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In this paper we consider these kind of problems in an abstract frame, motivated
by that example, and characterized by the application of the greedy algorithm to
linear systems in which the operators governing the system are not onto.

Inspired by the theory of approximate controllability for time-irreversible PDEs,
developed by J. L. Lions, and by R. Glowinski and J. L. Lions in the numerical
setting (e.g. [3, 14]), and the classical technique of Tychonoff regularization for ill-
posed (inverse) problems, we adopt a two-folded perspective that allows us to end
up developing a greedy strategy ensuring that Kolmogorov complexity is reached,
for quasi-solutions (those that assure the fulfillment of the system up to an ε error)
in those cases where the exact solution (corresponding to ε equal to zero) does not
exist in the given functional setting.

With that purpose we proceed in several steps:
1. We introduce a concept of optimal ε-solution, reminiscent of the theory of

approximate controllability, that allows characterizing the solution of minimal norm
assuring that the system is solved up to an ε tolerance or error.

2. We link this ε-solution with a suitable Tychonoff regularization, in which
the ε-error or tolerance, can be linked to the η-Tychonoff regularization parameter
through a suitable nonlinear implicit equation.

3. We then adapt and apply the existing greedy methods for well posed parameter
dependent problems, but in the context in which the number of free parameters
is increased by one, to incorporate the η-Tychonoff parameter, that adds to the
physical parameters on which the model depends.

4. We then use the nonlinear link of the ε-error and η-Tychonoff parameter to
derive a greedy approximation result for the ε-problem.

Our abstract results apply to a wide variety of problems, such as deconvolution in
image processing, time inversion of highly irreversible systems, like heat equations,
or the approximate controllability of PDE.

Although we develop the theory in the context of bounded linear operators, it
can also be extended to unbounded ones. This, in turn, allows us to study ill-
posed elliptic problems in which the (exact) solution does in general not exist for
an arbitrary right-hand side. In this way, we generalize the setting considered by
R. DeVore and his collaborators, in which they consider a family of well-posed
elliptic problems and develop the greedy algorithms to recover the corresponding
solutions [5, 6].

The paper is organised as follows. The next section provides definition and anal-
ysis of optimal approximative solutions of a single ε-problem. Section 3 is devoted
to construction of a greedy algorithm for solving a family of parameter dependent
problems. Generalisation and application of the theory to unbounded operators is
presented in Section 4, followed by a particular example related to the elliptic equa-
tion. The paper is closed by some concluding remarks and perspectives for further
research.

2. Preliminaries on optimal approximate solutions of linear systems

Let L be a bounded operator from L(X,Y ) with a dense range, where X and
Y are infinite-dimensional, real Hilbert spaces. We consider the problem of solving
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the system

(2.1) Lu = f,

for a given vector f ∈ Y . Of course, due to the fact that image of L is only dense
in Y , the above problem has no solution for every f . Thus we relax the problem
and consider the approximate problem of finding u such that

(2.2) ∥Lu− f∥Y ≤ ε,

for some a-priori given ε > 0.
Having assumed that the operator L has a dense range, the set of approximate

solutions satisfying (2.2) for any fixed f is neither empty nor a singleton. Thus
it is reasonable to choose the one which is optimal in some sense. We set the
optimization criteria in this paper as the one of minimal norm. This leads us to the
following problem

(2.3) min
u∈X

{
1

2
∥u∥2X : ∥Lu− f∥Y ≤ ε

}
,

whose solution we denote by ũ.
By exploring Fenchel-Rockafellar duality techniques (e.g. [15, §3.6]) the solution

ũ of the problem (2.3) can be obtained by solving the corresponding dual problem.
This allows one to replace the original constrained problem by a non-constrained
one. More precisely, the following theorem holds.

Proposition 2.1 ([13, Propositions 2 & 4]). The solution of problem (2.3) is given
by

ũ = L∗ṽ,

where ṽ ∈ Y minimizes the dual problem

(2.4) J(v) =
1

2
∥L∗v∥2X + ε∥v∥Y − ⟨ f | v ⟩Y , v ∈ Y.

Here L∗ ∈ L(Y,X) stands for the adjoint operator of L, while ⟨ · | · ⟩Y denotes
the scalar product in Y .

Note that the last proposition does not guarantee uniqueness of the solution to
the dual problem (2.4). The latter includes the functional J which is a non-standard
one since it involves a non-smooth term of homogeneity one. Being strictly convex
and continuous, it attains its minimal value at the unique point if it is coercive.
According to the density assumption on L and Hahn-Banach theorem, the adjoint
operator L∗ is injective. But in general it is not coercive (this would correspond to
the case of L having a full rank). However, the ε term entering the functional J
ensures its coercivity as shown by the following result.

Proposition 2.2. Functional J defined by (2.4) is coercive, i.e. it satisfies

lim inf
∥v∥Y →∞

J(v)

∥v∥Y
≥ ε.

Proof. The proof essentially follows the lines of the [9, Proposition 2.1] which treats
the special case of L being the heat operator.
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We argue by contradiction. We suppose there exist a sequence (vn) such that
∥vn∥Y → ∞ and

(2.5) lim inf
n

J(vn)

∥vn∥Y
< ε.

