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the proofs. Nevertheless, to obtain results and estimates independent of ν > 0, a
treatment as the one we provide is requested.

According to standard assumptions (see (2.7) and (2.8) in Section 2.3), we will
assume that ` behaves as the distance to the boundary. This means that `(x) ≈ d(x)
when x ∈ Ω and x is close to the boundary ∂Ω (see (2.9) and (2.10) in what
follows). As it is common in turbulence modeling, we assume that the flow fields
are stochastic processes, and the bar operator stands for the expectation in the
Reynolds decomposition v = v + v′, π = π + π′, where π denotes the pressure and
π the mean pressure (see Section 2.1 below, even if other choices are possible, as for
instance denoting by the bar operator the long time-averaging).

The natural value of the parameter α is equal to 2 and this model is similar to the
widely used Smagorinsky model, but the term div(Cs`

2|Dv|Dv) is replaced here by
curl (C2`

2|ω|ω). The equivalence between both models can be understood for homo-

geneous isotropic turbulence, by the equality of the enstrophy |ω|2 to the total mean

deformation 2|Dv|2. The equivalence can be obtained by a straightforward gener-
alization of [9, Lemma 4.7]. Then, according to this equality, in [9, Section 5.5.1]
it is proved that the −5/3 Kolmogorov law yields to express the eddy viscosity as
νT = C2`

2|ω|. The rotational structure of the eddy diffusion is a peculiarity of the
model which is suitable for high-speed flows with thin attached boundary-layers.
The mathematical treatment of rotational models is one of the main theoretical
contribution of this paper.

The numerical performance of this model in the steady state case has been ini-
tially tested by Baldwin and Lomax [2], so that this model is also known as the
Baldwin–Lomax model. Numerical analysis foundations also in the statistical non-
equilibrium setting can be found in [23]. It is important here to underline the fact
that this model is a URANS (Unsteady Reynolds Averaged Navier-Stokes) model
(see in [27] and the modeling carried out in Section 2 below).

The analytical properties of a steady version of this model have been recently
studied in [3] in the setting of weighted Sobolev spaces. Some unsteady versions,
with the presence of a dispersive term –which allows for a more classical treatment–
have been recently studied in [5, 21].

The steady version can be treated within the standard theory of monotone oper-
ators, plus a localization argument, while the unsteady one requires a more delicate
argument to deal with the precise choice of spaces and formulation of the problem.
As we will prove, a proper definition of the functional setting will make system (1.1)
to fit into the framework of evolution problems with Bochner pseudo-monotone oper-
ators, for which the theory has been recently developed by two of the authors in [13].
The theory developed in [13] represents an extension and an adaption to unsteady
problems of the classical theory of pseudo-monotone operators from Brézis [6], [7],
already described in the classical monograph of Lions [19]. Our main result is the
following, which covers all possible positive powers of the distance function which
are strictly smaller than the critical value α = 2.

Theorem 1.1. Let us suppose that `(x) = d(x, ∂Ω) and let α ∈ [0, 2), 0 < T < ∞,

v0 ∈ L2
σ(Ω), and f ∈ L3/2(0, T ; (W 1,3

0 (Ω, dα)∗). Then, there exists a weak solution
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to the initial boundary value problem (1.1) such that

v ∈ C([0, T ];L2
σ(Ω)) ∩ L3(0, T ;W 1,3

0,σ (Ω, d
α)),

and for all t ∈ [0, T ]

1

2
∥v(t)∥2 +

ˆ t

0

ˆ
Ω
Cαd

α(x)|ω(s,x)|3 dx ds =
1

2
∥v0∥2 +

ˆ t

0
⟨f ,v⟩

W 1,3
0 (Ω,dα)

ds.

The limitation α < 2 seems to be intrinsic to the problem due to the fact that
dα is not anymore a Muckenhoupt weight for α ≥ 2 (cf. Definition 4.4). Hence,
for α ≥ 2 most of the analytical properties may fail, since we cannot ensure that
the quantity from the energy estimates controls the (weighted) full gradient of the
solution. For values of α larger or equal than 2, even the weak formulation, the
density of smooth functions, and the meaning of the boundary conditions may fail;
the solution of the problem, if possible, would pass through the introduction of a
more general setting, of very weak solutions.

In the last section we will also consider the existence for a family of problems
with different powers of the vorticity in the turbulent stress tensor, still with the
distance function raised to any exponent smaller than the critical one, cf. Thm. 5.5.

Plan of the paper. In Section 2 we derive the rotational Smagorinsky model
from a classical turbulence modeling process, in Section 3 we define the notion
of Bochner pseudo-monotone operators and we recall the main result for general
evolutionary problems, in Section 4 we recall the main results on weighted spaces,
which will be used to properly formulate the problem. Next in the final Section 5 we
show how the hypotheses apply to problem (1.1), for relevant choices of the weight
functions and discuss generalization and critical values of the parameters.

2. Modeling

2.1. Reynolds decomposition. Let us consider the Navier–Stokes equations (NSE
in the sequel) written with the convective term in the rotational formulation:

(2.1)

vt + ω × v − ν∆v +∇
(
π +

|v|2

2

)
= f in (0, T )× Ω,

ω = curlv in (0, T )× Ω,

div v = 0 in (0, T )× Ω,

v = 0 on (0, T )× ∂Ω,

v(0) = v0 in Ω,

where v = v(t,x, ω) is the velocity field, π = π(t,x, ω) the pressure, ω = curlv the
vorticity, (t,x) ∈ R+ ×Ω, ω ∈ X(B, P ), where X(B, P ) is a given probability space
on the space of initial data.

