the weighted
discretized inner product

L
(2.3) (£, ) = D F(@np)9(@n k) T

k=1
and the discretized norm

We consider the corresponding orthogonal polynomial projection L,, onto I1¢ with
respect to the weighted discretized inner product (-, ‘) (n), namely the weighted least
squares polynomial L, f defined by

In
Lynf = argmin || f — p[f,) = argmin Y |f(@nr) = p(2n) | T k-
pEH‘fL pGHd k=1

We shall give a formal expression for L, f. Let ¢;, i =1,...,d, be an orthonormal
basis of I1¢ with respect to the weighted discrete scalar product (2.3), i.e.,

1, if i=4j, .
Goedm=0u={ o i izy LSbi<d

Such ¢;, i =1,...,d, can be obtained by applying the Gram-Schmidt orthogonal-
ization process to the basis {Yy) | k = 1,...,N(d,¢), £ =0,1,...,n} of IIZ. We
set

dn
Dn(z,y) = > er()er(y).
k=1
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Clearly, the weighted least squares polynomial L, f is just the orthogonal projection
of f onto H;jl with respect to the weighted discrete scalar product (2.3), i. e.,

ln

(2.4) Ly f(z) = {f, Dn(~,x)>(n) = Z f (@) D (T s ©) T k-
k=1

Here, D,,(z,y) is the reproducing kernel for I1¢ with respect to the weighted discrete
scalar product (2.3) satisfying the following properties:

(1) For any z,y € §%, Dy (x,y) = Dn(y, x);

(2) For any fixed y € S, D,,(-,y) € 11¢;

(3) For any p € I1¢ and = € S¢,

ln

(2.5) p(z) = Lap(z) = (p, Dn(vx»(n) = Zp(zvn,k)Dn(:En,kax)Tn,k-
k=1

According to the definition of the operator norm and (2.4), by the standard
argument we have

ln
(2.6) | Lnll = max Y~ | Dy (@ k> )| T,
reSd 1

2.4. The least squares quadratures.
Let X be a MZ family with a weight 7 and E,,(x,y) be the Lo-reproducing kernel
of TI¢. Then the frame operator

ln

ln
Tn () = Z<pv én,k>én,k(') = ZTn,kp(xn,k)En('vxn,k)
k=1

k=1

is invertible on I1¢, where enk = Ti’/;En(-, T k). We set
enk =T, (Eng) and wyp = <7'71L,/k26n7k, 1) = T:L/k? /Sd eni(x)dp(x).

Then the least squares quadrature is defined by

In

In(f) = Z wn,kf(mn,k)'

k=1
In this subsection we shall show that

ln,
Q1) L) = [ Iaf@da() = 3 f@ns)us [ Dolans,a)duo)

S P s

In order to prove (2.7) it suffices to show that

1/2
Tk Enk = Tn,an(xn,k) )
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Indeed, by (2.4) and (2.5) we have for z,y € S¢

To(Duo0)(@) = 3 7ok Dl 0 9) B (i, 1)

= Ly(En(-2))(y) = En(z,y).
It follows that

1 _
n/k En,k = Tn an I(En('a xn,k)) = Tn,an(xn,ka )

Hence, (2.7) holds. By (2.7) and the Holder inequality we obtain that
@8) | [, @@ - 10| < [ 17@) = Luf@dnte) < 1f = Lufll

2.5. Hyperinterpolation and the weighted least squares polynomials.

Hyperinterpolation was originally introduced by I. H. Sloan (see [22]). It uses
the Fourier orthogonal projection of a function which can be expressed in the form
of integrals, but approximates the integrals used in the expansion by means of a
positive quadrature formula. Hence, hyperinterpolation is a discretized orthogonal
projection on polynomial subspaces and provides a polynomial approximation which
relies only on a discrete set of data. In recent years, hyperinterpolation has attracted
much interest, and a great number of interesting results have been obtained (see
[3-6,10,12,14,15,20-23,25,27-30, 32]).

ln
Assume that Qn(f) = > Thrf(znk), n = 1,2,... is a sequence of positive
1

quadrature formulas on S which are exact for 1%, i.e., Tk > 0, and for all
fend

ln
/ F@)dp(@) = Qu(f) = S T f ().
s4 k=1

For any p € 11, using f = p? in the above equality we obtain that the family X
is a MZ family with the constants A = B = 1 and the global condition number & is
equal to 1.

