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relaxation defined by

(1.1) Pi,λ(x) := (1− λ)x+ λPi(x), x ∈ H.

We will be concerned with iterations of relaxed projections chosen arbitrarily from
the collection

(1.2) P := P(V, η) :=
{
Pi,λ : 1 ≤ i ≤ N,λ ∈ [η, 2− η]

}
, 0 < η ≤ 1.

Specifically, for each sequence (Pin,λn)
∞
0 in P and starting point x0 ∈ H, we define

a trajectory (xn)
∞
0 in H via the iteration

(1.3) xn+1 := Pin,λn(xn), n ≥ 0.

This setup easily extends to iterations of relaxed projections onto closed affine
subspaces with nonempty intersection: Consider A := (A1, . . . , AN ) where Ai =
Vi + ai for some ai ∈ H, i ∈ [N ]. Let PAi,λ denote the relaxed projection onto Ai

defined analogously to (1.1). If a ∈ A1 ∩ · · · ∩ AN , then the commutation relation

PAi,λ(x)− a = PVi,λ(x− a)

which holds uniformly for all i (and λ) implies that the “A-trajectories” and the
“V-trajectories” are simply translates of each other. Since we will only be interested
in properties of these trajectories (and not the actual feasibility problem), we will
remain in the setting of linear subspaces.

The in define the so-called “control sequence” of the algorithm, and the λn are
called relaxation coefficients. In practice the control sequence may be periodic
(cyclic), quasi-periodic, stochastic, or greedily determined based on some criterion,
such as maximization of ∥xn−Pi(xn)∥, but historically there has also been significant
interest in unrestricted (arbitrary) control sequences (also called random or chaotic
control), which is the setting of this paper.

The best known special case of (1.3) involves alternating between two subspaces
V1 and V2, with no relaxation (i.e., λn = 1 for all n). In this case, von Neumann’s
celebrated theorem [28] says that xn converges (in norm) to the orthogonal projec-
tion of x0 onto V1 ∩ V2. This was extended to general N in [17] for cyclic control,
and later in [27] for quasi-periodic control. See [22] for a simple geometric proof of
von Neumann’s theorem.

For unrestricted iterations the situation is more complicated. In [24] norm con-
vergence was shown to hold in finite dimensional spaces. (It was generalized in [1]
to include relaxation and convex combinations of projections.) In general Hilbert
spaces, weak convergence was shown in [2] and norm convergence was proposed.
This question remained unresolved for a long time (see, e.g. [12–15]), and was only
answered recently, in the negative: One can find systems V = (V1, V2, V3) such that
for all nonzero initial points x0, norm convergence fails for some control sequences;
see [20,21].

Nevertheless, norm convergence has been known to hold in general Hilbert spaces
under mild regularity assumptions on V (also called angle criteria); see e.g. [4–6,23,
25]. In this paper, we will work with the assumption of innate regularity which was
introduced in [5]. This concept is defined for general convex subsets, but for linear
subspaces it reduces to a rather simple form: A list V = (V1, . . . , VN ) is innately
regular if and only if the complementary angle between

∩
i∈I Vi and

∩
i∈J Vi is
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nonzero for all subsets I, J ⊂ [N ]. As a special but important case, any V for
which each Vi is either finite dimensional or finite codimensional is innately regular.
(For these facts, see Section 2.1.)

Under the assumption of innate regularity, [5] showed norm convergence of unre-
stricted iterations of relaxed projections. In a sense, this is the best possible kind
of result we can have because unlike cyclic control (or its variants where indices
appear with some frequency), it is not possible to obtain any effective convergence
rate guarantee for unrestricted iterations once N ≥ 3 (even in finite dimensions),
because one can adversarially slow down the speed of convergence by introducing
arbitrarily long gaps between consecutive appearances of any chosen index i while
cycling through the remaining indices.