For instance, if f = 0 (the argument can be adapted also to include a smooth

enough external force) it holds that for each divergence-free element of v0 ∈ H1/2(Ω)
there exists a lower bound T = T (∥v0∥1/2) > 0 for the life-span of the unique Fujita–
Kato mild solution. Since the life-span can be estimated with the norm of the initial
datum, by fixing X = B(0, R) ⊆ H1/2(Ω) ∩ {∇ · v = 0} for some R > 0, then the
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life-span is bounded from below by some TX > 0. This means that for each v0 ∈ X,
there exists a unique v ∈ C(0, TX ;H1/2(Ω)) solution of the NSE.

We then introduce P , which is a probability measure on the Borel sets of X.
More specifically, P can be constructed as limit of averages of Dirac measures as
in [9] or the renormalized Lebesgue measure constructed from the Borel sets of X.
The final result does not depend on the choice of P . Let us denote the expectation
with a bar, hence

v0 =

ˆ
X
v0 dP (v0),

and

v(t,x) =

ˆ
X
v(t,x,v0) dP (v0) π(t,x) =

ˆ
X
π(t,x,v0) dP (v0).

More generally, for any field Ψ = ∂tv,ω,∇v,∆v, |v|
2

2 ..., we can define the statistical
mean as

Ψ(t,x) =

ˆ
X
Ψ(t,x,v0) dP (v0),

and consequently we can perform the usual decomposition of Ψ as

Ψ = Ψ+Ψ′,

which is known as the Reynolds decomposition. The properties of the statistical
averaging process imply (Reynolds rules) that for all Ψ,Θ ∈ X

∂tΨ = ∂tΨ, ∇Ψ = ∇Ψ, Ψ′ = 0, ΨΘ = ΨΘ,

hence, taking the expectation of the NSE (2.1) yields

(2.2)

vt + ω × v + ω′ × v′ − ν∆v +∇

(
π +

|v|2

2
+

|v′|2
2

)
= f ,

ω = curlv,

div v = 0,

v|∂Ω = 0,

v|t=0 = v0.

The basic closure and modeling problems concern expressing ω′ × v′ in terms of
averaged variables.

2.2. Rotational Reynolds stress. When taking the expectation of the NSE with
the convective term written in the usual form, we get the term div(v′ ⊗ v′). The

quantity σ(r) = v′ ⊗ v′ is called the Reynolds stress and the Boussinesq assumption
consists in assuming that

σ(r) = −νTDv,

where νT ≥ 0 is an eddy viscosity which remains to be determined and modeled in
terms of v. If we want to use such a Boussinesq assumption, we must express the
turbulent stress (which is a vector in the rotational formulation)

s := ω′ × v′
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in terms of derivatives of mean quantities. This is similar to the approach used when
modeling the more standard Reynolds stress tensor. We prove in what follows the
following theorem

Theorem 2.1. Assume that Ω is connected and of class C1. Then, there exists a
vector a(R) = a(R)(t,x) and a scalar potential Φ = Φ(t,x) such that

(2.3)

vt + ω × v + curl a(R) − ν∆v +∇(π + 1
2 |v|

2 + k − Φ) = f ,

div v = 0,

v|∂Ω = 0,

v|t=0 = v0,

where k = 1
2 |v′|2 is the turbulent kinetic energy.

Proof. Let a(R) and Φ be given by:

(2.4)

a(R)(t,x) =
1

4π

ˆ
Ω

curl s(t,x′)

|x− x′|
dx′ +

1

4π

ˆ
∂Ω

s(t,x′)

|x− x′|
× dσ(x′),

Φ(t,x) =
1

4π

ˆ
Ω

div s(t,x′)

|x− x′|
dx′ − 1

4π

ˆ
∂Ω

s(t,x′)

|x− x′|
· dσ(x′).

Therefore, by the Helmholtz–Hodge theorem, we have the relation

(2.5) ω′ × v′ = curl a(R) −∇Φ.

Inserting (2.5) into (2.2) gives (2.3). □

The vector a(R), which is continuously and uniquely determined by formula (2.4),
is called the rotational Reynolds stress tensor. From now on we write q̄ instead of
π + 1

2 |v|
2 + k − Φ.

2.3. Closure assumption: Rotational Smagorinsky model. In order to finish
the modeling of turbulent quantities, it remains to link a(R) to the mean vorticity
ω. Notice that a(R) has the dimension of a squared velocity, while ω those of a
frequency. Therefore, adapting the Boussinesq assumption to this case yields to
assume

a(R) = νT ω,

in which νT ≥ 0 is a quantity with the dimensions of a viscosity. According to
the −5/3 Kolmogorov law and following [9, Section 5.5.1], we can assume (for an
homogeneous and isotropic flow, in the limit ν → 0)

νT = νT (`, |ω|),
where ` is the Prandtl mixing length. The dimensional analysis of the expression
shows that a consistent expression is

(2.6) νT = Cω`
2|ω|,

with Cω a dimensionless constant. This raises the question of the determination of
`. In the case of a flow over a plate, one finds in Obukhov [22] the following classical
law:

(2.7) ` = `(z) = κz,
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where z ≥ 0 is the distance from the plate and κ the von Kármán constant. The
Van Driest formula [26] defines ` by:

(2.8) `(z) := κ z (1− e−z/A);

here A depends on the oscillations of the plate and on the kinematic viscosity ν,
while z ≥ 0 is again the distance from the plate.

According to these formula, we shall assume throughout the rest of the paper that
the function ` : Ω → R+ is of class C2 and satisfies the two following properties:

a) `(x) ≈ d(x, ∂Ω) for x close to ∂Ω;(2.9)

b) ∀ K ⊂⊂ Ω, ∃ `K > 0 s.t. `(x) ≥ `K > 0 ∀x ∈ K,(2.10)

where d(x, ∂Ω) denotes the distance from the boundary. In practice, we could have
directly assumed `(x) = d(x), i.e.,

(2.11) νT = Cωd
2|ω|.

