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polygon. This is not convenient for practical applications. For example, in shape
and image deformation, a control point should only influence the surface nearby the
places where the changes are made. This is the so-called locality property which
is extremely important to a designer. In additional, without locality, the geometry
design requires a large memory consumption of all GBC functions as a polygon
with n sides may have a very large n for a reasonable object. Such a design will
be computationally expensive. To overcome this difficulty of computation, several
approaches have been developed. For example, Zhang et al. [44] proposed a family
of local barycentric coordinates (LBC) through a convex optimization approach.
For another example, subdividing barycentric coordinates (SBC) [2] inherit local
property from local support of subdivision surfaces. Another example is blended
barycentric coordinates (BBC) [3] which are blended from mean value coordinates
over the triangles of the constrained Delaunay triangulation of the input polygon
which possesses a locality. In fact, there is a folklore in the community of computer
graphics that harmonic GBC functions have desired intuitive locality behavior in
all situations during a geometry design although the maximum principle shows that
any harmonic GBC function is nonnegative even over a polygon which is strongly
concave and never be zero inside the polygon. However, even though the researchers
and practitioners in the community have observed this locality for a long time, there
is no mathematical justification of this locality in the literature. Nevertheless there
is a trivial example that harmonic GBCs over a rectangular domain do not have
any local property. This makes a doubt that such a locality can be established for
polygons with more than 4 sides.

In this paper, our first goal is to explain the nice locality of harmonic GBC
function over a polygon which is more complicated than a rectangle mathematically.
To this end, let us define an exponential decay property.

Definition 1.1. Let f(x) be a function defined on a polygon Ω ⊂ Rd, d ≥ 2 and
suppose that f(x0) = 1 for x0 ∈ Ω. f has an exponentially decay property away
from its supporting vertex x0 if |f(x)| ≤ C exp(−c∥x− x0∥) for positive constants
C and c. Such a property is called e-locality for short.

That is, we shall discuss the e-locality of harmonic GBC functions in this paper.
Mainly, we present a method to analyze that each harmonic coordinate with 1 at
a vertex of the polygon Ω decays away from its vertex exponentially over Ω. We
have to exclude the case when Ω is a parallelogram as the harmonic GBCs are
simply bilinear functions. We will discuss this pathological example more later in
this paper. This makes sense as for most applications,Ω of interest usually has a lot
of sides. Thus, any change of the control point of a harmonic coordinate function
(the value at the supporting vertex) will affect the surface nearby and the change
will decay exponentially to 0 away from the control point over the polygon. Next
let us be more precise about the exponential decay property as follows.

To do so, let us introduce harmonic GBC functions now. Given a polyhedron
Ω = PN ∈ Rd, d ≥ 2 of N vertices vi, i = 1, . . . , N , we say PN is an admissible
polyhedron if PN admits a simplicial partition △ with these vertices of PN being
the vertices of △. In R2, any polygon PN is admissible. Note that in R3, one can
have a polyhedron which does not admit a simplicial partition without adding more
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vertices. The admissible condition allows us to define a piecewise linear function ℓi
associated with each vertex vi on the boundary of Ω satisfying ℓi(x) = 1 if x = vi
and 0 if x = vj , j ̸= i and ℓi(x) is linear on each lower dimensional boundary
simplex of Ω. For each ℓi, let ϕi be the function solving the following minimization
problem:

(1.1)

{
minu∈C∞(Ω)

∫
Ω |∇u|2,

u = ℓi, x ∈ ∂Ω,

where ∇ is the gradient operator. It is known that the minimizer ϕi satisfies the
following Laplace equation:

(1.2)

{
∆u = 0, x ∈ Ω

u = ℓi, x ∈ ∂Ω,

where ∆ is the standard Laplace operator. That is, the minimizer ϕi is a harmonic
function. It is easy to see that these ϕi satisfy the three properties in (1.3). In fact,
one can use (1.2) to verify these properties.

(1.3)



n∑
i=1

ϕi(x) = 1 x ∈ PN

n∑
i=1

ϕi(x)vi = x x ∈ PN

ϕi(x) ≥ 0, i = 1, . . . , N.

Hence, these {ϕ1, . . . , ϕN} are generalized barycentric coordinates (GBC) and these
are called harmonic GBCs (cf. [13]).

These GBCs are based on the corners of Ω. We now extend the GBC functions
to more boundary points of Ω. Let us add more points on the boundary and
inside of Ω and let △ be a triangulation of Ω if Ω is a polygonal domain in R2.
For d > 2, △ is a simplicial partition of Ω when Ω is an admissible polygon in
Rd. Let VB = {v ∈ △ : v ∈ ∂Ω} be the set of boundary vertices of Ω and
VI = {v ∈ △ : v ∈ Ω◦} be the collection of the interior vertices of Ω, where △◦

stands for the interior of △. As VB contains more than the corners of Ω, we can
view Ω is a degenerated admissible polyhedron with vertices in VB. Let ϕ1, . . . , ϕN
be GBC functions associated with the vertices of VB defined before.

The second goal of this paper is to introduce another kind of GBC functions
which are based on interior points of Ω as follows. For △ of Ω, let S0

1(△) be the
continuous piecewise linear functions over simplicial partition △. That is, S0

1(△)
is the space of continuous linear splines. For each vi ∈ VI = {v ∈ △ : v ∈ Ω◦},
let hi ∈ S0

1(△) be the hat function which is a continuous piecewise linear function
satisfying hi(vj) = δij , for all vj ∈ VI . For each hi, let ψi ∈ H∞(Ω) be the solution
to the following boundary value problem:

(1.4)

{
∆ψi = hi, x ∈ Ω

ψi = 0, x ∈ ∂Ω,

for i = 1, . . . ,M , where M = #(VI). It is easy to see that there exist such functions
ψi by solving the Poisson equation with zero boundary condition. Let us further
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explain their properties. A triangle T ∈ △ is a boundary triangle if T has one side
on the boundary of Ω or a vertex at the boundary of Ω. Let △◦ be the union of all
simplexes in △ without boundary triangles.

It is easy to see that ψi’s satisfy the properties in (1.5) below and hence, ψi are
called interior GBC functions.

Lemma 1.2. Let ψi, i = 1, . . . ,M be functions defined above. Then

(1.5)



m∑
i=1

∆ψi(x) = 1, x ∈ △◦

m∑
i=1

∆ψi(x)vi = x, x ∈ △◦

ψi(x) = 0, x ∈ ∂Ω,

where vi, i = 1, . . . ,M are interior vertices of △. See Figure 1 for an illustration
of interior domain △◦.