Nevertheless, there is still room for qualitative (and even quantitative) improve-
ments. We show in this paper that the displacements (increments) of the resulting
trajectories have bounded moments of all orders. Our main result is the following:

Theorem 1.1. For any innately regular list of closed linear subspaces V =
(V1, . . . , VN ) in a real Hilbert space H and any η ∈ (0, 1], let P := P(V, η) be defined
as in (1.2). Then for any γ > 0, there exists a constant C = C(V, η, γ) < ∞ such
that for all x0 ∈ H and all sequences of relaxed projections (Pin,λn)

∞
0 in P, the

trajectory (xn)
∞
0 defined by (1.3) satisfies

(1.4)
∞∑
n=0

∥xn+1 − xn∥γ ≤ C ∥x0∥γ .

The case γ = 2 is elementary and well-known (see, e.g. [7]); it is a fundamen-
tal ingredient of the asymptotic regularity property of the trajectories and it holds
without the innate regularity assumption on the subspaces (but under the assump-
tion that limsup λk < 2). The strength of Theorem 1.1 starts with γ = 1 because
it goes beyond the original norm convergence result known to hold for an innately
regular V and shows, in addition, that all trajectories fall into a ball within a proper
subspace of convergent sequences in H, namely the space

bv(N,H) :=

{
f : N → H :

∞∑
n=0

∥f(n+ 1)− f(n)∥ < ∞

}
of bounded variation functions from N to H. This stronger sense of convergence is
sometimes called absolute convergence (for sequences – see [19]); it simply means
that the displacements series

x0 +

∞∑
n=0

(xn+1 − xn)

converges absolutely (to limxn).
As γ is decreased below 1, the strength of Theorem 1.1 goes beyond ensuring

bounded total variation of the trajectories. Quantifying the constant C(V, η, γ)
across all γ > 0, we also derive an effective bound on the distribution function of
the norms of the displacements (see Proposition 5.1) and show that, despite the lack
of possibility of establishing any effective convergence rate that holds uniformly for
all trajectories, the nth largest displacement is bounded by c exp(−ρn1/N ) uniformly
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for all trajectories, i.e. the constants c and ρ only depend on V and η (see Theorem
5.2).

The paper is organized as follows: In Section 2, we review the notion of angle
between subspaces and its connection to the notion of innate regularity. Section 3,
which is at the heart of the paper, is devoted to geometric properties of successive
relaxed projections for innately regular lists which will be needed in our proof of
Theorem 1.1 given in Section 4. Section 5 concerns the distribution function of the
displacements, and in particular, the derivation of the aforementioned decay bound
on their decreasing rearrangements.

2. A review of tools: regularity

We start by recalling the notion of angle between two subspaces introduced in [16];
see [11] for a detailed discussion. Given two subspaces V and W of a Hilbert space
H, the angle (also called complementary angle or Friedrichs angle) between V and
W is defined to be the unique number φ(V,W ) ∈ [0, π2 ] such that

cosφ(V,W ) = sup
{
|⟨v, w⟩| :(2.1)

v ∈ V ∩ (V ∩W )⊥, w ∈ W ∩ (V ∩W )⊥, ∥v∥ ≤ 1 and ∥w∥ ≤ 1
}
.

We note that there are some variations of this definition. Some authors restrict
the test vectors v and w in (2.1) to be of unit norm which requires the exclusion
of the case of nested subspaces. Meanwhile, some authors allow for nested sub-
spaces, but in this case separately set the angle between them to be 0. Our choice
for the definition of angle, as implied by (2.1), produces the value π/2 for nested
subspaces (including the case V = W ). This apparent discontinuity may seem
counter-intuitive. However, there is also an intrinsic discontinuity in the problem
we are considering in this paper: Both the limit of xn defined by (1.3) and the asso-
ciated total variation (the path length)

∑
∥xn+1 − xn∥ are discontinuous functions

of V. This is most easily seen by considering alternating projections between two
lines ℓ1 and ℓ2 in R2 separated by an angle θ. As we let θ → 0+, limxn remains
fixed at the origin while the path length blows up, but when ℓ1 = ℓ2, limxn becomes
the orthogonal projection of x0 on ℓ1 and the path length becomes finite.

