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general mapping of the form x 7→ G(x)x. In fact, the case studied in the literature
corresponds to the constant function G(x) = a(·), for all x ∈ X = PAP (R). In our
work, G is a very general continuous function. Moreover, the Nemytskii operator NH

(where, NH(x)(t) = H(x(t), t)) is also replaced by a more general operator F . For

example for any α, β ∈ L1(R) with 0 < ‖α‖1 ≤ 1 (where ‖x‖1 =
∫ +∞
−∞ |x(s)|ds and

x ∗ α(t) =
∫ +∞
−∞ x(s)α(s− t)ds denotes the convolution of x and α), the continuous

operators F,G : PAP (R) → PAP (R) defined by: ∀(x, t) ∈ PAP (R)× R,

F (x)(t) =
1

3

(
sin(t) + sin(

√
2t) + (1 + t2)−1x ∗ α(t)

)
G(x)(t) = 3 + sin(2t) + (1 + t2)−1 cos (x ∗ β(t)) ,

can not be writen in the form H(x(t), t) for some function H defined on R × R.
However, with these functions, our results apply and give at last one pseudo almost
periodic solution to the equation (E) (see Example 2.15 in Section 2.2 for details).

— Our approach unifies several function spaces. We deal with abstract Banach
subspace X of BC(R) including some classical spaces as the space of all continuous
w-periodic functions, the space of all almost periodic functions or the space all
pseudo almost periodic functions (see Proposition 2.10). Thus, depending on the
type of functions F and G, the solutions will exist in the adequat corresponding type
of space (see examples in Section 2.2). It is the interest of working in an abstract
subspace X of BC(R) satisfying a natural condition that we call (H0) in this paper.

— The proof of our main result (Theorem 2.1) is subdivided into several simple
and natural lemmas, in order to make the reading more pleasant and less compu-
tational. Among the lemmas proven in this paper, some of them can possibly have
utility independent of this article.

This paper is organized as follows. In section 2, we give our first main result of
existence of solutions of the equation (E) under some general assumption (Theorem
2.1) and we will then give several examples to illustrate this result. In Section 3 we
give our second main theorem consisting on the attractivity of solutions (Theorem
3.3).

2. The main result

Let X be a Banach subspace of BC(R). The set BX(0, r) denotes the closed ball
of X centred at 0 with radious r > 0. For each l, r > 0, we define the following
closed convex subsets of X:

B[l,r] := {x ∈ X : x(t) ∈ [l, r], ∀t ∈ R},

X[l,+∞[ := {x ∈ X : x(t) ∈ [l,+∞[, ∀t ∈ R}.
We need to introduce, the following well defined operator for each l > 0 (see

Lemma 2.7):

T : BC(R)×BC(R)[l,+∞[ → BC(R)

(f, g) 7→ [t 7→
∫ t

−∞
e−

∫ t
s g(u)duf(s)ds],
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It is classical and easy to see that for every (f, g) ∈ BC(R) × BC(R)[l,+∞[, the
function T (f, g) is differentiable and satisfies:

T (f, g)′(t) = −g(t)T (f, g)(t) + f(t), ∀t ∈ R.(2.1)

We consider the following conditions (H0), (H1) and (H̃1):
(H0) the subspace X is invariant under T in the sense that for each l > 0,

T (X ×X[l,+∞[) ⊂ X.
The property (H0) is satifed by several classical Banach subspaces of BC(R) (see

Proposition 2.10 in Section 2.2).
(H1) The functions F,G : (X, ‖ · ‖∞) → (X, ‖ · ‖∞) are continuous and satisfies:
• infx∈X,t∈RG(x)(t) > 0 and there exists k,M ∈ R such that F and G are

bounded on B[k,M ] and that k ≤ F (x)(t)
G(x)(t) ≤ M for all (x, t) ∈ B[k,M ] × R.

• for every sequence (xn) ⊂ X, if (xn) converges uniformly on each compact of
R, then (F (xn)) and (G(xn)) are relatively compact in (X, ‖ · ‖∞).

Notice that if we assume that F and G are bounded on the whole space X and
infx∈X,t∈RG(x)(t) > 0, then we can take in the assumption (H1)

k := inf
(x,t)∈X×R

F (x)(t)

G(x)(t)
and M := sup

(x,t)∈X×R

F (x)(t)

G(x)(t)
.

