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where f [z0, . . . , zj ] are the so-called Newton divided differences, and which can be
computed by recursion via Newton tableau of divided differences, see e.g. [1, 7, 9].

The plain formula Ik[f ] =
∑k

j=0 f(zj)lk,j is the so-called Lagrange interpolation for-

mula while hierarchical procedure I0[f ] ≡ f(z0) and Ii[f ] = Ii−1[f ]+f [z0, . . . , zi]wi,
for i = 1, . . . , k is the so-called Newton interpolation formula. We note that the
iterates Ii[f ] interpolate f at z0, . . . , zi. We also note that the computational merit
of Newton procedure depends inherently on the chosen ordering on z0, z1, . . . , zk.

For the sake of expedience, we write general interpolation formulas (1.1) as
Ik = 〈[c], [p]〉, where [c] := (c0, . . . , ck)

⊤ and [p] := (p0, . . . , pk)
⊤, thus reflecting

the identity Ik[f ](z) = 〈(c0[f ], . . . , ck[f ])⊤, (p0(z), . . . , pk(z))⊤〉 :=
∑k

j=0 cj [f ] pj(z).
This allow us to employ “inner product” reasoning without the need to indicate f
and z.

Given [c] and [p] as explained and B(q) := {q0, . . . , qk} another basis of Pk[X],

we let V [p→q] be the change-of-basis matrix from basis B(p) into basis B(q), i.e.
V [p→q] is a (k + 1) × (k + 1) matrix where the (j + 1)th column consists in qj co-

ordinates in basis B(p), hence [q] = (V [p→q])⊤ [p]. By a simple adjoint argument,

Ik = 〈[c], [p]〉 = 〈[c], (V [p→q])−⊤[q]〉 = 〈(V [p→q])−1[c], [q]〉, hence (V [p→q])−1 = V [q→p]

maps (c0[f ], . . . , ck[f ])
⊤ into the coefficients (c′0[f ], . . . , c

′
k[f ])

⊤ associated with B(q),

i.e. Ik[f ] =
∑k

j=0 c
′
j [f ] qj . In the natural setting where B(p) is {lk,0, . . . , lk,k},

V [p→q] = (qj(zi))0≤i,j≤k is a Vandermonde matrix. If in addition B(q) is the New-

ton basis {w0, . . . , wk}, the matrix V [p→q] is lower triangular with diagonal entries

wi(zi) 6= 0 for i = 0, . . . , k. The inverse matrix (V [p→q])−1 is lower triangular as
well. It consists of barycentric coefficients as we explain further.

For the sake of numerical practice, other procedures not necessarily conforming
to (1.1) are prescribed when evaluating Ik[f ](z), for instance through barycentric
formulas, see e.g. [1]. The so-called first form of barycentric interpolation formula
writes

(1.4) Ik[f ](z) = wk+1(z)

k∑
j=0

τk,j
z − zj

f(zj),

where τk,j = 1/w′
k+1(zj) are the so-called barycentric coefficients. It is easily verified

from (1.2) and (1.3) since lk,j(z) =
wk+1(z)
z−zj

τk,j for j = 0, . . . , k. By inspecting

the leading coefficient of Ik[1] (≡ 1, since 1 ∈ Pk[X]) we see that
∑k

j=0 τk,j = 0,
hence the naming barycentric coefficients. The so-called true form of barycentric
interpolation formula consists in eliminating wk+1 in (1.4) using Ik[1] ≡ 1, i.e.

(1.5) Ik[f ](z) =

k∑
j=0

τk,j
z − zj

f(zj)

/ k∑
j=0

τk,j
z − zj

.

We refer to [1] and the many references their-in for more details.
Expedient interpolation formulas can be derived if interpolation is cast in a least

squares setting. More precisely, given weights κ0, . . . , κk > 0 and semi-definite

inner product 〈f, g〉k =
∑k

j=0 κjf(zj)g(zj)
1, we can view Ik[f ] as a solution to the

1here f, g : Ω → V with V = K.
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least squares problem minp∈Pk[X]‖f − p‖2k (=0). Since 〈·, ·〉k is definite over Pk[X]
(equivalent to z0, . . . , zk pairwise distinct), this solution is unique, and for any basis

B(p) = {p0, . . . , pk} of Pk[X] which is orthonormal w.r.t 〈·, ·〉k there holds

(1.6) Ik[f ] =
k∑

i=0

〈f, pi〉k pi =

k∑
j=0

κjf(zj)

( k∑
i=0

pi(zj) pi

)
.

Lagrange formula corresponds actually to the particular orthonormal basis
{lk,0/

√
κ0, . . . , lk,k/

√
κk}. With any other orthonormal basis B(p), one has lk,j =

κj
∑k

i=0 pi(zj)pi for j = 0, . . . , k. In general, given any other basis B(q) = {q0, . . . , qk}
of Pk[X], the associated change-of-basis matrix from orthonormal basis B(p) is given

by V [p→q] = (〈qj , pi〉k)0≤i,j≤k.
In the least squares framework, a hierarchical interpolation formula can be de-

rived by computing p0, p1, . . . , pk from 1, X, . . . ,Xk via Gram-Schmidt process with
respect to 〈·, ·〉k. In the most illustrative setting of families {z0, . . . , zk} of Gauss
abscissas in [−1, 1] and κ0, . . . , κk associated Gauss weights, p0, . . . , pk are simply
orthogonal polynomials.

The quality of Lagrange interpolation can be quantified through general Lebesgue-
type inequalities or via more specialized theorems such as Cauchy remainder and
Walsh equi-convergence theorems, [7,11]. Namely, using the plain trick f − Ik[f ] =
(f − p) − Ik[f − p] valid for any p ∈ Pk[X] and its implications on ‖f − Ik[f ]‖, or
deriving remainders f(z)− Ik[f ](z) when f is smooth, by means of real or complex
function arguments.

Lagrange interpolation is naturally disposed to approximation of linear functional

of f plainly through Q[f ] '
∑k

j=0 cj [f ]Q[pj ] (where cj as in (1.1)). Point-wise

evaluation δz : f 7→ f(z) is merely the simplest example. Numerical integration is
another major application, i.e.

(1.7)

∫
f(z)dϱ(z) '

k∑
j=0

cj [f ]

∫
pj(z)dϱ(z),

where we assume integrals are well defined. Implied quadratures are called interpo-
latory quadratures. For example, Côtes quadratures are defined for any real interval
Ω = [a, b] and dϱ(z) = dz the Lebesgue measure, by setting zj = a+ (b− a)j/k for
j = 0, . . . , k and integrating the Lagrange interpolation formula, see e.g. [8, 15].

We are mainly interested in Newton hierarchical procedure. We recall that

Ik[f ] =
∑k

j=0 cj [f ]wj , where each cj [f ] = f [z0, . . . , zj ] depend only on f(z0), . . . , f(zj).
We shall describe this dependence in more details. To this end, we introduce tri-
angular arrays W = (wi,j), T = (τi,j) as in (1.9). We denote by Wl and Tl the
leading principal matrices of such arrays. These are the l × l lower triangular
matrices extracted by keeping only the first l rows and columns. Actually, Tl is
the inverse of Wl for any l ≥ 1. We note that Wk+1 = V [l→w] is the change-of-
basis matrix from Lagrange basis {lk,0, . . . , lk,k} into Newton basis {w0, . . . , wk}.
Hence, [c] := (c0, . . . , ck)

⊤ as a vector of elements in spanK{δz0 , . . . , δzk} is given

by [c] = W−1
k+1 × [δ] = Tk+1 × [δ] where [δ] := (δz0 , . . . , δzk)

⊤. The ci can thus be
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expressed using barycentric weights, i.e.

(1.8) ci : f 7→
i∑

j=0

τi,jf(zj), i ≥ 0.

(1.9)



w0,0

w1,0 w1,1
...

. . .

wi,0 wi,1 · · · wi,i
...

. . .


,



τ0,0
τ1,0 τ1,1
...

. . .

τi,0 τi,1 · · · τi,i
...

. . .


,

wi,j = wj(zi), τi,j = 1/(w′
i+1(zj)), i ≥ 0, j = 0, . . . , i.

It is customary to describe Newton formulas using monic Newton polynomials.
In practice, appropriate normalizations has to be considered in order to prevent
numerical instabilities. For a plain illustration, let ρ0, . . . , ρ2n be {2n+ 1}-roots of
unity, R > 0, and consider zj = Rρj for j = 0, . . . , 2n. The Newton polynomial w2n

is given by w2n(z) = (z2n+1 − R2n+1)/(z − z2n), hence w2n(−z2n) = R2n+1/z2n =
R2n/ρ2n has modulus R2n. In addition, (2n+1)τ2n,j = ρj/R

2n has modulus 1/R2n

for any j = 0, . . . , 2n. For n large, unless R = 1, loss of precision will occur while
due to overflow/underflow while computing with and handling such polynomial.

For reliable interpolation schemes, e.g. by means of Chebyshev-type abscissas
on real intervals or Fejér points on complex domains with smooth boundaries,
one can enforce stability by enforcing prescribed orderings on points z0, . . . , zk
and considering normalized polynomials w̃j(z) = wj(z)/c

j where c is the logarith-
mic capacity of Ω or w̃j(z) = wj(z)/wj(zj) assuming c is not necessarily known,
see [10, 14] for details. Associated barycentric weights become τ̃i,j = ci/(w′

i+1(zj))
or τ̃i,j = wi(zi)/(w

′
i+1(zj)) and are immune to overflow/underflow.

We consider pure hierarchical interpolation, Z := (zj)j≥0 is a sequence of mu-
tually distinct points in Ω and refer to tuples Zk := (z0, . . . , zk−1) as k-sections of
Z, hence operator Ik[·] is associated with Zk+1. Newton procedure is most cost

effective for computing approximations
∑k

j=0 cj [f ]wj to f (or
∑k

j=0 cj [f ]Q[wj ] to

Q[f ]). We simply query f at one node zj at a time, compute cj [f ] (or cj [f ] and
Q[wj ]), then update the approximation.

Hierarchical interpolation is naturally disposed to generalization to multi-
dimension. For instance, through plain cartesian (tensor) product constructions,
detailed in [6]. In a nutshell, for d ≥ 1 arbitrary integer, we consider approximation
of functions defined over Ωd by means of d-variates polynomials. Monomial are now
indexed by multi-indices ν = (ν1, . . . , νd) ∈ Nd and defined by xν = xν11 × · · · × xνdd
for x = (x1, . . . , xd) ∈ Ωd.