Denoting by v0n = vn/∥vn∥Y the corresponding normalized vectors, it follows that,
up to a subsequence, (v0n) converges weakly to some v0 ∈ Y . From (2.5) it follows

ε >
1

2
∥vn∥Y ∥L

∗v0n∥
2
X + ε− ⟨ f | v0n ⟩Y .

As all the terms in the last relation, except ∥vn∥Y , are bounded, it implies that
∥L∗v0n∥X → 0. Consequently, ∥L∗v0∥X = 0, and the injectivity of L∗ implies v0 = 0.

Thus we obtain

lim inf
n

J(vn)

∥vn∥Y
≥ ε− lim

n
⟨ f | v0n ⟩Y = ε,

which contradicts the initial assumption (2.5). □
A detailed characterization of the unique minimizer of J is provided by the next

result.

Proposition 2.3. The minimizer ṽ equals zero if and only if ∥f∥Y ≤ ε. Otherwise,
it satisfies the Euler-Lagrange equation which has the form

(2.6) LL∗ṽ + ε
ṽ

∥ṽ∥Y
− f = 0.

Proof. From the very definition (2.4) of functional J it follows

J(v) ≥ 1

2
∥L∗v∥2X + (ε− ∥f∥Y )∥v∥Y .

Consequently, if ∥f∥Y ≤ ε the functional J is nonnegative, obtaining its minimum
for ṽ = 0.

Otherwise, the functional J attains negative values as well. Indeed, take a se-
quence vn = f/n and calculate

J(vn) =
1

2n2
∥L∗f∥2X +

1

n
(ε∥f∥Y − ∥f∥2Y ).

For n large enough, the right hand side of the last expression is dominated by the
term ∥f∥Y (ε− ∥f∥Y )/n < 0, and results in negative values of J(vn). Consequently
the minimum ṽ differs from 0.

As the functional J is differentiable apart from the origin, its differential at ṽ
equals zero, which results in the Euler-Lagrange equation (2.6). □

The case ∥f∥Y ≤ ε is a trivial one, which we exclude from further analysis. In
the non-trivial case (∥f∥Y ≤ ε) the Euler-Lagrange equation implies that ũ = L∗ṽ
is an eligible solution to the problem (2.2) which brings the system to the boundary
of the target ball around f . Moreover, as already stated above, it is also the solution
of the minimal norm among all u ∈ X satisfying (2.2).

In this way, finding optimal approximative solution to (2.2) is equivalent to finding
the minimizer of the functional J given by (2.4), which, in turn, is equivalent to
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solving the corresponding Euler-Lagrange equation (2.6). For these reasons, from
now on, we shall concentrate on finding efficient methods for solving the latter
equation.

Remark 2.4. It is interesting to note that problem (2.2) also allows for the finite
dimensional solvability. More precisely, one can show that for any finite-dimensional
subspace E ⊆ Y and any target f ∈ E there exists an approximative solution uE
to (2.2) such that

(2.7) PE(LuE) = PE(f),

where PE denotes the orthogonal projection to the space E. similarly, by PE⊥ =
IY − PE we denote the projection to the orhogonal compliment of E.

Such result requires analysis of the functional

JE(v) =
1

2
∥L∗v∥2X + ε∥PE⊥(v)∥Y − ⟨ f | v ⟩Y , v ∈ Y.

Its coercivity is proven in the manner similar to the proof of Lemma 2.2, which
ensures existence of its unique minimizer ṽE . Following the ideas of [20], one can
show that ũE = L∗ṽE is the solution that satisfies both (2.2) and (2.7).

Indeed, take an arbitrary z ∈ Y . Then for any scalar λ > 0 we have

JE(ṽE) < JE(ṽE + λz).

By expanding the terms in the last relation it follows

ε∥PE⊥(ṽE)∥Y <
λ2

2
∥L∗z∥2X + λ⟨L∗ṽE | L∗z ⟩X

+ ε∥PE⊥(ṽE + λz)∥Y − λ⟨ f | z ⟩Y .
Consequently, by taking λ > 0 we get

⟨ f | z ⟩Y − ⟨L∗ṽE | L∗z ⟩X ≤ε lim inf
λ→0+

∥PE⊥(ṽE + λz)∥Y − ∥PE⊥(ṽE)∥Y
λ

= ε∥PE⊥(z)∥Y .
Similarly, by taking λ < 0, the same procedure implies∣∣∣⟨ f | z ⟩Y − ⟨L∗ṽE | L∗z ⟩X

∣∣∣ ≤ ε∥PE⊥(z)∥Y .

From here, by taking an arbitrary z ∈ E the relation (2.7) follows. The approxi-
mation constraint (2.2) is then obtained by varying z in the orthogonal complement
of E.

The structure of the optimal solution can be easily seen and analysed in terms
of Fourier coefficients. To this effect, let us suppose that the operator Λ = LL∗

is diagonalisable, and denote by λk the corresponding eigenvalues. Then the next
formula follows directly from (2.6)

ṽk =
fk

λk + ε/∥ṽ∥Y
=
fk − εk
λk

,

where εk = εṽk/∥ṽ∥Y , while ṽk and fk denote the k-th Fourier coefficient of vectors ṽ
and f , respectively. Although the formula is not spectrally decomposed (expression
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for ṽk requires knowledge of ∥ṽ∥Y , i.e. of all the Fourier coefficients), lack of partic-
ular frequency in the target f implies that the corresponding Fourier coefficient of
the solution ṽ vanishes as well. In particular, if f belongs to some finite-dimensional
subspace spanned by finite number of eigenvectors of Λ, so does the solution ṽ.

