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(1.3) P [β]
n (e1;x) =

x

1− β
,

(1.4) P [β]
n (e2;x) =

x2

(1− β)2
+

x

n(1− β)3
.

Third and fourth monomials were given by Gupta and Greubel ( [29], Lemma 1)
as follows:

(1.5) P [β]
n (e3;x) =

x3

(1− β)3
+

3x2

n(1− β)4
+

(2β + 1)x

n2(1− β)5
,

(1.6) P [β]
n (e4;x) =

x4

(1− β)4
+

6x3

n(1− β)5
+

(8β + 7)x2

n2(1− β)6
+

(6β2 + 8β + 1)x

n3(1− β)7
.

In order to obtain Korovkin type approximation results of the Jain operators, we
should write βn instead of β which is satisfies the following condition

lim
n
βn = 0.

Some degrees of local statistical approximation of the operators P
[β]
n (f ;x) to the

function f by means of the moduli of smoothness are investigated by Agratini [4].
Agratini also obtained remarkable results on a compact interval for the statistical

convergence of the sequence P
[βn]
n , under the condition

st− lim
n
βn = 0.

Some useful results on the asymptotic behavior of the Jain operators are also
given by Abel and Agratini [1].

Many well-known positive linear operators preserve the monomials e0 and e1.But

we see that the Jain operators P
[β]
n (f ;x) do not preserve the monomial e1. Therefore,

in [14], we introduced the following variant of Jain operators jointly with Mohapatra

and Örkcü:

(1.7) D[β]
n (f ;x) =

∞∑
k=0

ωβ(k, nuβ(x))f

(
k

n
), f ∈ C[0,∞

)
,

where

uβ(x) := x(1− β), x ≥ 0

and

ωβ(k, nuβ(x)) = nuβ(x)(nuβ(x) + kβ)k−1e−(nuβ(x)+kβ)/k!, k ∈ N0, β ∈ [0, 1).

From the Lemma 2.1 in [14], for the operators D
[β]
n (f ;x), we have the following

identities

(1.8) D[β]
n (e0;x) = 1,

(1.9) D[β]
n (e1;x) = x,

(1.10) D[β]
n (e2;x) = x2 +

x

n(1− β)2
.
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After simple calculations, we can also write

(1.11) D[β]
n (e3;x) = x3 +

3x2

n(1− β)2
+

(2β + 1)x

n2(1− β)4

and

(1.12) D[β]
n (e4;x) = x4 +

6x3

n(1− β)2
+

(8β + 7)x2

n2(1− β)4
+

(6β2 + 8β + 1)x

n3(1− β)6
.

Positive linear operators that preserving first and second monomials are also

called as Markov type. So, because of (1.8) and (1.9), the operators D
[β]
n may be

called as Jain-Markov operators.

Notice that, if we choose β = 0, then the operators P
[0]
n and D

[0]
n reduce to the

classical Szász-Mirakyan operators [40], [37].
In this study, for abbreviation, we set

(1.13) ϕn,k(x) := P [β]
n ((e1(t)− e1(x))

k;x)

and

(1.14) ψn,k(x) := D[β]
n ((e1(t)− e1(x))

k;x),

the k−th order central moments of the P
[β]
n and D

[β]
n respectively.

2. The concept of statistical convergence

At this point, let us recall some notations and definitions on the concept of
statistical convergence.

Let K be a subset of N, the set of all natural numbers. The density of K is
defined by

δ (K) := lim
n

1

n

n∑
k=1

χK (k)

provided the limits exists, where χK is the characteristic function of K.This means
that

δ (K) = lim
n

1

n
{the number k ≤ n : k ∈ K} .

A sequence x := (xk) is statistically convergent to a number L if, for every ε > 0,

δ {k ∈ N : |xk − L| ⩾ ε} = 0

[17] (see also [20]). For instance,

δ (N) = 1, δ {2k : k ∈ N} =
1

2
and δ

{
k2 : k ∈ N

}
= 0.

