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anisotropic structures occur, since we have (in the simplest case) one derivative in
time but two derivatives in space. Therefore, anisotropic Besov spaces might be
reasonable choices for the regularity spaces. First results for the heat equation have
been obtained by Aimar and Gomez [3]. The results in this very interesting paper
rely on a certain interpolation technique in scales with p > 1, which naturally limits
the applicability of their approach. Therefore, in this paper, we follow a different
line: In the meantime, it has turned out that a very efficient way to establish Besov
regularity for the solution to a PDE is first to study the regularity in weighted
Sobolev spaces, the so-called Kondratiev spaces [9]. The reason is that very sharp
embeddings of Kondratiev spaces into Besov spaces habe been derived. The whole
program has, e.g., very efficiently been carried out in [8, 23]. Usually, Kondratiev
spaces can be used for a very precise description of the singularities of the solutions.
For our purposes, clearly anisotropic Kondratiev spaces are needed. Therefore, in
our setting, the following tasks have to be solved:

• Define suitable anisotropic Kondratiev spaces and establish embeddings into
anisotropic Besov spaces.

• Establish anisotropic Kondratiev regularity for the problem under consider-
ation.

In our case, we define the anisotropic Kondratiev spaces simply by means of
anisotropic weigths, whereas the anisotropic Besov spaces are defined by tensor
products of differently scaled wavelets, where the scaling is compatible with the
anisotropy. In this setting, the desired embedding is possible and constitutes our
first main result Theorem 4.1. Moreover, we show that for the heat equation the
regularity problem in anisotropic Kondratiev spaces is solvable. Combining these
facts yields our second main result formulated in Theorem 5.3.
This paper is organized as follows: In Section 2 we recall the notation used through-
out the paper. Section 3 is dedicated to anisotropic function spaces and their rela-
tions. In particular, we deal with anisotropic Sobolev and Besov spaces. Moreover,
we introduce anisotropic Kondratiev spaces and study in Section 4 their relations
with anisotropic Besov spaces via embeddings. Finally, in Section 5 we use our ob-
tained results in order to investigate the regularity of solutions of the heat equation
in anisotropic Besov spaces and compare the outcome with the results from [3].

2. Preliminaries

We collect some notation used throughout the paper. As usual, we denote by N
the set of all natural numbers, N0 = N∪{0}, and Rd, d ∈ N, the d-dimensional real
Euclidean space with |x|, for x ∈ Rd, denoting the Euclidean norm of x. By Zd we
denote the lattice of all points in Rd with integer components. For a ∈ R, let ⌊a⌋
denote its integer part and a+ := max(a, 0).
Moreover, c stands for a generic positive constant which is independent of the main
parameters, but its value may change from line to line. The expression A ≲ B
means that A ≤ cB. If A ≲ B and B ≲ A, then we write A ∼ B.

Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding is bounded. By supp f we denote the support of the function f .
Moreover, S(Rd) denotes the Schwartz space of rapidly decreasing functions. The
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set of distributions on Ω will be denoted by D′(Ω), whereas S ′(Rd) denotes the set
of tempered distributions on Rd. The terms distribution and generalized function
will be used synonymously. Furthermore, let f̂ stand for the Fourier transform on
S ′(Rd) with inverse f∨.

For the application of a distribution u ∈ D′(Ω) to a test function ϕ ∈ D(Ω)
we write (u, ϕ). The same notation will be used if u ∈ S ′(Rd) and ϕ ∈ S(Rd)
(and also for the inner product in L2(Ω)). For u ∈ D′(Ω) and a multi-index α =
(α1, . . . , αd) ∈ Nd0, we write Dαu for the α-th generalized or distributional derivative
of u with respect to x = (x1, . . . , xd) ∈ Ω, i.e., Dαu is a distribution on Ω, uniquely
determined by the formula

(Dαu, ϕ) := (−1)|α|(u,D(α)ϕ), ϕ ∈ D(Ω),

where D(α) stands for the corresponding classical derivative. In particular, if u ∈
L1
loc(Ω) and there exists a function v ∈ L1

loc(Ω) such that∫
Ω
v(x)ϕ(x)dx = (−1)|α|

∫
Ω
u(x)D(α)ϕ(x)dx for all ϕ ∈ D(Ω),

we say that v is the α-th weak derivative of u and write Dαu = v. We also use

the notation ∂k

∂xkj
u := Dβu as well as Dk

j u :=∂xkj
u := Dβu, for some multi-index

β = (0, . . . , k, . . . , 0) with βj = k, k ∈ N.

3. Anisotropic function spaces

Compared to classical (isotropic) function spaces, the smoothness properties of
an element in an anisotropic function space depend on a chosen direction in Rd. In
order to capture this phenomenon, let us fix throughout the paper an anisotropy
a = (a1, . . . , ad) ∈ Rd+ normalized by

(3.1)

(
1

a1
+ . . .+

1

ad

)
= d.

Moreover, we denote by

(3.2) |x|a :=

d∑
j=1

|xj |aj , x = (x1, . . . , xd) ∈ Rd,

the anisotropic pseudo-distance corresponding to a.

3.1. Anisotropic Sobolev spaces. Let O ⊂ Rd be a domain, 1 < p < ∞, and
ℓ = (l1, . . . , ld) ∈ Nd0. Then
(3.3)

W ℓ
p (O) =

{
f ∈ Lp(O) : ∥f |W ℓ

p (O)∥ := ∥f |Lp(O)∥+
d∑
i=1

∥∥∥∥∥∂lif∂xlii

∣∣∣Lp(O)

∥∥∥∥∥ <∞

}
is an anisotropic Sobolev space. If l1 = . . . = ld = l, then W ℓ

p (O) = W l
p(O) is

the usual (isotropic Sobolev space). We see that in contrast to the usual Sobolev
spaces, the smoothness properties of an element of an anisotropic Sobolev space
depend in general on the chosen direction in Rd. For α = αa with α ∈ R and a
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as in (3.1), corresponding anisotropic Bessel potential spaces Hα(Rd) (=Hαa(Rd))
can be defined via

Hαa(Rd) :=
{
f ∈ L2(Rd) : ∥f |Hαa(Rd)∥ :=

∥∥∥(1 + |ξ|2a)α/2f̂(ξ)|L2(Rd)
∥∥∥ <∞

}
.