We let ⊗dZ := {zν := (zν1 , . . . , zνd) : ν ∈ Nd} ⊂ Ωd be the d-cartesian product of
sequence Z. The family of associated monic Newton polynomials is now (wν)ν∈Nd

defined by

(1.10) wν(x) = wν1(x1) . . . wνd(xd), x = (x1, . . . , xd) ∈ Ωd.



FAST CHANGE-OF-BASES IN POLYNOMIAL INTERPOLATION 433

For ν = (ν1, . . . , νd), µ = (µ1, . . . , µd) ∈ Nd with µ ≤ ν in coordinate-wise sense, we

introduce τν,µ :=
∏d

j=1 τνj ,µj and define cν by

(1.11) cν : f 7→
∑
µ≤ν

τν,µ f(zµ), ν ∈ Nd.

They are to be compared with the ci defined in (1.8).
For Λ ⊂ Nd a lower set of indices2, we define operator IΛ by

(1.12) IΛ[f ] :=
∑
ν∈Λ

cν [f ]wν .

It is an interpolation operator, IΛ[f ] is the unique d-variate polynomial, belonging
to PΛ := spanK{xν : ν ∈ Λ} and interpolating f over the grid ΓΛ := {zν : ν ∈ Λ}.

The interpolation process is hierarchical. For Λ lower and ν 6∈ Λ such that
Λ′ = Λ ∪ {ν} is lower, one has PΛ′ = PΛ ⊕ spanK{xν}, ΓΛ′ = ΓΛ ∪ {zν} and

(1.13) IΛ′ [f ] = IΛ[f ] + cν [f ]wν .

Unlike the univariate setting, there are many candidates ν admissible in Λ,3 hence
richer approximation potential. For instance, through adaptivity

(1.14) Λ0 = {ν(0)} −→ Λ1 = {ν(0), ν(1)} −→ . . . ,

where ν(0) = 0 and ν(i) are admitted in Λi−1 according to some criterion.
The hierarchical adaptive scheme is well disposed for reconstruction and integra-

tion purposes. More precisely:
• Having, fast generated or tabulated, expansions of wj in the canonical basis

1, z, z2, . . . allows us to produce approximations
∑

ν∈Λ ĉνz
ν to f . In other words

reconstruction of Fourier series if Ω is a disc. If Ω is a real interval, such as [0, 1] or
[−1, 1], expansions of wj in cosine or Chebyshev type bases, allows us to produce
cosine or Chebyshev series.

• As in the univariate setting, hierarchical sums
∑

ν∈Λ cν [f ]Q[wν ] can be used to

approximate Q[f ], e.g. Q[f ] =
∫
Ωd f(z)dϱd(z). If ϱd = ⊗d

j=1ϱ1 is a tensor product

measure, Q[wν ] =
∏d

i=1 γνi with γk :=
∫
Ωwkdϱ1. Having γk known or tabulated

thus yields fast hierarchical quadratures.
Hierarchical approximation schemes (or reconstruction/integration) have a uni-

fied implementation. At every iteration, Λk = {ν(0), . . . , ν(k)} is lower and Pq(Λk)

is a priority queue of admissible indices (ν ∈ N(Λk)). The index ν(k+1) with highest
priority get admitted into Λk, i.e. Λk −→ Λk+1. Then for ν ∈ N(Λk+1) − N(Λk),
we compute cν [f ] (and any needed quantity) and insert ν in the priority queue. Of
course, priority criterion or heuristic depends on the approximation purpose.

For more insights on approximation settings of interest, we refer to recent paper
[12] describing and addressing these (approximation/reconstruction /integration)
objectives by means of rank-1 lattices quadratures.

The present paper is mainly concerned with fast change-of-basis in highly relevant
interpolation settings, namely those involving roots of unity and Chebyshev type

2also called downward closed, i.e. ν ∈ Λ and µ ≤ ν implies necessarily that µ ∈ Λ.
3N(Λ) := {ν ̸∈ Λ : Λ ∪ {ν} is lower} contains at least d multi-indices.
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abscissas and their sequences alternatives for pure hierarchical interpolation, the
so-called Leja sequences on the unit disk and <-Leja on the unit interval [−1, 1].

The organization of the paper is as follows. In §2, we recall properties of
Chebyshev polynomials of the first kind (Tj)j and introduce a new family (Hj)j
of Chebyshev-type polynomials that is relevant in our analysis. This section is not
concerned, per se, with interpolation, but rather with how to identify fast recur-
rences on change-of-basis matrices. The main idea is to use the formulas relating
(T2j , T2j+1) to Tj and (H2j ,H2j+1) to Hj in conjunction with suitable “basis index-
ing” in order to draw fast block matrices recurrences. This modus operandi is used
throughout the paper.

In §3, §4 and §5, we provide fast recurrences on change-of-bases matrices within
the frameworks of interpolation with roots of unity, Chebyshev abscissas of first
and second kind. The first recurrence (3.5) in §3 is an instance of Fast Fourier
Transform (radix-2 FFT), and thus reflects optimal computational complexity. The
same can be said for all other identified recurrences. The findings of §4 involving the
new basis (Hj)j replicate to perfection FFT expediency. Sections §3, §4 and §5 are
also concerned with hierarchical interpolation. We describe appropriate ordering of
interpolation nodes leading more expedience and stability in Newton interpolation
formulas.

In section §6, we introduce a new sequence of abscissas in [−1, 1] that is very
relevant for hierarchical interpolation and study its properties. The sequence can
be seen as an alternative to non nested Chebyshev abscissas discussed in §4. In §7,
few numerical experiments are presented.

As far as numerical stability is concerned, all the matrices studied in this paper
have moderate entries and are well-conditioned. This however will not be investi-
gated in details.

Notation. Any integer k ≥ 1 has a unique binary representation

(1.15) k =

n∑
j=0

aj2
j ,

aj ∈ {0, 1}
an = 1

,

where n = blog2(k)c. The notation σ1(k) :=
∑n

j=0 aj stands for the number of ones

in the expansion of k. We denote by (εk)k≥0 the “bit-reversed” Van der Corput
sequence: ε0 = 0 and

(1.16) εk =
1

2

n∑
j=0

aj
2j

,

for k ≥ 1 as above. We use notation M−⊤ for the transpose of the inverse (M−1)⊤

of a non singular matrix. Hadamard product � is defined for two matrices of same
dimensions are the entrywise product.

2. Preliminaries

2.1. Chebyshev polynomials. We let (Tk)k≥0 be the family of Chebyshev poly-
nomials of the first kind, e.g. defined by Tk(cos(θ)) = cos(kθ). The family satisfies
a three-term recurrence: T0(x) = 1, T1(x) = x, and

(2.1) Tk+1(x) + Tk−1(x) = 2xTk(x), k ≥ 1.
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Polynomials T0, T2, . . . are even functions while polynomials T1, T3, . . . are odd func-
tions. Moreover, the family satisfies a parity recurrence:

(2.2)
T2k(x) = Tk(T2(x)),

T2k+1(x) + T2k−1(x) = 2xTk(T2(x)),
k ≥ 1.

We let (Hk)k≥0 be the family of polynomials defined by: H0(x) = 1, and

(2.3) Hk(x) =
n∏

j=0
aj=1

(2T2j (x)), k =
n∑

j=0

aj2
j .

The previous is the binary representation of k ≥ 1. As for the Tk, these polynomials
have integer coefficients, every Hk has degree k, and H0,H2, . . . are even functions
while H1,H3, . . . are odd functions. In addition, in view of T1(x) = x and T2m(x) =
Tm(T2(x)) for any m ≥ 0, a simple parity recurrence holds:

(2.4)
H2k(x) = Hk(T2(x)),

H2k+1(x) = 2xHk(T2(x)),
k ≥ 0.

Every Hk has a supremum 2σ1(k)(≤ k + 1) attained at x = 1, where σ1(k) is the
number of ones in the binary representation of k.

The family (H̃j)j≥0, defined by H̃j(x) = Hj(x/2), is a polynomial sequence over

Z[X]. Namely, every H̃k has degree k, integer coefficients, and leading coefficient 1.
We have introduced and used this family for the purpose of explaining user-friendly
generating matrices of orthogonal Frolov-Chebyshev lattices, see [5].

The linear decomposition of polynomials Hk in basis T0, T1, . . . can be explicitly
expressed and computed by induction on k. On the one hand, in view of 2Tm×2Tl =
2(Tm+l + Tm−l) for any l ≤ m, we can expand the product in (2.3) giving Hk. In
particular, we obtain the following identity

(2.5) Hk(x) = 2
∑
i∈Sk

Ti(x), k = 2n +

n−1∑
j=0

aj2
j ,

where Sk := {2n +
∑n−1

j=0 ϵjaj2
j : ϵj = ±1}, a set which consists in 2σ1(k)−1 inte-

gers within {1, . . . , k}. On the other hand, if we write Hj =
∑j

i=0 αi,jTi and use
convention αj+1,j = 0, then α0,0 = 1, (α0,1, α1,1) = (0, 2) and

(2.6)
α2i,2j = αi,j , α2i+1,2j = 0,
α2i,2j+1 = 0, α2i+1,2j+1 = αi,j + αi+1,j ,

(except for α1,2j+1 = 2α0,j + α1,j)

j ≥ 1, i = 0, . . . , j.

We have used the parity of polynomials Tj and Hj in order to infer that α2i+1,2j =
α2i,2j+1 = 0 for any i, j, and have derived the other identities in view of recurrences
(2.2) and (2.4).

An alternative and cleaner induction is given by: α0,0 = 1 then

(2.7) αi,k =

{
2α0,k−2n if i = 2n,
α|i−2n|,k−2n otherwise,

n ≥ 0, 2n ≤ k < 2n+1.

Indeed, k = 2n+ l with l = k− 2n < 2n, so that Hk = 2T2nHl which in turn implies

Hk =
∑l

i=0 αi,l2T2nTi =
∑l

i=0 αi,l(T2n+i + T2n−i) hence the above.
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In what follows, we derive recurrences on whole matrices (αi,j)0≤i,j≤k−1. We will
basically recast the recurrences identified for coefficients αi,j as recurrences on these
change-of-basis matrices. This is more important from a computational perspective
for implementing fast transforms. Namely, mapping a linear decomposition in basis
(Hj) into basis (Tj) and vice versa.

In view of (2.6), by simply reordering basis T0, T1, . . . , Tk−1 and basis
H0,H1, . . . , Hk−1 by parity of indices, first even indices then odd indices, the re-
sulting k× k change-of-basis matrix becomes block diagonal. We describe next the
most suitable orderings of indices for promoting fast recurrences.