Furthermore, the expression for the solution is almost explicit, up to a scalar
∥ṽ∥Y . Although it might look surprisingly at first, this is in accordance with known
results for the optimal control problems for parabolic equations (e.g. [10,13]). Note
that such problems can be written in the form (2.1) with L being the control to
(the final) state operator. If the control acts through initial data, then this can be
considered as an inverse problem (of initial source identification). It is an impor-
tant, but also numerically challenging issue due to the dissipative nature of such
equations.

If the eigendecomposition of the operator Λ is available, then the numerical pro-
cedure of calculating the optimal solution can be reduced to solving the equation for
the unknown scalar by some suitable method. For general operators, with variable
coefficients and/or acting on irregular domains such decomposition is not available
or hard to construct. Another numerical approach should be used in that case,
which usually employs some iterative method (e.g., conjugate gradient).

3. Parameter dependence

3.1. The problems setting and characterisation of the solutions. In the
sequel we want to analyse a family of problems of the type

(3.1) Lνuν = fν ,

where ν is the parameter ranging over a compact, connected set N ⊂ Rd, d ≥ 1.
The goal is to propose an efficient method for finding an optimal approximative

solutions to (3.1) for a large number of parameters. To this effect, we make the
following assumptions.

(A1) Lν belongs to L(X,Y ) for every parameter, whereX and Y are ν-independent
Hilbert spaces.

(A2) The associated adjoint operator L∗
ν ∈ L(Y,X) is injective for every ν ∈ N

and the family of operators Λν = LνL
∗
ν are uniformly bounded in L(Y ) from

below by a positive self-adjoint operator Λ, i.e.

Λ ≤ Λν , ν ∈ N .

(The last inequality means that ⟨ (Λν − Λ)v | v ⟩Y ≥ 0 for every v ∈ Y .)
(A3) The right hand side vectors fν belong to a precompact subset of Y . In addi-

tion, we assume uniform boundedness from below, i.e. there exist a positive
constant f− > ε such that ∥fν∥Y ≥ f−. The aim of the last assumption is
to exclude trivial solutions and singularities in the Euler-Lagrange equation
(cf. Proposition 2.3).

(A4) The mappings ν → (Lν , fν) ∈ L(X,Y )× Y are analytic.

According to the Hahn-Banach theorem, the injectivity assumption on L∗
ν implies

that the image of Lν is dense in Y . Thus, for a general target fν , the problem (3.1)
is not well posed. Therefore, as it was discussed in the previous section, we replace
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it with the following constrained optimization problem

(3.2) min
u∈X

{
∥u∥X

∣∣∥Lνu− fν∥Y ≤ ε
}
.

Supposing that ∥fν∥Y is strictly larger than ε for every parameter value, we know
that the optimal solution ũν equals L∗

ν ṽν , where ṽν is the the solution to the corre-
sponding Euler-Lagrange equation

(3.3) LνL
∗
ν ṽν + ε

ṽν
∥ṽν∥Y

− fν = 0.

The set of solutions we denote by ṽ(N ) = {ṽν , ν ∈ N}. Equivalently, the solution
ṽν can be characterised as the minimiser of the parameter-dependent functional
Jν defined by (2.4), with L and f being replaced by their parameter-dependent
counterparts Lν and fν , respectively. The next result provides the boundedness of
the set ṽ(N ) in Y .

Lemma 3.1. The solutions ṽν are uniformly bounded in Y . More precisely, there
exist positive constants v+, v− such that for every ν ∈ N we have v− ≤ ∥ṽν∥Y ≤ v+.

Proof. From the Euler-Lagrange equation (3.3) we get

∥LνL
∗
ν ṽν∥Y ≥ ∥fν∥Y − ε,

implying the required lower bound with v− = (f− − ε)/L+, where f− > ε is the
bound from the assumption (A3), and L+ = maxν ∥LνL

∗
ν∥L(Y ). The latter number

exists as ν → Lν is a smooth mapping on a compact set.
In order to obtain the upper bound, let us assume the contrary. We suppose there

exists a sequence (νn) such that ∥ṽνn∥Y → ∞. By multiplying the corresponding
Euler-Lagrange equations with v0νn = ṽνn/∥ṽνn∥Y one gets

(3.4) ∥vνn∥Y ∥L
∗
νnv

0
νn∥

2

X
+ ε− ⟨ fνn | v0νn ⟩Y = 0.

Divergence of the sequence (∥vνn∥Y ) implies that ∥L∗
νnv

0
νn∥X → 0. By exploring the

assumption (A2) and the sandwich theorem we obtain that ⟨Λv0νn | v0νn ⟩Y → 0.

On the other hand, denoting by v0 a weak limit of v0νn (up to a subsequence), we
have that

⟨Λv0 | v0 ⟩Y = ∥L∗v0∥2X ≤ lim inf
n

∥L∗v0νn∥
2

X
= lim

n
⟨Λv0νn | v0νn ⟩Y = 0.