It follows from the discussion in the preceding paragraph and finite dimensional
linear algebra that the angle between finite dimensional subspaces is always nonzero.
However, the angle between infinite dimensional subspaces could be zero. In general,
we have the following characterization of positive angle (see [7, Proposition 5.16]
and [11, Theorem 9.35]): For any two closed subspaces V and W in H,

(2.2) φ(V,W ) > 0 ⇐⇒ V ⊥ +W⊥ is closed ⇐⇒ V +W is closed.

2.1. Innate regularity and its angular characterization. When we have sev-
eral subspaces in V, a very useful notion of angular separation for convergence of
random projections turns out to be innate regularity. There are various levels of
regularity applicable to general convex sets (see, e.g., [5–7]) but for subspaces they
all boil down to a single notion also known as bounded linear regularity, which we
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will simply call linear regularity in this paper. Following [5], a list of subspaces
V = (V1, . . . , Vn) is linearly regular if there exists a constant κ < ∞ such that

(2.3) d(x, V1 ∩ · · · ∩ VN ) ≤ κmax
i

d(x, Vi) for all x ∈ H.

Here, d(x, V ) stands for the distance between x ∈ H and the closed subspace V ,
also equal to ∥x− PV x∥ where PV is the orthogonal projection onto V .

Linear regularity is not hereditary in the sense that a linearly regular list may
not pass this property onto its sublists. (See, for example, [26].) A list V is said to
be innately regular if all of its (non-void) sublists are linearly regular.

It is known that (see [7, Theorem 5.19]) V is linearly regular if and only if
V ⊥
1 + · · ·+ V ⊥

N is closed. Therefore, as noted in [5, Fact 3.2]),

(2.4) V is innately regular ⇐⇒
∑
i∈I

V ⊥
i is closed for all I ⊂ [N ].

Here we take the sum over the empty list to be the trivial (zero) subspace.
For any I ⊂ [N ], let us use the notation

(2.5) VI :=
∩
i∈I

Vi

where we take V∅ := H. We identify Vi with V{i}. Hence with (2.2) we have

(2.6) V is innately regular ⇐⇒ φ(VI , VJ) > 0 for all I, J ⊂ [N ].

As a special, but very important case, we note the following observation:

Proposition 2.1. Suppose that for every i ∈ [N ], Vi has finite dimension or co-
dimension. Then V is innately regular.

Proof. Let I, J ⊂ [N ]. If VI and VJ both have finite dimension, then VI + VJ ,
also having finite dimension, is closed. Otherwise, either VI or VJ has finite co-
dimension. Then V ⊥

I + V ⊥
J is closed since the sum of a closed subspace and a finite

dimensional subspace is always closed (see [11, Lemma 9.36]). In either case, (2.2)
yields φ(VI , VJ) > 0. □

2.2. Quantifying regularity. Consider two closed subspaces V andW ofH. Since
the list (V,W ) is regular if and only if φ(V,W ) > 0, it is natural to ask how the
parameter κ in (2.3) is related to the angle φ(V,W ). While this specific relation
will not be needed in this paper, the answer has a simple form which we note in
the next proposition. (See also [3, Proposition 3.9] for an analogous result which
involves more than two subspaces.)

Proposition 2.2. For any two closed subspaces V and W of H,

(2.7) d(x, V ∩W ) sinφ(V,W ) ≤ d(x, V ) + d(x,W ) for all x ∈ H.

In other words, for N = 2, the constant κ in (2.3) can be chosen to be 2/ sinφ(V1, V2).

Proof. Let PU denote the orthogonal projection operator onto an arbitrary closed
subspace U of H. For any x ∈ H, let u := P(V ∩W )⊥x. Noting the relation PV u =
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PV (x−PV ∩Wx) = PV x−PV ∩Wx, we observe that PV u ∈ V ∩ (V ∩W )⊥. Similarly,
we have PWu ∈ W ∩ (V ∩W )⊥. Hence, as a consequence of (2.1), we have

sinφ(V,W ) ≤ sinφ(PV u, PWu) ≤ sinφ(u, PV u) + sinφ(u, PWu),

where φ(v, w) := φ(Rv,Rw) denotes the angle between the lines defined by v and
w, and satisfies the triangle inequality. We multiply both sides of this inequality by
∥u∥ = d(x, V ∩W ). Observing that