Proof. Since
∑m

i=1 hi(x) = 1 and
∑m

i=1 vihi(x) = x over△◦, we see that
∑m

i=1∆ψi(x) =∑m
i=1 hi(x) = 1 for x ∈ △◦. Similarly, we have the second equation in (1.5). The

third equation follows from the boundary condition of ψi. □

Figure 1. Illustration of △◦ (in blue) inside a triangulation △ (all
triangles in red and blue)

It is known that there is no analytic representation of harmonic GBCs ϕi when Ω
is not a parallelogram. One has to compute them numerically. A standard approach
is to use finite element method or more generally, multivariate spline method (cf.
[10]). Similarly, ψi have no analytic representation to the best of the authors’
knowledge. Of course, one can solve the Poisson equation in (1.4) numerically to
obtain an approximation of ψi. Indeed, let △k be the kth uniform refinement of △
for an integer k ≥ 1 if d = 2 or △k be a refined simplicial partition of △ if d ≥ 3
with |△k| < |△|, where |△| the largest diameter of simplexes in △. Thus, |△| is
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called the size of △. Let Si = Sϕi be a spline approximation of ϕi over triangulation
△k and similarly Ri = Sψi

be a spline approximation of ψi over △k.
One of the significances of these functions is that we can use ϕi, i = 1, . . . , N

and ψj , j = 1, . . . ,M to approximate the solution of any Dirichlet boundary value
problem of the Poisson equation:

(1.6)

{
−∆u = f, x ∈ Ω

u = g, x ∈ ∂Ω,

for any given f ∈ L2(Ω) and g ∈ L2(∂Ω). For simplicial partition △ of Ω, we
are interested in the approximation of Si and Ri when |△| is small. Indeed, the
following is one of the main results in this paper:

Theorem 1.3. Suppose that f is a piecewise continuous function in L2(Ω) and g
is a piecewise continuous function in L2(∂Ω). Let △ be a simplicial partition of Ω
such that Hf (x, y) :=

∑m
i=1 f(vi)hi(x, y) is a linear spline approximation of f over

Ω, e.g. f(x, y) − Hf (x, y) = O(|△|2) and Lg :=
∑

vi∈∂Ω g(vi)Si is a linear spline

approximation of g on ∂Ω, i.e., ∥g − Lg∥L2(∂Ω) = O(|△|2). Then the solution u to
(4.1) can be approximated by

(1.7) u ≈
∑

vi∈△◦

f(vi)ψi +
∑

vi∈∂Ω
g(vi)ϕi ≈

∑
vi∈△◦

f(vi)Ri +
∑

vi∈∂Ω
g(vi)Si.

That is, letting Lu = Lf +Lg with Lf =
∑

vi∈△◦ f(vi)Ri and Lg =
∑

vi∈∂Ω g(vi)Si,
we have

∥∇(u− Lu)∥ = O(|△|).

Proof. As expected, Lu is just like the standard finite element solution. We shall
give a proof in a later section. See §3 for a detailed proof and numerical experimental
results which support the statement in (1.7). In addition, a comparison with the
numerical results from the standard finite element method will be shown. □

Remark 1.4. We remark that the GBC solution Lu = Lf + Lg is not an FEM
solution. For simplicity, let us say the solution u satisfying the zero boundary
condition. In this case, Lu = Lf which is a linear combination of f(vi),vi ∈ △◦

while the FEM solution is a linear combination of the coefficient vector c which is
the solution of the linear system Kc = M f , where K and M are the stiffness and
mass matrices, respectively.

Let us continue to discuss the locality of these harmonic GBC functions. First of
all, we need to explain that a numerical harmonic GBC function Si approximates
the exact harmonic GBC function ϕi very well. Similar for Ri for ψi. Therefore,
the e-locality of ϕi and ψi can be seen from the e-locality of Si and Ri, respectively.
To avoid a pathological example, we assume that the number of distinct boundary
vertices is more than 4 as most applied problems have a lot of boundary vertices.

For a simplicial partition △ of Ω, we say it is β-quasi-uniform if there is a positive
number β > 0 such that

(1.8) max
T∈△

|△|
ρT

≤ β,
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where ρT is the radius of the inscribed ball of simplex T . Let Srn(△) be the spline
space of degree d and smoothness r ≥ 0, e.g. when n = 1 and r = 0, S0

1(△) is
the standard continuous finite element space. In general, we can use any n ≥ 1
and r ≥ 0 as long as n ≥ 3r + 2 if Ω ⊂ R2. Otherwise, we can use n = 1 and
r = 0 or n ≥ 9 and r = 1. See [29] for trivariate splines. There are two numerical
implementation methods of multivariate splines which can be found in [4] and [36]
as well as other efficient implementations in [33] and [40]. Recall ϕi ∈ H1(Ω) be a
GBC function in the Sobolev space H1(Ω) satisfying (1.1) and Si is the minimizer
of the following minimization (1.9) over the spline space Srn(△) of degree n and
smoothness r ≥ 0:

(1.9)

{
minu∈Sr

n(△)

∫
Ω |∇u|2,

u = ℓi, x ∈ ∂Ω.

We split Si into Si,0 and Gi. That is, Si = Si,0 + Gi ∈ Srn(△), where Gi ∈ Srn(△)
satisfies the boundary condition Gi = ℓi on ∂Ω and Si,0 ∈ H1

0 (Ω)∩Srn(△). Then Si
satisfies the following weak formulation:

(1.10) ⟨∇Si,0,∇ψ⟩ = −⟨∇Gi,∇ψ⟩, ∀ψ ∈ Srn(△) ∩H1
0 (Ω).

It is easy to see that Si is a numerical harmonic GBC which approximates ϕi very
well in the following sense:

(1.11) ∥∇(Si − ϕi)∥ ≤ Cϕi |△|d

by using the well-known Ceá lemma, where Cϕi is a positive constant dependent on
ϕi, d, and Ω. Furthermore, there is a maximum norm estimate, i.e.

(1.12) ∥Si − ϕi∥∞ ≤ Cϕi log(|△|)|△|d+1.

We refer to [9] for detail. Similarly, Ri ∈ Srn(△) is the weak solution satisfying

(1.13) ⟨∇Ri,∇ψ⟩ = −⟨hi, ψ⟩, ∀ψ ∈ Srn(△) ∩H1
0 (Ω).