2.2. Coordinates-permuted systems. We let (Jn)n≥0 be the “ordered” sets of
indices defined by: J0 = {0},

(2.8) Jn+1 = 2Jn ∧ {2Jn + 1}, n ≥ 0,

where 2Jn := {2j : j ∈ Jn}, 2Jn+1 := {2j+1 : j ∈ Jn} and ∧ is the concatenation
operation. The sets J0 ⊂ J1 ⊂ . . . , reflect a specific way of re-ordering nested sets
of indices {0, . . . , 2n − 1}, n ≥ 0. On that account, each order Jn is best described
by a permutation πn of {0, . . . , 2n − 1}, i.e. Jn = {πn(j) : j = 0, . . . , 2n − 1}. The
recurrence (2.8) is reflected on these permutations as follows: π0 is the identity over
{0}, then

(2.9)
πn+1(j) = 2πn(j),

πn+1(2
n + j) = 2πn(j) + 1,

j = 0, . . . , 2n − 1.

Permutations πn are related to the Van der Corput sequence (εk)k≥0 given in (1.16).
Indeed, The following can be verified by induction

(2.10) πn(k) = 2nεk, n ≥ 0, 0 ≤ k ≤ 2n − 1.

This identification shows in particular that πn have order 2, i.e.

(2.11) πn ◦ πn(j) = j, n ≥ 0, j = 0, . . . , 2n − 1.

We let Pn ∈ {0, 1}2n×2n be the permutation matrices associated with the πn (i.e.
Pn = (δi,πn(j))0≤i,j≤2n−1). We have P0 = [1], and in light of (2.11) every Pn is
symmetric and satisfies Pn × Pn = I2n where I2n is the 2n × 2n identity matrix, i.e.

(2.12) Pn = P⊤
n = P−1

n n ≥ 0.

Given a 2n×2n matrix A = (ai,j)0≤i,j≤2n−1, then A′ = (aπn(i),πn(j))0≤i,j≤2n−1, which
can simply be formulated as (ai,j)i,j∈Jn , is equal to A having its rows/columns
permuted with πn. In particular A and A′ are similar matrices with A′ = P−1

n APn.
We put forward two settings of interest to us:

• if A is the change-of-basis matrix from a basis {p0, . . . , p2n−1} into a basis
{q0, . . . , q2n−1}, then A′ is the change-of-basis matrix from permuted basis
{pj}j∈J2n

into permuted basis {qj}j∈J2n
. The matrix (A′)−1 = P−1

n A−1Pn

is its reverse change-of-basis matrix.
• if A is a Vandermonde matrix associated with a polynomial basis
{q0, . . . , q2n−1} and numbers {z0, . . . , z2n−1} (in R or C), i.e. A =
(qj(zi))0≤i,j≤2n−1, then A′ = (qj(zi))i,j∈Jn is the Vandermonde type matrix
associated with permuted basis {qj}j∈J2n

and permuted numbers {zi}i∈J2n
.
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It is worth noting that A = P−1
n A′Pn (since Pn = P−1

n ). As a result, if one is
given A′ = (a′i,j)0≤i,j≤2n−1, then A = (a′πn(i),πn(j)

)0≤i,j≤2n−1. Overall, computing

A′ knowing A or A knowing A′ is immediate as soon as πn is computed.
For the remainder of this paper, we will persistently derive recurrences for change-

of-basis matrices V
[p→q]
n and V

[q→p]
n = (V

[p→q]
n )−1 between permuted bases B(p)

n :=

{pj}j∈J2n
and B(q)

n := {qj}j∈J2n
. As explained above, formulating such matrices be-

tween the non-permuted bases is straightforward. For instance from {p0, . . . , p2n−1}
into {q0, . . . , q2n−1}, the matrix is given by P−1

n V
[p→q]
n Pn.

2.3. Fast change-of-basis transforms for Chebyshev bases. In this section,
we describe fast transforms between bases (Tj) and (Hj). To this end, we first

introduce 2n × 2n matrices J2n , J̃2n , Qn, and Q̃n for n ≥ 0 by

(2.13)

J2n :=


1
1 1

— —

1 1

 , J̃2n :=


2
1 1

— —

1 1

 ,

Qn := P−1
n J2nPn, Q̃n := P−1

n J̃2nPn,

with J1 = Q0 = [1], J̃1 = Q̃0 = [2]. We note that J̃2n = Ĩ2nJ2n = J2n + E1,1,

where Ĩ2n := diag[2, 1, 1, . . . ] and E1,1 = e1e
⊤
1 , e1 = (1, 0, . . . , 0)⊤ considered in

R2n . Since the leading row/column of Pn is e1 (implied from πn(0) = 0), we also

have Q̃n = Ĩ2nQn = Qn + E1,1 for any n ≥ 1.

For n ≥ 0, we let V
[t→h]
n be the 2n × 2n change-of-basis matrix from permuted

basis B(t)
n := {Tj}j∈J2n

into permuted basis B(h)
n := {Hj}j∈J2n

, and V
[h→t]
n be the

reverse change-of-basis matrix. Plain recurrences can be derived for such matrices.

Proposition 2.1. There holds V
[t→h]
0 = V

[h→t]
0 = [1], and for n ≥ 0

(2.14) V
[t→h]
n+1 =

[
V

[t→h]
n 0

0 Q̃⊤
n V

[t→h]
n

]
,

(2.15) V
[h→t]
n+1 =

[
V

[h→t]
n 0

0 V
[h→t]
n Q̃−⊤

n

]
.

Proof. We recall that Jn+1 = 2Jn ∧ {2Jn + 1}. The zero blocks are inferred from
the parity of polynomials Tj and Hj . Given that Hj =

∑
i αi,jTi, then H2j(x) =

Hj(T2(x)) =
∑

i αi,jTi(T2(x)) =
∑

i αi,jT2i(x). The leading block V
[t→h]
n follows.

Then H2j+1(x)=2xHj(T2(x))=2x
∑

i αi,jT2i(x)=2α0,jT1(x)+
∑

i ̸=0 αi,j(T2i−1(x)+

T2i+1(x)) hence H2j+1 = (2α0,j +α1,j)T1 +
∑j

i=1(αi,j +αi+1,j)T2i+1. As a result, if

A = (αi,j)0≤i,j≤2n−1 then J̃⊤
2nA is the change-of-basis matrix from T1, T3, . . . , T2n+1−1

into H1,H3, . . . , H2n+1−1. From permuted basis (T2i+1)i∈Jn into permuted basis

(H2j+1)j∈Jn , it is thus equal to P
−1
n (J̃⊤

2nA)Pn = (P−1
n J̃⊤

2nPn)(P
−1
n APn) = Q̃⊤

n V
[t→h]
n .

The proof of (2.14) is complete. That for (2.15) follows by inversion, since V
[h→t]
n =

(V
[h→t]
n )−1, for any n ≥ 0. □
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The above recurrences are relatively simple. As far as implementation is con-

cerned, difficulties can only arise on computing with and handling the matrices Q̃n

and Q̃−1
n , or rather Qn and Q−1

n , as already noted.4

Matrices Qn = P−1
n J2nPn and Q−1

n indexed by i, j ∈ {0, . . . , 2n− 1} have explicit
forms. The entries of Qn are (Qn)i,j = (J2n)πn(i),πn(j) hence equal to 1 if πn(i) =

πn(j) or πn(i) = πn(j)+1, and to 0 otherwise. It is easily verified J−1
2n is lower with

entries (−1)i−j , the entries of Q−1
n are thus equal to (−1)πn(i)−πn(j) if πn(i) ≥ πn(j)

and to 0 otherwise. Given that Jn = {πn(j) : j = 0, . . . , 2n − 1} were generated for
n = 0, . . . , N , assembling Q0, . . . , QN and Q−1

0 , . . . , Q−1
N is straightforward.

Matrices Qn and Q̃n can be computed differently. In view of (2.13), Rn :=

Q̃n − Ĩ2n = Qn − I2n are given by Rn = (δπn(i),πn(j)+1)0≤i,j≤2n−1. In particular,
matrices Rn satisfy a plain recurrence: R0 = [0] and

(2.16) Rn+1 =

[
0 Rn

I2n 0

]
, n ≥ 0.

The proof uses induction on n and (2.9), see [5]. We note that the actions of matrices
Rn and R⊤

n are explicit. For x = (x0, . . . , x2n−1)
⊤,

• y = Rnx is given by yi = xπn(πn(i)−1) for i = 1, . . . , 2n − 1 and y0 = 0;

• y = R⊤
nx is given by yi = xπn(πn(i)+1) for i = 0, . . . , 2n − 2 and y2n−1 = 0.

Accordingly, the actions of Qn, Q
⊤
n , Q̃n, and Q̃⊤

n are straighforward as well.

We can now outline fast transforms involving matrices V
[t→h]
N and V

[h→t]
N . In

view of (2.14), given z ∈ R2n+1
vertical concatenation of z1, z2 ∈ R2n , w1 =

V
[t→h]
n z1, and w2 = V

[t→h]
n z2, then w = V

[t→h]
n+1 z is the vertical concatenation of

w1 and Q̃⊤
nw2(= w2 + R̃⊤

nw2 where R̃n = Rn + E1,1). Inversely, given w vertical

concatenation of w1,w2 ∈ R2n , then z = V
[h→t]
n+1 w is the vertical concatenation of

z1 = V
[h→t]
n w1 and z2 = V

[h→t]
n (Q̃−⊤

n w2). Given that Jn were generated (hence

πn are known), and the auxiliary actions of Q̃⊤
n and Q̃−⊤

n were implemented for

n = 0, . . . , N , computing transforms V
[t→h]
N x or V

[h→t]
N x is straightforward. In

number of operations, the complexity is O(M log(M)) with M = 2N .
For mapping between bases (Tj) and (Hj), we are naturally inclined to use

identified change-of-basis recurrences. For example, given a decomposition P =∑k
j=0 bjHj , one can be interested in coefficients cj s.t. P =

∑k
j=0 cjTj . It is imme-

diate that c = Ab where b = (b0, . . . , bk)
⊤, c = (c0, . . . , ck)

⊤, and A = (αi,j)0≤i,j≤k

is the change-of-basis matrix from T0, T1, . . . , Tk into H0,H1, . . . , Hk, the entries
of which are discussed in (2.6) and (2.7). We can also rely on fast transforms.
More precisely, let n be s.t. 2n ≤ k + 1 < 2n+1, b = (b0, . . . , bk, 0, . . . 0)

⊤ and

c = (c0, . . . , ck, 0, . . . 0)
⊤ both considered in R2n+1

, and A = (αi,j)0≤i,j≤2n+1−1. We

have c = Ab and this now implies P−1
n+1c = V

[t→h]
n+1 (P−1

n+1b). In order to compute
c0, . . . , ck, we proceed as follows:

• compute z = P−1
n+1b, i.e. zj = bπn+1(j), j = 0, . . . , 2n+1 − 1;

• compute w = V
[t→h]
n+1 z, using fast transforms as explained above;

4Q̃n = Qn + E1,1 and Q̃−1
n = Q−1

n Ĩ−1
2n , hence equal to Q−1

n with it first column halved.
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• compute c = Pn+1w, i.e. cj = wπn+1(j), j = 0, . . . , k.