The positivity of Λ implies v0 = 0.
Going back to (3.4) and exploring the relative precompactness of the set {fν |ν ∈

N}, we obtain

0 > ε− ⟨ fνn | v0νn ⟩Y → ε,

which provides the required contradiction. □

In the next step we explore the smoothness properties of the solution mapping
ν → ṽν . The smooth dependence of the solutions on the parameter is a bit delicate
due to the non-smooth term in the Euler-Lagrange equation. However, the solution
vanishes only when the norm of the target is small, i.e. when ∥fν∥Y < ε, which is the
case we excluded from the analysis through the assumption (A3). Thus, in practice
there is no singularity in the parameter-dependent Euler-Lagrange equation (3.3).
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This observation plays a key role when analyzing the smooth dependence of the
solutions on the parameter. Indeed, we claim that the solutions of (3.3) depend as
smoothly on the parameter as the operators Lν and vectors fν do. To see this, we
apply the implicit function theorem (IFT). In order to do it successfully we have to
analyse the nonlinear function

F (v, ν) := LνL
∗
νv + ε

v

∥v∥Y
.

Writing the solution ṽν implicitly in terms of ν needs the computation of the de-
rivative of F with respect to v and checking that it is invertible. This is indeed the
case since

∂vF (v, ν) := LνL
∗
ν + ε

(
I

∥v∥Y
− v ⊗ v

∥v∥2Y

)
= LνL

∗
ν +

ε

∥v∥Y
(IY − Pv),

where IY is the identity, while Pv is the orthogonal projection operator on the space
spanned by v.

We emphasize, despite the apparently singular term arising in the denominator,
that singularity does not actually occur since we are always working with non-
trivial solutions v ̸= 0. The IFT can then be applied without difficulty since the
resulting operator LνL

∗
ν + ε

∥·∥Y
(IY − Pv) is invertible. This can be easily seen by

the Lax-Milgram lemma.
The direct application of the Lax-Milgram Lemma requires the coercivity of

∂vF (v, ν) = LνL
∗
ν + ε

∥v∥Y
(IY − Pv). However, in our setting in which only an

approximate solution to the original system exists, Lν can not be guaranteed to
be coercive and neither the projection IY − Pv is coercive. In fact, it degenerates
along the direction v by the very definition of the projection. Thus it is unclear
whether the addition of the term IY −Pv to the operator Λν suffices to guarantee the
invertibility of ∂vF (v, ν). The positive answer is provided by the following lemma.

Lemma 3.2. Assume Q = Q1 +Q2 is a bounded linear operator on a Hilbert space
H, with Q1 being a positive linear operator, while Q2 is a self adjoint operator which
vanishes on a finite dimensional subspace V1 and is coercive on V2 = V ⊥

1 . Then the
operator Q is coercive on H.

Proof. In order to prove the lemma we have to show that there exists a constant
c > 0 such that for every v ∈ H it holds

⟨Qv | v ⟩H ≥ c∥v∥2H .

We argue by contradiction. Assuming the contrary there exists a sequence (vn) such
that

⟨Qvn | vn ⟩H ≤ 1

n
∥vn∥2H .

Let us introduce the decomposition vn = vn,1 + vn,2 ,where vn,i ∈ Vi, i = 1, 2. By
using the assumptions of the lemma, it follows

⟨Qvn | vn ⟩H = ⟨Q1vn | vn ⟩H + ⟨Q2vn,2 | vn,2 ⟩H ≤ 1

n
∥vn∥2H .
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Dividing the last equation by ∥vn∥2H and exploring the coercivity of Q2 on the
subspace V2 we obtain

(3.5) ⟨Q1v
0
n | v0n ⟩H + c2

∥vn,2∥2H
∥vn∥2H

≤ 1

n
∥vn∥2H ,

where v0n stands for the normalized vector vn/∥vn∥H , while c2 is the coercivity
constant of Q2 (on V2).

The positivity of Q1 implies
vn,2

∥vn∥H
→ 0 strongly in H. As V1 is finite dimensional,

we obtain the strong convergence of the whole normalized sequence v0n → v01 ∈
V1 \ {0}.

Finally, by passing to the limit in (3.5) we obtain ⟨Q1v
0
1 | v01 ⟩H = 0 which con-

tradicts the positivity of Q1. □

As discussed above, the last lemma allows application of IFT. In particular, we
employ its analytic version (e.g. [16, §Appendix B]), by which we preserve the
smoothness imposed by assumption (A4). We summarize the results of this discus-
sion in the following proposition.

Proposition 3.3. The solutions to the Euler–Lagrange equation (3.3) preserve the
regularity imposed on the mapping ν → (Lν , fν). In particular, if the latter is
analytic, the same holds for the solution mapping.

3.2. Greedy approach and the Tychonoff regularization. The aim of this
section is to develop an efficient numerical algorithm for reconstructing an arbi-
trary element of ṽ(N ) corresponding to some given parameter value. In order to
accomplish this task we rely on greedy algorithms which were introduced and anal-
ysed through the last two decades in the context of parametric PDEs. They serve
as on of the most popular tools for construction of reduced basis (cf. [11] and the
references therein).