Notice also that the second point of (H1) is crucial and ensures that the Schauder
fixed point theorem applies. This condition is automaticaly satisfied in the subspace
X = Cw(R) of all w-periodic continuous functions since in this case the uniform
convergence on each compact of R is equivalent to the uniform convergence on R.
It is also satisfied on other spaces, in general and various situations (see Section 2.2
for some examples) and has already been used in the literature (see for instance the
condition (H3) in [11] and the condition (E5), page 248 in [9]).

(H̃1) The functions F,G : (X, ‖ · ‖∞) → (X, ‖ · ‖∞) are Lipschitz,

l := inf
x∈X,t∈R

G(x)(t) > 0,

and there exists k,M ∈ R such that, k ≤ F (x)(t)
G(x)(t) ≤ M for all (x, t) ∈ B[k,M ] × R,

r := sup
x∈B[k,M ]

‖F (x)‖∞ < +∞

and

max(
r

l2
,
1

l
)(LF + LG) < 1,

where LF and LG denotes the constant of Lipschitz of F and G respectively.

Theorem 2.1. Under the assumption (H0) and (H1) (resp. (H0) and (H̃1)), the
equation (E) has at least one solution x∗ in B[k,M ] (resp. has a unique solution x∗ in
B[k,M ]), where k and M are given by the assumption (H1) (resp. by the assumption

(H̃1)).

The proof of the above theorem will be given in the following section.
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Remark 2.2. If moreover the function F is assumed to be a positive function, then
we can take k ≥ 0 and in this case there exists at last one positive solution x∗ ∈ X.

Remark 2.3. Theorem 2.1 is also true under the same assumption for the following

equation (inf G̃ > 0):

(Ẽ) x′ − G̃(x)x = F̃ (x).

since, with G(x)(t) = G̃(x)(−t) > 0 and F (x)(t) := −F̃ (x)(−t), we see easily that

x is a solution of (Ẽ) if and only if t 7→ y(t) := x(−t) is a solution of (E).

Remark 2.4. The assumptions (H1) and (H̃1) also apply to equations with delays
τ and σ, of the form: x′ + Gτ (x)x = Fσ(x), where Gτ (x) : t 7→ G(x)(t − τ(t)) and
Fσ(x) : t 7→ F (x)(t− σ(t)).

2.1. The proof of Theorem 2.1. In order to prove Theorem 2.1 we need some
intermediate results, the proof will be given at the end of this section. Let us start
with the following elementary lemma.

Lemma 2.5. Let g ∈ BC(R) such that inft∈R g(t) > 0. Then, we have that∫ t

−∞
g(s)e−

∫ t
s g(u)duds = 1, ∀t ∈ R.

Proof. Since inft∈R g(t) > 0, then clearly we have that∫ t

−∞
g(u)du = +∞.

It follows that ∫ t

−∞
g(s)e−

∫ t
s g(u)duds =

∫ t

−∞
g(s)e

∫ s
t g(u)duds

= [e
∫ s
t g(u)du]t−∞

= 1.

□
Lemma 2.6. Let l > 0 and let g1, g2 ∈ BC(R) such that inft∈R gi(t) ≥ l for
i ∈ {1, 2}. Then, for every t, s ∈ R such that s ≤ t, we have∣∣∣e− ∫ t

s g1(u)du − e−
∫ t
s g2(u)du

∣∣∣ ≤ e−l(t−s)

∣∣∣∣∫ t

s
g1(u)du−

∫ t

s
g2(u)du

∣∣∣∣ ,
and consequently,∣∣∣e− ∫ t

s g1(u)du − e−
∫ t
s g2(u)du

∣∣∣ ≤ (t− s)e−l(t−s)‖g1 − g2‖∞.

Proof. First, recall that the function x 7→ ex is eb-Lipschitz on any interval ]−∞, b],

by the mean value theorem. Since g1, g2 ≥ l, we have that −
∫ t
s g1(u)du ≤ −l(t− s)

and −
∫ t
s g2(u)du ≤ −l(t− s), for every s ≤ t. It follows from the fact that x 7→ ex

is e−l(t−s)-Lipschitz on the interval ] −∞,−l(t− s)] that,∣∣∣e− ∫ t
s g1(u)du − e−

∫ t
s g2(u)du

∣∣∣ ≤ e−l(t−s)

∣∣∣∣∫ t

s
g1(u)du−

∫ t

s
g2(u)du

∣∣∣∣ .
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Thus, for every t, s ∈ R such that s ≤ t, we have that∣∣∣e− ∫ t
s g1(u)du − e−

∫ t
s g2(u)du

∣∣∣ ≤ (t− s)e−l(t−s)‖g1 − g2‖∞.