∥u∥ sinφ(u, PV u) = d(u, V ) = ∥PV ⊥P(V ∩W )⊥x∥ = ∥PV ⊥x∥ = d(x, V )

(and similarly that ∥u∥ sinφ(u, PWu) = d(x,W )) yields the desired result. □

Remark 2.3. In fact, for distinct closed subspaces V and W , it can be shown that

(2.8) sinφ(V,W ) = inf
x∈(V ∩W )⊥

∥x∥=1

d(x, V ) + d(x,W ).

3. Lemmas on successive relaxed projections

3.1. Geometrical observations. Let PV be the orthogonal projection operator
onto the closed subspace V of H. As before, for any λ ∈ [0, 2], we define the relaxed
projection of x ∈ H by PV,λx := (1 − λ)x + λPV x. The following are elementary
derivations:

(E1) x− PV,λx = λ(x− PV x) so that ∥x− PV,λx∥ = λ∥x− PV x∥,
(E2) PV,λx − PV x = (1 − λ)(x − PV x) ⊥ V so that ∥PV,λx∥2 = ∥PV x∥2 + (1 −

λ)2∥x− PV x∥2 and
(E3) ∥x∥2 − ∥PV,λx∥2 = λ(2− λ)∥x− PV x∥2.
It follows trivially from (E3) that PV,λ is non-expansive (i.e. ∥PV,λx∥ ≤ ∥x∥ for all

x ∈ H). But more is true: if λ ∈ (0, 2), then PV,λ is strictly contractive provided x
is not near V . More precisely, defining the relative distance function θV : H → [0, 1]
via

(3.1) θV (x) :=
d(x, V )

∥x∥
=

∥x− PV x∥
∥x∥

, x ̸= 0, and θV (0) := 0,

we have, for any ε ∈ [0, 1],

(3.2) θV (x) ≥ ε ⇐⇒ ∥PV,λx∥ ≤ (1− λ(2− λ)ε2)1/2 ∥x∥.

Note that λ(2− λ)ε2 > 0 if and only if λ ∈ (0, 2) and ε > 0.
The lemma below states that the relaxed projection with respect to W does not

increase the relative distance with respect to any subspace V of W :

Lemma 3.1. Let V and W be any two closed subspaces of H such that V ⊂ W .
Then for all λ ∈ [0, 2] and x ∈ H,

θV (PW,λx) ≤ θV (x).

Proof. Note that y := PW,λx is a convex combination of x and PW,2x. Since PW,2x
is the mirror image of x with respect to W , we have ∥PW,2x∥ = ∥x∥. More generally,
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PV PW,2x = PV x implies

d(PW,2x, V ) = ∥(PWx− x) + (PWx− PV x)∥
= ∥(PWx− x)− (PWx− PV x)∥
= d(x, V ).

(The second equality above uses the fact that PWx − x is orthogonal to PWx −
PV x ∈ W .) Hence, by convexity, we have d(y, V ) ≤ d(x, V ). Since PV y = PV x,
this implies tanφ(y, PV y) ≤ tanφ(x, PV x) and therefore θV (y) = sinφ(y, PV y) ≤
sinφ(x, PV x) = θV (x). □

Combining Proposition 2.2 and Lemma 3.1 (where (V,W ) is replaced by (V ∩
W,W )) yields the following corollary:

Corollary 3.2. Let V and W be any two closed subspaces of H such that φ(V,W ) >
0. Then for all λ ∈ [0, 2] and x ∈ H,

θV ∩W (PW,λx) ≤ θV ∩W (x) ≤ κ(V,W )max
(
θV (x), θW (x)

)
,

where κ(V,W ) := 2/ sinφ(V,W ).