Remark 3.1. For the regularity studies in [3] the authors were mainly interested
in solutions of the homogeneous heat equation ∂tu − ∆u = 0. Therefore, special
attention was paid to the anisotropic Sobolev spaces W 2,1

p (Ω) normed by∥∥u|W 2,1
p (Ω)

∥∥ := ∥u|Lp(Ω)∥+
d∑
i=1

∥∥∥∥ ∂

∂xi
u
∣∣∣Lp(Ω)∥∥∥∥

+
d∑

i,j=1

∥∥∥∥ ∂2

∂xi∂xj
u
∣∣∣Lp(Ω)∥∥∥∥+ ∥∥∥∥ ∂∂tu∣∣∣Lp(Ω)

∥∥∥∥ ,
defined on the space-time cylinder Ω = D× [0, T ], where D ⊂ Rd is some Lipschitz
domain. In particular, these spaces coincide with our anisotropic Sobolev spaces
W ℓ
p (O) if we replace O ⊂ Rd by Ω ⊂ Rd+1 in (3.3) and put ℓ = (2, . . . , 2, 1) ∈ Nd+1

0 .

3.2. Anisotropic Besov spaces, wavelet decompositions. We first recall the
definition of anisotropic Besov spaces on Ω ⊂ Rd. Whenever f is a function in Ω,
we denote by ∆k

hf the difference of order k ≥ 1 and step h ∈ Rd, defined iteratively
via

(∆Ω
h f)(x) =

{
f(x+ h)− f(x), if x, x+ h ∈ Ω

0, otherwise

}
and (∆k,Ω

h f)(x) = ∆Ω
h (∆

k−1,Ω
h f)(x), x ∈ Ω.

If k = (k1, . . . , kd) is a multi-index with ki ≥ 0, we define the iterated difference of
order k by

∆k,Ω
h f(x) =

(
∆k1,Ω
h1e1

◦ · · · ◦∆kd,Ω
hded

f
)
(x),

where e1, . . . , ed denotes the canonical basis of Rd. Moreover, let α = αa =
(α1, . . . , αd) with α > 0, a as in (3.1) and let 0 < p, q <∞. We say that f ∈ Lp(Ω)
belongs to the anisotropic Besov space Bα

p,q(Ω) if the semi-norm

|f |Bα
p,q(Ω) =

d∑
i=1

(∫ ∞

0
tαi∥∆ki,Ω

tei
f |Lp(Ω)∥q

dt

t

)1/q

is finite (here ki are integers such that ki > αi, i = 1, . . . , d). Moreover, the norms

∥f |Bα
p,q(Ω)∥ := ∥f |Lp(Ω)∥+ |f |Bα

p,q(Ω),

are known to be equivalent for any choice ki > αi. Finally, the isotropic Besov spaces
Bs
p,q(Ω) are nothing but Bα

p,q(Ω) if α = (s, . . . , s). For our studies below it will be
convenient to use another approach and define anisotropic Besov spaces Bαa

p,q(Ω) via
wavelet decompositions, valid for the whole range 0 < p, q < ∞. In particular, our
wavelet approach is based on compactly supported wavelets and a dilation adapted
to the anisotropy of the spaces. Such a characterization of anisotropic Besov spaces
was developed in [15] with the forerunners [16, 18]. Note that we adapt the results



ANISOTROPIC BESOV REGULARITY OF PARABOLIC PDES 461

presented there according to our needs. The wavelet system we are looking for will
be dilated by a matrix M , where

(3.4) M := diag
(
λ1/a1 , . . . , λ1/ad

)
for some λ > 1,

which is ’compatible’ with the anisotropy a in the sense that one recovers the correct
homogeneity over Besov semi-norms, i.e.,

| detM |1/p|f(M ·)|Bαa
p,q

= λα|f |Bαa
p,q
.

In particular, also with this approach we recover the isotropic Besov spaces Bs
p,q(Ω)

based on dyadic dilations by setting a1 = . . . = ad = 1, α = s, and λ = 2.

We briefly recall our wavelet approach based on multi-resolution analysis: For
our definition of the anisotropic Besov spaces, we will use compactly supported
wavelets constituting Riesz-bases in L2(R) that are obtained by dilating, translating
and scaling a fixed function, the so–called mother wavelet ψ. This mother wavelet
is usually constructed by means of a multiresolution analysis (MRA) that is, a
sequence {Vj}j∈Z of shift-invariant, closed subspaces of L2(R) whose union is dense
in L2 while their intersection is trivial. Moreover, all the spaces are related via
dilation, and the space V0 is spanned by the translates of a fixed function φ, called
the generator or father wavelet. We put ψ0 := φ and ψ1 := ψ and denote by U the
nontrivial vertices of the square [0, 1]d. Then by taking tensor products, i.e.,

ψu(x1, . . . , xd) :=

d∏
j=1

ψuj (xj), u = (u1, . . . , ud) ∈ U,

a compactly supported basis for L2(Rd) can be constructed. In contrast to the
isotropic case our wavelets are constructed such that they are well adapted to the
anisotropy a, which is achieved by using the diagonal dilation Matrix M from (3.4)
compatible with a. For this reason we will call them M -wavelets in the sequel.

The existence of compactly supported scaling functions (and wavelets) for an
arbitrary dilation matrix M is a delicate matter. Concrete examples when M has a
relatively simple form can be found in [4,17,19]. However, since we consider tensor
products of wavelets the situation simplifies considerably in our context. In this case
M is diagonal and we only dilate differently in different directions. Additionally,
we may assume that M is integer valued and put m = | detM | = λd. Note that
from the discussion in [16, Sect. 3.3] it follows that this is not a severe restriction
in our construction since for all anisotropies a ∈ Qd

+ there exists a number λ > 1

such that λ1/a1 , . . . , λ1/ad ∈ N.
We now explain what we call an admissible biorthogonal M -wavelet bases in the

sequel. For the precise construction we refer to [15, 16]. Let φ be a compactly
supported scaling function, the father wavelet, of tensor product type on Rd having
sufficiently high smoothness and let Ψ′ = {ψi : i = 1, . . . ,m − 1} be the set
containing the corresponding multivariate mother wavelets such that, for a given
L ∈ N with L > d/2 and some N > 0 the following requirements hold: For all
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ψ ∈ Ψ′,

supp φ, supp ψ ⊂ [−N,N ]d,(3.5)

φ, ψ ∈ HLa(Rd),(3.6)

ψ ⊥ ΠL−1 := span
{
xℓ = xl11 · · ·xldd : |ℓ| = l1 + . . .+ ld ≤ L− 1

}
.(3.7)