The objective of the greedy approach is to approximate a compact set K (e.g.
a family of solutions to parameter dependent problems) in a Banach space Y by
a linear subspace Vn of (small) dimension n. The selection of its basis vectors is
done gradually in the offline phase of the algorithm. Once the basis is known, the
approximation for an arbitrary given element in K is computed in the online phase.
Usually, the computational effort for the offline routine is much higher than for the
online one, but it is performed only once.

A greedy approximation is optimal, where the optimality is to be understood in
the sense of the Kolmogorov widths. The Kolmogorov n−width defines (theoreti-
cally) the best possible approximation error one could obtain by a subspace in Y
of a fixed dimension n. The results of [2, 7] show that the greedy approximation
errors decay asymptotically with the same rate (exponential or polynomial) as the
Kolmogorov widths.

Furthermore, the Kolmogorov widths are preserved under smooth (analytic) map-
pings ([4]). In such a way one can a-priori estimate approximation performance of
a subspace constructed by a greedy method, by estimating Kolmogorov widths of
a set of admissible parameters that generate a set of interest. However, it is im-
portant to emphasize that the very implementation of a greedy procedure does not
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require analytic smoothness. Only, in that case, we lack the a-priori estimates on
the approximation errors. In particular, this might happen if the parameter set N
consists of a finite or a countable number of elements, which is not the case studied
in this article.

In the development of greedy algorithms one of the main steps is the construc-
tion of some surrogate function which enables us to calculate the distance between
unknown terms, or terms that are in general hard to calculate. Usually such a
surrogate is provided by using some kind of residual. More, precisely, let us assume
we have calculated ṽν1 for some parameter value ν1. We would like to check if we
can use it to approximate some other optimal vector ṽν . To this effect we plug ṽν1
into the equation satisfied by the latter term and define the residual

Rν ṽν1 := LνL
∗
ν ṽν1 + εNṽν1 − fν ,

where by N we denote the normalization operator Nv = v/∥v∥Y . If the residual
turns to be zero, due to the uniqueness of the solution it follows that ṽν = ṽν1 .
In general we would like the residual to measure the distance between two optimal
vectors. More precisely, we require estimates of the form

(3.6) c−∥ṽν − ṽν1∥Y ≤ ∥Rν ṽν1∥Y ≤ c+∥ṽν − ṽν1∥Y ,

where c− and c+ are ν-independent positive constants.
In order to obtain such kind of estimates let us rewrite the residual operator as

(3.7) Rν ṽν1 := LνL
∗
ν(ṽν1 − ṽν) + ε(Nṽν1 −Nṽν),

where we explored the Euler-Lagrange equation (3.3). The upper bound in (3.6)
now follows easily. For the first summand in (3.7) it is a direct consequence of the
boundedness assumption, while for the last term in (3.7) it is obtained by using
geometrical interpretation and the triangular inequality (cf. [1, §1.2]).

However, due to the structure of the normalization operator (which is constant
along each half-ray emerging from the origin), one can easily check that the lower
bound in (3.6) is equivalent to the coercivity of the operator LνL

∗
ν . Of course, our

assumptions on Lν do not provide the required coercivity and we have to propose an
alternative method. Note that here we can not use the approach applied in Lemma
3.2 as the normalization operator N does not vanish on any non-trivial subspace.

In order to overcome the lack of coercivity, let us introduce a two-parameter
family of linear problems

(3.8) LνL
∗
νw̃(ν, η) + ηw̃(ν, η) = fν .

Here we have substituted the nonlinear normalization operator N appearing in the
Euler-Lagrange equation (3.3) by a linear term multiplied by the new parameter
η. Let us note that the last equation coincides with the Euler-Lagrange equation
obtained by minimization of the functional

(3.9) J(v) =
1

2
∥L∗

νv∥
2
X + η∥v∥2Y − ⟨ fν | v ⟩Y , v ∈ Y.

The non-smooth term appearing in the original functional (2.4) is here replaced by
a quadratic one. This improves the coercivity properties of the problem, which is a
standard benefit of the Tychonoff regularization.
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The functional appearing in (3.9) corresponds to the penalization approach for
approximation problems, where one forces the solution to approach the given target
by letting the penalization constant blow up. It provides a smooth functional that
is easier to handle, unlike the one in (2.4). However, such an approach does not
allow an a-priori estimate of the deviation from the target, in particular, it does
not ensure that it is smaller than the given approximation error ε. For this reason,
the value of the parameter η in (3.9) is not fixed, but is allowed to vary within a
specific interval.

More precisely, we suppose the introduced parameter ranges within the interval
[η−, η+] = [ε/v+, ε/v−], where v± are bounds from Lemma 3.1. In such a way, for
each parameter ν there exists an η from the given range such that η = ε/∥ṽν∥Y ,
where ṽν is the corresponding solution of the Euler-Lagrange equation (3.3).

This implies that solving a family of two-parameter problems (3.8) for (ν, η) =
N × [η−, η+] will also provide the solution of the original ε problem.

In order to efficiently treat the auxiliary problem (3.8) we explore greedy algo-
rithms introduced above. The problem is now linear, and it involves selfadjoint
operators of the form LνL

∗
ν + ηI which are uniformly bounded from below by η−I.