The latter step is justified by Pn+1 = P−1
n+1, see (2.12).

3. Roots of unity and bit-reversed sequence

In this section, Ω is the closed unit disk of the complex domain. For k ≥ 1 fixed,
we consider Uk := {ρ0, . . . , ρk−1} with ρj = (ei2π/k)j , the set of k-roots of unity. We

then consider the semi-definite hermitian product 〈f, g〉k = (1/k)
∑k−1

j=0 f(ρj)g(ρj).

This product is definite over Pk−1[X] for which the canonical basis 1, z, z2, . . . , zk−1

is orthonormal. In view of (1.6), we have IUk
[f ] =

∑k−1
j=0〈f, zj〉k zj , hence

(3.1) IUk
[f ] =

1

k

k−1∑
l=0

f(ρl)

k−1∑
j=0

(z/ρl)
j =

k−1∑
l=0

f(ρl)
1

k

(z/ρl)
k − 1

z/ρl − 1
,

is the interpolation operator associated with Uk. The Vandermonde matrix F :=
((ρi)

j)0≤i,j≤k−1, which also the change-of-basis from the Lagrange basis into the

canonical basis, is (
√
k times) the k × k DFT matrix. Its inverse is F ∗/k where F ∗

is the conjugate transpose of F .
The above is applicable as is with sets U2n for n ≥ 0. Such sets are in addition

nested, i.e. U2n ⊂ U2n+1 , symmetric with respect to 0, and satisfy U2n = {z2 :
z ∈ U2n+1}. This implies convenient properties (in the line of radix-2 FFT) best
described using a sequential framework.

We consider the bit-reversed sequence E = (ek)k≥0, defined by

(3.2) ek := exp

(
iπ

n∑
j=0

aj
2j

)
, k =

n∑
j=0

aj2
j .

We have E = (1,−1, i,−i, eiπ/4,−eiπ/4, ei3π/4,−ei3π/4, . . . ). The sequence E is a
Leja sequence over the closed unit disk. Every 2n-section of E is equal to U2n in
the set sense. Observe that e2j+1 = −e2j and e22j = ej , hence (z− e2j)(z− e2j+1) =

(z2 − ej) for any j. Newton polynomials associated with E can thus be factorized.
Induction yields that for any 2n ≤ k < 2n+1 as above,

(3.3) wk(z) =

n∏
j=0
aj=1

(z2
j
+ e2

j

k ).

By developing the product, wk(z) =
∑

l⪯k(ek)
k−lzl where l � k in the sense of

binary expansions, if l =
∑n

j=0 bj2
j , then {j : bj = 1} ⊂ {j : aj = 1}.

We propose to derive change-of-basis matrices between Lagrange basis (associ-
ated with 2n-section E2n) and hierarchical bases, the canonical basis (zj)j≥0 and
the Newton basis (wj(z))j≥0. This is ideally described in the permuted-coordinate
systems associated with orderings Jn. To this end, we introduce permuted Vander-
monde 2n × 2n matrices

(3.4) Vn :=
(
(ei)

j
)
i∈Jn,j∈Jn

, V [w]
n :=

(
wj(ei)

)
i∈Jn,j∈Jn

,

and diagonal 2n × 2n matrices Dn = diag[(e2i)i∈Jn ] for any n ≥ 0.
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Proposition 3.1. There holds V0 = [1], and for n ≥ 0

(3.5) Vn+1 =

[
Vn +DnVn

Vn −DnVn

]
.

Proof. The recurrence on Jn implies the block representation

Jn+1


Jn+1︷ ︸︸ ︷
Vn+1 = 2Jn

{ 2Jn︷ ︸︸ ︷
X1

2Jn+1︷︸︸︷
Y1

2Jn + 1
{

X2 Y2
.

Since e2i+1 = −e2i for any i, then X2 = X1 and Y2 = −Y1. Since (e2i)
2 = ei for any

i, then X1 = Vn and Y1 = DnVn. The proof is complete. □

By inverting, it is immediate to derive a recurrence for matrices V −1
n . For the

sake of consistency, we formulate it for V −⊤
n = (V −1

n )⊤.

Proposition 3.2. There holds V −⊤
0 = [1], and for n ≥ 0

(3.6) V −⊤
n+1 =

1

2

[
V −⊤
n +D−1

n V −⊤
n

V −⊤
n −D−1

n V −⊤
n

]
.

Recurrences (3.5) and (3.6) are similar up to a factor 1/2 and the change of
matrices Dn into D−1

n which are also diagonal with D−1
n = diag[(1/e2i)i∈Jn ]. In

light of this observation, matrices V −⊤
n satisfy

(3.7) V −⊤
n =

1

2n
(
(1/ei)

j
)
i∈Jn
j∈Jn

= Vn/2
n, n ≥ 0.

We therefore recover V −1
n = V ∗

n /2
n for any n ≥ 0.

We now turn to matrices V
[w]
n . We introduce 2n × 2n matrices D+

n and D−
n by

D±
n = (±e2i − e2j)i,j∈Jn . Since e2i+1 = −e2i, (e2i)

2 = ei for any i, and w2j(z) =
wj(z

2), w2j+1(z) = (z − e2j)wk(z
2) for any j, the same arguments used in proving

Proposition 3.1 yield the following.

Proposition 3.3. There holds V
[w]
0 = [1], and for n ≥ 0

(3.8) V
[w]
n+1 =

[
V

[w]
n D+

n � V
[w]
n

V
[w]
n D−

n � V
[w]
n

]
.

The Hadamard products � can be further simplified. Indeed, there holds

(3.9) D±
n � V [w]

n = ±DnV
[w]
n − V [w]

n Dn.

Although not straightforward as V −1
n , it is within reach to derive simple recurrences

for matrices (V
[w]
n )−1, also formulated for transposes.
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Proposition 3.4. There holds (V
[w]
0 )−⊤ = [1], and for n ≥ 0

(3.10) (V
[w]
n+1)

−⊤ =
1

2

[
(V

[w]
n )−⊤ + V ′

n +D−1
n (V

[w]
n )−⊤

(V
[w]
n )−⊤ − V ′

n −D−1
n (V

[w]
n )−⊤

]
,

where V ′
n = D−1

n (V
[w]
n )−⊤Dn.

Remark 3.5. We note that the entries of matrices V
[w]
n and (V

[w]
n )−1 are the collo-

cation and barycentric coefficients as in lower triangular matrices W2n and T2n (see
(1.9)) associated with E, except for the rows and columns being permuted accord-

ing to πn, i.e. V
[w]
n = (wi,j)i,j∈Jn and (V

[w]
n )−1 = (τi,j)i,j∈Jn . Recurrences (3.8) and

(3.10) can thus be viewed as fast procedures for computing such coefficients.

We introduce notation B(z)
n := {zj}j∈J2n

, B(l)
n := {l2n,j(z)}j∈J2n

, and B(w)
n :=

{wj(z)}j∈J2n
for the canonical basis and Lagrange/Newton bases associated with

E2n = (e0, . . . , e2n−1) all permuted according to πn. We have derived the recurrences

for the change-of-basis matrices between B(l)
n and B(z)

n (i.e. Vn and inverse) and

between B(l)
n and B(w)

n (i.e. V
[w]
n and inverse). Those for change-of-basis matrices

V
[z→w]
n and V

[w→z]
n between B(z)

n and B(w)
n can also be easily derived.

Proposition 3.6. There holds V
[z→w]
0 = V

[w→z]
0 = [1], and for n ≥ 0

(3.11) V
[z→w]
n+1 =

[
V

[z→w]
n −V

[z→w]
n Dn

0 V
[z→w]
n

]
,

(3.12) V
[w→z]
n+1 =

[
V

[w→z]
n DnV

[w→z]
n

0 V
[w→z]
n

]
.

Proof. We use the block representation as in the proof of Proposition 3.1. Given j ∈
Jn, w2j(z) = wj(z

2) and w2j+1(z) = (z − e2j)wj(z
2), hence w2j(z) =

∑
i∈Jn

αi,jz
2i

and w2j+1(z) =
∑

i∈Jn
αi,jz

2i+1 − e2j
∑

i∈Jn
αi,jz

2i given that V
[z→w]
n = (αi,j). We

imply the first recurrence. The recurrence for V
[w→z]
n = (V

[z→w]
n )−1 is a simple

verification. □

We can recapitulate all the previous in the following table.

(3.13)

B(l)
n B(z)

n B(w)
n

B(l)
n I2n Vn V

[w]
n

B(z)
n V −1

n I2n V
[z→w]
n

B(w)
n (V

[w]
n )−1 V

[w→z]
n I2n

Remark 3.7. Implementing recurrences in real arithmetics is immediate for the

matrices V
[·]
n having only entries of modulus 1 or 0 such as Vn, V

−1
n , V

[z→w]
n , and

V
[w→z]
n . We simply need to explicit and implement the recurrences implied for

matrices |V [·]
n | and φ(V

[·]
n ) of entry-wise moduli and arguments. For example, |Vn|
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is the 2n × 2n all-ones matrix while φ(Vn) satisfies the recurrence: φ(V0) = [0] and
for n ≥ 0

(3.14) φ(Vn+1) =

[
φ(Vn) φ(Vn) + un1

⊤

φ(Vn) φ(Vn) + un1
⊤ + π

]
,

where un = (φ(e2i))i∈Jn ∈ R2n and 1 is the all-ones vector in R2n . Having computed
φ(VN ), entries of VN are obtained via the polar form.

We now can outline how the results of the present section can be used for fast
computations in polynomial interpolation.

Interpolation at roots of unity: for a target function f : Ω → C we compute
f(e0), . . . , f(e2n−1) and stack them in a vector b = (b0, . . . , b2n−1)

⊤. The vector

c = (c0, . . . , c2n−1)
⊤ such that IU2n

[f ] =
∑2n−1

k=0 ckz
k satisfies Vn(P

−1
n c) = P−1

n b. In
order to compute c, we proceed as follows

• compute y = P−1
n b, i.e. yj = bπn(j) = f(eπn(j)), j = 0, . . . , 2n − 1;

• compute w = V −1
n y, using fast transforms based in (3.6);

• compute c = Pnw, i.e. cj = wπn(j), j = 0, . . . , 2n − 1.