2.4. Generalised Rotational Smagorinsky models by dimensional analysis.
The analysis of the previous section can be put also in a more general framework
of Large Eddy Simulation (LES) models, looking also at possible modifications of
the parameters present in the expression of the turbulent (rotational) stress vector.
Let `0 > 0 be a typical length scale of the motion. For instance, in the case of a
flow over a plate, one can take

`0 =
ν

v∗
,

where ν is the kinematic viscosity and v∗ is the so-called friction velocity (cf. [1]).
We consider (modulo introducing an appropriate non-dimensionalization of the

equations) the following operator

(2.12) curl
(
`2−α
0 `α|ω|ω

)
with α ∈ [0, 2], which is degenerate at the boundary and for which the natural
treatment is through scales of weighted Banach spaces.

We report some discussion about the relationships between the scaling of the
weight and that of the power of the curl. In the framework of LES methods we
show that even starting with

(2.13) νT = `2−α
0 `α|ω|p−2

this determines a link between powers α and p. Nevertheless, in the last section we
will also point out the limiting behavior of the exponent p = 3 present in model (1.1),
when p = α+ 1.

If one thinks of a flow as composed of eddies of different sizes in different places,
then in a region of large eddies the changes of velocity and its curl are both O(1)
of the typical distance. In a region of smaller eddies the velocity changes over a
distance of O(eddy length scale), so the local deformation is O(1/eddy length scale),
cf. [4, § 3.3.2]. Hence, the rotational Smagorinsky model introduces a turbulent
viscosity νT = (Cδ)2|ω|, where δ is the (local) smallest resolved scale, such that

νT =

{
O(δ2) in regions where |ω| = O(1),

O(δ) in the smallest resolved scale where |ω| = O(δ−1).
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By extrapolation, motivated by experiments with central difference approximations
to linear convection diffusion problems, the following alternate scaling has also been
proposed (cf. [4] and Layton [17]) νT = (Cδ)p−1|Dv|p−2, and we consider here the
rotational counterpart

νT = (Cδ)p−1|ω|p−2, 1 < p < ∞,

which resembles general power laws for non-Newtonian fluids. The above choice of
νT satisfies

νT =

{
O(δp) in regions where |ω| = O(1),

O(δ) in the smallest resolved scale where |ω| = O(δ−1).

The justification of the presence of the critical value p− 1 as power of the distance
function can be done directly by dimensional arguments as in [3]. In fact, recall that
both ∇v and ω have dimensions T−1, where T is a time, and in (2.6) the turbulent
viscosity νT = d2|ω| ∼ L2T−1 (where L is a length) has the dimensions of a viscosity.
This is the only way to identify (by using just a typical length and the vorticity)
a quantity with the dimensions of a viscosity. Introducing as third parameter as
the friction velocity v∗ ∼ LT−1, one can consider more general combinations. The
outcome is to find a turbulent eddy viscosity of the following form

νT = vθ∗d
α|ω|p−2,

for some constants θ, α, p. It turns out (cf. [3]) that the dimensions of this quantity
are νT ∼ Lθ+αT 2−θ−p, and to respect dimensions of the viscosity one has to fix

θ = 3− p and α = p− 1.

A sound generalization of the rotational Smagorinsky model is then the one with
rotational stress

S(v∗, d,ω) = Cv3−p
∗ dp−1|ω|p−2ω,

and, after re-scaling, one can assume Cv3−p
∗ = 1. Note that, even for different values

of p, the power of the distance is always the critical one (in terms of analytical
properties of the weight functions), since dp−1 ̸∈ Ap, cf. Lemma 4.5.

In the last section we will show that from the point of view of mathematical
properties, the turbulent eddy viscosity

νT = dp−1|ω|p−2,

can be handled in terms of an existence theory by (pseudo)monotone operators only
for p ≥ 3. Hence, the exponent p = 3 plays for the weighted rotational operators,
the same role that the exponent p = 11/5 plays for the usual p-NSE with stress
tensor S(Dv) = c|Dv|p−2.

From now and so far no risk of confusion occurs, we do not write the bar anymore.

3. Evolution equations in an abstract setting

As already claimed in the introduction, a proper setting to the rotational Smagorin-
sky model is that of pseudo-monotone evolution problems so we briefly recall the
abstract existence result we will use on the sequel.

For the convenience of the reader, we recall the following definition.
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Definition 3.1. Let X, Y be Banach spaces. An operator A :X→Y is called

(i) bounded, if for all bounded M⊆X, the image A(M)⊆Y is bounded.

(ii) coercive, if Y = X∗ and lim
∥x∥X→∞

⟨Ax,x⟩X
∥x∥X = ∞.

(iii) pseudo-monotone, if Y =X∗ and for any sequence (xn)n∈N⊆X from

xn
n→∞
⇀ x in X,

lim sup
n→∞

⟨Axn, xn − x⟩X ≤ 0,

it follows that ⟨Ax, x− y⟩X ≤ lim infn→∞ ⟨Axn, xn − y⟩X for all y ∈X.

It is well-known that for each f ∈ X∗, the steady problem Ax = f admits a so-
lution if A is bounded, coercive and pseudo-monotone, see [6], [7]. A typical
example of a pseudo-monotone operator is the sum of a hemi-continuous mono-
tone and a compact operator. Recently, two of the authors in [13] developed
an abstract framework for evolution problems, by using the concepts of Bochner
pseudo-monotone and Bochner coercive operators to generalize the ideas of [19, Sec.
2.5], [16], [11], [12] and [24]. We want to access this theory for our concrete example.
Therefore, for the remainder of this section, we assume that (V,H, id) is an evolution
triple, i.e., V is a separable, reflexive Banach space, H a separable Hilbert space
and V embeds densely into H. For I := (0, T ), T ∈ (0,∞), and p ∈ (1,∞), we set

X := Lp(I, V ) and Y := L∞(I,H).