□

Lemma 2.7. Let l, r, r′ > 0 be positive real numbers. Then, the following assertions
hold.

(i) For every (f, g) ∈ BC(R)×BC(R)[l,+∞[, the function T (f, g) is Lipschitz on

R with a constant of Lipschitz less than ‖f‖∞(∥g∥∞l +1). Consequently, the familly
F := {T (f, g) : (f, g) ∈ BBC(R)(0, r)×BC(R)[l,r′]} is uniformly equi-continuous on
R.

(ii) The operator T is Lipschitz on BBC(R)(0, r)×BC(R)[l,+∞[, that is, for every
(f1, g1), (f2, g2) ∈ BBC(R)(0, r)×BC(R)[l,+∞[, we have that

‖T (f1, g1)− T (f2, g2)‖∞ ≤ max(
r

l2
,
1

l
)(‖g1 − g2‖∞ + ‖f1 − f2‖∞).

Proof. (i) Let us prove that T (f, g) is Lipschitz on R. First, it is easy to see that

since inft∈R g(t) ≥ l, then ‖T (f, g)‖∞ ≤ ∥f∥∞
l . On the other hand, from the formula

(2.1), we have that for every (f, g) ∈ BC(R)×BC(R)[l,+∞[:

T (f, g)′(t) = −g(t)T (f, g)(t) + f(t), ∀t ∈ R.

Thus, we have that

‖T (f, g)′‖∞ ≤ ‖g‖∞‖T (f, g)‖∞ + ‖f‖∞ ≤ ‖f‖∞(
‖g‖∞

l
+ 1).

Hence, by the mean value theorem, T (f, g) is Lipschitz with a constant of Lipschitz

less that ‖f‖∞(∥g∥∞l + 1). It follows that the familly F := {T (f, g) : (f, g) ∈
BBC(R)(0, r)×BC(R)[l,r′]} is uniformly equi-continuous on R.

(ii) Using Lemma 2.6, we have that

|T (f1, g1)(t)− T (f2, g2)(t)| ≤
∫ t

−∞

∣∣∣e− ∫ t
s g1(u)du − e−

∫ t
s g2(u)du

∣∣∣ |f1(s)|ds
+

∫ t

−∞
e−

∫ t
s g2(u)du|f1(s)− f2(s)|ds

≤ r‖g1 − g2‖∞
∫ t

−∞
(t− s)e−l(t−s)ds

+‖f1 − f2‖∞
∫ t

−∞
e−l(t−s)ds

=
r

l2
‖g1 − g2‖∞ +

1

l
‖f1 − f2‖∞.

Hence, ‖T (f1, g1)− T (f2, g2)‖∞ ≤ max( r
l2
, 1l )(‖f1 − f2‖∞ + ‖g1 − g2‖∞).

□
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Lemma 2.8. Under the assumptions (H0) and (H1) (resp. the assumptions (H0)

and (H̃1)), the operators Γ defined for all x ∈ B[k,M ] ⊂ X by

Γ(x) := T (F (x), G(x)) = [t 7→
∫ t

−∞
e−

∫ t
s G(x)(u)duF (x)(s)ds],

satisfies the following assertions:
(a) Γ maps B[k,M ] into B[k,M ].
(b) Γ is norm-to-norm continuous and satisfies: for every sequence (xn) ⊂ B[k,M ],

if (xn) converges uniformly on each compact of R to some point of BC(R), then
(Γ(xn)) is relatively compact in (B[k,M ], ‖ · ‖∞) (resp. Γ is contraction).

(c) Γ(B[k,M ]) is equi-continuous at each point of R. Moreover, the set Γ(B[k,M ])(t) :=
{Γ(x)(t) : x ∈ B[k,M ]} ⊂ [k,M ] is relatively compact in R.