Computing w using (3.6) can be rapidly performed. In number of operations, the

complexity isO(2n log(2n)). In the same way, if c is such that IU2n
[f ] =

∑2n−1
k=0 ckwk,

i.e. coefficients in the Newton basis, then V
[w]
n (P−1

n c) = P−1
n b. The above can be

applied, with the only difference that w = (V
[w]
n )−1y. We note in view of (3.10)

that computing (V
[w]
n )−1y is clearly more involved than that of computing V −1

n y.
Hierarchical interpolation using E: As far as Newton formulas are con-

cerned, it is not imperative to rely on fast transforms. Such formulas are better
suited to hierarchical computations. They can be implemented as follows: first, we
generate e0, . . . , eN for N big enough and compute associated barycentric coeffi-
cients {τi,j}0≤i,j≤N (= TN+1, see (1.9)). We then let I−1[f ] ≡ 0 and proceed one
index k at a time (i.e. k = 0, 1, . . . )

• query the target function f at ek;

• compute the new Newton coefficient ck =
∑k

j=0 τk,jf(ej);

• update Ik[f ] = Ik−1[f ] + ckwk.

Polynomials Ik[f ] =
∑k

j=0 cjwj are the hierarchical approximations to f .

Computing barycentric coefficients τi,j = 1/w′
i+1(ej) can be carried out via plain

recurrences. Indeed, using w2i+1(z) = wi+1(z
2)/(z+ e2i) and w2(i+1)(z) = wi+1(z

2)

for any i, deriving with respect to z, and using that e2j+1 = −e2j and e22j = ej for
any j, we draw the following recurrence: τ0,0 = 1 and for i ≥ 0

(3.15)
τ2i,2j = (1 + γi,j)τi,j/2
τ2i,2j+1 = (1− γi,j)τi,j/2

, γi,j = e2i/e2j , j = 0, . . . , i,

and

(3.16)
τ2i+1,2j = +γj τi,j/2
τ2i+1,2j+1 = −γj τi,j/2

, γj = 1/e2j , j = 0, . . . , i.

Mapping to canonical basis: hierarchical Newton scheme can also be used if
the primary goal is formulating IN [f ] in the canonical basis. For instance, having
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computed c0, c1, . . . , cN s.t. IN [f ] =
∑N

j=0 cjwj , then IN [f ] =
∑k

j=0 bjz
j , where

b = Ac with b = (b0, . . . , bN )⊤, c = (c0, . . . , cN )⊤, and A = (αi,j)0≤i,j≤N is the

change-of-basis matrix from {1, z, . . . , zN} into {w0, w1, . . . , wN}. The mapping
can also be carried hierarchically while computing Newton formulas. We simply
add a step where we read the decomposition of wk in basis 1, . . . , zk and use it in
order to distribute ckwk over 1, . . . , zk.

We note that coefficients αi,j satisfy a plain recurrence. In view of w2j(z) =
wj(z

2) and w2j+1(z) = wj(z
2)(z + e2j+1) for any j ≥ 0, we have α0,0 = 1,

(α0,1, α1,1) = (−1, 1) and

(3.17)
α2i,2j = αi,j , α2i+1,2j = 0,
α2i,2j+1 = αi,je2j+1, α2i+1,2j+1 = αi,j ,

j ≥ 1, i = 0, . . . , j,

with the convention αk+1,k = 0.

Remark 3.8. It is easily verified that the recurrences and computations identified
in this section are unchanged if E = (ej)j≥0 is any sequence defined by (e0, e1) =
(1,−1) and (e2j , e2j+1) = (

√
ej ,−

√
ej) for j ≥ 1 (where

√
ej is either of the square

roots of ej). All such sequences are instance of Leja sequences on the unit disk.

The bit-reversed sequence E = (ek)k≥0, defined by (3.2), has a particular prop-
erty. In terms of the Van der Corput sequence (εj)j≥0, we have that ek = ei2πεk for

any k. In view of (2.10), this implies that ek = ei2π×πn(k)/2n if k < 2n, hence

(3.18) eπn(k) = exp
(
i
2πk

2n

)
, n ≥ 0, 0 ≤ k ≤ 2n − 1.

For n ≥ 0 fixed, the permuted set {ei}i∈Jn is simply equal to {ei2πk/2n}2n−1
k=0 , the set

of regular “non-permuted” 2n-roots of unity in this order. Matrices
(
pj(ei)

)
i,j∈Jn

are merely regular Vandermonde type matrices (pj(ρi))0≤i,j≤2n−1 but having only
their columns permuted according to πn. In the 3-steps procedure implementing
interpolation at roots of unity, we simply have yj = f(ei2πj/2

n
). Also {e2i}i∈Jn

is equal to {ei2πk/2n+1}2n−1
k=0 since it is the first half of {ei}i∈Jn+1 . Computations

involving the bit-reversed sequence are of course better outlined using non-permuted
indexing and cast in a classical FFT framework. However, for the sake of generality,
see Remark 3.8, we opted for permuted indexing.

4. Chebyshev abscissas of first kind

In this section, Ω is the unit interval [−1, 1]. For k ≥ 1 fixed, we consider
the set of k roots of Chebyshev polynomial Tk, i.e. Ξk := {ξ0, . . . , ξk−1} with
ξi = cos(θi), θi := 2i+1

2k π. We then consider the semi-definite inner product

〈f, g〉k = (1/k)
∑k−1

i=0 f(ξi)g(ξi). This product is definite over Pk−1[X] for which

T0,
√
2T1, . . . ,

√
2Tk−1 form an orthonormal basis. In view of (1.6),

(4.1) IΞk
[f ] = 〈f, T0〉k + 2

k−1∑
j=1

〈f, Tj〉kTj ,

is the interpolation operator associated with Ξk. The Vandermonde matrix C =
(Tj(ξi))0≤i,j≤k−1, which is the change-of-basis matrix from Lagrange basis into the
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Chebyshev basis, is up to normalizing of columns the DCT-III matrix, see [13]. Its

inverse is C̃⊤/k where C̃ = C × diag[1, 2, . . . , 2], i.e. the columns of C, except the
first one, get multiplied by 2.

Remark 4.1. In view of (4.1), Lagrange polynomials have plain formulas. Indeed,

IΞk
[f ] =

∑k−1
i=0 f(ξi)li(x) with li(x) := (1+2

∑k−1
j=1 Tj(ξi)Tj)/k. Moreover, by simple

trigonometry, li(x) = (dk−1(θ − θi) + dk−1(θ + θi))/(2k) for x = cos(θ), where

dk−1 is the Dirichlet kernel of order k − 1, i.e. dk−1(θ) = 1 + 2
∑k−1

j=1 cos(jθ) =

sin((2k − 1)θ/2)/ sin(θ/2).

The previous is of course applicable with sets of roots Ξ2n . Such sets are in
addition symmetric with respect to 0 and related by a recurrence, i.e. Ξ2n =
{2ξ2 − 1 : ξ ∈ Ξ2n+1}. We will be able, as in the complex setting, to derive fast
change-of-basis matrices.

In order not to overload proofs by reproducing the arguments used in §2, we make

the remark below. We recall that matrices J2n , J̃2n and their permuted variant Qn

and Q̃n are introduced in (2.13).

Remark 4.2. For x0, . . . , x2n−1 arbitrary, matrices X = (T2j(xi))0≤i,j≤2n−1, Y =
(T2j+1(xi))0≤i,j≤2n−1 and D = diag[(2xi)0≤i≤2n−1] are related in two ways. First,
since T1(x) = xT0(x) and T2j−1(x) + T2j+1(x) = 2xT2j(x) for any j ≥ 1, then

Y J̃⊤
2n = DX. Also, since 2xT2j+1(x) = T2j(x) + T2(j+1)(x) for any j ≥ 0 then

DY − XJ2n consists only in zero columns except the last one which is equal
to (T2n+1(x0), . . . , T2n+1(x2n−1))

⊤. If now we consider permuted matrices X =

(T2j(xi))i,j∈Jn , Y = (T2j+1(xi))i,j∈Jn and D = diag[(2xi)i∈Jn ], then Y Q̃⊤
n = DX

and DY −XQn consists only in zero columns except for the last which is equal to
(T2n+1(xj))j∈Jn . The latter is justified by the fact that the last element in Jn is
2n − 1 for any n ≥ 0. We note in particular that if x0, . . . , x2n−1 are all roots of
T2n+1 , then DY = XQn.

In order to fully exploit the recurrence identified on the sets Ξ2n , we re-define
them via: Ξ1 = {0}, and

(4.2) Ξ2n+1 =

{√
ξ + 1

2
,−

√
ξ + 1

2
: ξ ∈ Ξ2n

}
, n ≥ 0.

We will subsequenly write Ξ2m = {ξm,0, . . . , ξm,2m−1} taking this ordering into ac-
count. In particular, there holds

(4.3)
ξn+1,2i+1 = −ξn+1,2i

T2(ξn+1,2i+1) = T2(ξn+1,2i) = ξn,i
, n ≥ 0, i = 0, . . . , 2n − 1.

For n ≥ 0 fixed, we introduce 2n × 2n matrices

(4.4) Vn :=
(
Tj(ξn,i)

)
i∈Jn,j∈Jn

V [h]
n :=

(
Hj(ξn,i)

)
i∈Jn,j∈Jn

,

and 2n × 2n diagonal matrices Dn = diag[(2ξn+1,2i)i∈Jn ].

Proposition 4.3. There holds V0 = [1], and for n ≥ 0

(4.5) Vn+1 =

[
Vn +D−1

n VnQn

Vn −D−1
n VnQn

]
, Vn+1 =

[
Vn +DnVnQ̃

−⊤
n

Vn −DnVnQ̃
−⊤
n

]
.
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Proof. We use the blocks representation as in the proof of Proposition 3.1. Identities
T2j(−x) = T2j(x) = Tj(T2(x)) and T2j+1(−x) = −T2j+1(x) for any j, combined with
(4.3) imply X2 = X1 = Vn and Y2 = −Y1. We conclude using Remark 4.2 which

implies Y1Q̃
⊤
n = DnX1 and DnY1 = X1Qn. □

The matrix Vn is equal to (Tj(ξn,i))0≤i,j≤2n−1 having its rows/columns per-
muted according to πn. Since the leading row/column are not permuted in the

process, then V −1
n = Ṽ ⊤

n /2n where Ṽn = Vn × diag[1, 2, . . . , 2]. Using this and

Q̃n = diag[2, 1, 1, . . . ]Qn for any n ≥ 1, or by inverting the recurrence identified
above, it is immediate to derive a recurrence for matrices V −1

n . For the sake of
consistency, we formulate it for V −⊤

n = (V −1
n )⊤.