3.2. Dynamics of successive relaxed projections. For any innately regular list
V = (V1, . . . , VN ), let us define

(3.3) κ∗ := κ∗(V) := max
I,J⊂[N ]

κ(VI , VJ)

where κ(V,W ) is defined in Corollary 3.2. Note that 2 ≤ κ∗ < ∞.
Now consider any sequence (xn)

∞
0 of iterates defined by (1.3), i.e. xn+1 :=

Pin,λn(xn), n ≥ 0. Let

(3.4) Wn :=
n∩

k=0

Vik and Nn := #
{
ik : 0 ≤ k ≤ n

}
, n ≥ 0

with W−1 := H. The following lemma will be useful in our analysis.

Lemma 3.3. We have

(3.5) θWn(xn+1) ≤ κNn
∗ max

0≤k≤n
θVik

(xk).

Proof. We begin by applying Corollary 3.2 for V = Vin , W = Wn−1, λ = λn, x = xn.
Note that Vin ∩Wn−1 = Wn. Hence,

(3.6) θWn(xn+1) ≤ κ∗max
(
θWn−1(xn), θVin

(xn)
)
.

We can now prove (3.5) by induction. Since θW−1(x0) = θH(x0) = 0, the bound
(3.6) yields θW0(x1) ≤ κ∗θVi0

(x0). With N0 = 1, the statement (3.5) for n = 0
follows.

For the induction step, we assume

θWn−1(xn) ≤ κ
Nn−1
∗ max

0≤k≤n−1
θVik

(xk).

There are two cases:



526 C. S. GÜNTÜRK AND N. T. THAO

(i) If Nn = Nn−1, then Wn = Wn−1. Using Lemma 3.1 (with V = Wn and
W = Vin), we have

θWn(xn+1) ≤ θWn(xn)

= θWn−1(xn)

≤ κ
Nn−1
∗ max

0≤k≤n−1
θVik

(xk)

≤ κNn
∗ max

0≤k≤n
θVik

(xk).

(ii) If Nn = Nn−1 + 1, we get from (3.6), along with κ∗ ≥ 2, that

θWn(xn+1) ≤ κ∗max
(
κ
Nn−1
∗ max

0≤k≤n−1
θVik

(xk), κ
Nn−1
∗ θVin

(xn)
)

≤ κNn
∗ max

0≤k≤n
θVik

(xk).

This completes the induction step and the proof. □

Let us make two observations:

Observation 3.4. ∥xk−xk+1∥ = ∥xk−Pik,λk
xk∥ = λk∥xk−Pikxk∥ = λkθVik

(xk)∥xk∥.

Observation 3.5. For all 0 ≤ m ≤ n,

xm+1 − x0 =
m∑
k=0

(xk+1 − xk) ∈ V ⊥
i0 + · · ·+ V ⊥

im ⊂ (Vi0 ∩ · · · ∩ Vim)
⊥ ⊂ W⊥

n .

Proposition 3.6. Let n ≥ 0. If

(3.7) θVik
(xk) < κ−Nn

∗ for all 0 ≤ k ≤ n,

then either x0 = 0 or x0 ̸∈ W⊥
n .

Proof. Suppose (3.7) holds and x0 ∈ W⊥
n . We will show that x0 = 0. Using

Observation 3.5 for m = n, we have xn+1 ∈ W⊥
n so that d(xn+1,Wn) = ∥xn+1∥

which means either θWn(xn+1) = 1, or else xn+1 = 0. The former is ruled out since
Lemma 3.3 combined with the assumption (3.7) implies that θWn(xn+1) < 1. Hence
we conclude that xn+1 = 0.

Now, Observation 3.4 combined with λk ≤ 2−η and θVik
(xk) < κ−Nn

∗ ≤ κ−1
∗ ≤ 1

2 ,
yields

(3.8) ∥xk − xk+1∥ ≤ (1− η
2 )∥xk∥ for all 0 ≤ k ≤ n.