Notice that any convergent sequence is statistically convergent but not conversely.
For example, the sequence

xk =

{
L1, n = m2,

L2, n ̸= m2
(m = 1, 2, 3, ...)

is statistically convergent to L2 but not convergent in ordinary sense when L1 ̸=
L2.
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Let A := (ank), n, k = 1, 2, .., be an infinite summability matrix. For a given
sequence x := (xk), the A−transform of x, denoted by Ax := ((Ax)n), is given
by (Ax)n :=

∑∞
k=1 ankxk, provided by the series converges for each n. A is said

to be regular if limn(Ax)n = L whenever lim x = L [30].Assume that A is non-
negative regular summability matrix, then x is a A−statistically convergent to the
number L if for every ε > 0, limn

∑
k:|xk−L|≥ε ank = 0. In this case we denote

stA−limx = L [18], [21], [35], [36]. The case in which A is the Cesáro matrix of order
one, reduces to the statistical convergence [17], [20], [22]. Also if A is the identity
matrix, then it reduces to the ordinary convergence. So if limnmaxk{ank} = 0,then
A−statistically convergence is stronger than ordinary means [35].

3. Korovkin type weighted statistical approximation theorems

There are some Korovkin type statistical approximating theorems for the se-
quence of positive linear operators.

In approximation theory by linear positive operators, the concept of statistical
convergence for f ∈ C [a, b] endowed with the usual norm

∥f∥C[a,b] = max
a≤x≤b

|f(x)|

has been examined for the first time by Gadjiev and Orhan [23].

Theorem A ([23]). If the sequence of positive linear operators

Ln : CM [a, b] → C [a, b]

satisfies the conditions

st− lim
n

∥Ln(eν)− eν∥C[a,b] = 0, for ν = 0, 1, 2,

then, for any function f ∈ CM [a, b] , we have

st− lim
n

∥Ln(f)− f∥C[a,b] = 0.

Notice that, the space of all functions f which are continuous in [a, b] and bounded
all positive axis is denoted by CM [a, b] .

We recall that Theorem A is given for statistical convergence but the proof also
works for A−statistical convergence. (See [23], [15]).

We see that Theorem A works for finite intervals. But if we consider the approx-
imation on infinite intervals, then we need weighted Korovkin theorems.

It is known that, Korovkin type theorems, related to weighted spaces, were given
by Gadjiev [24] and [25].

Before giving these theorems, let us recall the following spaces and norm:

Bρ(R) = {f : R → R| a constant Mf depending on f exists

such that |f | ≤Mfρ} ,

Cρ(R) = {f ∈ Bρ(R)| f continuous on R} ,
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endowed with the norm:

∥f∥ρ = sup
x≥0≥

|f(x)|
ρ(x)

.

In ([16], Theorem 3) Duman and Orhan proved the following weighted Korovkin
type theorem via A−statistical convergence:

Theorem B ([16]). Let A = (ank) be a nonnegative regular summability matrix
and ρ1(x) and ρ2(x) be weight functions satisfying

lim
|x|→∞

ρ1(x)

ρ2(x)
= 0.

Assume that Ln is a sequence of linear positive operators acting from Cρ1 to Bρ1 .
Then for all f ∈ Cρ1 ,

stA − lim
n

∥Ln(f )− f∥ρ2 = 0

if and only if

stA − lim
n

∥Ln(Fν)− Fν∥ρ1 = 0,

where Fν(x) =
xνρ1(x)
1+x2

, ν = 0, 1, 2.
By choosing the pair of weight functions

(3.1) ρ0(x) = 1 + x2, ρλ(x) = 1 + x2+λ, x ∈ R+ := [0,∞)

with the help of Theorem B, we indicated the following Korovkin type theorem
jointly with Agratini ( [3], Corollary 3.1):

Theorem C ([3]). Assume that Ln is a sequence of linear positive operators acting
from Cρ0(R+) to Cρλ(R+), λ > 0, one has

st− lim
n

∥Ln(f )− f∥ρλ = 0, f ∈ Cρ0(R+),

if and only if

st− lim
n

∥Ln(eν)− eν∥ρ0 = 0, ν = 0, 1, 2.

So, we can give the first result of this section as follows:

Theorem 3.1. Let the sequence 0 ≤ βn < 1 be given such that

(3.2) st− lim
n
βn = 0.

Let the operators P
[βn]
n be defined as in (1.1). Then, under the definitions in (3.1),

for each f ∈ Cρ0(R+), one has

(3.3) st− lim
n

∥∥∥P [βn]
n (f )− f

∥∥∥
ρλ

= 0,

where λ > 0.