Proposition 4.4. There holds V −⊤
0 = [1], and for n ≥ 0

(4.6) V −⊤
n+1 =

1

2

[
V −⊤
n +DnV

−⊤
n Q−⊤

n

V −⊤
n −DnV

−⊤
n Q−⊤

n

]
,

(4.7) V −⊤
n+1 =

1

2

[
V −⊤
n +D−1

n V −⊤
n Q̃n

V −⊤
n −D−1

n V −⊤
n Q̃n

]
.

The same arguments used in order to derive (4.5) apply to matrices V
[h]
n . Having

said that, the plain recurrence (2.4) on the hierarchical basis (Hj)j≥0 implies simpler
recurrences.

Proposition 4.5. There holds V
[h]
0 = (V

[h]
0 )−⊤ = [1], and for n ≥ 0

(4.8) V
[h]
n+1 =

[
V

[h]
n +DnV

[h]
n

V
[h]
n −DnV

[h]
n

]
,

(4.9) (V
[h]
n+1)

−⊤ =
1

2

[
(V

[h]
n )−⊤ +D−1

n (V
[h]
n )−⊤

(V
[h]
n )−⊤ −D−1

n (V
[h]
n )−⊤

]
.

The remark following Proposition 3.2 applies here too. For any n ≥ 0,

(4.10) (V [h]
n )−⊤ =

1

2n
(
1/Hj(ξn,i)

)
i∈Jn
j∈Jn

.

Remark 4.6. Identity (4.10) also holds if indexing i, j ∈ Jn is reversed back to
0 ≤ i, j ≤ 2n − 1 for both matrices. Also, if we consider non permuted abscissas
ξi = cos(θi), θi :=

2i+1
2×2nπ, the above shows that the inverse of (Hj(ξi))0≤i,j≤2n is

equal to the transpose of 1
2n (1/Hj(ξi))0≤i,j≤2n .

Now, for n fixed, we let Wn,0, . . . ,Wn,2n−1 be Newton polynomials associated

with Ξ2n according to Wn,0 ≡ 1 and Wn,j(x) =
∏j−1

i=0 2(x − ξn,i). Here we have
multiplied monic Newton polynomials wj by 2j . This yields more notational clarity
and grants numerical stability since 1/2 is the capacity of [−1, 1]. The recurrence
in (4.3) combined with T2(x) = 2x2 − 1, yields

(4.11)
Wn+1,2j (x) = Wn,j(T2(x))
Wn+1,2j+1(x) = Wn,j(T2(x))× 2(x− ξn+1,2j)

,
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for j = 0, . . . , 2n − 1. In other words, plain recurrences are implied across orders 2n

for Newton polynomials associated with the permuted sets Ξ2n .
Similarly to the complex setting, we can derive factorizations as (3.3). One can

verify by induction that for any n ≥ 0 and any k =
∑n−1

j=0 aj2
j ,

(4.12) Wn,k(x) =

n−1∏
j=0
aj=1

2
(
T2j (x) + T2j (ξn,k)

)
.

By developing the product, we write Wn,k(x) =
∑

l⪯k Hk−l(ξn,k)Hl(x) where l � k

in the sense of binary expansions, as explained following (3.3).
We introduce 2n × 2n matrices

(4.13) V [w]
n :=

(
Wn,j(ξn,i)

)
i∈Jn
j∈Jn

,

and matrices D+
n and D−

n by D±
n = (±2ξn+1,2i − 2ξn+1,2j)i,j∈Jn . Combining (4.3)

and (4.11), then proceeding as in complex setting, we derive recurrences similar to
Proposition 3.3 and Proposition 3.4. We recall that � is the Hadamard product

hence D±
n � V

[w]
n = ±DnV

[w]
n − V

[w]
n Dn.

Proposition 4.7. There holds V
[w]
0 = (V

[w]
0 )−⊤ = [1], and for n ≥ 0,

(4.14) V
[w]
n+1 =

[
V

[w]
n D+

n � V
[w]
n

V
[w]
n D−

n � V
[w]
n

]
.

(4.15) (V
[w]
n+1)

−⊤ =
1

2

[
(V

[w]
n )−⊤ + V ′

n +D−1
n (V

[w]
n )−⊤

(V
[w]
n )−⊤ − V ′

n −D−1
n (V

[w]
n )−⊤

]
,

where V ′
n = D−1

n (V
[w]
n )−⊤Dn.

With B(t)
n := {Tj}j∈J2n

, B(h)
n := {Hj}j∈J2n

, permuted Chebyshev bases and

B(l)
n := {l2n,j(x)}j∈J2n

, B(w)
n := {W2n,j(z)}j∈J2n

, Lagrange/Newton bases associ-
ated with Ξ2n (Ξ2n ordered according to construction (4.2)) then also permuted, we

have basically derived the recurrences for change-of-basis matrices between B(l)
n and

each basis B(t)
n , B(h)

n , B(w)
n . The recurrences for change-of-basis matrices between

B(t)
n and B(w)

n and between B(h)
n and B(w)

n can also be easily derived.

Proposition 4.8. There holds: V
[t→w]
0 = V

[w→t]
0 = [1], and for n ≥ 0

(4.16) V
[t→w]
n+1 =

[
V

[t→w]
n −V

[t→w]
n Dn

0 Q̃⊤
n V

[t→w]
n

]
,

(4.17) V
[w→t]
n+1 =

[
V

[w→t]
n DnV

[w→t]
n Q̃−⊤

n

0 V
[w→t]
n Q̃−⊤

n

]
.

Proof. Wn+1,2j(x) = Wn,j(T2(x)) and Wn+1,2j+1(x) = 2(x− ξn+1,2j)Wn,j(T2(x)) for
any j ∈ Jn. Using the exact same arguments used to prove (2.14), we derive the
first recurrence. The second is a direct verification. □
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Using the same arguments in combination with H2i(x) = Hi(T2(x)) and

H2i+1(x) = 2xHi(T2(x)) for any i ≥ 0 or simply that V
[h→w]
n = V

[h→t]
n V

[t→w]
n ,

we derive the recurrences for change-of-basis between bases B(h)
n and B(w)

n .

Proposition 4.9. There holds V
[h→w]
0 = V

[w→h]
0 = [1], and for n ≥ 0

(4.18) V
[h→w]
n+1 =

[
V

[h→w]
n −V

[h→w]
n Dn

0 V
[h→w]
n

]
,

(4.19) V
[w→h]
n+1 =

[
V

[w→h]
n +DnV

[w→h]
n

0 V
[w→h]
n

]
.

For the sake of completeness, we sketch out how the numerous results in this
section can be implemented. We let n ≥ 0 fixed, and consider the set Ξ2n =
{ξj = cos(θj) : j = 0, . . . , 2n−1}, where θj = (2j+1)π/2n+1. We let f : [−1, 1] → R
be a function and denote by IΞ2n

[f ] the polynomial of degree ≤ 2n−1 interpolating
f over Ξ2n . We distinguish:

Lagrange interpolation formula: In view of Remark 4.1 pertaining to Dirich-
let kernel d2n−1, for x = cos(θ)

(4.20) IΞ2n
[f ](x) =

1

2

(
K2n(θ) +K2n(−θ)

)
,

where K2n(θ) =
1

2n

2n−1∑
i=0

f(ξi)d2n−1(θ − θi).

Interpolation formula in Chebyshev bases: We let 〈·, ·〉2n be the semi-
definite inner product associated with Ξ2n . We have

(4.21)

IΞ2n
[f ] = 〈f, 1〉2n + 2

2n−1∑
j=1

〈f, Tj〉2n Tj

= 〈f, 1〉2n +
2n−1∑
j=1

〈f, 1

Hj
〉2n Hj .

The first formula is (4.1) while the second is implied from Remark 4.6. The coeffi-
cients 〈f, Tj〉2n , for j = 0, . . . , 2n − 1, are the coordinates of A⊤y/2n if we consider

A = (Tj(ξi))0≤i,j≤2n−1 and y = (f(ξ0), . . . , f(ξ2n−1))
⊤. The same can be said for co-

efficients 〈f, 1/Hj〉2n with A = (1/Hj(ξi))0≤i,j≤2n−1. Having “optimally” computed

matrix A⊤, computing the desired coefficients is merely a matrix-vector product.
Fast formulas in permuted bases: In general, IΞ2n

[f ] =
∑2n−1

j=0 cjpj
where p0, . . . , p2n−1 is any basis of P2n−1[X] and c = (c0, . . . , c2n−1)

⊤ given by
c = ((pj(ξi))0≤i,j≤2n)

−1y with y as above. If we rather consider that Ξ2n is or-

dered {ξn,0, . . . , ξn,2n−1} as in (4.2) and y = (f(ξn,0), . . . , f(ξn,2n−1))
⊤ then c =

((pj(ξn,i))0≤i,j≤2n)
−1y. In particular c′ = P−1

n c and y′ = P−1
n y satisfy:

• if pj = Tj , then c′ = V −1
n y′. Recurrences in (4.7) can be used.

• if pj = Hj , then c′ = (V
[h]
n )−1y′. The recurrence in (4.9) is used.
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• if pj = Wn,j , then c′ = (V
[w]
n )−1y. The recurrence in (4.15) is used.

The second recurrence in (4.7) is most appropriate in case of Chebyshev basis as

it involves Q̃n not its inverse. Obtaining y′ from y and c from c′ is immediate,
y′j = yπn(j) and cj = cπn(j) for j = 0, . . . , 2n − 1.

Newton interpolation formulas: We let again Ξ2n = {ξn,0, . . . , ξn,2n−1} be
ordered as in (4.2) and Ij for j = 0, . . . , 2n − 1 be Lagrange interpolation operators
associated with the {j + 1}-sections of Ξn (hence IΞ2n

= I2n−1). We will con-
sider f(ξn,0), . . . , f(ξn,2n−1) as sequential queries of f . Assuming we have computed

barycentric coefficients τ
(n)
i,j := 2/W ′

n,i+1(ξn,j) for all i, j with i = 0, . . . , 2n − 1
and j = 0, . . . , i, we proceed as detailed in the complex setting. We query f

at ξn,k, compute a new Newton coefficient ck =
∑k

j=0 τ
(n)
k,j f(ξn,j), and update

Ik[f ] = Ik−1[f ] + ckWn,k, one query at a time. We may be able to early stop
the approximation process at some k as soon as a prescribed convergence criterion
is satisfied.