In this framework we have the following notion of a time derivative.

Definition 3.2. A function u ∈ X has a generalized time derivative if there
exists a function w ∈ Lp′(I, V ∗) such that

−
ˆ
I
(u(s), v)Hϕ′(s) ds =

ˆ
I
⟨w(s), v⟩V ϕ(s) ds

for every v ∈ V and ϕ ∈ C∞
0 (I). Since such a function is unique, du

dt :=w is well-
defined. By

W := W 1,p,p′(I, V, V ∗) :=
{
u ∈ X | ∃ du

dt ∈ Lp′(I, V ∗)
}
,

we denote theBochner–Sobolev space with respect to the evolution triple (V,H, id).

In the context of evolutionary problems, the following generalized notions of
pseudo-monotonicity and coercivity (cf. Definition 3.1) are particularly relevant and
useful.

Definition 3.3 (Bochner pseudo-monotonicity). An operator A :X ∩Y→X ∗ is said
to be Bochner pseudo-monotone if for a sequence (un)n∈N⊆X ∩Y from

un
n→∞
⇀ u in X .

un
∗
⇁ u in Y (n → ∞),

un(t)
n→∞
⇀ u(t) in H for a.e. t ∈ I,

and

lim sup
n→∞

⟨Aun,un − u⟩X ≤ 0,
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it follows that ⟨Au,u− v⟩X ≤ lim infn→∞ ⟨Aun,un − v⟩X for every v ∈ X .

Definition 3.4 (Bochner coercivity). An operator A : X ∩ Y → X ∗ is called:

(i) Bochner coercive with respect to f ∈ X ∗ and u0 ∈ H if there is a
constant M := M(f , u0,A) > 0 such that for every u ∈ X ∩ Y from

1
2∥u(t)∥

2
H + ⟨Au− f ,uχ[0,t]⟩X ≤ 1

2∥u0∥
2
H for a.e. t ∈ I,

it follows that ∥u∥X∩Y = ∥u∥X + ∥u∥Y ≤ M .
(ii) Bochner coercive if it is Bochner coercive with respect to f and u0, for

every f ∈ X ∗ and u0 ∈ H.

The critical role of the above definitions is that they identify a vast class of
problems for which existence can be established. In fact, if A : X ∩ Y → X ∗ is
bounded, Bochner pseudo-monotone, and Bochner coercive, then the corresponding
evolution problem du

dt +Au = f is solvable for any initial datum u0 ∈ H. This result
was recently obtained in [13, Thm. 4.1].

This result is particularly relevant since the difficulty is then shifted to the verifi-
cation of the properties of induced operators, which can be performed time-by-time
in the known steady setting. We will not describe the full result, but we propose a
particular, simplified setting sufficient to solve (1.1).

The existence result is mainly based on the following proposition giving sufficient
conditions which have to be checked at any fixed time slice t ∈ I and which is a
particular case of [13, Prop. 3.13].

Proposition 3.5. Let A : V → V ∗ be an operator. Assume that there exists a
number p ∈ (1,∞) and constants c0, c1 > 0 such that1:

(C.1): For every v ∈ V there holds

∥Av∥V ∗ ≤ c0∥v∥p−1
V .

(C.2): A : V → V ∗ is pseudo-monotone.
(C.3): For every v ∈ V there holds

⟨Av, v⟩V ≥ c1∥v∥pV .

Then, the induced operator A : X ∩Y → X ∗, for all u ∈ X ∩Y and v ∈ X defined by

⟨Au,v⟩X :=

ˆ
I
⟨A(u(t)),v(t)⟩V dt,

is well-defined, bounded, Bochner pseudo-monotone, and Bochner coercive.

On the basis of Proposition 3.5, we immediately obtain the following existence
result, which will be used to study the families of rotational models just checking
that the conditions (C.1)–(C.3) are satisfied, after a proper choice of the functional
setting.

1For a pseudo-monotone operator A : X → X∗ (local) boundedness implies demi-continuity,
i.e., xn → x in X (n → ∞) implies Axn ⇀ Ax in X∗ (n → ∞), hence we do not need here to make
any further assumptions of demi-continuity.



92 L. C. BERSELLI, A. KALTENBACH, M. RŮŽIČKA, AND R. LEWANDOWSKI

Theorem 3.6. Let A : V → V ∗ be an operator satisfying (C.1)–(C.3). Then, for

arbitrary u0 ∈ H and f ∈ Lp′(I, V ∗), there exists a solution u ∈ W of the evolution
equation ˆ

I

〈du
dt

(t) +A(u(t)),v(t)
〉
V
=

ˆ
I
⟨f(t),v(t)⟩V dt ∀v ∈ X ,

uc(0) = u0 in H.

Here, the initial condition has to be understood in the sense of the unique continuous
representation uc ∈ C0(I,H) of u ∈ W (cf. [28, Prop. 23.23]).

4. Weighted spaces

Since (1.1) is a boundary value problem with the principal part given by a space
dependent (and degenerate at the boundary) operator, a natural functional setting
would be that of weighted Sobolev spaces. Apart from classical Lebesgue and
Sobolev spaces, we will use their weighted counterparts. We follow the notation
from the classical book of Kufner et al. [14].

A weight % on Rn is a locally integrable function satisfying almost everywhere
0 < %(x) < ∞. The weighted space Lp(Ω, %), 1 < p < ∞, is defined as follows

Lp(Ω, %) :=
{
f : Ω → Rn measurable |

ˆ
Ω
|f(x)|p %(x) dx < ∞

}
.