Proof. From (1.2), it is clear that

st− lim
n

∥∥∥P [βn]
n (e0)− e0

∥∥∥
ρ0

= 0.
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From the expressions in (1.2) and (1.3), we have

P
[βn]
n (e1(t))− e1(x) =

xβn
1− βn

and from (1.4), we obtain

P
[βn]
n (e2(t))− e2(x) =

x2βn(2− βn)

(1− βn)
2

+
x

n(1− βn)
3
.

Since
x

ρ0(x)
and

x2

ρ0(x)

are bounded, then we get

st− lim
n

∥∥∥P [βn]
n (ei)− ei

∥∥∥
ρ0

= 0, for i = 1, 2.

So, in the light of Theorem C, we have (3.3) immediately. □

Theorem 3.2. Let the operators D
[βn]
n be defined as in (1.7). Then, under the

definitions in (3.1), for each f ∈ Cρ0(R+), one has

(3.4) st− lim
n

∥∥∥D[βn]
n (f )− f

∥∥∥
ρλ

= 0,

where λ > 0. Where the sequence the sequence 0 ≤ βn < 1 has the condition in
(3.2).

Proof. From the expressions in (1.8) and (1.9), we have

st− lim
n

∥∥∥D[βn]
n (ei)− ei

∥∥∥
ρ0

= 0, i = 0, 1.

And from (1.10), we obtain

D
[βn]
n (e2(t))− e2(x) =

x

n(1− βn)
2
.

Since
x

ρ0(x)

is bounded, then we get

st− lim
n

∥∥∥D[βn]
n (e2)− e2

∥∥∥
ρ0

= 0.

So, in the light of Theorem C, we have (3.4) immediately. □

Remark 3.3. If we take

(3.5) stA − lim
n
βn = 0,

instead of the condition (3.2) then these theorems are valid for A−statistically
convergence.
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4. Weighted modulus of continuities

Let f ∈ C(I), the first and second order classical modulus of continuities denoted
by ω(f ; δ) and ω2(f ; δ) are defined as

ω(f ; δ) = sup {|f(t)− f(x)| ; t, x ∈ I, |t− x| ≤ δ}

and

ω2(f ; δ) = sup {|f(x+ h)− 2f(x) + f(x− h)| ;x∓ h ∈ I, |h| ≤ δ}
respectively, where I is a compact finite interval.

Remarkable properties about these type of modulus of continuities can be found
in [11].

In order to obtain rate of weighted approximation of the positive linear operators
defined on infinite intervals, various weighted modulus of continuities are introduced.
Some of them include term h in the denominator of the supremum expression. In
the chronological order, let us refer to some related papers as [2], [19], [8], [27], [12],
[38], [26], [31].

The weighted modulus defined in [2], in order to obtain weighted approximation
properties of Szasz-Mirakyan operators on R+.

Jointly with Gadjieva [27], we introduced the following modulus of continuity:

(4.1) Ω(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
(1 + h2)(1 + x2)

.

There are some studies including rates of weighted approximation with the help of
Ω(f ; δ). (see, for instance, [5], [10] [13], [32] and [33]).

And then in [12], we defined the following modulus of continuity:

(4.2) ωρ(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
ρ(x+ h)

where ρ(x) ≥ max(1, x).
In [12], we introduced a generalization of the Gadjiev-Ibragimov operators which

includes many well-known operators and obtain its rate of weighted convergence
with the help of ωρ(f ; δ) defined in (4.2).

In [38], Moreno introduced another type of modulus of continuity in (4.2) as
follows

Ωα(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
1 + (x+ h)α

.

In [26], Gadjiev and Aral defined the following modulus of continuity:

Ω̃ρ(f ; δ) = sup
x,t∈R+,|ρ(t)−ρ(x)|≤δ

|f(t)− f(x)|
(|ρ(t)− ρ(x)|+ 1) ρ(x)

where ρ(0) = 1 and infx≥0 ρ(x) ≥ 1.
It is obvious that by choosing α = 2, in the definition of Ωα(f ; δ), then we obtain

Ω2(f ; δ) = ωρ0(f ; δ) for ρ0(x) = 1+x2 defined as in (3.1), and if we choose α = 2+λ
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in the definition of Ωα(f ; δ), then we obtain

Ω̂ρλ(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
1 + (x+ h)2+λ

(see [3]).
Finally, in [31], Holhoş defined a more general weighted modulus of continuity as

ωφ(f ; δ) = sup
0≤x≤y,|φ(y)−φ(x)|≤δ

|f(x)− f(y)|
ρ(x) + ρ(y)

such that, for φ(x) = x, this modulus of continuity is equivalent to Ω(f ; δ) defined
in (4.1).