This allows one to consider the residual of the form

R(ν, η)w := LνL
∗
νw + ηw − fν

with w being an arbitrary test function. Based on the above obtained bounds it
directly follows

c−∥w̃(ν, η)− w∥Y ≤ ∥R(ν, η)w∥Y ≤ c+∥w̃(ν, η)− w∥Y .

Furthermore, employing the same kind of arguments based on the IFT and presented
in the previous subsection, the solutions w̃(ν, η) to (3.8) preserve the smoothness of
the mapping ν → (Lν , fν) at all levels. However, note that in this case the corre-
sponding analysis is much simpler as there is no singularity in the two parameter
equation (3.8) and we deal with uniformly coercive operators.

In particular if the operators Lν and non-homogenous terms fν depend analyt-
ically on ν, then the mapping (ν, η) → w̃(ν, η) is analytic as well. In this way, as
discussed at the beginning of this section, one preserves the Kolmogorov widths of
the two-parameter set N×[η−, η+] which are transferred to the manifold of solutions

W̃ = {w̃(ν, η)
∣∣(ν, η) = N × [η−, η+]} (cf. [4]).

Suppose we have performed a greedy algorithm for the two-parameter problems
(3.8). It selects a finite set of parameter pairs (νi, ηi), i = 1..N and returns the
corresponding solutions wi := w̃(νi, ηi) which constitute a reduced basis for the

manifold W̃ . In other words, for every value of (ν, η) there exist a set of linear
coefficients αi such that ∥w̃(ν, η)−

∑
αiwi∥Y < δ where δ is a positive constant

determined by the stopping criteria of the greedy algorithm.
In the next step we want to go back to the original ε problem (3.3). More

precisely, given an arbitrary value of the parameter ν we want to determine a set
of coefficients αi such that v⋆ν =

∑
αiwi brings the system within ε distance from

the target fν . The problem is feasible, as for η = ε/∥ṽν∥Y the greedy algorithm
provides a good approximation of the solution to (3.8), and consequently to the
original Euler-Lagrange equation (3.3).
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Therefore, let us propose the required approximation by projecting the target fν
on the space spanned by LνL

∗
νwi. More precisely, we determine the approximation

coefficients αi as solutions to the system
m∑
i=1

LνL
∗
ναiwi = Pm

ν fν ,

with Pm
ν denoting the orthogonal projection on the space spanned by vectors LνL

∗
νwi,

while m stands for the number of parameters selected during the offline phase of the
greedy procedure. The approximation of the solution ũν to the constrained optimal
control problem (3.2) is then given by

ũν ≈
m∑
i=1

L∗
ναiwi.

Such procedure results in an approximate solution that steers the system to the
target fν as close as possible by means of the constructed reduced basis space
{wi, i = 1..m}.

4. Unbounded operators

The theory developed in the previous section requires the operators of interest to
be bounded. However, it can be generalised and applied to unbounded operators
as well.

In this section we consider a family of linear unbounded operators Aν on a Hilbert
space H, where, as before, ν is the parameter ranging over a compact, connected
set N ⊂ Rd, d ≥ 1. We put the following hypothesis on the considered family.

(H1) Aν are positive, self adjoint operators uniformly bounded from below, i.e.
there exists α ∈ R+ such that Aν ≥ α > 0 for every ν ∈ N ;

(H2) The operators Aν have common domains, i.e. there exists a subspace DA ⊆
H such that D(Aν) = DA for every ν ∈ N ;

(H3) the graph norms of Aν are uniformly equivalent.

Remark 4.1. Instead of (H1) one can require the operators Aν to be uniformly
lower (or upper) bounded by an arbitrary constant. In order to simplify the pre-
sentation we restrict to the case of positive definite operators.

In addition we suppose thatH is densely and compactly embedded into some Hilbert
space Y . We pose the problem of finding (an approximative) solution to the equation

Aνx = y, y ∈ Y.

Based on the assumption (H1) the image of operators Aν equals H, but it is only
dense in Y . This brings us to the problem of finding the optimal approximative
solution discussed in previous sections. However, the theory we developed assumes
bounded operators, which Aν are not. In order to overcome this gap, we want
to associate to each Aν an operator Lν : X → Y , where X is some parameter
independent Hilbert space which is still to be defined.

To this effect, let us denote by Xν the space DA equipped with the norm

(4.1) ∥x∥Xν
= ∥(βIH −Aν)x∥H ,
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where β < 0 is a scalar from the resolvent set of Aν , while IH stands for the
identity on H. Note that the introduced space corresponds to the one denoted by
X1 in [17, §2.10], and their norms are uniformly equivalent to the graph norms of
Aν ( [17, Proposition 2.10.1]). Based on the assumption (H3) it follows that the
norms (4.1) are uniformly equivalent. For this reason in the sequel we use a common
notation X for all spaces Xν .

Let us denote by L̃ν a family of operators from X to H defined by

L̃νx = Aνx.