The hyperinterpolation operator H,, on S is defined by

ZTnkf (@n k) En(z, T 1), fEC(Sd).

We use the discretized inner product
In
<f7 g) (n) = Z f(xn,k>g($n,k)7_n,k
k=1

and the discretized norm || f H%n) = (f, f)(n)- Since the quadrature formula @, is
exact for Hgn, we get for all p,q € II¢,

(p,q) = /Sdp(x)Q(l’)du(w) = Qn(pa) = (P, Q) (n)-
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Hence,
(Vg | k=1,...,N(d,€), £=0,1,...,n}

forms an orthonormal basis of TI% with respect to (-, ) (n)- It follows that

Dn($, y) = En(x7 y)’

and
n N(d\0)

(=0 k=1

which means that the hyperinterpolation operator H, is just the discretized or-
thogonal projection on the polynomial subspace H;‘?L with respect to (-, ‘>(n), and
satisfies

In
I = Hof ey = i 1 = 9l = i 32 1F00s) = ()P
n nk

Hence, the hyperinterpolation H,, f is just the weighted least squares polynomial
for a sequence of positive quadrature formulas on S% which are exact for Hgn. It
follows from (2.7) that the least squares quadrature is

In ln

In(f) = Z f(xn,lc)Tn,k /d Dn(xn,kvx)du(gc) = Z f(xn,k)Tn,ka

k=1 S k=1

which is just the positive quadrature formula Q. (f).
On the other hand, if the global condition number s of a MZ family X with the
weight 7 is equal to 1, then for all p € HZ, we have

ln

Allpll3 = Ip(@n ) Pro k-
k=1

It follows that for f,g € II¢,

ln

A(fv g> = Z f(xn,k)g(xn,k)'rn,k~

k=1

Since any function in Hgn can be expressed as a linear combination of the product
of the functions z® and 2?, where z € S¢, o, € Ng“, la| < n, |B] < n, z% =

e! Qd41 _ . .
7wy el = a1 + -+ + @gq1, we obtain that X determines a sequence of

ln
positive quadrature formulas Q,(f) = & > 7,4 f(25%) on S¢ which are exact for
k=1
Hgn. This means that the weighted least squares operators L,, are just the hyper-
interpolation operators H,.
Hence, the hyperinterpolation is just the weighted least squares polynomial for a
MZ family with the global condition number x = 1, and the weighted least squares
polynomial may be viewed as a generalization of the hyperinterpolation.
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3. PROOFS OF THEOREMS 1.2 AND 1.4
In order to prove Theorem 1.2, we shall use the following lemma.

Lemma 3.1. [6, Theorem 2.1] Let T be a finite subset of S%, and let {u, : w € T'}
be a set of positive numbers satisfying

S nlf@ < [ 1@ dute), vF e,

wel

for some 0 < py < oo and some positive integer N. If 0 < ¢ < oo, M > N and
fend,, then

> wlfl < cai()” [ 1rmdu

wel
where C > 0 depends only on d and gq.

Proof of Theorem 1.2.
We rewrite the orthonormal basis {Yy, | £ =1,...,N(d,¢), £ =0,1,...,n} of
¢ as {¢p | k=1,...,d,}. Let

o= (02 (@), 7 f(@ng,)*

be the given sampling data column vector, U,, be the [,, X d,, matrix with entries

Ui = 10 o1(@nn), k=1, 0, 1=1,...dn,

and let R,, = UU,, where U is the conjugate transpose of the matrix U,,. Suppose
that the solution to the weighted least squares problem (1.4) is the polynomial

dn
Lnf = Zan,k¢k € HZ

k=1
with coefficient column vector a,. According to the standard formula for the so-

lution of a least squares problem by means of the Moore-Penrose inverse U5 =
(UxU,)~'U* = R,;'U, we obtain that

an = U:Yn = REIUn*yn

For any ¢ € R%, p = Zg’;l ck Pk, we have

n

HPH% = |C‘2 and (Rnc7 C) - (Unc7 Unc) = Z ’p(xn,k>‘27_n,k-
k=1

It follows from (1.3) that
Ale]? < (Rne, ¢) < Blc?,

which means that the spectrum of every R, is contained in the interval [A, B]. We
obtain that the operator norm of R, ! is bounded by A~! and the operator norm of
U, is bounded by