In particular, (3.7) tells us that the mother wavelets ψ are orthogonal to the poly-
nomials ΠL−1 of order less than L, which is possible by the assumptions (3.5) and
(3.6), cf. [16, Prop. 3.3]. Moreover, by D+ we denote the set of all cuboids in Rd
with measure at most 1 of the form

D+ :=
{
I ⊂ Rd : I =M−j([0, 1]d + k), j ∈ N0, k ∈ Zd

}
and we set Dj := {I ∈ D+ : |I| = λ−jd}. For the shifts and dilations of the father
wavelet and the corresponding wavelets we use the abbreviations

(3.8) φk(x) := φ(x− k) and ψI(x) := | detM |j/2ψ(M jx− k),

where j ∈ N0, k ∈ Zd, ψ ∈ Ψ′, and I =M−j([0, 1]d + k) ∈ D+. It follows that{
φk, ψI : k ∈ Zd, I ∈ D+, ψ ∈ Ψ′

}
is a Riesz basis in L2(Rd). Furthermore, we assume that there exists a dual basis

also constructed by means of an MRA {Ṽj}j∈Z, i.e., functions φ̃ and ψ̃ ∈ Ψ̃
′
= {ψ̃i :

i = 1, . . . ,m− 1} satisfying

⟨φ̃k, ψI⟩ = ⟨ψ̃I , φk⟩ = 0,(3.9)

⟨φ̃k, φl⟩ = δk,l (Kronecker symbol),(3.10)

⟨ψ̃I , ψI′⟩ = δI,I′ .(3.11)

The dual Riesz basis should fulfil the same requirements as the primal Riesz basis,
i.e.,

supp φ̃, supp ψ̃ ⊂ [−N,N ]d,(3.12)

φ̃, ψ̃ ∈ HLa(Rd),(3.13)

ψ̃ ⊥ ΠL−1.(3.14)

Denote by Q(I) some cuboid (of minimal size) such that supp ψI ⊂ Q(I) for
every ψ ∈ Ψ′. Then we may assume that Q(I) = M−jk +M−jQ for some cuboid
Q. Put Λ′ = D+ ×Ψ′. Then every function f ∈ L2(Rd) can be written as

f =
∑
k∈Zd

⟨f, φ̃k⟩φk +
∑

(I,ψ)∈Λ′

⟨f, ψ̃I⟩ψI .

It will be convenient to include φ into the set Ψ′. We use the notation φI := 0 for
|I| < 1, φI = φ(· − k) for I = k + [0, 1]d, and can simply write

(3.15) f =
∑

(I,ψ)∈Λ

⟨f, ψ̃I⟩ψI , Λ = D+ ×Ψ, Ψ = Ψ′ ∪ {φ}.
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The two systems {φk, ψI}k,I and {φ̃k, ψ̃I}k,I constructed as above are said to
be a pair of admissible biorthogonal M -wavelet bases and they may be used to
obtain decompositions of many classical function spaces. In particular, according
to [15, Thm. 1.2] and [16, Thm. 1.2] anisotropic Besov spaces on Rd can be char-
acterized by decay properties of the wavelet coefficients, if the parameters fulfill
certain conditions. This characterization motivates the following definition.

Definition 3.2 (Anisotropic Besov spaces, wavelet decompositions).
Let α = (α1, . . . , αd) ∈ Rd+ and 0 < p, q < ∞. Moreover, let α = αa, where
α > max {0, d(1/p− 1)} and the anisotropy a is normalized as in (3.1). Let M be a

dilation matrix compatible with a. We assume that {φk, ψI}k,I and {φ̃k, ψ̃I}k,I is a

pair of biorthogonal admissibleM -wavelet bases with φ, φ̃, ψ, ψ̃ ∈ HLa(Rn) for some
integer L > max{d/2, α1, . . . , αn}. Then the Besov space Bαa

p,q(Rd) (= Bα
p,q(Rd)) is

defined as the set of all functions f ∈ Lp(Rd) satisfying

(3.16) f =
∑
k∈Zd

⟨f, φ̃k⟩φk +
∑

(I,ψ)∈Λ′

⟨f, ψ̃I⟩ψI

(convergence in S ′(Rd)) with

∥f |Bαa
p,q(Rd)∥ ∼

∑
k∈Zd

|⟨f, φ̃k⟩|p
1/p

+

 ∞∑
j=0

| detM |j
(

α
d
+( 1

2
− 1

p
)
)
q

 ∑
(I,ψ)∈Dj×Ψ′

|⟨f, ψ̃I⟩|p
q/p


1/q

<∞.(3.17)

Remark 3.3. (i) In particular, for the adaptivity scale Bαa
τ,τ (Rd) with α =

d
(
1
τ − 1

p

)
, we see that the quasi-norm (3.17) becomes

∥f |Bαa
τ,τ (Rd)∥ ∼

∑
k∈Zd

|⟨f, φk⟩|τ
1/τ

+

 ∞∑
j=0

| detM |j
(

1
2
− 1

p

)
τ

∑
(I,ψ)∈Dj×Ψ′

|⟨f, ψI⟩|τ
1/τ

.

(ii) From [16, Thm. 1.2] we deduce that Bαa
p,q(Rd) = Bαa

p,q(Rd) for the range of
parameters

α > 0, 1 ≤ p, q <∞,

whereas [15, Thm. 1.2] additionally covers the case

Bαa
τ,τ (Rd) = Bαa

τ,τ (Rd), α > max

{
0, d

(
1

τ
− 1, 0

)}
,

1

τ
=
α

d
+
1

p
, 0 < τ <∞.

Thus, we see that the range of spaces we consider in Definition 3.2 is larger.
The restriction α > max {0, d(1/p− 1)} is necessary since it guarantees that
our anisotropic Besov spaces considered in Definition 3.2 satisfy Bαa

p,q(Rd) ↪→
Lmax{1+ε,p}(Rd), see also [15, Cor. 5.4] in this context.
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(iii) Interpretation: From the above construction of the anisotropic spaces we
see that α describes mean smoothness and a measures the anisotropy.

(iv) If p = q = 2, then Bαa
2,2(Rd) coincides with the anisotropic Bessel potential

space, i.e., we have

(Bαa
2,2(Rd) =) Bαa

2,2(Rd) = Hαa(Rd).
Furthermore, if αa = ℓ = (l1, . . . , ld) is an integer-valued multi-index, one
recovers the anisotropic Sobolev spaces

(Bℓ
2,2(Rd) =) Bℓ

2,2(Rd) = Hℓ(Rd) =W ℓ
2 (Rd).