Unlike the complex setting, barycentric coefficients are now in addition indexed
by n. However, their computation is similar. Using recurrences (4.11), deriving with
respect to x, and then using recurrences (4.3), we draw the following recurrence:
for any m ≥ 0, i = 0, . . . , 2m − 1 and j = 0, . . . , i,

(4.22)
τ
(m+1)
2i,2j = (1 + γi,j) τ

(m)
i,j /2

τ
(m+1)
2i,2j+1 = (1− γi,j) τ

(m)
i,j /2

, γi,j =
ξm+1,2i

ξm+1,2j
,

(4.23)
τ
(m+1)
2i+1,2j = +γj τ

(m)
i,j /2

τ
(m+1)
2i+1,2j+1 = −γj τ

(m)
i,j /2

, γj =
1

2ξm+1,2j
,

with τ
(m)
0,0 = 1 for any m ≥ 0.

As we have already seen in §2 and §3, mapping a final approximation IN [f ] or hi-
erarchical approximations Ik[f ] to Chebyshev basis can be carried without difficulty
if the change-of-basis matrix from T0, T1, . . . , T2n−1 into Wn,0,Wn,j , . . . ,Wn,2n−1 is

already precomputed. A recurrence for the coefficients β
(n)
i,j s.t. Wn,j =

∑j
i=0 β

(n)
i,j Ti

is not difficult to derive.

Remark 4.10. The recurrences identified in this section are unchanged if in re-
currence (4.2) we had Ξ2m+1 = {ϵξ

√
(ξ + 1)/2,−ϵξ

√
(ξ + 1)/2 : ξ ∈ Ξ2m} with

ϵξ = ±1. Indeed, if Ξ2n = {ξn,0, . . . , ξn,2n−1} taking into account such an ordering,
then (4.3) and (4.11) stay valid. Changes are mainly reflected in diagonal matrices
Dn = diag[(2ξn+1,2i)i∈Jn ] and are propagated to all matrices of interest.

5. Chebyshev abscissas of second kind and <-Leja sequences

In this section, Ω is the unit interval [−1, 1]. For k ≥ 2 fixed, we consider the set

of k roots of polynomial Tk − Tk−2, i.e. Ξ̃k := {ξ̃0, . . . , ξ̃k−1} with ξ̃j := cos( jπ
k−1).

We then consider the semi-definite inner product 〈f, g〉k =
∑′′k−1

i=0 f(ξ̃j)g(ξ̃j)/(k−1),

with
∑′′

meaning that f(1)g(1) and f(−1)g(−1) are halved. This product is definite
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over Pk−1[X] for which T0,
√
2T1, . . . ,

√
2Tk−2, Tk−1 form an orthonormal basis. In

particular, in view of (1.6)

(5.1) I
Ξ̃k
[f ] = 〈f, T0〉k +

(
2

k−2∑
j=1

〈f, Tj〉kTj

)
+ 〈f, Tk−1〉kTk−1,

is the interpolation operator associated with Ξ̃k. The Vandermonde matrix C =

(Tj(ξ̃i))0≤i,j≤k−1 is up to normalizing of columns the DCT-I matrix, see [13]. Sim-
ilarly to Remark 4.1, here also Lagrange polynomials have plain formulas and can
be formulated using Dirichlet kernel.

We observe that the sets Ξ̃k are symmetric w.r.t 0, all contain +1 and −1 (and 0

if k odd), and Ξ̃k ⊂ Ξ̃2k−1 with Ξ̃k = {2ξ2−1 : ξ ∈ Ξ̃2k−1} for any k ≥ 2. This holds
in particular with values k = 2n + 1 for n ≥ 0. Using the adequate re-ordering of

sets Ξ̃2n+1, one is able to enforce convenient recurrences on associated Newton poly-

nomials. This is in fact immediate by re-defining via a recurrence: Ξ̃2 = {+1,−1},
and Ξ̃2n+1+1 = Ξ̃2n+1 ∧ Ξ2n with Ξ2n consists in Chebyshev abscissas of order 2n

ordered according to construction (4.2). The sets implied by this construction are
the sections of a fixed infinite sequence, a typical instance of the so-called <-Leja
sequences.

The <-Leja sequences are defined by sequential projection into [−1, 1], with rep-
etition ruled out, of Leja sequences over the unit disk U initiated at 1. The process
is detailed in its generality in [2, 3]. The bit-reversed sequence E defined in (3.2),
when sequentially projected, yields a specific <-Leja sequence (cos(θj))j≥0 where
angles are θj defined by recurrence: (θ0, θ1, θ2) = (0, π, π/2) and

(5.2) θ2j−1 = θj/2, θ2j = θ2j−1 + π, j ≥ 2.

The analysis in the present section applies to any sequence R defined by R =
{+1,−1}∧Ξ1 ∧Ξ2 ∧ . . . where Ξ2n+1 is related to Ξ2n as described in Remark 4.10.
In other words, any sequence R = (rj)j≥0 generated by (r0, r1, r2) = (1,−1, 0), then

r2i−1 = ±
√

(1 + ri)/2 , r2i = −r2i−1, i ≥ 2. All such sequences (comprising the two
described above) are particular instances of <-Leja sequences and they all satisfy

(5.3)
r2i−1 = −r2i

T2(r2i−1) = T2(r2i) = ri
, i ≥ 2.

The first property is also shared by all <-Leja sequences. The second is specific to
the present context and is more relevant as it will promotes fast recurrences.

We let R = (rj)j≥0 be any sequence as discussed, and introduce associated nor-

malized Newton polynomials Wk by W0 ≡ 1 and Wk(x) =
∏k−1

i=0 2(x− ri) for k ≥ 1.
In particular, W1(x) = 2(x− 1), W2(x) = 4(x2− 1) and W3(x) = 8(x3−x). In view
of (5.3), the following recurrence hold

(5.4)
W2N−1(x) = WN (2x2 − 1)/(2x)

W2N (x) = W2N−1(x)× 2(x+ r2N )
, N ≥ 2.

Vandermonde matrices of interest are (Tj(ri)), (Hj(ri)), and (Wj(ri)) for i, j ∈
{0, . . . , k}. For values k = 2n, by permuting such matrices considering i ∈ I ′

n,
j ∈ J ′

n with I ′
n, J ′

n adequate re-ordering of {0, . . . , 2n}, we can derive block-type
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recurrences. The latter can not however be as plain as the ones derived in previous
sections. We choose not to address this.

We shall only address the problem of decomposing polynomials Wk in Chebyshev
bases (Tj)j (and (Hj)j). First, W1 = 2T1 − 2T0 = H1 − 2H0, W2 = 2T2 − 2T0 =
H2 − 2H0, and W3 = 2T3 − 2T1 = H3 − 2H1. In general, we can use a reproducing
formula, e.g. the fact that Wk = IΞ2m

[Wk] for any k < 2m or Wk = I
Ξ̃2m

[Wk] for

any k < 2m+1, combined with fast analytical computations of these interpolations
operators, which we have already identified. For example, in view of (4.21), for any
k ≥ 3

(5.5) Wk = 〈Wk, 1〉+ 2

k∑
j=1

〈Wk, Tj〉Tj = 〈Wk, 1〉+
k∑

j=1

〈Wk, 1/Hj〉Hj ,

where 〈·, ·〉 = 〈·, ·〉Ξ2m
and m is any integer such that k < 2m. The sums are

stopped at k since Wk has degree k. The sums are of course independent of m.

The first sum is also valid with 〈f, g〉 =
∫ 1
−1 f(x)g(x)(π

√
1− x2)−1dx for which

T0,
√
2T1,

√
2T2, . . . is orthonormal. We propose to derive a recurrence on the first

sum coefficients.
We denote by βi,k the coefficients s.t. Wk =

∑k
i=0 βi,kTi. In particular β0,0 =

1, (β0,1, β1,1) = (−2, 2), and (β0,2, β1,2, β2,2) = (−2, 0, 2). In order to identify a
recurrence, we will simply make use of (5.4), in particular the fact that W2N−1 are
odd polynomials.

Proposition 5.1. We have (β0,2, β1,2, β2,2) = (−2, 0, 2), then given N ≥ 2

• for k = 2N − 1: β2i,k = 0 and β2i+1,k = βi,N − β2i−1,k,
• for k = 2N : β2i,k = βi,N and β2i+1,k = 2rk β2i+1,k−1,

for any i = 0, . . . , N . We use the convention βl,k = 0 for l 6∈ {0, . . . , k}.

Proof. We let N ≥ 2 and k = 2N − 1. Since Wk is an odd polynomial, then Wk =∑N−1
i=0 β2i+1,k T2i+1, hence 2xWk(x) =

∑N−1
i=0 β2i+1,k(T2i + T2i+2). Identifying with

WN (2x2−1) =
∑N

i=0 βi,NTi(2x
2−1) =

∑N
i=0 βi,NT2i(x) yields the recurrence for βi,k.

As for coefficients βi,2N , we simply use that W2N (x) = WN (2x2−1)+2r2NW2N−1(x)
and identification. □

As far as Chebyshev basis is concerned, we can use a different approach.
Namely, W2n+1 = 2(T2n+1 − T2n−1), then for k = 2n + 1, . . . , 2n+1, we use Wk =
W2n+1Wn,k−(2n+1) = 2(T2n+1−T2n−1)Wn,k−(2n+1) where Wn,j are Normalized New-
ton polynomials associated with (r2n+1, . . . , r2n+1). Having the decomposition of
Wn,k−(2n+1) in Chebyshev basis allows us to deduce that of Wk, by virtue of iden-
tity 2Ti(x)Tj(x) = Ti+j(x) + T|i−j|(x). Having said that, the recurrences identified
in Proposition 5 are already adequate and fast enough for our needs.

The computation and stability of hierarchical Newton formulas using the pre-
scribed sequences R is discussed in details [4]. Having that (βi,j)0≤i,j≤N is already
computed for N big enough, mapping hierarchical approximation Ik[f ] into Cheby-
shev basis is straightforward.
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6. New type of <-Leja sequence

We introduce a new sequence R, enforcing “recurrence convenience” as in §3 and
§4. We define R = (rj)j≥0 by r0 = cos(2π/3) = −1/2, r1 = −r0, then

(6.1) r2i =

√
ri + 1

2
, r2i+1 = −r2i, i ≥ 1.