Since 1 − η
2 < 1 and xn+1 = 0, (3.8) implies xn = 0. Iterating this process, we

obtain xn = xn−1 = · · · = x0 = 0. □

4. Proof of Theorem 1.1

For any innately regular list V = (V1, . . . , VN ) of closed subspaces in H, η ∈ (0, 1],
and γ > 0, let us define C(V, η, γ) to be the infimum of C ∈ [0,∞] for which

(4.1)

q∑
k=p

∥xk+1 − xk∥γ ≤ C∥xp∥γ
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for all 0 ≤ p ≤ q < ∞ and all trajectories (xk)
∞
0 satisfying xk+1 = Pik,λk

(xk) for
some sequence of projections (Pik,λk

)∞0 in P(V, η). We will show that C(V, η, γ) <
∞ by induction on the length N of the list V.

For the base case N = 1, let us consider any trajectory (xk)
∞
0 associated to a

sequence (P1,λk
)∞0 of projections in P((V1), η), and define yk := xk − P1x0. Noting

that P1xk = P1x0 for all k, as implied by Observation 3.5, we have

yk+1 = xk+1 − P1x0 = P1,λk
xk − P1x0 = (1− λk)(xk − P1x0) = (1− λk)yk.

Since |1− λk| ≤ 1− η, it then follows that

∥yk∥ ≤ (1− η)k∥y0∥ ≤ (1− η)k∥x0∥
so that

∥xk+1 − xk∥ = ∥yk+1 − yk∥ ≤ (2− η)∥yk∥ ≤ (2− η)(1− η)k∥x0∥
for all k. This gives

∞∑
n=0

∥xn+1 − xn∥γ ≤ (2− η)γ

1− (1− η)γ
∥x0∥γ ;

thus we have

C((V1), η, γ) ≤
(2− η)γ

1− (1− η)γ
< ∞.

For the induction step, assume C(V, η, γ) < ∞ whenever N < ℓ and let V =
(V1, . . . , VN ) be a given innately regular list of closed subspaces in H with N =
ℓ. Given any sequence (xk)

∞
0 of iterates associated to a sequence of projections

(Pik,λk
)∞0 in P(V, η), and any choice of integers 0 ≤ p ≤ q < ∞, let

Wp,q :=
q∩

k=p

Vik and Np,q := #
{
ik : p ≤ k ≤ q

}
.

Due to Observation 3.5, we have for any integer k ∈ [p, q+1] that xk ∈ W⊥
p,q + xp

and hence PWp,qxk = PWp,qxp. Therefore, xk yields the orthogonal decomposition

(4.2) xk = PWp,qxp + yk, where yk := PW⊥
p,q
xk, k ∈ [p, q+1].

We then have

(4.3) yk+1 − yk = xk+1 − xk and yk+1 = Pik,λk
yk, k ∈ [p, q],

the second relation being implied by the fact that PW⊥
p,q

= I−PWp,q commutes with

Pik (since Wp,q ⊂ Vik) and hence with Pik,λk
for each k ∈ [p, q].

If yp = 0, then yk+1 = 0 for all k ∈ [p, q] and therefore (4.1) holds trivially (with

C = 0), so let us consider the case yp ̸= 0. Note that we also have yp ∈ W⊥
p,q. Hence

Proposition 3.6 implies (by contrapositive) that for some k ∈ [p, q] we must have

θVik
(yk) ≥ κ

−Np,q
∗ > ε∗, where

ε∗ = ε∗(V) :=
1

2
κ−ℓ
∗ .

Let us enumerate the set
{
k ∈ [p, q] : θVik

(yk) > ε∗
}

as an increasing sequence

r1 < · · · < rL. This results in a segmentation of [p, q] in the form

[p0, q0] ∪ {r1} ∪ [p1, q1] ∪ · · · ∪ {rL} ∪ [pL, qL]
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where p0 := p, qL := q, and for all j = 1, . . . , L we have pj := rj+1 and qj−1 := rj−1.
(It is certainly possible that a given segment [pj , qj ] is empty; this happens precisely
when qj = pj − 1.) Let us also define r0 := p. Note that r0 need not be distinct
from r1.

We can safely ignore any j for which [pj , qj ] = ∅. For [pj , qj ] ̸= ∅, we have

θVik
(yk) ≤ ε∗ < κ

−Npj,qj
∗ for all k ∈ [pj , qj ], so Proposition 3.6 implies that either

ypj = 0 (in which case yk = 0 for all k ≥ pj and we are done), or else ypj /∈ W⊥
pj ,qj .