The standard finite element theory shows that Ri satisfies the same inequalities as
Si in (1.11) and (1.12). Hence, one can see that the locality of ψi can be estimated
based on the locality of Ri. We leave the proof of (1.11) and (1.12) to Appendix.

In terms of spline functions, the exponential decay can be recast more precisely.
Let star1(vi) be the union of all simplexes in △ sharing vertex vi and stark(vi) is
the union of all simplexes in △ sharing vertices in stark−1(vi) for k ≥ 2. We will
show that there exists a constant σ ∈ (0, 1) such that

(1.14) |Si(v)| ≤ Cσk and |Ri(v)| ≤ Cσk, if v ̸∈ stark(vi)

for a positive constant C independent of i. That is, if v is a far away from vi
according to the triangulation △ (cf. Definition 2.1), |Si(v)| is close to zero. Similar
for Ri. See the statement of Theorem 2.6 in the next section for more detail.

The rest of the paper is devoted to the estimate (1.14) of the e-locality of Si
and Ri by using a theoretical approach which was used in study of the domain
decomposition methods for scattered data interpolation and fitting (cf. [30]) and
the convergence of discrete least squares (cf. [18]). We shall present some numerical
e-locality of our GBC functions. See §4. In addition, an application to numerical
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solution to Poisson equations using our GBC functions will be demonstrated in §5,
where Theorem 1.3 will be proved.

2. The exponential decay property of boundary and interior GBC
functions

Let us start with an explanation of some useful concepts, notations, and defini-
tions on spline spaces. For each vertex v ∈ △, let star(v) be the collection of all
simplexes from △ attached to v. Similarly, for each simplex T ∈ △, let star(T ) be
the collection of all simplexes in △ connected to T . Next for each integer ℓ > 1, let
starℓ(v) the the collection of all simplexes in △ which is connected to starℓ−1(v)
with star1(v) := star(v) for ℓ > 1. Similar for starℓ(T ). See an example in Figure 2
for starℓ(T ) for ℓ = 1, 2, 3 in the setting of R2.

Figure 2. Illustration of star1(T ), star2(T ), star3(T ) over a trian-
gulation with T shown in red

Now we define a measure between two points x,y ∈ Ω based on triangulation △
in the following sense:

Definition 2.1. We say a point x ∈ Ω is k-simplexes away from another point
y ∈ T ∈ △ is x ̸∈ stark(T ), but in stark+1(T ). We say x is far away from y ∈ T or
from T is x ̸∈ stark(T ) for positive integer k ≫ 1.

Next let Bξ, ξ ∈ M be a basis for Srn(△), where M is an index set. For an integer
ℓ ≥ 1, we say Bξ, ξ ∈ M is stable and ℓ-local in the sense that there is a positive
constant K1 such that for all indices ξ ∈ M,

(2.1) ∥Bξ∥∞,Ω ≤ K1,

and there is an integer ℓ ≥ 1 for all ξ ∈ M,

(2.2) supp(Bξ) ⊆ starℓ(Tξ),
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for a simplex Tξ ∈ △ associated with index ξ, where the constant K1 may be
dependent only on ℓ and the smallest angle in △.

There are many spaces which have stable local bases. For example, in Euclidean
space Rd with d ≥ 2, the continuous spline spaces S0

n(△) have stable local bases
with ℓ = 1 for any degree n ≥ 1. In R2 the same is true for the superspline spaces
Sr,2r4r+1(△) for all r ≥ 1 of degree 4r + 1 and smoothness r and supersmoothness 2r

at vertices. E.g. S1,2
5 (△), the Argyris C1 quintic finite element space with super

smoothness C2 at vertices. In [29], several families of macro-element spaces defined
for all r ≥ 1 with the same property are explained. We refer to [18] for more such
spaces.

We now use the format of multivariate Bernstein polynomials to write each poly-
nomial over a simplex T (see [8], [6], and [29] for detail). For polynomial u ∈ Pn,
we write

(2.3) u(x) =
∑

i0+i1+···+id=n
ci0,...,id

n!∏d
j=0 ij !

d∏
j=0

b
ij
j ,

where b0, . . . , bd are barycentric coordinates of point x with respect to T =
⟨v0, . . . ,vd⟩. Let c = (ci0,...,id , i0 + · · · + id = n) be the coefficient vector of u.
Following the proof of Theorem 2.7 for the R2 setting and/or the proof of Theorem
15.9 (for the R3 setting) in [29], we can show

(2.4)
V

1/2
T

K
∥c∥2 ≤ ∥u∥2,T ≤ V

1/2
T ∥c∥2, ∀u ∈ Pn

for a positive constant K dependent only on n, where VT is the volume of simplex
T . Letting

(2.5) ϕξ =
n!∏d
j=0 ij !

d∏
j=0

b
ij
j ,

with ξ = {i0, . . . , id, T}, we note that there are redundancies for the collection
{ϕξ, ξ = (i0, . . . , id, T ), T ∈ △, i0 + · · · + id = n} due to the neighboring simplexes.
Indeed, if two simplexes T1 and T2 sharing a common face, there is ϕξ for some
ξ associated with T1 and ϕη for η associated with T2 which are the same function
on the common face T1 ∩ T2. For these two functions, we let Bξ be the function
which is piecewise defined on the union T1 ∪ T2 with Bξ = ϕξ on T1 and Bξ = ϕη
on T1. Let us delete the index η from the whole index set {ξ = (i0, . . . , id, T ), T ∈
△, i0 + · · ·+ id = n}. For simplicity, let us show Bξ in the 2D setting in Figure 3.

For another case, if a vertex v shared by more than one simplex, there will be
more than one function ϕξ with ξ on T1, . . . , η on Tk which have the common value
at the vertex, we let Bξ be the spline function which is ϕξ on T1, . . . , Bξ = ϕη on
Tk if T1, . . . , Tk share the vertex v. We delete all the indices η on T2, . . . , Tk from
the whole index set. We do the same thing for other common facets such as edges,
..., (d − 2) facets sharing by more than one simplex from △. For the remaining
indices ξ, we let Bξ = ϕξ. Let us put these Bξ together to form {Bξ, ξ ∈ M} which
is a basis for S0

n(△), where M ⊂ {ξ : T ∈ △, i0 + · · · + id = n} is the subset after
deleting the redundant indices mentioned above.
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Figure 3. Construction of Bξ over T1∪T2 shown on the right based
on ϕξ (left) and ϕη(middel)

We are now ready to explain the exponential decay property of the GBC func-
tions. Let us first begin with a key result, Lemma 2.3 whose proof can be found
in [30]. The similar results hold in the multivariate setting which will be stated in
Theorem 2.4. The proof of Theorem 2.4 relies on the following stability of spline
functions.