Also, let C0
ρ(R) be the subspace of all functions in Cρ(R) such that lim|x|→∞

f(x)
ρ(x)

exists finitely.

5. Weighted statistical rate of convergence of P
[β]
n and D

[β]
n

In the light of the definitions in Section 4, we can give the following theorems:

Theorem 5.1. Let P
[β]
n (f ;x) be the Jain operators defined in (1.1). Then for each

f ∈ C0
ρ0
(R+) and ρλ(x) = (ρ0(x))

1+λ, λ ≥ 1 we have

(5.1)

∣∣∣P [β]
n (f ;x)− f(x)

∣∣∣
ρλ(x)

≤ 2

(
1 +

7

(1− β)2
+

1

n(1− β)3

)
ωρ0(f ; δn(β))

where

(5.2) δn(β) =
1

1− β

√
β2 +

1

n(1− β)

and ωρ0(f ; δ) is the modulus of continuity defined by (4.2) .

Proof. By using the properties of ωρ0(f ; δ),(see [38] ), we can write

(5.3) |f(t)− f(x)| ≤
(
1 + (2x+ t)2

)( |t− x|
δ

+ 1

)
ωρ0(f ; δ).

By applying the operators P
[β]
n to (5.3) and using the (1.2), positivity and linearity

of P
[β]
n and Cauchy-Schwarz inequality then we obtain

(5.4)

∣∣∣P [β]
n (f ;x)−f(x)

∣∣∣
ρλ(x)

≤ 1
ρλ(x)

(1 + 4x2 + 2xP
[β]
n (e1;x) + P

[β]
n (e2;x))

×
(√

ϕn,2(x)

δ + 1

)
ωρ0(f ; δ).

Where, as indicated above, ϕn,2(x) is the second central moment of P
[β]
n defined in

(1.13).
Using the identities (1.2), (1.3) and (1.4) in (1.13), we have

(5.5) ϕn,2(x) = x2
(

β

1− β

)2

+
x

n(1− β)3
.
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On the other hand, since β ∈ [0, 1), after simple calculations, we get

(5.6)
(1 + 4x2 + 2xP

[β]
n (e1;x) + P

[β]
n (e2;x))

ρ0(x)
≤

(
1 +

7

(1− β)2
+

1

n(1− β)3

)
and

(5.7)

√
φn,2(x)

(ρ0(x))
λ

≤

√(
β

1− β

)2

+
1

n(1− β)3

immediately. Since ρλ(x) = ρ0(x)(ρ0(x))
λ, by choosing δ = δn(β) as in (5.2) and

using (5.6) and (5.7) in (5.4), we have (5.1) which gives the proof. □
Similarly to this result, let us give following theorem.

Theorem 5.2. Let D
[β]
n (f ;x) be the Jain-Markov operators defined in (1.7). Then

for each f ∈ C0
ρ0
(R+) and ρλ(x) = (ρ0(x))

1+λ, λ ≥ 1 we have

(5.8)

∣∣∣D[β]
n (f ;x)− f(x)

∣∣∣
ρλ(x)

≤ 2

(
8 +

1

n(1− β)2

)
ωρ0(f ; δn(β))

where

(5.9) δn(β) =

√
1

n(1− β)2

and ωρ0(f ; δ) is the modulus of continuity defined by (4.2) .

Proof. If we use the identities (1.8), (1.9) and (1.10) in (1.14) then we have

(5.10) ψn,2(x) =
x

n(1− β)2
.

From (1.9), (1.10) and (5.10), we have

(5.11)
(1 + 4x2 + 2xD

[β]
n (e1;x) +D

[β]
n (e2;x))

ρ0(x)
≤

(
8 +

1

n(1− β)2

)
and

(5.12)

√
ψn,2(x)

(ρ0(x))
λ

≤

√
1

n(1− β)2
.