Proof. Assume (H0) and (H1) and let us set r := supx∈B[k,M ]
‖F (x)‖∞, l := infx∈X,t∈RG(x)(t) >

0 and r′ := supx∈B[k,M ],t∈RG(x)(t) > 0. Since T satisfies (H0), the operator Γ maps

B[k,M ] into X as follows:

Γ : B[k,M ] → BX(0, r)×X[l,+∞[ → X

x 7→ (F (x), G(x)) 7→ Γ(x) = T (F (x), G(x)).

(a) Let us prove that Γ maps B[k,M ] into B[k,M ]. Indeed, by assumption we have
that

k ≤ F (x)(s)

G(x)(s)
≤ M, ∀(x, s) ∈ B[k,M ] × R,

we get using Lemma 2.5 that for every x ∈ B[k,M ] and every t ∈ R

k =

∫ t

−∞
kG(x)(s)e−

∫ t
s G(x)(u)duds

≤ Γ(x)(t) =

∫ t

−∞
e−

∫ t
s G(x)(u)duF (x)(s)ds

≤
∫ t

−∞
MG(x)(s)e−

∫ t
s G(x)(u)duds

= M.

Thus, Γ(x) ∈ B[k,M ].
(b) Using part (ii) of lemma 2.7, we get that for every x, y ∈ B[k,M ],

‖Γ(x)− Γ(y)‖∞ = ‖T (F (x), G(x))− T (F (y), G(y))‖∞

≤ max(
r

l2
,
1

l
)(‖F (x)− F (y)‖∞ + ‖G(x)−G(y)‖∞).(2.2)

It follows using the assumption (H1), that Γ is continuous and that for every se-
quence (xn) ⊂ B[k,M ], if (xn) converges on each compact subset of R to some point
of BC(R), then (Γ(xn)) is relatively compact in (B[k,M ], ‖ · ‖∞).

(c) We obtain that Γ(B[k,M ])(⊂ B[k,M ]) is equi-continuous at each point of R by
using Lemma 2.7 with the positive real numbers r, l, r′ > 0 defined above. Moreover,
it is clear that the set Γ(B[k,M ])(t) := {Γ(x)(t) : x ∈ B[k,M ]} ⊂ [k,M ] is relatively
compact in R.
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Now, if we assume that the assumption (H̃1) holds, then F and G are ‖ · ‖∞-to-
‖ · ‖∞ Lipschitz functions and so using the inequality (2.2) we get that

‖Γ(x)− Γ(y)‖∞ ≤ max(
r

l2
,
1

l
)(LF + LG)‖x− y‖∞,

which implies that Γ is a contraction by the assumption (H̃1).
□

Now, we give the proof of Theorem 2.1. Let us denote, co∥·∥∞(Γ(B[k,M ])) the
norm-closed convex hull of Γ(B[k,M ]).

Proof of Theorem 2.1. We treat two situations:
• Under the assumptions (H0) and (H1). By Lemma 2.8, Γ(B[k,M ]) ⊂ B[k,M ] and

so

K := co∥·∥∞(Γ(B[k,M ])) ⊂ B[k,M ].

Then, Γ(K) ⊂ Γ(B[k,M ]) ⊂ K and we have that the operator Γ : K → K is well
defined and continuous. We are going to prove that Γ(K) is relatively compact for
the norm ‖·‖∞. Using part (c) of Lemma 2.8, we see that K (as a closed convex hull)
is also equi-continuous at each point of R and that K(t) := {x(t) : x ∈ K} ⊂ [k,M ]
is relatively compact in R. Thus, from the Arzela-Ascoli theorem, the restriction
of K to any interval [−m,m] of R (m ∈ N) is relatively compact in the space
(C([−m,m]), ‖ · ‖∞) of all continuous functions on [−m,m]. Now, let (xn) be any
sequence of K. Then, we have that the restriction of (xn) to each interval [−m,m]
has a subsequence (xµm(n)) converging uniformly on this interval. Using the Cantor
diagonal process, there exists a subsequence (xµ(n)) converging uniformly on each
compact subset of R. Then, by Lemma 2.8 (see part (b)), there exists a subsequence
that we will denote again (xµ(n)) such that (Γ(xµ(n))) converges in (BC(R), ‖ · ‖∞).
Thus, (Γ(K), ‖ · ‖∞) is relatively compact. Using the Schauder fixed point theorem
we get a fixed point x∗ ∈ K ⊂ B[k,M ] for Γ, which satisfies the equation (E) by the
formula (2.1).