(v) As already mentioned before, we adapted the results from [15, 16, Thms.
1.2] slightly. In particular, we consider wavelets which form a biorthog-
onal basis for L2(Rd) instead of Lp(Rd) which leads to the weight factor

| detM |j
(

α
d
+( 1

2
− 1

p
)
)
regarding the decay of the wavelet coefficients ⟨f, ψ̃I⟩ in

(3.17) instead of | detM |
jα
d in [16, Thm. 1.2].

Moreover, the additional condition that φ, φ̃ ∈ HLa(Rd)∩Bα0a
p,q (Rd) for some

α0 > 0 can be circumvented by choosing L large enough. This can be seen as
follows: Since φ, φ̃ have compact support we deduce from the the definition
of the spaces that for p < 2, 0 < q ≤ ∞, and L > α0,

φ, φ̃ ∈ HLa(Rd) = BLa
2,2(Rd) ↪→ Bα0a

p,q (Rd).
For the case that 2 ≤ p we use [6, Thm. 18.4] and obtain

HLa(Rd) = BLa
2,2(Rd) ↪→ Bα0a

p,q (Rd) if L > α0 + d

(
1

2
− 1

p

)
.

(vi) In particular, if 1 ≤ p, q <∞ our anisotropic Besov spaces Bαa
p,q coincide with

the spaces from [15, 16]. Therefore, by [15, Cor. 5.3] we have the following
interpolation result:

(3.18)
(
Lp(Rd), Bαa

p,r(Rd)
)
θ,q

= Bθa
p,q(Rd), 0 < θ < 1, 0 < r <∞.

Corresponding function spaces on domains O ⊂ Rd can be introduced via restric-
tion, i.e.,

Bαa
p,q(O) =

{
f ∈ D′(O) : ∃g ∈ Bαa

p,q(Rd), g
∣∣
O = f

}
,

∥f |Bαa
p,q(O)∥ = inf

g|O=f
∥f |Bαa

p,q(Rd)∥.

3.3. Domains allowing extensions. In what follows we want to investigate
anisotropic function spaces on more general domains Ω ⊂ Rd. So far we introduced
anisotropic spaces on Rd, where a lot of the tools we need (in particular, wavelet de-
compositions of anisotropic Besov spaces) are available. Then corresponding spaces
on domains can be defined via restriction. Now, in order to truly establish our
results on domains Ω, we need an extension operator for our anisotropic spaces.
Such extensions of anisotropic spaces defined on Ω to the whole Rd are possible if
Ω satisfies what is called a strong r-horn condition. This is the proper counterpart
of the cone-conditions one is familiar with from the isotropic setting. In order to
explain this condition we need some notation. Let r = (r1, . . . , rd) be a vector with
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positive components. Suppose that 0 < ρ ≤ ∞, ε > 0, and b ∈ Rd with bi ̸= 0 for
i = 1, . . . , d. The set

V (r, ρ, ε,b) :=
⋃

0<ν<ρ

{
x :

xi
bi
> 0, ν <

(
xi
bi

)ri
< (1 + ε)ν for i = 1, . . . , d

}
is called an r-horn of radius ρ and opening ε.

The diagram aside illustrates r-
horns for different parameters r and
b in R2:

V1 = V
(
(1, 1), ρ, ε, (1, 1)

)
;

V2 = V
(
(1, 1), ρ, ε, (1, 2)

)
;

V3 = V
(
(2, 1), ρ, ε, (1, 1)

)
.

In particular, we see that in the
isotropic case (see V1 and V2 with
r1 = r2 = 1) the horn is just a
cone. If we have an anisotropy (see
V3 with r1 = 2 and r2 = 1) the dif-
ferent scaling exponent in the dif-
ferent directions causes the cone to
become a horn. Moreover, the vec-
tor b specifies the exact location of
the r-horn in the coordinate system
(compare V1 with b = (1, 1) with V2
where b = (1, 2)).

ρ

ρ

2ρ
V2

V1 V3

√

ρ

ερ

An open set Ω ⊂ Rd is said to satisfy a weak r-horn condition if there is a positive
integer N such that for each j ∈ {1, . . . , N}, there are open sets Ωj and an r-horn

Vj(r, ρ, ε,b
(j)) such that

(3.19) Ω =

N⋃
j=1

Ωj =

N⋃
j=1

(
Ωj + Vj(r, ρ, ε,b

(j))
)
.

The relation (3.19) expresses the fact that for any point x ∈ Ωj , if the horn

Vj(r, ρ, ε,b
(j)) is shifted parallel to itself in such a way that its vertex coincides

with x, then the resulting shifted horn lies in Ω. If, in addition, there exists δ > 0
such that

Ω =
N⋃
j=1

Ω
(δ)
j , where Ω

(δ)
j = {x ∈ Ωj : dist(x,Ω \ Ωj) > δ} ,

then Ω is said to satisfy a strong r-horn condition. Note that if r1 = r2 = . . . = rd,
every r-horn is a cone. It is possible in this case to show, cf. [21, p. 382], that the
concept of a domain having a Lipschitz boundary coincides with the concept of a
domain satisfying the r-horn condition.

The following theorem can be found in [5, Thm. 9.6] and [21, Thm. 2, p. 382].
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Theorem 3.4. Suppose Ω ⊂ Rd satisfies a strong r-horn condition and 1 ≤ p, q ≤
∞.

(i) Let 1 < p < ∞. Then W r
p (Ω) is the set of all functions which are the

restrictions to Ω of elements of W r
p (Rd). In particular, there is a bounded,

linear extension map E :W r
p (Ω) →W r

p (Rd).
(ii) Furthermore, Br

p,q(Ω) is the set of all functions which are the restrictions to

Ω of elements of Br
p,q(Rd). In particular, there is a bounded, linear extension

map E : Br
p,q(Ω) → Br

p,q(Rd).

In view of Remark 3.3(ii) we immediately obtain the following result.

Corollary 3.5. Suppose Ω ⊂ Rd satisfies a strong r-horn condition and 1 ≤ p, q <
∞. Then there is a bounded, linear extension map E : Br

p,q(Ω) → Br
p,q(Rd).