The choice r0 = −1/2 is not arbitrary. It is the solution of 2x2 − 1 = x, other than
1. This simple construction insures the following identities

(6.2)
r2i+1 = −r2i

T2(r2i+1) = T2(r2i) = ri
, i ≥ 0,

which are similar to identities (4.3) but holds here for any i ≥ 0.
We introduce normalized Newton polynomials (Wk)k≥0 by W0 ≡ 1 and Wk(x) =∏k−1
i=0 2(x− ri) for k ≥ 1. We have,

(6.3)
W2j(x) = Wj(T2(x))

W2j+1(x) = Wj(T2(x))× 2(x− r2j)
, j ≥ 0.

Using induction, one can verify that for any k =
∑n

j=0 aj2
j ,

(6.4) Wk(x) =
n∏

j=0
aj=1

2
(
T2j (x) + T2j (rk)

)
.

By developing the product, we write Wk(x) =
∑

l⪯k Hk−l(rk)Hl(x) where l � k
in the sense of binary expansions as explained in previous sections. We note that
since T2n(r2n) = T2n−1(r2n−1) = · · · = T1(r1) = 1/2, then W2n(x) = 2(T2n(x) +
T2n(r2n)) = 2T2n(x) + 1. For n ≥ 0 fixed, R2n the 2n-section of R consists in the
roots of 2T2n + 1 permuted in some way.

As far a change-of-bases matrices are concerned, we are able to reproduce the
analysis of §4 with the sequence R. We adopt the same notation and introduce for
every n ≥ 0 the 2n × 2n matrices

(6.5) Vn :=
(
Tj(ri)

)
i∈Jn
j∈Jn

, V [h]
n :=

(
Hj(ri)

)
i∈Jn
j∈Jn

, V [w]
n :=

(
Wj(ri)

)
i∈Jn
j∈Jn

,

and the 2n × 2n matrices

(6.6) Dn = diag[(2r2i)i∈Jn ], D±
n = (±2r2i − 2r2j)i∈Jn,j∈Jn .

By inspection of §4, we see that the recurrences identified in propositions 4.3, 4.4

and 4.5 hold for the introduced matrices Vn and V
[h]
n . In particular, we infer that

(6.7) (V [h]
n )−⊤ =

1

2n
(
1/Hj(ri)

)
i∈Jn
j∈Jn

.

We note that the identity still holds if indexing i, j ∈ Jn is reversed back to i, j ∈
{0, . . . , 2n − 1} for both V

[h]
n and the matrix on the right hand side.

We have already noted that W2n(x) = 2T2n(x)+1. In particular, the section R2n

of R viewed as a set consists in the roots of 2T2n +1. In view of (6.7), the associated
interpolation operator IR2n

can be formulated in basis H0,H1, . . . as in (4.21) with

now 〈f, g〉2n = (1/2n)
∑2n−1

i=0 f(ri)g(ri).
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The recurrences identified in propositions 4.7, 4.8, and 4.9 hold as well. In particu-
lar, they can be used in order to map Newton interpolation formulas into Chebyshev
bases.

As far as hierarchical interpolation is concerned, the same analysis as in §3
can be invoked. First, plain recurrences are available for barycentric coefficients
τi,j := 2/W ′

i+1(rj). Indeed, since W2i+2(x) = Wi+1(T2(x)) and W2i+1(x) =
Wi+1(T2(x))/(2x + 2r2i) for any i ≥ 0, then deriving with respect to x, and us-
ing (6.2) we draw the following recurrence: τ0,0 = 1, then for i ≥ 0 and j = 0, . . . , i

(6.8)
τ2i,2j = (1 + γi,j)τi,j/2
τ2i,2j+1 = (1− γi,j)τi,j/2

, γi,j = r2i/r2j ,

and

(6.9)
τ2i+1,2j = +γj τi,j/2
τ2i+1,2j+1 = −γj τi,j/2

, γj = 1/(2r2j).

Having the lower triangular matrix TN = (τi,j)0≤i,j≤N−1 for N large enough, we
can query the target function f at rk, compute a new Newton coefficient ck =∑k

j=0 τk,jf(rj) and update Ik[f ] = Ik−1[f ] + ckWk (with Ik−1[f ] ≡ 0) one query at
a time.

Decompositions Wj =
∑j

i=0 βi,jTi are easily computed. Combining (6.3) with the
arguments used in order to prove (2.6), we draw the following recurrence: β0,0 = 1,
(β0,1, β1,1) = (1, 2) and

(6.10)
β2i,2j = βi,j , β2i+1,2j = 0,
β2i,2j+1 = 2r2j+1βi,j , β2i+1,2j+1 = βi,j + βi+1,j ,

(except for β1,2j+1 = 2β0,j + β1,j)

for j ≥ 1 and i = 0, . . . , j. We use convention that βk+1,k = 0.
As noted in all other sections, all the results are unchanged if in definition (6.1)

we have considered (r0, r1) = (−1/2, 1/2) and r2i = ϵi
√
(ri + 1)/2, r2i+1 = −r2i for

i ≥ 1, where ϵi = ±1.

7. Numerical experiment

We consider the ordinary generating function for Chebyshev polynomials, i.e.
γ(t, x) =

∑∞
n=0 Tn(x) t

n, defined for any |t| < 1 and explicitly given by γ(t, x) =
(1− tx)/(1−2tx+ t2). We note that ∂tγ(t, x) =

∑∞
n=1 Tn(x)nt

n−1, and is explicitly
given by

(7.1) ∂tγ(t, y) =
−y

1− 2ty + t2
+

−(1− ty)(2t− 2y)

(1− 2ty + t2)2
.

For ρ fixed ∂tγ(ρ, ·) has a slower converging Chebyshev series than γ(ρ, ·).
We let ρ = 0.9 and consider f(x) = ∂tγ(ρ, T3(x)), in other words

(7.2) f(x) =
∞∑
n=1

nρn−1 T3n(x),

which showcases a sparse Chebyshev series. We rewrite f =
∑∞

j=0 cjTj , hence

c3n = nρn−1
1 , c3n+1 = c3n+2 = 0. We shall use formula (7.1) with t = ρ and

y = T3n(x) = 4x3 − 3x for querying f .



FAST CHANGE-OF-BASES IN POLYNOMIAL INTERPOLATION 453

We compute approximations I0[f ], I1[f ], . . . to f by virtue of hierarchical Newton
interpolation scheme, which we map into a Chebyshev series. The sequence R from
§6 is used. Basically, for increasing k we compute coefficients b0,0, . . . , b0,k such that

Ik[f ] =
∑k

j=0 bk,jTj .

We let Sk[f ] be the best polynomial approximation of degree ≤ k to f in H :=

L2([−1, 1], dx/(π
√
1− x2)), i.e. Sk[f ] =

∑
n:3n≤k nρ

n−1
1 T3n. Since T0,

√
2T1,

√
2T2, . . .

is an orthonormal basis ofH, truncation errors ‖f−Sk[f ]‖H = (
∑

n:3n>k(nρ
n−1)2/2)1/2

can be explicitly formulated or computed to high precision. We will compare δtk :=
‖f −Sk[f ]‖H and δnk := ‖f −Ik[f ]‖H. We note that (δnk )

2 = (δtk)
2+‖Ik[f ]−Sk[f ]‖2H

and ‖Ik[f ]− Sk[f ]‖2H = λ2
0,k + (λ2

1,k + · · · + λ2
k,k)/2 where λj,k = cj − bj,k. We plot

below log2(δ
t
k) and log2(δ

n
k ) versus log2(k).

Figure 1. log-log plot of δtk and δnk .

We now let ρi =
0.8
i for i = 1, . . . , 4, let ρ = (ρ1, . . . , ρ4) and define the function

f for y = (y1, . . . , y4) ∈ [−1, 1]4 by

(7.3) f(y) =

4∏
j=1

γ(ρj , yj) =
∑
ν∈N4

Tν(y)ρ
ν .

Notation Tν(y) =
∏4

j=1 Tνj (yj) and ρν =
∏4

j=1 ρ
νj
j for ν = (ν1, . . . , ν4) ∈ N4 is

standard. The function f has an anisotropic dependance in the yj reflected by the
Chebyshev series. Queries of f are easily obtained since γ is explicit.

We implement sparse hierarchical interpolation as schematized in (1.14) in order

to approximate f . The multi-index ν(i) admitted in Λi−1 is the multi-index with
the largest Newton increment ∆ν [f ] = cνWν in L∞-norm, i.e. |cν |

∏4
j=1 ‖Wνj‖L∞ .

The sequence R defined in (6.1) is used. Univariate polynomials Wk are computed
according to (6.3). Associated barycentric coefficients τi,j are computed according
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to (6.8) and (6.9). The Newton coefficients cν are computed as in (1.11). The
approximation errors are δnk := ‖f − IΛk−1

[f ]‖∞ for k ≥ 0.
The truncated series

∑
ν∈Λ ρνTν of f yield

(7.4) ‖f −
∑
ν∈Λ

ρνTν‖∞ =
∑
ν ̸∈Λ

ρν = f(1)−
∑
ν∈Λ

ρν ,

with the supremum attained at 1 = (1, 1, 1, 1). We let Λt
0 ⊂ Λt

1 ⊂ . . . be the nested
lower sets associated with the k largest ρν for k = 1, 2, . . . . The sets are obtained
by exploring Nd adaptively starting from Λt

0 = {0} and iteratively admitting in
Λt
k−1 the multi-index in its reduced margin with the largest ρν . This is also as

schematized in (1.14) except the admission criterion is straightforward. Formula
(7.4) allows us to inductively compute the decreasing sequence (δtk)k≥1 with δtk :=
‖f −

∑
ν∈Λt

k−1
ρνTν‖∞.

We plot and compare δnk and δtk versus #(Λk−1) = #(Λt
k−1) = k. The norm ‖·‖∞

in δnk = ‖f − IΛk−1
[f ]‖∞ is approximated by a maximum over 104 points randomly

chosen in [−1, 1]4 prior to the execution of the interpolation algorithm.

Figure 2. comparaison of δnk and δtk in k.

In both tests, Newton interpolation formulas yield a wiggly yet steady conver-
gence. The scheme is challenged by dimension, hence the need for more refined ad-
mission criteria in procedure (1.14). One alternative can be to compute and exploit

Chebyshev series produced by interpolation, i.e. IΛ[f ] =
∑k

ν∈Λ bΛ,ν Tν in order to
refine analysis. For instance, admitting in Λ the index ν yielding the largest change

in IΛ∪{ν}[f ] over IΛ[f ] in L2-norm, w.r.t Chebyshev measure
∏

j dxj/(π
√
1− x2j ).
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