• Under the assumptions (H0) and (H̃1). In this situation the operator Γ is
contraction by Lemma 2.8, so the Banach-Picard theorem applies and gives a unique
fixed point x∗ ∈ B[k,M ] for Γ, which is the unique solution of the equation (E) in
the set B[k,M ] by the formula (2.1). □

2.2. Examples and properties. In this section, we give examples satisfying our
results. The assumption (H0) is satified for several classical subspace of BC(R).
We give in Proposition 2.10 (see bellow) some examples of classical spaces satisfying
this property. We need to introduce some definitions.

For a fixed w ∈ R \ {0}, we denote Cw(R) the Banach subspace of BC(R) con-
sisting on all continuous w-periodic functions.

Definition 2.9. A continuous function f : R → R is called (Bohr) almost periodic
if for each ε > 0, there exists lε > 0 such that every interval of length lε contains at
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least a number τ with the following property:

sup
t∈R

|f(t+ τ)− f(t)| < ε.

The number τ is then called an ε-period of f . The collection of all almost periodic
functions f : R → R will be denoted by AP (R). It is known that the space AP (R)
is a Banach subspace of BC(R) (see for instance [9]). Clearly, for every w ∈ R, we
have that Cw(R) ↪→ AP (R) (a Banach subspace). A classical example of an almost
periodic function which is not periodic is given by the following function

f(t) = sin(t) + sin(
√
2t).

The space of continuous ergodic functions is defined as follows:

PAP0(R) := {g ∈ BC(R) : lim
r→+∞

1

2r

∫ r

−r
|g(t)|dt = 0}.

Clearly, PAP0(R) is a Banach subspace of BC(R). It is easy to see that AP (R) ∩
PAP0(R) = {0} (see for instace [9]). Then, we define the Banach subspace of
BC(R) of all pseudo almost periodic function denoted PAP (R), as follows:

PAP (R) := AP (R)⊕ PAP0(R).
Finally, we introduce the following space of all pseudo w-periodic functions denoted
PPw(R) by

PPw(R) := Cw(R)⊕ PAP0(R).
Clearly, PPw(R) is a Banach subspace of PAP (R) for every w ∈ R. Finally, BCU (R)
denotes the Banach subspace of BC(R) of uniformly continuous functions.

Proposition 2.10. The following spaces of continuous functions, satisfy the as-
sumption (H0): X = BC(R), BCU (R), Cw(R), AP (R), PAP0(R), PAP (R) and
PPw(R).

Proof. The result is clear and easy for X = BC(R), Cw(R). For X = BCU (R),
we use the point (i) of Lemma 2.7. The proof for X = AP (R) can be found
in [10, Lemma 1.3]. For X = PAP0(R), just follow the proof of [6, Lemma 1.3, Ch2.
p. 90]. The proof for X = PAP (R) is given in step 2 of the proof of [3, Theorem
1] and finally the proof for X = PPw(R) can be given in the same way. □

Given two functions f : R → R and g : R → R, their convolution f ∗g, if it exists,
is defined by:

f ∗ g(t) =
∫ +∞

−∞
f(s)g(s− t)ds.

One can generate various types of almost periodic functions using the convolution.

Proposition 2.11. (see [9, Proposition 3.4 and Proposition 5.3]) The following
assertions hold.

(i) Let x ∈ AP (R) and α ∈ L1(R). Then x ∗ α ∈ AP (R).
(ii) Let x ∈ PAP0(R) and α ∈ L1(R). Then x ∗ α ∈ PAP0(R).
(iii) Let x ∈ PAP (R) and α ∈ L1(R). Then x ∗ α ∈ PAP (R).

Now, we give a general way to construct Lipschitz functions F : PAP (R) →
PAP (R).
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Definition 2.12. (see [6]) A continuous function f : R × R → R is called pseudo
almost periodic in t uniformly with respect to x ∈ R, if the two following conditions
are satisfied:

(i) ∀x ∈ R, f(x, ·) ∈ PAP (R).
(ii) for all compact set K ⊂ R, we have that: ∀ε > 0, ∃δ > 0, ∀t ∈ R, ∀x, y ∈ K:

|x− y| ≤ δ =⇒ |f(x, t)− f(y, t)| ≤ ε.

The set of all such functions will be denoted PAPU (R× R).