Noting that ypj ∈ W⊥
p,q ⊃ W⊥

pj ,qj , we conclude in this second case that Wp,q must be

a proper subspace of Wpj ,qj so that Npj ,qj < Np,q ≤ ℓ. In other words, the segment

(yk)
qj
pj can be associated with a proper sublist of V. (By a proper sublist, we mean

any (U1, . . . , UM ) where M < N and every Ui is equal to some Vj .) Since N = ℓ
and therefore any proper sublist U of V has fewer than ℓ subspaces, we can now
employ our induction hypothesis. Let us denote by D := D(V, η, γ) the maximum
value of C(U, η, γ) over all proper sublists U of V. Clearly D is finite, and we have

(4.4)

qj∑
k=pj

∥yk+1 − yk∥γ ≤ D∥ypj∥γ .

For the terms corresponding to k = rj , we use the generic bound ∥yrj+1 − yrj∥ ≤
(2−η)∥yrj∥ which follows from yk+1 = Pik,λk

yk and (E1) in Section 3.1. Combining
this with (4.4), we obtain

(4.5)

q∑
k=p

∥yk+1 − yk∥γ ≤ D
L∑

j=0

∥ypj∥γ + (2− η)γ
L∑

j=1

∥yrj∥γ .

The instances k = rj , j = 1, . . . , L, are characterized by the event θVik
(yk) > ε∗

which yield strict geometric decay of the norms via (3.2). Defining

(4.6) β∗ := β∗(V, η) :=
(
1− η(2−η)ε2∗

)1/2
,

we have

(4.7) ∥ypj∥ = ∥yrj+1∥ ≤ β∗∥yrj∥, j = 1, . . . , L.

Combining this with the monotonicity of (∥yk∥), we obtain

(4.8) ∥yrj∥ ≤ βj−1
∗ ∥yr1∥ ≤ βj−1

∗ ∥yp∥, j = 1, . . . , L.

Injecting (4.7) and (4.8) into (4.5), we obtain

q∑
k=p

∥yk+1 − yk∥γ ≤ D∥yp∥γ + (Dβγ
∗ + (2− η)γ)

L∑
j=1

∥yrj∥γ

≤
(
D +

Dβγ
∗ + (2−η)γ

1− βγ
∗

)
∥yp∥γ = C∥yp∥γ(4.9)

where C := D+(2−η)γ

1−βγ
∗

. Since ∥xk+1 − xk∥ = ∥yk+1 − yk∥ and ∥yk∥ ≤ ∥xk∥ for

all k, the desired conclusion (4.1) follows, and with the same constant. Notice, in
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particular, that

C(V, η, γ) ≤ D(V, η, γ) + (2−η)γ

1− [β∗(V, η)]γ
< ∞. □

An effective bound for C(V, η, γ). Given an innately regular listV=(V1, . . . , VN ),
and for any m = 1, . . . , N , let us define Cm to be the maximum of C(U, η, γ) over
all sublists U of V of length at most m. If Cm+1 is realized by the list U, then
by the same reasoning given in the proof of Theorem 1.1 and also noting that
β∗(U, η) ≤ β∗(V, η), we have

Cm+1 = C(U, η, γ) ≤ D(U, η, γ) + (2− η)γ

1− [β∗(U, η)]γ
≤ Cm + (2− η)γ

1− βγ
∗

,

where β∗ := β∗(V, η). Iterating this recursive inequality together with the bound

C1 ≤ (2−η)γ

1−(1−η)γ as given in the proof of Theorem 1.1, we obtain

C(V, η, γ) = CN ≤
(

1

1− βγ
∗

)N−1

C1 +

[(
1

1− βγ
∗

)N−1

− 1

]
(2− η)γ

βγ
∗

<

(
1

1− βγ
∗

)N−1 (2− η)γ

1− (1− η)γ
+

(
1

1− βγ
∗

)N−1 (2− η)γ

βγ
∗

<

(
1

1− βγ
∗

)N−1

(2− η)γ
(

1

1− βγ
∗
+

1

βγ
∗

)
=

(
1

1− βγ
∗

)N (2− η)γ

βγ
∗

,(4.10)

where in the last inequality we also made use of the fact that 1 > β∗ > (1− η(2−
η))1/2 = 1− η.