Remark 3.6. We provide examples of domains satisfying the (weak or strong)
r-horn condition: For d = 2, Ω = R2 as well as the rectangular parallelepiped

Ω = {(x1, x2) : |x1| < a, |x2| < b} ,
where a, b > 0, satisfy the strong r-horn condition for any r. Moreover, the disk

Q =
{
(x1, x2) : x

2
1 + x22 < 1

}
satisfies the weak r-horn condition only if 1

2r1 ≤ r2 ≤ 2r1 and the strong r-horn
condition only if r1 = r2.
Since in the isotropic case, a Lipschitz domain satisfies the strong r-horn condition
for any r = (r, . . . , r) from the product structure of the space-time cylinder Ω =
D × [0, T ] ⊂ Rd+1, where D ⊂ Rd is a bounded Lipschitz domain, we deduce that
Ω satisfies the strong r-horn condition for any r of the form r = (r, . . . , r, r2), where
r > 0.

Remark 3.7. The extension operator from Theorem 3.4 allows us to transfer many
results (such as embeddings, interpolation, etc.), which are known for anisotropic
spaces on Rd, to domains satisfying the horn condition. In particular, it allows us
to relate the regularity spaces

Bsp(Ω) :=
(
Lp(Ω),W

2,1
p (Ω)

)
s
2
,p
, 0 < s < 1, 1 < p <∞,

appearing in [3] (which for general s > 0 can be defined via the action of the
derivatives ∂t and ∂xjxi) to our spaces: According to [6, Thm. 18.9] for any Ω ⊂ Rd
satisfying an ℓ-horn condition we have the embedding

(3.20) Bℓ
p,min(p,2)(Ω) ↪→W ℓ

p (Ω) ↪→ Bℓ
p,max(p,2)(Ω).

Since the space-time cylinder Ω = D × [0, T ] satisfies the ℓ-horn condition for
arbitrary ℓ we deduce from (3.20) and (3.18) that

(3.21) Bsp(Ω) = B
s,...,s, s

2
p,p (Ω) = Bs̃a

p,p(Ω),

using the anisotropy

(3.22) a = (a1, . . . , ad+1) =

(
d+ 2

d
, . . . ,

d+ 2

d
,
1

2

d+ 2

d

)
=
d+ 2

d

(
1, . . . , 1,

1

2

)
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together with the mean smoothness s̃ = sd
d+2 . Moreover, choosing s = p = q = 2

and s̃ = 2d
d+2 yields the special case

(3.23) W 2...,2,1(Ω) = B
2d
d+2

a

2,2 (Ω).

3.4. Anisotropic Kondratiev spaces. In this section, we introduce anisotropic
Kondratiev spaces, which are special weighted anisotropic Sobolev spaces. The
corresponding isotropic spaces play a central role in the regularity theory for elliptic
PDEs on domains with piecewise smooth boundary, particularly polygons (2D) and
polyhedra (3D). For a systematic treatment and further references we refer to [9].
In particular, in the isotropic case the weight is often chosen to be a power of the
distance to the singular set of the boundary of a domain O ⊂ Rd, i.e., the set of
all points x ∈ ∂O for which for any ε > 0 the set ∂O ∩ Bε(x) is not smooth (here
Bε(x) denotes the open ball in Rd around a point x with radius ε > 0).
We adapt this idea and define now corresponding anisotropic Kondratiev spaces
using weights which constitute powers of the anisotropic distance based on (3.2) to
a singular set S ⊂ ∂O.

Precisely, let O ⊂ Rd be a domain and let S be a nontrivial closed subset of its
boundary ∂O. Furthermore, let 1 ≤ p < ∞, m= (m1, . . . ,md) = ma ∈ Nd0 where
the anisotropy a = (a1, . . . , ad) is normalized as in (3.1), and γ ∈ R. Then the
anisotropic Kondratiev space Km

p,γ(O) (=Kma
p,γ (O)) is the collection of all u ∈ D′(Ω)

such that

∥u|Kma
p,γ (O)∥ :=

 d∑
i=1

∑
αi≤mi

∫
O

∣∣(ρa(x))m−γDαi
i u(x)

∣∣p dx
1/p

<∞,

where ρa(x) = min(1, dista(x, S)) and dista denotes the anisotropic distance to
S ⊂ ∂Ω, i.e.,

dista(x, S) = inf
y∈S

|x− y|a with |x− y|a =
d∑
i=1

|xi − yi|ai .

Remark 3.8. Later on we want to compare our results with the ones obtained
in [3] on the space-time cylinder Ω = D × [0, T ]. In this context we remark that
the weight appearing in the gradient estimates in [3, Thm. 4] is comparable to our
weight ρa(x): It is (also) based on powers of the so-called parabolic distance δ(x, t),
which is a special anisotropic distance to the parabolic boundary

S := ∂parΩ := (D × {0}) ∪ (∂D × [0, T ]).

To be precise, for (x, t) ∈ Ω = D × [0, T ] it is defined as

δ(x, t) := inf {ρ((x, t), (y, s)) : (y, s) ∈ ∂parΩ} , ρ((x, t), (y, s)) ∼ |x−y|+
√
|t− s|.

Thus, for the special anisotropy (3.22) we see that

|(x, t)− (y, x)|a =
d∑
i=1

|xi − yi|ai + |t− s|ad+1 ∼

(
d∑
i=1

|xi − yi|+
√

|t− s|

) d+2
d

,
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which yields

(3.24) ρa(x, t) ∼
(
δ(x, t)

) d+2
d .

4. Embeddings between anisotropic Kondratiev and Besov spaces

Theorem 4.1 (Embeddings between Kondratiev and Besov spaces). Let
m = ma ∈ Nd, where the anisotropy a is normalized as in (3.1) and s = sa, r =
ra ∈ Rd+. Moreover, assume that the bounded domain Ω ⊂ Rd satisfies the strong
s-horn condition. Then we have a continuous embedding

(4.1) Kma
p,γ (Ω) ∩Bsa

p,p(Ω) ↪→ Bra
τ,τ (Ω),

1

τ
=
r

d
+

1

p
, 1 < p <∞,

for all 0 ≤ r < min(m, sd
d−1) and γ > δ

dr, where δ denotes the dimension of the
singularity set S ⊂ ∂Ω.

Proof. Since for r = 0 the result is clear, we assume in the sequel that r > 0 and
0 < τ < p.
Step 1. The proof is based on the wavelet characterization of Besov spaces from
Definition 3.2. Since our domain Ω satisfies the s-horn condition, according to
Corollary 3.5 we can extend every u ∈ Bsa

p,p(Ω) to some function ũ = Eu ∈ Bsa
p,p(Rd).