For the study of Nemytskii operators we refer to [5, 7, 8].

Lemma 2.13. (see [5, 8],) Let f ∈ PAPU (R × R) and x ∈ PAP (R). Suppose
that for some bounded subset B of R, f is bounded on B × R. Then, the function
[t 7→ f(x(t), t)] ∈ PAP (R).

Using the above lemma, we deduce easily the following proposition.

Proposition 2.14. Let f ∈ PAPU (R × R) be a Lipschitz function with respect to
the first variable, that is, there exists Lf ≥ 0 such that:

|f(s, t)− f(s′, t)| ≤ Lf |s− s′|, ∀s, s′, t ∈ R.

Then, the function F defined by F (x) := f(x(·), ·) is a Lipschitz function for the
norm ‖ · ‖∞ that maps (PAP (R), ‖ · ‖∞) into (PAP (R), ‖ · ‖∞).

The above proposition says that each Lipschitz function f ∈ PAPU (R×R) induce
a Lipschitz function F : (PAP (R), ‖ · ‖∞) → (PAP (R), ‖ · ‖∞). However, the
converse is not true in general. Indeed, for any α ∈ L1(R) \ {0}, the ‖α‖1-Lipschitz
function F : (PAP (R), ‖ · ‖∞) → (PAP (R), ‖ · ‖∞), defined by

F (x)(t) := sin(t) + sin(
√
2t) + (1 + t2)−1x ∗ α(t)

cannot, under any circumstances, be written in the form f(x(t), t) for some f ∈
PAPU (R×R). This prove that there are many more continuous (Lipschitz) functions
F : (PAP (R), ‖·‖∞) → (PAP (R), ‖·‖∞), than those which come from the functions
f ∈ PAPU (R× R) as in Proposition 2.14.

Now, we give simple examples satisfying our theorems. We start with the example
announced in the introduction.

Example 2.15. Let α, β ∈ L1(R) be such that 0 < ‖α‖1 ≤ 1.

F (x)(t) =
1

3

(
sin(t) + sin(

√
2t) + (1 + t2)−1x ∗ α(t)

)
G(x)(t) = 3 + sin(2t) + (1 + t2)−1 cos(x ∗ β(t)).

The assumption (H0) is satisfied by Proposition 2.10. We are going to prove that
the assumption (H1) is also satisfied. Indeed, clearly, F,G : PAP (R) → PAP (R)
are ‖α‖1-Lipschitz and ‖β‖1-Lipschitz respectively (Notice that F is not bounded
but F and G are bounded on bounded sets). We have that G(x)(t) ≥ 1, for every
(x, t) ∈ PAP (R)×R. On the other hand, we have that |F (x)(t)| ≤ 1

3(2+‖x‖∞‖α‖1)
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for every (x, t) ∈ PAP (R)×R. Then, for every x ∈ PAP (R) such that ‖x‖∞ ≤ 1
∥α∥1 ,

we have that ∣∣∣∣F (x)(t)

G(x)(t)

∣∣∣∣ ≤ 1

3
(2 + ‖x‖∞‖α‖1) ≤ 1 ≤ 1

‖α‖1
.

Thus,

− 1

‖α‖1
≤ F (x)(t)

G(x)(t)
≤ 1

‖α‖1
, ∀(x, t) ∈ B[− 1

∥α∥1
, 1
∥α∥1

] × R.

Now, let (xn) ⊂ PAP (R) be a sequence converging on each compact of R to some
x ∈ BC(R). Then, there exists a constant M ≥ ‖x‖∞ such that ‖xn‖∞ ≤ M for all
n ∈ N. Then, for every ε > 0, there exists Aε > 0 such that for every |t| ≥ Aε, we
have that (1 + t2)−1 ≤ ε

2M∥α∥1 . Thus,

(1 + t2)−1|xn ∗ α(t)− x ∗ α(t)| ≤ 2M‖α‖1(1 + t2)−1 < ε, ∀|t| ≥ Aε.

On the other hand, there exists N ∈ N such that for every n ≥ N , we have that
supt∈[−Aε,Aε] |xn(t)− x(t)| < ε. Hence,

sup
t∈R

(1 + t2)−1|xn ∗ α(t)− x ∗ α(t)| ≤ 2ε, ∀n ≥ N.