Lemma 2.2. Suppose that S0
n(△) is a continuous spline space of degree n defined on

a β-quasi-uniform simplicial partition △ of polyhedral domain Ω ⊂ Rd with d ≥ 2.
Let W = H1

0 (Ω) ∩ S0
n(△) be a subspace with inner product ⟨f, g⟩W = ⟨∇f,∇g⟩ and

norm ∥f∥W := ∥∇f∥. Then there exist two positive constants C1, C2, the following
equalities

(2.6) C1

∑
ξ∈M

|cξ|2 ≤
∥∥ ∑
ξ∈M

cξBξ
∥∥2
W ≤ C2

∑
ξ∈M

|cξ|2

hold for all coefficient vectors c := {cξ}ξ∈M, where {Bξ}ξ∈M is an 1-local basis for
W.

Proof. Let Pn be the space of polynomials of degree ≤ n in Rd. Let T be the set of
all simplexes T with one vertex at 0 and 1/β ≤ ρT ≤ |T | = 1, where ρT is the radius
of the ball inscribed in T and |T | is the diameter of the minimum ball containing
T . Let

C1 := inf
T=⟨v1,...,vd+1⟩∈T

{∥∇p∥2T such that p ∈ Pn,
∫
T
p2 = 1, p(v1) = 0}.

Then there exist sequences pk, Tk of polynomials and simplexes, respectively, such
that pk → p ∈ Pn and Tk → T ∈ T with

∫
T p

2 = 1 and C1 = ∥∇p∥2T . We claim that

C1 > 0. Indeed, if ∥∇p∥2T = 0, then p ∈ P0. But then using the fact that p vanishes
at one vertex, it follows that p ≡ 0, contradicting

∫
T p

2 = 1. We have shown that
C1 > 0 and that it certainly depends only on β, n, and d.

Next let

C2 := sup
T=⟨v1,...,vd+1⟩∈T

{∥∇p∥2T such that p ∈ Pn,
∫
T
p2 = 1, and p(v1) = 0}.
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Clearly, by using the Markov inequality, it is easy to see that C2 < ∞. Certainly,
C2 depends only on β, d, and n. Now if T is an arbitrary simplex in △, then after
translating one vertex to 0 ∈ Rd and substituting x = |T |x̃, we see that for any
u ∈ W ,

(2.7) C1

∫
T
u2 ≤ |T |d∥∇u∥2T ≤ C3

∫
T
u2.

Combining (2.7) and (2.4) together, we have

(2.8) ∥∇u∥2T ≤ C3|T |−d
∫
T
u2 ≤ C3|T |−dVT ∥c∥22 = C4∥c∥22

for a positive constant C4 and

(2.9) ∥∇u∥2T ≥ C1|T |−d
∫
T
u2 ≥ C1/K|T |−dVT ∥c∥22 = C0∥c∥22

for another positive constant C0. Then summing over all simplexes in △ gives 2.6
with new constants C1 and C2 with a consideration of the redundant indices over
the common facets of neighboring simplexes of △. Indeed, it is easy to see that the
largest number of redundant indices is the largest number of simplexes sharing a
common vertex v ∈ △. Let v ∈ △ be the vertex sharing by kv number of simplexes
in △. Let Nv be the ball centered at v with radius |△|/2. It is easy to see all
simplexes sharing v are inside Nv. The volume of Nv is less or equal to Aπ(|△|/2)d
for a positive constant A. As each of these simplexes contains the inscribed ball
with radius ρ△ which has a volume Aπ(ρ△)d. It follows that number kv of simplexes
in △ sharing v is estimated by

kv ≤
Aπ(|△|/2)d

Aπρd△
=

1

2d
βd <∞.

That is, C2 = C4
1
2d
βd and C1 = C0. □

With the estimates (2.6) in the bivariate setting, Lai and Schumaker in [30] proved
the following result.

Lemma 2.3 (Lai and Schumaker, 2009 [30]). Let ω be a cluster of triangles in △,
and let T ∈ ω be a triangle, e.g. ω = T . Then there exists constants 0 < σ < 1 and
C depending only on the ratio C2/C1 in (2.6) such that if g is a function in W with

(2.10) ⟨g, w⟩W = 0, for all w ∈ W with supp(w) ⊆ stark(ω),

for some fixed k ≥ 1, then

(2.11) ∥g · χT ∥W ≤ Cσk∥g∥W ,

where χT is the characteristic function of T .

Now let us translate the result in Lemma 2.3 in the setting of Ω ⊂ Rd, d ≥ 2 to
have

Theorem 2.4. Let △ be a simplicial partition of Ω ⊂ Rd, d ≥ 2. Suppose that W
has an 1-stable basis {Bξ}ξ∈M satisfying (2.6). Let ω be a cluster of simplexes in △
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or a simplex, e.g. ω = T . Then there exists constants 0 < σ < 1 and C depending
only on the ratio C2/C1 in (2.6) such that if g is a function in W with

(2.12) ⟨g, w⟩W = 0, for all w ∈ W with supp(w) ⊆ stark(ω),

for some fixed k ≥ 1, then

(2.13) ∥g · χT ∥W ≤ Cσk∥g∥W ,

where χT is the characteristic function of T .

Proof. We use the ideas in the proof of Lemma 4.2 in [30] to establish this similar
result in Theorem 2.4. The detail is omitted here. □

Note that the proof of Theorem 2.4 is based on the ideas in [19] and [18] and an
elementary inequality in [5] which is included below.

Lemma 2.5 (de Boor, 1996 [5]). If the sequence a0, a1, ... satisfies

(2.14) |am| ≥ c
∑
j≥m

|aj |, m = 0, 1, 2, . . . ,

for some c ∈ (0, 1), then λ = 1− c ∈ (0, 1) and

(2.15) |am| ≤ |a0|λm/c, m = 0, 1, 2, . . .

This equality was called discrete Gronwall inequality as in [12]. Please notice
that this exponential decay includes a linear decay as a special case. For example,
let k ≥ 10 be an integer and let

a0 = k, a1 = k − 1, . . . , ak = 0, ak+j = 0, ∀j ≥ 1

be a sequence. Then it is clear that this sequence decays to zero in a linear fashion,
but satisfies the de Boor condition (2.14) for c = 1/k. Indeed, if m ≥ k, we have
(2.14) as the both sides are zero and if 0 ≤ m < k, we have

c
∑
j≥m

|aj | =
1

k

k−m∑
i=1

i =
k −m

k

k −m+ 1

2
≤ k −m = am.