U1 = U]l = 1UzUall'? = || Ra]l /> < BY2,

where the operator norm of a matrix A is defined by [|A[| = sup,—; |Az|.
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We use the orthogonal decomposition

If = Lafll3 = Ilf = Sufll3 + [ISnf — Luf1I3-
We recall that

dn
Snf = an,k¢k
k=1

with coefficient column vector f,,, where f,, , = (f, ¢x). By the Parseval equality we
obtain that

I1Snf = Lafl3 = £ — anl? = [, — R, Usynl®
= |REIU;(Unfn - Yn)|2
< ATEB|ULf, — yal*.

Finally, we have
(Unfn)k = TrlL’/kQSnf(xn,k)

Hence,

ln
Unf = yal> =D 1F(@np) = Suf (@np) Tk = |f = Suf Iy
k=1

It follows that
(3.1) 1Snf = Lnfll3 < A72B| f — Sufllf,)-
For f € H°(S%), o > d/2, we define

Aof = Snf, Apf = Spepf — Sper, f for k> 1.

Then for f € H?(S?), o > d/2, the series > Ay f(z) converges to f(x) uniformly
k=0

in S%. By (2.2) we have

(3-2) 1A fllz < NLf = Sorenfll2 + LS = Sor-r fllz < 277077 f 1o

Note that

f@) = Suf(@) =) Apf(x),
k=1

and the right series converges uniformly on S%. Hence, by (3.1) and the trigonomet-
ric inequality we have

1Snf — Luflla < A7 B2 f — Sufllmy < AP BY2 " Arfllny-
k=1
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Note that A, f € Hgkn' Using Lemma 3.1 with py = ¢ = 2 and (3.2), we obtain that

ln

1ARF Ty = D 1ARS (@n k) Pk
(n)

k=1
2kn,

) [ 1A @) du)
sd

< cB(
< Bokdg=2ko =20 ¢)2,
We have

1Snf = Luflla < A7 BY2> " | A4 £l n)
k=1

o

< AT'BY 22 Ron = £ g
k=1

< A7'Bn7||f|| g

It follows that
2
If = Loflla = (If = Sufl2+ 1Suf — LuflI2)"
< (14 K207 fl

This completes the proof of (1.6). Inequality (1.7) follows from (1.6) and (2.8)
directly.
The proof of Theorem 1.2 is now finished. O

Remark 3.2. The inequality (3.1) was proved in [11]. For the convenience of the
reader, we provide details of the proof.

Proof of Theorem 1.4.
In order to give the lower estimate of the operator norm ||L,||, we use the Dau-
gavet theorem to obtain that

L]l = [1Sall = n =D/,
So it suffices to get the upper estimate of ||L,,|.

Let
P (z) = inf  |pll3, €S,
pellL, |p(x)|=1
and
U, (x) = inf ||p|]%n), zeS?

pEILY, |p(z)|=1
be the Christoffel functions with respect to the inner (-,-) and (-, ")), respectively.
We remark that estimates for Christoffel functions are useful in comparing different
norms of functions in I1¢, and they are also basic tools in the theory of orthogonal

polynomials.
It follows from (1.3) that

(3.3) Ad,(z) < U, (z) < B®,(z), zeS%.
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Now let E,(x,y) and D, (z,y) be the reproducing kernels of TI% with respect to the
inner (-,-) and (-, ) (), respectively. According to [9, Theorem 3.5.6], we have

Ep(z,z)™' = ®,(x) and D,(z,z)"! = U, (x).

It follows from (3.3) that
(3.4) BE,(z,2) < Dy(z,2) < A E,(z,2), zeS%
Using p =1 in (1.3) we get

In
(3.5) A<D mr<B

k=1

Using (2.6), the Cauchy-Schwartz inequality, (2.5), (3.5), (3.4), and (2.1), we have

ln
| Lnll = m&gg Z T ke D (T5 T i) |
Te =1
In In 1/2

< ;Ié%:;( ( Z Tn,k(Dn($, xn,k))2> 2 ( Z Tn,k)
k=1 k=1

< B2 max D, (z, z)/?
€S

< kM2 gggi By (z,z)"/?

< /fl/Qnd/Q.

This completes the proof of Theorem 1.4. O
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