For p > 1 we have by using Hölder’s inequality that

%−1/(p−1) ∈ L1
loc(Ω) ⇒ Lp(Ω, %) ⊂ L1

loc(Ω) ⊂ D′(Ω),

allowing to work in the standard setting of distributions. It turns out that C∞
0 (Ω)

is dense in Lp(Ω, %) if the weight satisfies %
−1
p−1 ∈ L1

loc(Rn), see [14]. In addition,
Lp(Ω, %) is a Banach space when equipped with the norm

∥f∥p,ϱ :=

(ˆ
Ω
|f(x)|p%(x) dx

)1/p

.

Next, we define weighted Sobolev spaces

W k,p(Ω, %) := {f : Ω → Rn | Dαf ∈ Lp(Ω, %) for all α s.t. |α| ≤ k} ,
equipped with the norm

∥f∥k,p,ϱ :=

( ∑
|α|≤k

∥Dαf∥pp,ϱ

)1/p

,

and, as usual, we define W k,p
0 (Ω, %) as follows

W k,p
0 (Ω, %) := {φ ∈ C∞

0 (Ω)}∥ . ∥k,p,ϱ .

In our application the weight %(x) will be a power of the distance d(x) ≥ 0 of the
point x ∈ Ω from the boundary ∂Ω. Consequently, we specialize to this setting and
give specific notions regarding these so-called power-type weights, see Kufner [14].
First, it turns out that W k,p(Ω, dα) is a separable Banach space provided α ∈ R,
k ∈ N and 1 ≤ p < ∞. In this special setting, since d(x) ≥ CK > 0 for each
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compact K ⊂⊂ Ω, several results are stronger or more precise due to the inclusion
Lp(Ω, dα) ⊂ Lp

loc(Ω), valid for all α ∈ R.
We recall the following classical result about the distance function (cf. [14]).

Lemma 4.1. Let Ω be a domain of class C0,1, which means that in a small enough
neighborhood ΩP , for P ∈ ∂Ω, the boundary ∂Ω∩ΩP can be expressed (after a rigid
rotation) as x3 = a(x1, x2) for Lipschitz continuous a. Then, there exist constants
0 < c0, c1 ∈ R such that

c0 d(x) ≤ |a(x′)− x3| ≤ c1 d(x) ∀x = (x′, x3) ∈ ΩP .

One of the most relevant properties of the distance function is that the following
embedding holds true

(4.1) Lp(Ω, dα) ⊂ L1(Ω) if α < p− 1.

It follows directly from Hölder’s inequalityˆ
Ω
|f | dx =

ˆ
Ω
dα/p|f |d−α/pdx ≤

( ˆ
Ω
dα|f |pdx

)1/p( ˆ
Ω
d−αp′/pdx

)1/p′
,

and using Lemma 4.1 the latter integral is finite if and only if

αp′

p
=

α

p− 1
< 1.

In the same way we have also that

(4.2) ∀α ∈ [0, p− 1[ Lp(Ω, dα) ⊂ Lq(Ω) ∀ q ∈
[
1,

p

1 + α

[
.

As in [14, Prop. 9.10] it can be shown that:

Lemma 4.2. The quantity
( ´

Ω dα|∇f |p dx
) 1

p is an equivalent norm in W 1,p
0 (Ω, dα),

provided that 0 ≤ α < p− 1.

In this case functions from W 1,p
0 (Ω, dα) are zero on ∂Ω in the sense that they can

be approximated by smooth functions with compact support. In the sequel we will
use certain Hardy–Sobolev inequalities. Note that inequalities of this kind, when d
is replaced by |x| = d(x, 0) are known as Caffarelli–Kohn–Nirenberg inequalities [8].

Lemma 4.3. Let Ω ⊆ Rn be a bounded Lipschitz domain. For p ∈ [1, n), α ̸= p− 1

and q ∈ [p, np
n−p

]
there exists a constant c > 0 such that for all f ∈ W 1,p

0 (Ω, dα) there

holds

(4.3)

(ˆ
Ω
d

q
p
(n−p+α)−n|f |q dx

) 1
q

≤ c

(ˆ
Ω
dα|∇f |p dx

) 1
p

.

Proof. This follows from the definition of the space W 1,p
0 (Ω, dα), [18, Theorem 2.1]

and the classical (p, α) Hardy inequality

(4.4)

(ˆ
Ω
dα−p|f |p dx

) 1
p

≤ c

(ˆ
Ω
dα|∇f |p dx

) 1
p

,

which is valid for all p ∈ (1,∞) and α ̸= p−1, for functions in W 1,p
0 (Ω, dα) (cf. [20],

[15, Theorem 8.10.14]). □
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In addition to (4.1) and its role in Hardy-type inequalities, the critical nature of
the power α = p − 1 also occurs in the notion of Muckenhoupt weights and their
relation with the maximal function.

Definition 4.4. We say that a weight % ∈ L1
loc(R3) belongs to the Muckenhoupt

class Ap, for 1 < p < ∞, if there exists C such that

sup
Q⊂Rn

(  
Q
%(x) dx

)(  
Q
%(x)1/(1−p) dx

)p−1

≤ C,

where Q denotes a cube in R3.

The powers of the distance function belong to the class Ap according to the
following well-known result for general domains (say it is enough that ∂Ω is a n−1-
dimensional closed set, see [10]). Here and in the sequel the boundary will be at
least locally Lipschitz to have the outward unit vector properly defined.

Lemma 4.5. The function %(x) =
(
d(x)

)α
is a Muckenhoupt weight of class Ap if

and only if −1 < α < p− 1.