Lemma 2.5 shows that this sequence is of exponential decay in the sense of (2.15).
We shall use this sequence to explain the decay property of the GBC functions
over a rectangular domain. That is, the GBC functions over a rectangular domain
linearly decay to zero and satisfy the decay property (2.15).

We now explain how to use Theorem 2.4 for establishing the e-locality of our
numerical harmonic GBC functions Si and Ri. First of all, we explain the e-locality
of Si = Si,0 + Gi. We start with Gi. Let us fix a simplicial partition △k which is
a refinement of △ and fix a spline space, say S1

n(△k) with n ≥ 5 in R2 or n ≥ 9 in
R3 and etc. Then we can construct Gi ∈ S1

n(△) satisfying the boundary condition,
i.e. Gi|∂Ω = ℓi as follows. Without loss of generality, we may assume that Ω is
a star-shaped polygon in R2. There is a center vc which can be connected to all
vertices of Ω. Let us form an initial triangulation in this way, say △0. Then our
△k is a uniformly refined triangulation of △0. Let us say △ is the third refinement
of △0.
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If we use a continuous spline space S0
n(△k) with n ≥ 1, we can easily construct

Gi at boundary vertex vi. Indeed, let us use Figure 4 to show spline coefficients
of Gi in S1

5(△0) over the domain points on three triangles. The remaining spline
coefficients of Gi over other triangles of △0 are all zero.

Figure 4. A Construction of G1 over the two triangles sharing v1

using continuous spline space S0
5(△)

Next let us explain how to construct Gi ∈ S1
5(△0). Once we have Gi, we can

rewrite Gi over S
1
5(△k) due to the nestedness of our spline spaces. On S1

5(△0), G1

can be constructed by specifying the coefficients as shown in Figure 5 over domain
points of degree 5 over △0. Note that v1,v2, . . . ,vN are boundary vertices. vc
is an interior vertex. u, v,X, Y ≥ 0 are coefficients which are dependent on C1

smoothness conditions. That is, we use C1 smoothness condition connected to the
coefficients 1, two 4/5 and Y to find Y first if the edge e1 = ⟨v1,v2⟩ and the
edge ⟨v1,vN ⟩ are not parallel. Then we find two positive values X by solving the
C1 smoothness condition connecting the coefficients Y , 0 and X,X. If the edge
e1 = ⟨v1,v2⟩ and the edge ⟨v1,vN ⟩ are parallel, we simply choose Y = 0 and hence,
X = 0. Next we use the C1 smoothness condition to find u and then v. The
remaining coefficients of G1 are all zero which we do not show in Figure 5. Hence,
this function G1 is in S1

5(△0).
In the same way, we can construct Gi ∈ S0

n(△k) or in S
1
n(△k) for △k in the higher

dimensional setting. We leave the detail to the interested reader. It is clear that
Gi is of exponential decay. To show the e-locality of Si, we only need to discuss the
e-locality of Si,0 with Si,0 = Si −Gi.

To this end, let Ωi = star1(vi) be the union of all simplexes which are connected
to the boundary vertex vi. According to the construction above, the support of Gi
is contained in Ωi in both C0 and C1 cases. We say a simplex T is L-simplex away
from the boundary ∂Ω if L is the smallest integer such that there exist L simplexes
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Figure 5. A Construction of G1 ∈ S1
5(△0) over three triangles shar-

ing v1

T1, . . . , TL+1 in △ such that T = T1 and T̄L+1 ∩ ∂Ω ̸= ∅ as well as T̄j ∩ T̄j+1 ̸= ∅
for j = 1, . . . , L. Furthermore, we say T is L-simplex away from the boundary ∂Ω
in the opposite direction of vi if there exists an integer k such that stark(T ) ⊂ Ωci ,
the complement of Ωi in Ω and Ti ∈ stark+ℓi(T ) ⊂ Ωci for ℓi+1 ≥ ℓi ≥ 0 for
i = 1, . . . , L + 1. See Figure 6 for vi (the red dot), Ωi, T = T1, T2 and T4, where
T3 can be any triangle between T2 and T4 as long as T3 ∩ T2 ̸= ∅ and T3 ∩ T4 ̸= ∅.
There are three choices for T3.

Figure 6. Illustration of T whose star5(T ) ⊂ Ωci and T2 and T4.
Note that T3 is not shown. It can be any triangle between T2 and
T4 as long as T3 ∩ T2 ̸= ∅ and T3 ∩ T4 ̸= ∅.
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We are now ready to state and prove one of the main results in this paper.

Theorem 2.6. Fix a boundary vertex vi ∈ Ω. Suppose that Ωi = star(vi) ̸= Ω. Let
v ∈ Ω be a point in Ω \ Ωi. Let T ∈ △ contain v, i.e. v ∈ T . Suppose k ≥ 1 is the
integer such that stark(T ) ⊂ Ωci , the complement of Ωi in Ω and L ≥ 1 is another
integer such that T is L simplexes away from the partial boundary ∂Ω\Ωi in the
opposite direction of vi. Then there exists a positive constant K > 0 independent
of L and σ ∈ (0, 1) such that

(2.16) |Si(v)| ≤ K(L+ 1)σk.

Proof. It is easy to see from the construction of Gi above that Gi is only supported
over Ωi. Since Ωi ⊂ Ω and Ωi ̸= Ω, Gi has e-locality. That is, Gi decays to zero
outside of Ωi. We only need to show that Si,0 = Si − Gi has e-locality. According

the assumptions, stark(T )∩Ωi = ∅. By (1.10), we use Si,0 for g in Theorem 2.4 and
use (1.10) to have

⟨g, w⟩W := ⟨∇Si,0,∇w⟩ = −⟨∇Gi,∇w⟩ = 0,

for all w ∈ W with sup(w) ⊆ stark(T ). Therefore, we can use the result from
Theorem 2.4 above to conclude that there exists a positive number σ ∈ (0, 1) such
that