By the definition of the space X, it is not difficult to check that the introduced
operators are uniformly bounded and coercive. Indeed, we have

(4.2) ∥L̃ν∥L(X,H) = sup
x∈DA

∥L̃νx∥H
∥x∥X

= sup
x∈DA

∥Aνx∥H
∥(βIH −Aν)x∥H

≤ 1,

where the last inequality follows from the positivity of the operator Aν . Similarly,
by exploring

(4.3)
∥L̃νx∥H
∥x∥X

≥
∥Aνx∥H

∥βx∥H + ∥Aνx∥H
≥ α

β + α
,

where α is the lower bound from the assumption (H1), one obtains the lower bound

on L̃ν .
Thus we obtain that L̃ν form a family of uniformly bounded operators in L(X,H).

Based on the assumption (H1) both the operators Aν and L̃ν are surjective into H.
For the corresponding adjoints we have the following characterization.

Lemma 4.2. The adjoint operators L̃∗
ν ∈ L(H,X) are of the form L̃∗

ν = Aν(βIH −
Aν)

−2 ∈ L(H,X) , satisfying the same lower and upper bounded estimates as the

operators L̃ν do.

Proof. By the definition of the adjoint, for u, x ∈ X we have

⟨x | L̃∗
νu ⟩X = ⟨ L̃νx | u ⟩H = ⟨Aνx | u ⟩H = ⟨x | Aνu ⟩H

= ⟨ (βIH −Aν)
−1x | (βIH −Aν)

−1Aνu ⟩X .
From here we get

L̃∗
νu = Aν(βIH −Aν)

−2u, u ∈ X.

As X is dense in H, and the operators Aν(βIH −Aν)
−1 are bounded on H, the last

relation holds for an arbitrary u ∈ H. This provides the first part of the statement.
By using the obtained explicit expression for the adjoint operators, we have

∥L̃∗
νu∥X

∥u∥H
=

∥Aν(βIH −Aν)
−1u∥H

∥u∥H
=

∥Ax∥H
∥(βIH −A)x∥H

,

where x = (βIH − Aν)
−1v ∈ X. The required bounds now follow from (4.2) and

(4.3). □
Finally, in order to put us in the context of the preceding section, we introduce

Lν ∈ L(X,Y ) defined as

(4.4) Lν := IL̃ν ,
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where I stands for the inclusion operator I : H → Y . As H is compactly embedded
into Y , the operator Lν is bounded, injective, but not coercive operator with the
dense image in Y . Moreover, due to the uniform coercivity of operators L̃∗

ν we have
that

LνL
∗
ν ≥ cII∗.

This implies the assumption (A2) is fulfilled and consequently we fit the setting of
the previous section.

5. A specific example

We consider a family of Dirichlet Laplacians on L2(Ω), where Ω is assumed to be
an open, bounded set with a smooth boundary. More precisely, we define a family
of unbounded operators on L2(Ω)

(5.1) −∆ν = −div(Aν∇)

accompanied by Dirichlet boundary conditions. For the coefficients Aν we assume
that they depend smoothly on ν and they satisfy uniform boundedness and coer-
civity properties. More precisely, we assume Aν ∈ C1(Ω) are self adjoint matrix
functions such that

A−(x) ≤ Aν(x) ≤ A+(x), ν ∈ N , x ∈ Ω,

for some bounded and coercive matrix functions A± ≥ α > 0. By using the
Poincare inequality this immediately applies the uniform coercivity of the considered
Laplacians, i.e. −∆ν ≥ α.

The domain of the Laplacian −∆ν is parameter independent and coincides with
X = H2(Ω) ∩ H1

0 (Ω) for every ν. Furthermore, by standard elliptic regularity
results (e.g. [8, §6.3]), their graph norms are (uniformly) equivalent to H2 norm.
Consequently, the hypothesis (H1)-(H3) from the previous section are satisfied.

For the target space we take Y = H−1(Ω) for which we have the dense and
compact embedding L2(Ω) ↪→ H−1(Ω) (of course, any other space Hs(Ω), with
s < 0 , will be appropriate in this context). Consequently, we introduce a sequence
of bounded operators Lν ∈ L(X,Y ) defined by

Lνu = −div(Aν∇u).

The properties of the introduced operators can be examined through their ma-
trix representation. To this effect, we explore the spectral decomposition of the
Laplacian operator (5.1). In particular, there exists an orthonormal basis in L2(Ω)
consisting of eigenfunctions ψi,ν of −∆ν such that

−∆ν ∼ diag(λ1,ν , λ2,ν , . . .),

where (λi,ν) is a sequence of (positive) eigenvalues diverging to infinity.
Then it is not difficult to check that the matrix representation of the associated

operator Lν in the pair of basis ψ̂i,ν := ψi,ν/λi,ν ∈ H2(Ω) ∩ H1
0 (Ω) and ψ̃i,ν :=√

λi,νψi,ν ∈ H−1(Ω) has the form

Lν ∼ diag(
1√
λ1,ν

,
1√
λ2,ν

, . . .).
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Similarly, the same matrix representation form, in the reverse pairs of basis {ψ̃i,ν}
and {ψ̂i,ν}, also holds for the adjoint operator L∗

ν . Due to the properties of eigen-
value sequence, the operator L∗

ν is injective, but not coercive. This is equivalent to
the statement that the image of the Laplacian is (only) dense in H−1(Ω).