4.1. Solenoidal spaces. A standard approach in fluid mechanics, is to incorporate
the divergence-free constraint directly in the function spaces. These spaces are built
upon completing the space of solenoidal smooth vector fields with compact support,
denoted as φ ∈ C∞

0,σ(Ω). For α ∈ R define

Lp
σ(Ω, d

α) :=
{
φ ∈ C∞

0,σ(Ω)
}∥ . ∥p,dα

,

W 1,p
0,σ (Ω, d

α) :=
{
φ ∈ C∞

0,σ(Ω)
}∥ . ∥1,p,dα

.

For α = 0 they reduce to the classical spaces Lp
σ(Ω) and W 1,p

0,σ (Ω). Next, we will ex-

tensively use the following extension of classical inequalities linking curl/divergence
and full gradient estimates (cf. [3]).

Lemma 4.6. Let 1 < p < ∞ and assume that the weight % belongs to the class
Ap. Then, there exists a constant C, depending on the domain Ω and on the weight
% ∈ Ap, such that

∥∇u∥p,ϱ ≤ C(∥divu∥p,ϱ + ∥curlu∥p,ϱ) ∀u ∈ W 1,p
0 (Ω, %).

In particular, we will use the latter result in the following special form

Corollary 4.7. For −1 < α < p − 1 there exists a constant C = C(Ω, α, p) such
that

(4.5)

ˆ
Ω
dα|∇v|p dx ≤ C

ˆ
Ω
dα|curlv|p dx ∀v ∈ W 1,p

0,σ (Ω, d
α).

5. Application to the rotational turbulence models: the proof of
Theorem 1.1

In this section we verify that the initial boundary value problem (1.1), after a
proper selection of parameters, and definition of both the operators and functional
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spaces, can be put in the framework of the abstract Theorem 3.6. This will be
enough to give a proof of the main result of this paper, that is the existence of weak
solutions in Theorem 1.1.

In our setting the choice of the natural spaces is determined by the problem itself
which yields, by the a priori estimate obtained by testing with the velocity v, that
the integral ˆ T

0

ˆ
Ω
dα|curlv|3 dxdt

is finite. Hence, for almost all t ∈ [0, T ] the integral
´
Ω dα|curlv|3 dx will be finite,

determines the choice for the Banach space V .
In order to identify the evolution triple to be used for the proper formulation, we

need to clarify the relationship with the L2(Ω) norm. We have the following result
which immediately derives from the basic results on weighted spaces of the previous
section.

Lemma 5.1. Let u ∈ C∞
0,σ(Ω) and α ∈ [0, 2). Then, there exists C = C(α,Ω) such

that

(5.1)

(ˆ
Ω
|u|2 dx

)1/2

≤ C

(ˆ
Ω
dα|curlu|3 dx

)1/3

.

Proof. For α < 2, combining (4.3) with q = 3p
3−p+α and (4.5), it follows for every

p ∈ (α+ 1, 3)
ˆ
Ω
|u|

3p
3−p+α dx ≤ c

(ˆ
Ω
dα|∇u|p dx

) q
p

≤ c

(ˆ
Ω
dα|curlu|p dx

) q
p

,

for all v ∈ C∞
0,σ(Ω). Since 2 ≤ 3p

3−p+α the assertion follows from Hölder’s inequality

as Ω is bounded. □
Lemma 5.1 shows that one can work with the following evolution triple for all

α ∈ [0, 2)

(V,H, id) :=
(
W 1,3

0,σ (Ω, d
α), L2

σ(Ω), id
)
.

and as functional setting for (1.1) we use the following spaces and operators, where
0 ≤ α < 2

V := W 1,3
0,σ (Ω, d

α) ∥v∥V :=

(ˆ
Ω
dα|curlv|3 dx

)1/3

H := L2
σ(Ω) ∥v∥H :=

(ˆ
Ω
|v|2 dx

)1/2

X := L3(I, V ), Y := L∞(I,H)

W :=
{
u ∈ L3(I, V ) | ∃ du

dt
∈ L3/2(I, V ∗)

}
,

and define the operator A := S +B : V → V ∗ via

⟨Sv,w⟩V :=

ˆ
Ω
dα|curlv|curlv · curlw dx,

⟨Bv,w⟩V :=

ˆ
Ω
(curlv × v) ·w dx.



96 L. C. BERSELLI, A. KALTENBACH, M. RŮŽIČKA, AND R. LEWANDOWSKI

The induced operator S : X ∩ Y → X ∗ inherits the properties of the operator
S (cf. [29, Chapter 30]). Note that S is a strictly monotone, bounded, coercive,
and continuous operator. These properties are practically the same known for the
p-Laplace operator. In fact, from the definition, one obtains directly the following
two inequalities:

∥Sv∥V ∗ ≤ ∥v∥2V ∀v ∈ V,

⟨Sv,v⟩V = ∥v∥3V ∀v ∈ V.

The monotonicity of S derives from the following lemma (cf. [3, Lemma 3.3]).

Lemma 5.2. For smooth enough vector field ωi (it is actually enough that d
α
p ωi ∈

Lp(Ω), with 1 < p < ∞) and for α ∈ R+ it holds thatˆ
Ω
(dα|ω1|p−2ω1 − dα|ω2|p−2ω2) · (ω1 − ω2) dx ≥ 0,

for any (not necessarily the distance) bounded function such that d : Ω → R+ for
a.e. x ∈ Ω.

The proof of the above lemma is based on the observation that it can be proved
that dα(|ω1|p−2ω1 − |ω2|p−2ω2) · (ω1 −ω2) ≥ 0 point-wise. Then weighted integra-
bility of the functions is used to prove that the integral is finite.

To treat the operator B, and the induced one B : X ∩ Y → X ∗, we need to
properly adapt the estimates on the convective term in weighted spaces and this is
mainly based on the previously Hardy-type inequalities (4.3).