By using inequalities (5.11) and (5.12) in the following∣∣∣D[β]
n (f ;x)−f(x)

∣∣∣
ρλ(x)

≤ 1
ρλ(x)

(1 + 4x2 + 2xD
[β]
n (e1;x) +D

[β]
n (e2;x))

×
(√

ψn,2(x)

δ + 1

)
ωρ0(f ; δ),

and choosing δ = δn(β) as in (5.9) we have desired result. □
Now, using Theorem 5.1 and Theorem 5.2, under the condition (3.2) let us give the

following results including the weighted rate of statistical convergence of P
[βn]
n (f ;x)

to f(x) and D
[βn]
n (f ;x) to f(x) respectively by means of ωρ0(f ; δn(βn)).
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Corollary 5.3. Let P
[βn]
n (f ;x) be the Jain operators defined in (1.1) for β = βn sat-

isfying the condition (3.2). Then for each f ∈ C0
ρ(R+) and ρλ(x) = (ρ0(x))

1+λ, λ ≥
1 we have∥∥∥P [βn]

n (f ; .)− f(.)
∥∥∥
ρλ(x)

≤ 2

(
1 +

7

(1− βn)
2
+

1

n(1− βn)
3

)
ωρ0(f ; δn(βn))

where

δn(βn) =
1

1− βn

√
β2n +

1

n(1− βn)

and ωρ0(f ; δn(βn)) is the modulus of continuity defined by (4.2)

Proof. If we choose β = βn satisfying the condition (3.2) in the Theorem 5.1, the
proof is obvious. □

Corollary 5.4. Let D
[βn]
n (f ;x) be the Jain-Markov operators defined in (1.7) for

β = βn satisfying the condition (3.2). Then for each f ∈ C0
ρ(R+) and ρλ(x) =

(ρ0(x))
1+λ, λ ≥ 1 we have∥∥∥D[βn]

n (f ; .)− f(.)
∥∥∥
ρλ(x)

≤ 2

(
8 +

1

n(1− β)2

)
ωρ0(f ; δn(βn))

where

δn(βn) =

√
1

n(1− β)2

and ωρ0(f ; δn(βn)) is the modulus of continuity defined by (4.2)

Remark 5.5. Notice that, under the condition (3.2), since

st− lim
n
δn(βn) = 0,

Corollary 5.1 and Corollary 5.2 give us a weighted uniform rate of statistical con-

vergence of P
[βn]
n (f ;x) to f(x) and D

[βn]
n (f ;x) to f(x) by means of ωρ0(f ; δn(βn)).

6. Construction of bivariate operators

In [39], using the technique of Barbosu [9], we introduced a bivariate extension
of the classical Jain operators and investigated some approximation properties of it
for f ∈ C(I2), on a compact subinterval I ⊂ R+.

Firstly, using the technique of Barbosu [9], we define the parametric extensions
of the operator (1.7) for β, γ ∈ [0, 1) as follows:

(6.1) D[β],x
n (f ;x, y) =

∞∑
k=0

ωβ(k, nuβ(x))f

(
k

n
, y

)
and

(6.2) D[γ],y
m (f ;x, y) =

∞∑
l=0

ωγ(l,muγ(y))f

(
x,

l

m

)
.

Using these extensions, let us construct a bivariate extension of the Jain-Markov
operators defined by (1.7) as follows:
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(6.3) D[β,γ]
n,m (f ;x, y) =

∞∑
k=0

∞∑
l=0

ωβ(k, nuβ(x))ωγ(l,muγ(y))f

(
k

n
,
l

m

)
.

Then we have
(6.4)

D[β,γ]
n,m (f ;x, y) = D[β],x

n (f ;x, y)D[γ],y
m (f ;x, y) = D[γ],y

m (f ;x, y)D[β],x
n (f ;x, y) .