Having associated to Laplacians (5.1) a sequence of bounded operators Lν with
dense images, we can explore the approach developed in Section 3 for finding the
optimal approximative solution. To this effect, we assume fν : N → H−1(Ω) is a
smooth function with a precompact image and we consider a sequence of problems

(5.2) − div(Aν∇)u = fν ,

with solutions u searched within the domain of the Laplacian, i.e. in X = H2(Ω)∩
H1

0 (Ω). As Lν(X) is only dense in H−1(Ω), the problem in general does not admit
a solution, and we relax it by considering an approximative one of the form (3.2).
The optimal solution is thus of the form ũν = L∗

ν ṽν , where ṽν is the solution of the
corresponding Euler-Lagrange equation (3.3). In the next lemma we provide the
explicit expression of the adjoint operator L∗

ν .

Lemma 5.1. The adjoint operator equals to L∗
ν = (−∆)−2(−∆ν)(−∆)−1, where

−∆ is the Laplacian with constant coefficients A = I.

Proof. Let us write the operator Lν in the form (4.4), i.e. Lν = IL̃ν . Here I stands

for the inclusion operator I : L2(Ω) ↪→ H−1(Ω), while L̃ν is the operator from

H2(Ω) ∩H1
0 (Ω) to L

2(Ω) defined by L̃νu = −div(Aν∇u).
Then for calculating the adjoint we use the relation L∗

ν = L̃∗
νI

∗. Similarly as in

Lemma 4.2 one obtains that L̃∗
ν = (−∆)−2(−∆ν). Thus it remains to express the

adjoint of the inclusion. To this effect let us note

⟨u | I∗v ⟩L2 = ⟨ Iu | v ⟩H−1 = ⟨ (−∆)−1/2u | (−∆)−1/2v ⟩L2 ,

from where we get I∗ = (−∆)−1, which completes the proof. □

Based on the last lemma, the Euler-Lagrange equation (3.3) for the problem (5.2)
can be rewritten as

(5.3) (−∆ν)(−∆)−2(−∆ν)(−∆)−1ṽν + εNṽν − fν = 0,

where, as before, N stands for the normalization operator Nv = v/∥v∥H−1 .
Of course, in numerical calculations one should employ some standard discreti-

sation procedure (based on finite differences or finite elements), and reduce the last
equation to a finite dimensional, algebraic one. The numerical resolution using gra-
dient methods for a specific realization of the model has been previously developed
in [3]. Once the duality in Propositions 2.1-2.3 has been adopted in the compu-
tational method, its implementation does not differ significantly from the classical
problems, that in our case would correspond to operators L which, instead of being
dense, are assumed to have a full range.

However, as we have explained, our goal is not to solve the equation (5.3) for
every value of the parameter. Instead, we employ a greedy procedure which allows
us to obtain a reduced basis by which we can approximate any ṽν with some a-
priori given precision. The reduced basis is constructed during the offline phase,



562 M. LAZAR AND E. ZUAZUA

and consists of solutions to two-parameter problem (3.8) for some carefully selected
parameters’ values.

To the best of authors’ knowledge, so far the greedy methods were addressed
only to the exact solutions. On the other hand, the approximate solution problem
is relevant and natural in several contexts such as image processing, control of time-
dependent irreversible processes, etc. Our contribution is the analog of the greedy
theory for exact solutions in the context of the approximate one (e.g. [5] ).

The complete analysis of the computational cost is beyond the scope of this paper,
but the well-known conclusions for the exact solution problem apply in this case as
well (cf. [12, §5]). In particular, the implementation requires extensive offline work,
which is the most expensive part of the algorithm. Once this is done, the method
is optimal since it leads to sharp approximation rates.

The cost of the online part of the algorithm is of order mC, where C is the
cost of applying (a finite dimensional approximation of ) the operator Lν to an
arbitrary vector, while m is the number of parameters selected during the offline
phase. Consequently, the cost reduction obtained by choosing the greedy algorithm
depends linearly on the ratio between the number of selected snapshots and the
system dimension.

Practical application of the method is justified when the approximate equation
needs to be solved for a wide class of parameter-dependent problems.

6. Conclusion

In this article we develop a procedure for handling a class of parameter depen-
dent, ill-posed problems, that, in general, do not allow exact solution. The original
problem is relaxed by considering corresponding approximate problems, whose op-
timal solutions are well defined, where the optimality is determined through the
minimal norm requirement.

The procedure is based upon reduced basis methods, in particular upon greedy
algorithms, by which one constructs a reduced basis during the offline phase. An
approximation of the solution for a specific parameter is constructed in the online
phase as a suitable linear combination of reduced basis vectors. In order to provide a-
priori estimates for the algorithm, a Tychonoff-kind regularization is applied, which
adds an additional parameter to the model.

The theory is developed in a rather general theoretical framework, which allows
its application to different kinds of problems. As a specific example we consider a
family of ill-posed elliptic problems. The required general assumptions in this case
translate to rather natural uniform lower and upper bounds on coefficients of the
considered operators.

Other potential applications would include approximate controllability, inverse
problems related to high dissipative systems, like heat equations, deconvolution in
image processing etc. Beside identifying the class of suitable operators for each of
these problems, it would also be interesting to perform corresponding numerical
simulations and verify the efficiency of the method on particular examples.
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