Lemma 5.3 (Boundedness of B). For all α ∈ [0, 2) the operator B : V → V ∗ is
bounded. It satisfies ⟨Bu,v⟩V ≤ c∥u∥2V ∥v∥V and ⟨Bu,u⟩V = 0, for all u,v ∈ V .

Proof. The proof is based on the estimation of the space integral, by using appropri-
ate weighted version of classical Sobolev spaces tools. We have in fact, for all smooth
functions with compact support the following inequality (obtained multiplying and

dividing a.e. x ∈ Ω by the positive function dα/3)∣∣∣∣ˆ
Ω
(curlv × u) ·w dx

∣∣∣∣ ≤ ˆ
Ω
d−α/6|u| dα/3|curlv| d−α/6|w| dx

≤
(ˆ

Ω
d−α/2|u|3 dx

)1/3(ˆ
Ω
dα|curlv|3 dx

)1/3(ˆ
Ω
d−α/2|w|3 dx

)1/3

.

It remains to show that all u ∈ V also belong to the weighted space L3(Ω, d−
α
2 ),

with a continuous embedding. From (4.3) it follows for all p ∈ [1, 3), α ∈ [0, 2) and

u ∈ W 1,p
0,σ (Ω, d

α) that(ˆ
Ω
d−

α
2 |u|

p(6−α)
2(3−p+α) dx

) 1
q

≤ c

(ˆ
Ω
dα|∇u|p dx

) 1
p

,

with

q :=
p(6− α)

2(3− p+ α)
< p∗.
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One easily checks that for all α ∈ [0, 2) there exists a p ∈ (1 + α, 3) such that

3 < q < p∗. Since Ω is bounded we deduce from this V ↪→ L3(Ω, d−
α
2 ) by using

Hölder’s inequality.
Once the integral

´
Ω(u × curlv) · w dx is well-defined for u,v,w ∈ V , it im-

mediately follows that ⟨Bu,u⟩V = 0 for all u ∈ V , since a.e. in Ω it holds
(v × curlv) · v = 0. □

This is enough for what concerns the growth and coercivity. We need now to
show compactness for B in order to prove pseudo-monotonicity.

Lemma 5.4 (Compactness of B). Let α ∈ [0, 2). Then, the weak convergence
un ⇀ u in V implies (up to a sub-sequence) that

Bun → Bu in V ∗,

i.e., the operator B is compact.

Proof. By the boundedness of the weakly converging sequence (un)n∈N ⊆ V and by
(4.2) we get that

∥un∥W 1,r(Ω) ≤ C ∀ r ∈
[
1,

3

1 + α

[
.

Hence, by the usual (unweighted) compact Sobolev embeddingW 1,r(Ω) ↪→↪→ Lr̃(Ω),
valid for all r̃ < ( 3

1+α)
∗ = 3

α we get also that (up to a sub-sequence)

un → u a.e. and in Lr̃(Ω).

By using the definition of B, the properties of the curl (with summation over
repeated indices), and integration by parts, we have that for all u,v ∈ V

⟨Bu,v⟩ =
ˆ
Ω
εjklεjlmukvi

∂um
∂xl

dx =

ˆ
Ω
(δklδim − δkmδil)ukvi

∂um
∂xl

dx

= −
ˆ
Ω
ukui

∂vi
∂xk

dx = −
ˆ
Ω
(u⊗ u) : ∇v dx.

Hence, we have

⟨Bun,v⟩ − ⟨Bu,v⟩ = −
ˆ
Ω
(un ⊗ un) : ∇v − (u⊗ u) : ∇v dx

= −
ˆ
Ω

(
(un − u)⊗ un

)
: ∇v +

(
u⊗ (un − u)

)
: ∇v dx.

By Hölder inequality we get, as in the proof of Lemma 5.3,∣∣∣∣ˆ
Ω

(
(un − u)⊗ un

)
: ∇v dx

∣∣∣∣
≤
(ˆ

Ω
d−α/2|un − u|3 dx

)1/3(ˆ
Ω
dα|∇v|3 dx

)1/3(ˆ
Ω
d−α/2|un|3 dx

)1/3

≤
(ˆ

Ω
d−α/2|un − u|3 dx

)1/3

∥v∥V ∥un∥V .

We now observe that the last two terms are uniformly bounded, while

d−α/2|un − u|3 → 0 a.e. x ∈ Ω.
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Consequently, to show that the integral vanishes it is enough to prove that for some
q > 3 there holds

∥un − u∥Lq(Ω,d−α/2) ≤ C

uniformly in n ∈ N, which permits to apply the Vitali theorem in the weighted
space L3(Ω, d−α/2). However, this was already obtained in the proof of Lemma 5.3.
The other term in the decomposition of ⟨Bun,v⟩ − ⟨Bu,v⟩ can be treated in the
same way. □

Proof of Theorem 1.1. In the previous lemmas we have proved that A = S + B is
continuous and pseudo-monotone since it is the sum of a monotone continuous and
a compact operator. Collecting the estimates we have that in particular that the
boundedness and coercivity are as follows

∥Av∥V ∗ ≤ c0∥v∥2V ,
⟨Av,v⟩V ≥ ∥v∥3V ,

since ⟨Bv,v⟩V = 0. Hence all hypotheses from (C.1) to (C.3) are satisfied.
This shows that the induced operator A is Bochner pseudo-monotone and coer-

cive, hence all the hypotheses of the abstract existence Theorem 3.6 are satisfied.
This proves the main result of this paper, that is the existence of weak solution in
Theorem 1.1. □

5.1. The case p > 3. In this section we show that most of the results of the
previous section can be extended (even with easier proofs) to the system with the
following operator

⟨Spv,w⟩V :=

ˆ
Ω
dα|curlv|p−2curlv · curlw dx with p > 3, 0 ≤ α < p− 1,

while the use of the tools typical of pseudo-monotone operators fails for p < 3. We
can then prove the following result