From this we deduce that in order to establish embedding (4.1) it is ultimately
enough to show

(4.2)

 ∑
(I,ψ)∈Λ

|I|
(

1
p
− 1

2

)
τ |⟨ũ, ψ̃I⟩|τ

1/τ

≲ max{∥u|Kma
p,γ (Ω)∥, ∥u|Bsa

p,p(Ω)∥}.

Let us give some further explanations here. We may extend the solution u to a
function ũ = E(u) on the whole Euclidean plane with the additional property that

⟨E(u), ψ̃I⟩ = 0 whenever Q(I)∩Ω = ∅. Then on Ω we have u =
∑

(I,ψ)∈Λ⟨ũ, ψ̃I⟩ψI .
Therefore, if we can show that the expression on the right-hand side is contained in
the Besov space Bra

τ,τ (Rd), the same is true for its restriction to Ω. To prove this,
we use Definition 3.2. Moreover, we see that the first term there which reads as∑

k∈Zd

⟨ũ, φ̃(· − k)⟩φ(· − k)

(and also emerges in (3.17)) can be incorporated in the second term (see the formu-
lation (3.15)) and therefore does not appear on the left hand side of (4.2). This is
caused by the fact that φ shares the same smoothness and support properties as the
wavelets ψI for |I| = 1 (note that below the vanishing moments of ψI only become

relevant for |I| < 1). Therefore, the coefficients ⟨ũ, φ̃(·−k)⟩ are incorporated in our

considerations since they can be treated exactly like any of the coefficients ⟨ũ, ψ̃I⟩
in Step 2.
Step 2. For our analysis we split the index set Λ as follows. For j ∈ N0 the
refinement level j is denoted by

Λj := {(I,Ψ) ∈ Λ : |I| = | detM |−j = λ−jd}.
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Furthermore, for k ∈ N0 put

Λj,k := {(I, ψ) ∈ Λj : kλ
−j ≤ ρI,a < (k + 1)λ−j , Q(I) ⊂ Ω},

where

ρI,a = inf
x∈Q(I)

ρa = inf
x∈Q(I),y∈S

|x− y|a.

In particular, we have Λj =
⋃∞
k=0 Λj,k and Λ =

⋃∞
j=0 Λj .

We consider first the situation ρI,a > 0 corresponding to k ≥ 1 and therefore
put Λ0

j =
⋃
k≥1 Λk,j . Moreover, we require Q(I) ⊂ Ω. Recall the anisotropic

version of Whitney’s estimate regarding approximation with polynomials from [22,
Lem. 2.1], which states that for every I there exists a polyomial PI ∈ ΠL̃−1, where

|m| = m1 + . . .+md ≤ L̃− 1, such that

∥ũ− PI |Lp(Q(I))∥ ≲
d∑
i=1

λ
−jmi

ai ∥Dmi
i ũ|Lp(Q(I))∥

= λ−jm
d∑
i=1

∥Dmi
i ũ|Lp(Q(I))∥ ≲ |I|m/d|ũ|Wm

p (Q(I)),

where the omitted constant is independent of I and u. Here we used the fact that
m = ma, i.e., m = mi

ai
for all i = 1, . . . , d, and put

|ũ|Wm
p (Q(I)) :=

(
d∑
i=1

∫
Q(I)

|Dmi
i ũ(x)|pdx

)1/p

.

Note that ψ̃I can be chosen to satisfy moment conditions up to any order, we deduce
that it is orthogonal to any polynomial PI ∈ ΠL̃−1. Thus, using Hölder’s inequality
with p > 1 we estimate

|⟨ũ, ψ̃I⟩| = |⟨ũ− PI , ψ̃I⟩| ≤ ∥ũ− PI |Lp(Q(I))∥ · ∥ψ̃I |Lp′(Q(I))∥

≲ |I|m/d|ũ|Wm
p (Q(I))|I|

1
2
− 1

p

≤ |I|
m
d
+ 1

2
− 1

p ργ−mI,a

(
d∑
i=1

∫
Q(I)

|ρa(x)|m−γDmi
i ũ(x)|pdx

)1/p

=: |I|
m
d
+ 1

2
− 1

p ργ−mI,a µI,a.(4.3)

Note that in the third step we use that the values of ρI,a and ρa are comparable, i.e.,
ρI,a ∼ supx∈Q(I) ρa, since for k ≥ 1 we consider cuboids for which distance Q(I)

to the singular set S is comparable to the sidelength of Q(I) (k ≥ 1 guarantees
dista(Q(I), S) ≳ l(Q(I))). On the refinement level j, using Hölder’s inequality with
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p
τ > 1, we find∑

(I,ψ)∈Λ0
j

|I|
(

1
p
− 1

2

)
τ |⟨ũ, ψ̃I⟩|τ

≤
∑

(I,ψ)∈Λ0
j

(
|I|

m
d ργ−mI,a µI,a

)τ

≲

 ∑
(I,ψ)∈Λ0

j

(
|I|

m
d
τρ

(γ−m)τ
I,a

) p
p−τ


p−τ
p
 ∑

(I,ψ)∈Λ0
j

µpI,a


τ/p

.

For the second factor we observe that there is a controlled overlap between the
cuboids Q(I), meaning each x ∈ Ω is contained in a finite number of cuboids
independent of x, such that we get ∑

(I,ψ)∈Λ0
j

µpI,a


1/p

=

 ∑
(I,ψ)∈Λ0

j

d∑
i=1

∫
Q(I)

|ρm−γ
a (x)Dmi

i ũ(x)|pdx


1/p

≲
(

d∑
i=1

∫
Ω
|ρm−γ

a (x)Dmi
i ũ(x)|pdx

)1/p

≤ ∥u|Kma
p,γ (Ω)∥.