(2.17) ∥∇Si,0 · χT ∥ ≤ Cσk∥∇Si,0∥.
We now show ∥Si,0∥∞ can be bounded by the left-hand side of (2.17). To do

so, let us use induction on L ≥ 1. If L = 1, then T is one simplex away from
the partial boundary ∂Ω\Ωi in the opposite direction of vi. Let v ∈ T ∩ T2 and
u ∈ T2 ∩ (∂Ω\Ωi). That is, u on the partial boundary and hence Si,0(u) = 0. By
Taylor expansion with remainder, we have

0 = Si,0(u) = Si,0(v) +∇Si,0(w)(u− v)

for a point w ∈ T in the line segment between u and v. It follows that

|Si,0(v)| = |∇Si,0(w)(u− v)| ≤ |△|∥∇Si,0∥∞,T2 ≤ C∥∇Si,0∥L2(T2) = C∥∇Si,0 · χT2∥

by Theorem 1.1 of [29] over triangle T2. Similarly, we have the same estimate for
polynomials over simplex T in Rd if d > 2. We now use (2.17) to conclude

|Si,0(v)| ≤ Cσk∥∇Si,0∥.
As ∥∇Si,0∥ = ∥∇(Si − Gi)∥ is very close to ∥∇(ϕi − Gi)∥ by (1.11), there exists a
constant K > 0 dependent on ∇ϕi such that

|Si,0(v)| ≤ Cσk∥∇Si,0∥ ≤ Cσk∥∇(Si − ϕi)∥+ Cσk∥∇(ϕi −Gi)∥ ≤ Kσk.

Hence, |Si(v)| = ∥Si,0(v)| ≤ Kσk.
Next assume that when T is (L− 1)-simplex away from the partial boundary of

Ω in the opposite direction of vi, we have the desired estimate. Let us consider
the case when T is L-simplex away from the partial boundary of Ω in the opposite
direction of vi. Let uL ∈ TL be the intersection of TL and TL+1 and TL+1 intersects
the partial boundary. By the argument above, we have

|Si,0(uL)| ≤ Kσk+ℓL .
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for an integer ℓL with ℓL ≥ 0. For uj ∈ Tj ∩Tj+1 with j = 1, . . . , L−1 with u1 = v,
we use Taylor expansion again to have

Si,0(uj) = Si,0(uj+1) +∇Si,0(w)(uj − uj+1)

for an appropriate w ∈ Tj . It follows that

|Si,0(uj)| ≤ |Si,0(uj+1)|+ |△|∥Si,0∥∞,Tj ≤ |Si,0(uj+1)|+ C∥∇Si,0∥L2(Tj)

by Theorem 1.1 of [29] again and

|Si,0(v)| ≤ · · · ≤ Kσk+ℓL +

L∑
j=1

C∥∇Si,0∥L2(Tj).

As Tj is in the opposite direction of vi, similar to (2.17), we have ∥∇Si,0∥L2(Tj) ≤
Cσk+ℓj∥∇Si,0∥. We put these inequalities together to have the desired result follows.
We have thus completed the proof. □

When Si is a GBC function over a rectangular domain Ω, the above arguments
show that Si satisfies the decay problem (2.16) although Si decays linearly. We can
say that Si decays in the sense of (2.15). Except for this pathological example, the
GBC functions have indeed e-locality as shown in Example 2.7, i.e. Figures 8 and 9
and numerical experiments the researchers and practitioners have already observed.

Example 2.7. Consider a quadrilateral and a triangulation △ shown on Figure 7

Figure 7. A triangulation of polygon Ω with boundary vertices

We use S1
5(△) to approximate harmonic GBC functions. There are 32 GBC func-

tions associated with boundary vertices shown in red in Figure 7. For convenience,
we show 6 of them to illustrate that these functions clearly have e-decay property.

From graphs above, we clearly see the e-decay property of various spline harmonic
GBC functions. Similar for other 26 GBC functions Si which are not shown here.

Next we show the e-locality of spline harmonic function Ri. Let ωi be the support

of function hi and Ω̃i be the union of all star1(t), t ∈ ωi. Similar to Si, we have

Theorem 2.8. Let v ∈ Ω be a point in Ω which is not in Ω̃i. Let T ∈ △ contain

v, i.e. v ∈ T . Suppose that k ≥ 1 is an integer such that stark(T ) ⊂ Ω̃ci , the

complement of Ω̃i in Ω. Suppose that T is L simplexes away from the boundary ∂Ω
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Figure 8. Spline Approximation of Various Harmonic GBC Func-
tions on the Boundary of a Polygon.

Figure 9. Spline Approximation of Various Harmonic GBC Func-
tions on the Boundary of a Polygon

opposite to vi. Then there exists a positive constant K > 0 independent of L and
σ ∈ (0, 1) such that

(2.18) |Ri(v)| ≤ K(L+ 1)σk.

Proof. For any triangle T ∈ Ω\Ω̃i, we know stark(T ) ∩ Ω̃ = ∅. By (6.1), we use Ri
for g in Theorem 2.4 and (2.12) to have

⟨g, w⟩W := ⟨∇Ri,∇w⟩ = ⟨hi, w⟩ = 0,

for all w ∈ W with sup(w) ⊆ stark(T ). Therefore, it follows from Theorem 2.4 that
there exists a positive number σ ∈ (0, 1) such that

(2.19) ∥∇Ri · χT ∥ ≤ Cσk∥∇Ri∥.
Next we use induction on L ≥ 1. The argument is the same as the proof of Theo-
rem 2.6. We omit the detail here to complete the proof. □
Example 2.9. Consider a quadrilateral and a triangulation △ shown on Figure 7.
We use S1

5(△) to approximate interior-harmonic GBC functions. There are 49 GBC
functions associated with interior vertices shown in Figure 7. For convenience, we
show 6 of them in Figure 10 and 11, where these functions also have e-decay property.

From graphs above, we clearly see the e-decay property of various spline interior
harmonic GBC functions. Similar for remaining 43 GBC functions Ri which are
not shown here.