Theorem 5.5. Let p > 3, α ∈ [0, p − 1), 0 < T < ∞, v0 ∈ L2
σ(Ω), and f ∈

Lp′(0, T ; (W 1,p
0 (Ω, dα))∗). Then, there exists a weak solution to the initial boundary

value problem

∂tv + ω × v + curl
(
dα|ω|p−2ω

)
+∇q = f in (0, T )× Ω,

ω = curlv in (0, T )× Ω,

div v = 0 in (0, T )× Ω,

v = 0 on (0, T )× ∂Ω,

v(0) = v0 in Ω,

such that

v ∈ C([0, T ];L2
σ(Ω)) ∩ Lp(0, T ;W 1,p

0,σ (Ω, d
α)),
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and for all t ∈ [0, T ]

1

2
∥v(t)∥2 +

ˆ t

0

ˆ
Ω
Cαd

α(x)|ω(s,x)|p dx ds

=
1

2
∥v0∥2 +

ˆ t

0
⟨f(s),v(s)⟩

W 1,p
0 (Ω,dα)

ds.

The proof of this result is again just a verification that the hypotheses of the ab-
stract theorem are satisfied, but we will highlight the critical role of the parameters.

First note that for p > 3 and 0 ≤ α < p − 1 the inclusion W 1,p
0 (Ω, dα) ⊂ L2(Ω)

holds true. Directly by Hölder’s inequality with δ = p/2, δ′ = p/(p− 2), and Hardy
inequality (4.4) we getˆ

Ω
|u|2 dx =

ˆ
Ω
d

2
p
(α−p)|u|2d

2
p
(p−α)

dx

≤
(ˆ

Ω
dα−p|u|p dx

) 2
p
(ˆ

Ω
d
2 p−α

p−2 dx

) p−2
p

≤ C(p, α)

(ˆ
Ω
dα|∇u|p dx

) 2
p

,

since p− α > 0. This shows that one can work with the evolution triple

(V,H, id) :=
(
W 1,p

0,σ (Ω, d
α), L2

σ(Ω), id
)

with p > 3, 0 ≤ α < p− 1.

The properties of the operator Sp are practically the same as those of the operator
S, hence one can directly show

∥Spv∥V ∗ ≤ ∥v∥p−1
V ∀v ∈ V,

⟨Spv,v⟩V = ∥v∥pV ∀v ∈ V.

On the other hand, the properties of B are to be checked. The operator is the same
as before, but the functional setting is different.

To show the boundedness of B : V → V ∗ for 0 ≤ α < p − 1, we proceed as in
Lemma 5.3 and we get∣∣∣∣ˆ

Ω
(curlv × u) ·w dx

∣∣∣∣ ≤ ˆ
Ω
d−α/2p|u| dα/p|curlv| d−α/2p|w| dx

≤
(ˆ

Ω
d−αp′/p|u|2p′ dx

) 1
2p′
(ˆ

Ω
dα|∇v|p dx

) 1
p
(ˆ

Ω
d−αp′/p|w|2p′ dx

) 1
2p′

.

Next, observe that 2p′ = 2p/(p − 1) < p is satisfied for p > 3. Consequently, in
this case we can directly apply Hölder inequality with exponents δ = (p− 1)/2 and
δ′ = (p− 1)/(p− 3) to bound the first and third integrals as follows:ˆ

Ω
d−α/(p−1)|u|2p′ dx =

ˆ
Ω
d(α−p)2/(p−1)|u|2p′d(2p−3α)/(p−1) dx

≤
(ˆ

Ω
dα−p|u|p dx

) 2
p−1
(ˆ

Ω
d(2p−3α)/(p−3) dx

) p−3
p−1

.
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The first term from the right-hand side is bounded with
(´

Ω dα|∇u|p dx
) 2

p−1 by
using (4.4), while the second is finite if

2p− 3α

p− 3
> −1 ⇐⇒ α < p− 1.

This shows that

⟨Bu,w⟩ ≤ C(Ω, α, p)∥u∥2V ∥w∥V ,

and the compactness of B follows with the same arguments used in the previous
section (almost everywhere convergence and Vitali theorem).

Remark 5.6. The case 1 < p < 3 does not fit with the theory for the reasons we
now explain. The argument with Hardy inequality as in the previous lemma requires
p > 3. If we try to apply the same argument used for p = 3 with Hardy–Sobolev
inequality (4.3), we can write∣∣∣∣ˆ

Ω
(curlv × u) ·w dx

∣∣∣∣
≤
(ˆ

Ω
d−αp′/p|u|2p′ dx

) 1
2p′
(ˆ

Ω
dα|curlv|p dx

) 1
p
(ˆ

Ω
d−αp′/p|w|2p′ dx

) 1
2p′

,

and then estimate the first and third integral with (4.3) for q = 2p′ < p∗, which

holds for p > 9
5 . Hence, to apply (4.3) the precise exponent will be q = p

p−1
3p−3−α
3−p+α ,

and since q ≥ 2p′ this implies that we have to request for

α ≤ 5p− 9

3
.

Since we would like to treat cases with α smaller but “arbitrarily close” to p − 1,
the inequality

p− 1 ≤ 5p− 9

3
,

should be correct. On the other hand the latter can be satisfied only for p ≥ 3.
Since we are out of the range of permitted p this shows that the estimate can not
be used. Being the inequalities Hardy–Sobolev inequalities sharp, this proves that
operator B is not bounded for 9

5 < p < 3, when α is close to p− 1, hence the basic
assumptions to use the pseudo-monotone methods are not satisfied. The existence of
weak solutions, if possible, should be obtained with different methods and possibly
considering different weak formulations of the problem.
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nology, Birkhäuser/Springer, New York, 2014.
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