For the first factor, by choice of ρa we always have ρI,a ≤ 1, hence the index k is
at most λj for the sets Λj,k to be non-empty. The number of elements in Λj,k is

bounded by kd−1−δλjδ. With this we find( ∑
(I,ψ)∈Λ0

j

(
|I|

m
d
τρ

(γ−m)τ
I,a

) p
p−τ

) p−τ
p

≤

 λj∑
k=1

∑
(I,ψ)∈Λj,k

(
λ−jmτ (kλ−j)(γ−m)τ

) p
p−τ


p−τ
p

≤

 λj∑
k=1

∑
(I,ψ)∈Λj,k

(
λ−jγτk(γ−m)τ

) p
p−τ


p−τ
p

≲

λ−jγ pτ
p−τ

λj∑
k=1

k
(γ−m) pτ

p−τ kd−1−δλjδ


p−τ
p

≲ λ−jγτλ
jδ p−τ

p

 λj∑
k=1

k
(γ−m) pτ

p−τ
+d−1−δ


p−τ
p

.
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Looking at the value of the exponent in the last sum we see that

(γ −m)
pτ

p− τ
+ d− 1− δ > −1 ⇐⇒ γ −m+ r

d− δ

d
> 0,

which leads to( ∑
(I,ψ)∈Λ0

j

(
|I|

m
d
τρ

(γ−m)τ
I,a

) p
p−τ

) p−τ
p

≲ λ−jγτλ
jδ p−τ

p


λ
j
(
(γ−m)τ+(d−δ) p−τ

p

)
, γ −m+ r d−δd > 0,

(j + 1)
p−τ
p , γ −m+ r d−δd = 0,

1, γ −m+ r d−δd < 0.

(4.4)

Step 3. We now put Λ0 :=
⋃
j≥0 Λ

0
j . Summing the first line of the last estimate

over all j, we obtain∑
(I,ψ)∈Λ0

|I|
(

1
p
− 1

2

)
τ |⟨ũ, ψ̃I⟩|τ

≲
∞∑
j=0

λ
−j(mτ−d p−τ

p
)∥u|Kma

p,γ (Ω)∥τ ≲ ∥u|Kma
p,γ (Ω)∥τ <∞,

if the geometric series converges, which happens if

mτ > d
p− τ

p
⇐⇒ m > d

r

d
⇐⇒ m > r.

Similarly, in the second case we see that∑
(I,ψ)∈Λ0

|I|
(

1
p
− 1

2

)
τ |⟨ũ, ψ̃I⟩|τ

≲
∞∑
j=0

λ
−j(γτ−δ p−τ

p
)
(j + 1)

p−τ
p ∥u|Kma

p,γ (Ω)∥τ ≲ ∥u|Kma
p,γ (Ω)∥τ <∞,

where the series converges if

γτ > δ
p− τ

p
, i.e., γ > δ

r

d
, i.e., m > r

d− δ

d
+
δ

d
r = r, i.e., m > r,

which is the same condition as before. Finally, in the third case we find∑
(I,ψ)∈Λ0

|I|
(

1
p
− 1

2

)
τ |⟨ũ, ψ̃I⟩|τ

≲
∞∑
j=0

λ
−j(γτ−δ p−τ

p
)∥u|Kma

p,γ (Ω)∥τ ≲ ∥u|Kma
p,γ (Ω)∥τ <∞,

whenever

γτ > δ
p− τ

p
⇐⇒ γ > δ

r

d
.
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Step 4. We still need to consider the sets Λj \ Λ0
j consisting of the wavelets close

to S, and those ψI whose support intersects ∂Ω. Here, we shall make use of the
assumption ũ ∈ Bsa

p,p(Rd). Since the number of elements in Λj \Λ0
j is bounded from

above by cλj(d−1) we estimate using Hölder’s inequality with p
τ > 1 and obtain∑

(I,ψ)∈Λj\Λ0
j

|I|
(

1
p
− 1

2

)
τ |⟨ũ, ψ̃I⟩|τ

≲ λ
j(d−1) p−τ

p

 ∑
(I,ψ)∈Λj\Λ0

j

λ
−jd

(
1
p
− 1

2

)
p|⟨ũ, ψ̃I⟩|p


τ/p

= λ
j(d−1) p−τ

p λ−jsτ

 ∑
(I,ψ)∈Λj\Λ0

j

λ
j
(
s+ d

2
− d

p

)
p|⟨ũ, ψ̃I⟩|p


τ/p

.

Summing up over j and once more using Hölder’s inequality with p
τ > 1 gives

∞∑
j=0

∑
(I,ψ)∈Λj\Λ0

j

|I|
(

1
p
− 1

2

)
τ |⟨ũ, ψ̃I⟩|τ

≲
∞∑
j=0

λ
j(d−1) p−τ

p λ−jsτ

 ∑
(I,ψ)∈Λj\Λ0

j

λ
j
(
s+ d

2
− d

p

)
p|⟨ũ, ψ̃I⟩|p


τ/p

≲

 ∞∑
j=0

λj(d−1)λ
−jsτ p

p−τ


p−τ
p

·

 ∞∑
j=0

∑
(I,ψ)∈Λj\Λ0

j

λ
j
(
s+ d

2
− d

p

)
p|⟨ũ, ψ̃I⟩|


τ/p

≲ ∥ũ|Bsa
p,p(Rd)∥τ ≲ ∥u|Bsa

p,p(Ω)∥τ ,
provided that

d− 1 <
spτ

p− τ
⇐⇒ s

d− 1
>

1

τ
− 1

p
=
r

d
⇐⇒ r <

sd

d− 1
.

Altogether, we have proved

∥u|Bra
τ,τ (Ω)∥ ≤ ∥ũ|Bra

τ,τ (Rd)∥ ≲ ∥u|Bsa
p,p(Ω)∥+ ∥u|Kma

p,γ (Ω)∥,
with constants independent of u. □
Remark 4.2. By a close inspection of the proof of Theorem 4.1 one sees that we
have actually proven for any u ∈ Kma

p,γ (Ω) ∩Bsa
p,p(Ω) that

(4.5) ∥u∥Bra
τ,τ (Ω) ≲ max

{
|u|Kma

p,γ (Ω), ∥u|Bsa
p,p(Ω)∥

}
,

where

(4.6) |u|Kma
p,γ (Ω) :=

(
d∑
i=1

∫
Ω

∣∣(ρa(x))m−γDmi
i u(x)

∣∣p dx)1/p
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denotes the Kondratiev semi-norm, where only the highest derivatives appear.

5. Comparison and outlook: Anisotropic regularity of the heat
equation

As already said before, we wish to study the regularity of parabolic problems
(in particular, the heat equation) in anisotropic Besov spaces using the embedding
from Theorem 4.1 and compare our results with [3, Thm. 2].
Therefore, let the domain Ω = D × [0, T ] be a space-time cylinder, where D ⊂ Rd
denotes a bounded Lipschitz domain, S = ∂parΩ be the parabolic boundary which
has dimension δ = d, and consider the anisotropy a from (3.22), i.e.,

a = (a1, . . . , ad+1) =
d+ 2

d

(
1, . . . , 1,

1

2

)
.