3. Local boundary and interior GBC functions

In this section, we explore the e-locality of GBC functions using a numerical
method. Mainly, it is interesting to know how small σ ∈ (0, 1) is. As the σ is
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Figure 10. Spline Approximation of Various Interior-Harmonic
GBC Functions over the Polygon

Figure 11. Spline Approximation of Various Interior-Harmonic
GBC Functions

small, it makes sense to use GBC functions supported over stark(v) to approximate
the GBC function with supporting vertex v for some fixed k ≥ 1. For convenience
we simply use a convex polygon(as shown on the left in Figure 12) to numerically
compute a spline approximation of GBC functions (boundary and interior) globally
and locally, respectively based on the computational triangulation (the right as
shown in Figure 12). That is, for each boundary vertex (the red points given in
Figure 12), we compute the standard GBC functions. For each interior vertex
(the vertices inside the polygon on the left graph), we compute the interior GBC
function. Here we say k-local GBC functions if the GBC function with supporting
vertex v is computed based on the stark(v) for each k ≥ 1. In general, we should
use k ≥ 2. Fix a boundary vertex vi with i ∈ VB. Let ti be a triangle in △ with vi

Figure 12. A triangulation of polygon Ω with boundary vertices
and its refinement

as one of its vertex. For each ring number k ≥ 1, let Vk, Tk be the triangulation of
stark(ti) shown in Figure 13.
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Figure 13. Various stark(t0) for k = 1, 2, 3

Let us first show how to compute a boundary GBC locally. Fix k ≥ 1. Let
us compute Sk(ϕi) over the triangulation △k = ∪t∈Tkt at the boundary vertex vi.
Then we compare the accuracies of the local GBC functions against the global GBC
function supporting at vi. In Figure 14, we show the (global) GBC function and
its local versions, where t0 := vi.

Figure 14. A GBC function and its local versions over stark(t0) for
k = 2, 3, . . . , 6.

Based on those 10,201 equally-spaced points of the bounding box of the polygon
which fall into the polygon, we compute the maximum errors of these local GBC
approximations shown in Figures 14 against the global GBC. These maximum errors
are presented in Table 1. From the ratios in Table 1, we can see that the rate of

Table 1. Local Approximations of Si

no. of rings max errors rates
2 0.0132
3 0.0072 0.5455
4 0.0042 0.5833
5 0.0024 0.5714
6 0.0011 0.4583
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decay is about 0.5. These numerical results show that we can use local GBCs to
replace the (global boundary) GBCs for various applications of GBC functions such
as polygonal domain deformation. This will result a great saving of computational
time when a polygonal domain is complicated such as the domain of a giraffe or a
crocodile. Indeed, due to the sensitivity of human eye, an error of 0.0011 over a
graph/image will not be detected by a normal humanbeing.

Similarly, we can compute local GBC approximations for each interior GBC func-
tion Ri = Sψi

. For each interior vertex vi, we let stark(vi) be the k-th disk of
triangles sharing the vertex vi.

Figure 15. An interior GBC function and its local versions over
stark(vi) for k = 4, k = 5, and k = 6.

The maximum errors of these local GBC approximations shown in Figures 14
against the global GBC are given in Table 2. Again, we compute the errors based
on those 10,201 equally-spaced points of the bounding box of the polygon which
fall into the polygon. From the Table 2, we can see that the averaged decay rate is
about 0.68.

Table 2. Local Approximations of Ri

no. of rings max errors rates
2 0.002500
3 0.001800 0.72
4 0.001200 0.66
5 0.000843 0.70
6 0.000559 0.66

Due to the e-locality of these harmonic GBC functions, we can use k-local GBC
functions to approximate the globally GBC functions for an integer k = 2, 3, 4, . . ..

4. Numerical approximation of the Poisson equation

We now use these boundary-GBC and interior GBC functions to approximate
the solution to the Poisson equation. In this section, we use a simple domain to
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demonstrate that these GBC functions can indeed be used for numerical solution
of PDE. Besides the domain in the previous section, we also use the convex domain
as shown in Fig 12.

We shall test our method for Poisson equations with various right-hand sides:

(4.1)

{
−∆u = f, x ∈ Ω

u = g, x ∈ ∂Ω,

where f and g are computed based on testing functions

• case 1 u = 1/(1 + x2 + y2),
• case 2 u = x2 + 3y3 + 4xy,
• case 3 u = x4 + y4,
• case 4 u = sin(x) exp(y) and
• case 5 u = 10 exp(−x2 − y2).

Our method is to use a continuous piecewise linear spline based on the triangulation
shown in Figures 7 and 12 to approximate f and piecewise linear spline on ∂Ω to
approximate g. Then the GBC approximation of the solution u is given by

(4.2) ugbc =
∑
i∈VB

g(vi)ϕi +
∑
j∈VI

f(vj)ψj ,

where VB and VI are the index set of the boundary vertices and the index set of
interior vertices of the triangulation shown in Figure 7 or Figure 12, respectively.
We use bivariate spline functions in S1

5(△) to approximate ϕi and ψj . To have a
good approximation, we refine the triangulation shown in Figure 7 and Figure 12
once and then compute spline approximation of these two types of GBC functions.
That is, we have

(4.3) Lu =
∑
i∈VB

g(vi)Sϕi +
∑
j∈VI

f(vj)Sψj
,

We now show that Lu is a good approximation of u. That is, we are now ready
to present a proof of Theorem 1.3.

Proof of Theorem 1.3. First of all, let su be the finite element approximation of u
over the simplicial partition △. It is well-known that ∥∇(u−su)∥ = O(|△|) (cf. [9]).
Note that su|∂Ω = Lu|∂Ω. It follows that

∥∇(u− Lu)∥2 = ⟨∇(u− Lu),∇(u− su)⟩+ ⟨∇(u− Lu),∇(su − Lu)⟩.

We first use Cauchy-Schwarz inequality to the first term on the right to have

|⟨∇(u− Lu),∇(u− su)⟩| ≤ ∥∇(u− Lu)∥∥∇(u− su)∥ = O(|△|)∥∇(u− Lu)∥.

Then we use the Green identity to the second term on the right to have

⟨∇(u−Lu),∇(su−Lu)⟩ = −⟨∆(u−Lu), su−Lu⟩ = ⟨f−Hf , su−u⟩+⟨f−Hf , u−Lu⟩

since ∆Lg = 0. Note that Hf is a continuous piecewise linear approximation of
f . Since Hf is a good approximation of f , ∥f − Hf∥ = O(|△|2) by the given
assumption, we have

|⟨f −Hf , su − u⟩| ≤ ∥f −Hf∥∥su − u∥ = O(|△|3)
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and

|⟨f −Hf , u− Lu⟩| ≤ ∥f −Hf∥(∥u∥+ ∥Lu∥) ≤ C(|△|2)
as ∥Lu∥ ≤ ∥Lf∥+ ∥Lg∥ = ∥f∥L2(Ω) + ∥g∥L∞(∂Ω) +O(|△|2), where we have used the
GBC property of Sϕi ’s and the constant C is dependent on ∥u∥L2(Ω), ∥f∥L2(Ω), and
∥g∥L∞(∂Ω).