5. Statistics of displacements via moment bounds

While it is possible to arrange control sequences that result in arbitrarily slow
convergence of (xn), the moment bounds of Theorem 1.1 place strong restrictions
on the number of displacements exceeding any given value. In this section we will
quantify this proposition.

Let us fix V and η ∈ (0, 1] according to Theorem 1.1 and consider any trajectory
(xn)

∞
0 where x0 ̸= 0. Since ∥xn+1 − xn∥ ≤ (2− η)∥xn∥ ≤ (2− η)∥x0∥, let us define

δn :=
∥xn+1 − xn∥
(2−η)∥x0∥

, n ∈ N,

as a normalized measure of the displacements. For any τ ∈ [0, 1], let us also define

(5.1) S(τ) := #Λτ , where Λτ :=
{
n ∈ N : δn ≥ τ

}
.

The next proposition shows that S(τ) = O(| log τ |N ) as τ → 0.
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Proposition 5.1. Assume the hypothesis of Theorem 1.1. Let β∗ be defined as in
(4.6) and S(τ) as above where x0 ̸= 0. Then for all τ ∈ (0, 1] we have

(5.2) S(τ) ≤ eN
(
1 +

log(β∗τ)

N log β∗

)N

.

Proof. Let τ ∈ (0, 1] be arbitrary. With Theorem 1.1 we have

(2−η)−γC(V, η, γ) ≥
∞∑
n=0

∥xn+1 − xn∥γ

(2−η)γ∥x0∥γ
=

∞∑
n=0

δγn ≥
∑
n∈Λτ

δγn ≥ τγS(τ).

This inequality holds for all 0 < γ < ∞, so

S(τ) ≤ inf
0<γ<∞

τ−γ(2−η)−γC(V, η, γ)

≤ inf
0<γ<∞

τ−γ

(
1

1− βγ
∗

)N 1

βγ
∗
,(5.3)

where in the last step we have used the explicit bound derived in (4.10).
To ease our computation, we slightly relax the upper bound. Note that, for any

0 < r < 1,
1

1− rγ
= 1 +

1

r−γ − 1
≤ 1 +

1

log r−γ
= 1 +

1

γ log r−1
,

so that

(5.4) S(τ) ≤ inf
0<γ<∞

(τβ∗)
−γ

(
1 +

1

γ log β−1
∗

)N

.

For any t ∈ (0, 1), noting that t−γγ−N is minimized at γt := N/ log t−1, we set
γ = γτβ∗ to produce a convenient upper bound for the right hand side of (5.4). The

desired bound of (5.2) follows immediately once we observe (τβ∗)
−N/ log(τβ∗)−1

=
eN . □

As an immediate application of this proposition, we will derive an explicit decay
estimate for the decreasing rearrangement of (δn)

∞
0 which we denote by (δ∗n)

∞
0 .

Recall that this is the (unique) sequence

δ∗0 ≥ δ∗1 ≥ · · ·
satisfying δ∗n = δπ(n) for some bijection π : N → N.

Theorem 5.2. Assume the hypothesis of Proposition 5.1. Then

(5.5) δ∗n < c∗ exp(−ρ∗n
1/N ) for all n ≥ 0,

where ρ∗ :=
N
e log β−1

∗ > 0 and c∗ := β−N−1
∗ .

Proof. The result holds trivially when δ∗n = 0, so it suffices to consider the nonzero
values only. Note that

S(δ∗n) = #
{
k ∈ N : δk ≥ δ∗n

}
= #

{
k ∈ N : δ∗k ≥ δ∗n

}
≥ n+ 1

so that n < S(δ∗n) which implies, when combined with Proposition 5.1,

n < eN
(
1 +

log(β∗δ
∗
n)

N log β∗

)N

.
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The desired bound (5.5) then easily follows from this inequality by solving for δ∗n. □
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