Moreover, we denote by Θ(Ω) the spaces of all temperatures

Θ(Ω) :=

{
u :

∂u

∂t
= ∆u in Ω

}
.

Then the result from Aimar et al. obtained in [3, Thms. 2] reads as follows:

Theorem 5.1. Let 1 < p <∞, λ > 0, α > 0, and put 1
τ = 1

p +
α
d . Then

(5.1) Θ(Ω) ∩ Bλp(Ω) ⊂
⋂

α>ε>0

Bα−ετ (Ω), where α < min

(
d
(
1− 1

p

)
,
λd

d− 1

)
.

In particular, this result was obtained with the help of gradient estimates of
temperatures. In this context we recall [3, Thm. 5], which will be useful for us in
the sequel. We make use of the following notation: we write ∇2,1u to denote the
(d2 + 1)-vector given by the d2 second-order purely spatial derivatives of u and the
first derivative of u w.r.t. time, i.e., ∇2,1u =

(
∇2u, ∂u∂t

)
. By (∇2,1)nu, n ∈ N, we

denote the vector of all derivatives, where each component has the form ∂(α,αd+1)u
with |α| + 2αd+1 = 2n. This way we always have in each one of these derivatives
an even number of space derivatives. Moreover, |(∇2,1)nu| denotes the Euclidean
length of (∇2,1)nu. Then [3, Thm. 5], adapted to our situation, reads as follows.

Corollary 5.2. Let Ω = D × [0, T ] with D ⊂ Rd be a bounded Lipschitz domain,
0 < λ < 2n < λ + d, n ∈ N, and 1 < p < ∞. Then there exists a constant c
depending on d, λ, p, and the Lipschitz character of D such that

(5.2)
∥∥δ2n−λ|(∇2,1)nu|

∣∣Lp(Ω)∥∥ ≤ c
∥∥∥u|Lp([0, T ], Bλ

p,p(D))
∥∥∥≤ c′∥u|Bλp(Ω)∥

holds for every temperature u in Θ(Ω).

P r o o f : Corollary 5.2 in its above version is a consequence of [3, Thms. 4,5]
together with [1, Lem. 5.3], where the latter is the observation that the derivative
(∇2,1)nu belongs to the linear span of ∇2nu .

We can now improve Theorem 5.1 as follows.



474 S. DAHLKE AND C. SCHNEIDER

Theorem 5.3. Let 0 < p < ∞, 0 < s < 2n < s + d, n ∈ N, α > 0, and put
1
τ = 1

p +
α
d . Then

(5.3) Θ(Ω) ∩ Bsp(Ω) ⊂ Bατ (Ω), where α < min

(
2n, s

d+ 1

d

)
.

P r o o f : We can reinterpret the estimate (5.2) in terms of anisotropic Kon-
dratiev regularity for the homogeneous heat equation as follows: The left hand side
in (5.2) can be expressed via the Kondratiev semi-norm (4.6), since using (3.24) we
see that for m = (2n, . . . , 2n, n) = 2n d

d+2a =: ma and s := d+2
d γ = λ we have

|u|Km
p,γ(Ω) ∼

d∑
i=1

∥∥(ρa)m−γDmi
i u

∣∣Lp(Ω)∥∥
∼

d∑
i=1

∥∥∥∥(δ d+2
d

)m−γ
Dmi
i u

∣∣Lp(Ω)∥∥∥∥
=

d∑
i=1

∥∥δ2n−sDmi
i u

∣∣Lp(Ω)∥∥ ≲
∥∥∥δ2n−λ|(∇2,1)nu|

∣∣Lp(Ω)∥∥∥ .
Thus, a combination of Theorem 4.1, Corollary 5.2, and the observation that
Bs̃a
p,p(Ω) = Bsp(Ω) for s̃ = s d

d+2 yields for a temperature u ∈ Θ(Ω) :

∥u|Bra
τ,τ (Ω)∥ ≲ max

{
|u|Km

p,s̃(Ω), ∥u|Bs̃a
p,p(Ω)∥

}
≲ ∥u|Bs̃a

p,p(Ω)∥(5.4)

subject to the restriction

0 < r < min

(
2n

d

d+ 2
, s̃
d+ 1

d

)
.

In good agreement with (3.21) we put Bra
τ,τ (Ω) := Bατ (Ω) for α = r d+2

d (i.e., the
space Bατ (Ω) with τ < 1 has to be understood – in a slight abuse of notation –
according to Definition 3.2) and we obtain (5.3).

Remark 5.4. (i) Comparing (5.3) with (5.1) we conclude that the restriction
α < d

(
1− 1

p

)
(resulting from the fact that the definition of the spaces Bλp(Ω)

and the subsequent argumentation in [3] where limited to p > 1) can be
completely removed. However, since Ω ⊂ Rd+1 by replacing d by d+ 1 our
approach gives a slightly worse upper bound for α

(
sd+1

d instead of s d
d−1

)
.

In particlar, invoking [25, Thm. 6.2] we deduce that

Θ(Ω) ⊂W 2...,2,1(Ω) = B
2d
d+2

a

2,2 (Ω) = B2
2(Ω).

i.e., (5.3) yields for parameters p = 2 and s < 2 (with 2n = 2 if d = 2) that

Θ(Ω) ⊂ Bατ (Ω), where α <
8

3
(d = 3) and α < 2 (d = 2).

On the other hand (5.1) only yields α < 3
2 (d = 3) and α < 1 (d = 2).
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(ii) Let us note that compared to [3] our approach is more flexible: It allows
us to treat more general parabolic equations (also with inhomogeneous ini-
tial boundary data) as long as one has regularity results for the solution of
the parabolic problem in anisotropic Kondratiev spaces. In this context we
mention [20] for first results in this direction.
Moreover, we think that even better results can be achieved if one inves-
tigates regularity in anisotropic Kondratiev and Besov spaces which have
different integrability w.r.t. the spacial and time variable. This interesting
problem will be studied a future paper.
Finally, we remark that it is not completely clear that the anisotropic Kon-
dratiev and Besov spaces we are dealing with in this paper are the optimal
spaces for studying parabolic PDEs. Another possibility would be to have a
look at the regularity of the solutions to evolution equations in Besov spaces
of dominating mixed smoothness type or even Banach-valued Besov spaces.
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