Lemma 6.1. The bivariate operator in (6.3) satisfies the following equalities:

(6.5)
D

[βn,γm]
n,m

(
φ1
x(t);x, y

)
= 0,

D
[βn,γm]
n,m

(
φ1
y(s);x, y

)
= 0,

(6.6)
D

[βn,γm]
n,m

(
φ2
x(t);x, y

)
= x

n(1−βn)
2 ,

D
[βn,γm]
n,m

(
φ2
y(s);x, y

)
= y

m(1−γm)2
,

(6.7)
D

[βn,γm]
n,m

(
φ4
x(t);x, y

)
= 8x3

n(1−βn)
2 + 3x2

n2(1−βn)
4 + (6β2

n+8βn+1)x
n3(1−βn)

6 ,

D
[βn,γm]
n,m

(
φ4
y(s);x, y

)
= 8y3

m(1−γm)2
+ 3y2

m2(1−γm)4
+ (6γ2m+8γm+1)y

m3(1−γm)6
,

where φru(v) := (v − u)r.

Proof. Using (1.8)-(1.12), after some computations, we obtain desired results. □

7. Weighted bivariate modulus of continuities

Some popular definitions of bivariate modulus of continuities can be found in [7].
Let Bρ(R2

+) be the space of all functions f(x, y) satisfying the property

|f(x, y)| ≤Mf ρ(x, y),

where Mf is a positive constant depending only on f and ρ(x, y) = 1 + x2 + y2.
Let Cρ(R2

+) be the subspace of Bρ(R2
+) of all continuous functions endowed with

the norm:

∥f∥ρ = sup
(x,y)∈R2

+

|f(x, y)|
ρ(x, y)

.

Let C0
ρ(R2

+) be the subspace of Cρ(R2
+) satisfying

lim√
x2+y2→∞

|f(x, y)|
ρ(x, y)

exists finitely.
In [33], İspir and Atakut also introduced the bivariate version of the weighted

modulus of continuity defined in (4.1) as follows:

(7.1) Ωρ(f ; δ1, δ2) = sup
(x,y)∈R2

+

sup
|k1|≤δ1,|k2|≤δ2

|f(x+ k1, y + k2)− f(x, y)|
ρ(x, y)ρ(k1, k2)

.



514 O. DOĞRU

From (7.1), we have

(7.2) Ωρ(f ; p1δ1, p2δ2) ≤ 4(1 + p1)(1 + p2)(1 + δ21)(1 + δ22)Ωρ(f ; δ1, δ2)

for p1, p2 > 0.

8. Weighted approximation of D
[β,γ]
n,m (f ;x, y)

Recently, in [28], Gark et.al. obtained rate of weighted approximation for Kan-
torovich variant of a combination of Bernstein–Chlodowsky and Szász type bivariate
operators by means of Ωρ(f ; δ1, δ2).

Since ρ(x, y) = 1 + x2 + y2,we can write

(8.1)
|f(t, s)− f(x, y)| ≤ (1 + x2 + y2)(1 + (t− x)2)(1 + (s− y)2)

×Ωρ(f ; |t− x| , |s− y|).

The proof of Theorem 1 in [28], shows that, the rate of weighted convergence for
Barbosu type bivariate positive linear operators Ln,m(f ;x, y) by means of Ωρ(f ; δn, δm)
can be obtain from the following:

(8.2)

|Ln,m(f ;x, y)− f(x, y)| ≤ 4(1 + x2 + y2)

×
[
1 + 1

δn

√
Ln,m(φ2

x(t);x, y) + Ln,m(φ
2
x(t);x, y)

+ 1
δn

√
Ln,m(φ2

x(t);x, y)
√
Ln,m(φ4

x(t);x, y)
]

×
[
1 + 1

δm

√
Ln,m(φ2

y(s);x, y) + Ln,m(φ
2
y(s);x, y)

+ 1
δm

√
Ln,m(φ2

y(s);x, y)
√
Ln,m(φ4

y(s);x, y)
]

×Ωρ(f ; δn, δm)(1 + δ2n)(1 + δ2m)

(see [28]).

Lemma 8.1. For the bivariate operator in (6.3), for

(8.3) an =
1

n(1− βn)
2

we have

(8.4) D
[βn,γm]
n,m

(
φ2
x(t);x, y

)
= xan

and

(8.5) D
[βn,γm]
n,m

(
φ4
x(t);x, y

)
≤ 15(an + a2n + a3n)(x+ x2 + x3).