Combining the above estimates, we have

∥∇(u− Lu)∥2 ≤ O(|△|)∥∇(u− Lu)∥+O(|△|3) + C(|△|2).

In other words, when |△| small enough, we have

(∥∇(u− Lu)∥ −O(|△|))2 ≤ O(|△|2) +O(|△|3) + C(|△|2)

or ∥∇(u− Lu)∥ ≤ O(|△|). These complete the proof. □

Remark 4.1. When the domain Ω is of uniformly positive reach (cf. [17] and [28]),
we know the solution u of the Poisson equation is in H2(Ω) when u|∂Ω = 0 and
hence,

(4.4) ∥∆(u− Lu)∥L2(Ω) = ∥f −∆Lf∥L2(Ω) = ∥f −
∑

vi∈△◦

f(vi)hi∥L2(Ω) = O(|△|).

Following the argument in [28], there is a positive constant C > 0 such that

(4.5) ∥u− Lu∥H2(Ω) ≤ C∥∆(u− Lu)∥L2(Ω),

where ∥ · ∥H2(Ω) is the standard H2 norm in H2(Ω).

Next we report our numerical results on the approximation of Lu to u. We use
cases 1 through 5 to denote these testing functions mentioned above. To see how well
our method can approximate the exact solution, we present the maximum errors of
the GBC solution against the exact solution. In addition,we compare our numerical
results with the numerical results from the standard finite element method (i.e.
continuous linear finite element method). For simplicity, we compare the maximum
error of the numerical solutions from both method against the exact solution, where
the maximum errors are computed based on 1, 000 × 1, 000 equally spaced points
of the bounding box of the domain Ω which are located inside and on the Ω. See
Tables 3 and 4.

Table 3. Numerical Approximation of Lu over a Nonconvex
Quadrilateral

GBCmethod FEM
case 1 0.0179 0.0171
case 2 0.3644 0.3827
case 3 0.3812 0.3506
case 4 0.0610 0.0610
case 5 0.1898 0.1824

In addition, we refine the triangulation used to generate the numerical approxi-
mation in Table 4 twice and compute the maximum errors again. The results are
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Table 4. Numerical Approximation of Lu over a Convex Quadri-
lateral

GBCmethod FEM
case 1 0.0188 0.0158
case 2 0.2444 0.5015
case 3 0.1911 0.2063
case 4 0.0175 0.0285
case 5 0.2076 0.1726

Table 5. Numerical Approximation of Lu over a Triangulation (the
first row of each case) and its Refinement (the second row of each
case)

GBCmethod FEM
case 1 0.00566 0.00439

0.00155 0.00111
case 2 0.06955 0.14491

0.01956 0.03888
case 3 0.05576 0.05542

0.01524 0.01433
case 4 0.00451 0.00737

0.00112 0.00185
case 5 0.05966 0.04446

0.01596 0.01109

given in Table 5. Note that two methods yield similar numerical results. For cases
2 and 4, our GBC method is more accurate.

From these tables, we can see that the maximum errors of GBC approximation
Lu are similar to the finite element solutions. These verify Theorem 1.3 numerically.
Thus, Lu can indeed be used to approximate the solution of the Poisson equation.
If the coefficients of these Sϕi and Sψj

can be precomputed and stored, then the
computational time for numerical solution of the Poisson equation for any right-
hand side and boundary condition will be greatly reduced. This gives a flexibility
of solving the Poisson equation, e.g. it allows a modification of a few places in the
boundary condition and/or a few places in the right-hand side to obtain updates
of the solution straightforwardly instead of repeatedly solving the system of linear
equations again. Furthermore, if each GBC function Sϕi or Sψj

is approximated
by using its k-local versions for small k, say k ≤ 6 and all of them are computed
individually using a GPU simultaneously, the computational time for numerical
solution of the Poisson equation will be even reduced if the computational domain
for each k-local GBC function is smaller than a quarter of the entire domain in the
2D setting.
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5. Conclusions

In this paper, we define a new type of GBC functions which are called interior-
GBC functions based on harmonic equations. Also, we have demonstrated the
e-locality of these GBC functions. That is, we showed that each GBC function
decays to zero away from its supporting vertex as explained in Theorem 2.6 and
Theorem 2.8. The proofs are based on a nice result from [30] and [18] on the decay
of locally supported spline functions. Furthermore, we showed that the solution to
the Poisson equation can be approximated by using the both GBC functions. One
can even use the k-local version of these GBC functions to approximate the solution
to Dirichlet problem of the Poisson equation. With a help of GPU processes, one
can solve the Poisson equation more efficiently in the sense that we use a computer
with a lot of GPUs to solve the Poisson equation for all Si, Ri. Once these solutions
are done, for any right-hand side f and boundary condition g, we simply use the
linear combination

m∑
i=1

f(vi)Ri +

N∑
i=1

g(vi)Si

to have a numerical solution without solving any system of linear equations any
more.

6. Appendix

In this Appendix, we mainly justify the approximation of Si = Sϕi of GBC
function ϕi with supporting vertex vi for i ∈ VB. From (1.1), we know that ϕi
satisfies the following weak formulation:

(6.1) ⟨∇ϕi,0,∇ψ⟩ = −⟨∇Gi,∇ψ⟩, ∀ψ ∈ H1
0 (Ω),

where ϕi,0 = ϕi −Gi. Together with (1.10), we have

(6.2) ⟨∇(ϕi,0 − Si,0),∇ψ⟩ = 0, ∀ψ ∈ Srn(△) ∩H1
0 (Ω).

Let Bϕi ∈ Srn(△) be the best approximation of ϕi in the spline space Srn(△) satis-
fying the boundary condition Bϕi = Gi on ∂Ω. It follows that

∥∇(ϕi − Sϕi)∥
2 = ⟨∇(ϕi − Sϕi),∇(ϕi − Sϕi)⟩

= ⟨∇(ϕi,0 − Si,0),∇(ϕi −Bϕi)⟩
≤ ∥∇(ϕi − Sϕi)∥∥∇(ϕi −Bϕi)∥(6.3)

by using (6.2). That is,

∥∇(ϕi − Sϕi)∥ ≤ ∥∇(ϕi −Bϕi)∥.
The computation of the quasi-interpolatory formula in [29] shows that we have
∥∇(ϕi −Bϕi)∥ ≤ Cϕi |△|d. Therefore, we have (1.11). Hence, we have (1.12).
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