Proof. If we use (8.3) in (6.6), then we have (8.4) immediately. On the other hand,
using (8.3) in (6.7), we have

D
[βn,γm]
n,m

(
φ4
x(t);x, y

)
= 8x3an + 3x2a2n + 15xa3n

≤ (an + a2n + a3n)(8x
3 + 3x2 + 15x)

≤ 15(an + a2n + a3n)(x
3 + x2 + x).

□
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Lemma 8.2. For the bivariate operator in (6.3), for

(8.6) bm =
1

m (1− γm)
2

we have

(8.7) D
[βn,γm]
n,m

(
φ2
y(s);x, y

)
= ybm

and

(8.8) D
[βn,γm]
n,m

(
φ4
y(s);x, y

)
≤ 15(bm + b2m + b3m)(y + y2 + y3).

Since the proof is similar to the proof of previous lemma, we will omit it.

Theorem 8.3. If f ∈ C0
ρ(R2

+), then for the bivariate operator in (6.3) we have

(8.9) sup
(x,y)∈R2

+

∣∣∣D[βn,γm]
n,m (f ;x, y)− f(x, y)

∣∣∣
(ρ(x, y))3

≤ CΩρ(f ;
√
an,

√
bm),

where the sequence (an) and (bm) as in the (8.3) and (8.6) respectively.

Proof. If we apply the bivariate operator in (6.3) to the inequality (8.2), then we
have

(8.10)

∣∣∣D[βn,γm]
n,m (f ;x, y)− f(x, y)

∣∣∣ ≤ 4(1 + x2 + y2)

×
[
1 + 1

δn,βn

√
D

[βn,γm]
n,m (φ2

x(t);x, y) +D
[βn,γm]
n,m (φ2

x(t);x, y)

+ 1
δn,βn

√
D

[βn,γm]
n,m (φ2

x(t);x, y)

√
D

[βn,γm]
n,m (φ4

x(t);x, y)

]
×
[
1 + 1

δm,γm

√
D

[βn,γm]
n,m (φ2

y(s);x, y) +D
[βn,γm]
n,m (φ2

y(s);x, y)

+ 1
δm,γm

√
D

[βn,γm]
n,m (φ2

y(s);x, y)

√
D

[βn,γm]
n,m (φ4

y(s);x, y)

]
×Ωρ(f ; δn,βn

, δm,γm)(1 + δ2n,βn
)(1 + δ2m,γm).

By using Lemma 8.1, Lemma 8.2 and (8.2), we can write

(8.11)

∣∣∣D[βn,γm]
n,m (f ;x, y)− f(x, y)

∣∣∣ ≤ 4(1 + x2 + y2)

×
[
1 +

√
x+ anx+

√
x
√
15(an + a2n + a3n)(x

3 + x2 + x)
]

×
[
1 +

√
y + bny +

√
y
√
15(bm + b2m + b3m)(y

3 + y2 + y)
]

×Ωρ(f ;
√
an,

√
bm)(1 + an)(1 + bm).

Since an > 0 and limn an = 0, there exists a positive number c,such that an ≤ c.
Again for the same reason there exists a positive number d,such that bm ≤ d. Using
these and dividing two hand side of (8.11) by (ρ(x, y))3 = (1+ x2 + y2)3, we obtain

(8.12)

∣∣∣D[βn,γm]
n,m (f ;x,y)−f(x,y)

∣∣∣
(ρ(x,y))3

≤ 4(1 + 1 + c+
√
15(c+ c2 + c3))

×(1 + 1 + d+
√
15(d+ d2 + d3))

×Ωρ(f ;
√
an,

√
bm)(1 + c)(1 + d).
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If

C := 4(1 + 1 + c+
√
15(c+ c2 + c3))(1 + 1 + d+

√
15(d+ d2 + d3))(1 + c)(1 + d)

is substituted in (8.12), the proof is completed. □

Remark 8.4. Since limn an = 0 and limm bm = 0, Theorem 8.1 gives the rate

of weighted convergence of D
[βn,γm]
n,m (f ;x, y) to the function f(x, y) by means of

Ωρ(f ;
√
an,

√
bm).

Remark 8.5. If st− limn βn = st− limm γm = 0 then Theorem 8.1 gives the rate

of weighted statistical convergence of D
[βn,γm]
n,m (f ;x, y) to the function f(x, y) by

means of Ωρ(f ;
√
an,

√
bm).
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