Hence, we get that the sequence (F (xn)) converges in (BC(R), ‖ · ‖∞) and so it is
relatively compact in PAP (R). The same argument hold for (G(xn)). Thus, the
assumption (H0) and (H1) are satisfied, so Theorem 2.1 gives at last one solution
x∗ ∈ B[− 1

∥α∥1
, 1
∥α∥1

] ⊂ PAP (R) for the equation (E).

Example 2.16. (Example in the space PPw(R) ⊂ PAP (R) under the as-
sumption (H1)) As a simple consequence of Theorem 2.1, we obtain that the
following equation has a nonnegative solution x∗ ∈ PPw(R)

x′ +G(x)x = F (x)

where F,G : PPw(R) → PPw(R) are defined by G(x)(t) = e
∥x∥0,1+ 1

1+t2
sin(x(t))

and

F (x)(t) := 3 + sin(‖x‖0,1) + 1
1+t2

cos(x(t)), where ‖x‖0,1 :=
∫ 1
0 |x(s)|ds ≤ ‖x‖∞.

• The space PPw(R) satisfies (H0) by Proposition 2.10.
• The assumption (H1) is satisfied. Indeed, clearly we have that

inf
x∈X,t∈R

G(x)(t) ≥ e−1 > 0.

Let us set G0(x, t) := ‖x‖0,1 + 1
1+t2

sin(x(t)), we have that

|G0(x, t)−G0(y, t)| ≤ ‖x− y‖0,1 +
1

1 + t2
| sin(x(t))− sin(y(t))|

≤ ‖x− y‖0,1 +
1

1 + t2
|x(t)− y(t)|

≤ 2‖x− y‖∞.

Then, G0 is Lipschitz from PPw(R) into PPw(R). Since t 7→ et is continuous, it
follows that G is continuous from PPw(R) into PPw(R). On the other hand, it
is clear that G is bounded on bounded sets. Finally, let (xn) ⊂ X be a sequence
converging on each compact of R. Notice that |‖xn‖0,1−‖xm‖0,1| ≤ ‖xn−xm‖0,1 ≤
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supt∈[0,1] |xn(t)− xm(t)|. On the other hand, we see that for every A ≥ 1, we have
that

sup
t∈R

| 1

1 + t2
sin(xn(t))−

1

1 + t2
sin(xm(t))| ≤

max( sup
t∈[−A,A]

| 1

1 + t2
(sin(xn(t))− sin(xm(t)))|, 2

1 +A2
) ≤

max( sup
t∈[−A,A]

|xn(t)− xm(t)|, 2

1 +A2
).

It follows that

‖G0(xn)−G0(xm)‖∞ ≤ sup
t∈[0,1]

|xn(t)− xm(t)|

+max( sup
t∈[−A,A]

|xn(t)− xm(t)|, 2

1 +A2
).

So, lim supn,m→+∞ ‖G0(xn) − G0(xm)‖∞ ≤ 2
1+A2 for every A ≥ 1. Sending A to

+∞, we get that (G0(xn)) converges in (BC(R), ‖ · ‖∞) and by the continuity of
the function t 7→ et, we have that (G(xn)) converges in (BC(R), ‖ · ‖∞).

As above, we see that (F (xn)) converges in (BC(R), ‖ · ‖∞). Now, it is clear that
0 ≤ F (x)(t) ≤ 5 for every x ∈ PPw(R) and every t ∈ R. Thus, we can take

0 ≤ k := inf
(x,t)∈X×R

F (x)(t)

G(x)(t)
and M := sup

(x,t)∈X×R

F (x)(t)

G(x)(t)
,

and so the assumption (H1) is satisfied. Using Theorem 2.1 we get that there exists
at least one nonnegative solution of the equation (E).

Example 2.17. (Example in the space C2π(R) under the assumption (H̃1).)
We have the following simple example.

• G : C2π(R) → C2π(R), defined by

G(x) = 4 + (1 + ‖x‖0,1)(1 + sin(·)),

is a 2-Lipschitz and satisfies infx∈X,t∈RG(x)(t) ≥ l = 4 (where ‖x‖0,1 :=
∫ 1
0 |x(s)|ds ≤

‖x‖∞)
• F : C2π(R) → C2π(R), defined by F (x) := 2 + sin(·) + cos(x), is nonnegative,

1-Lipschitz and bounded by r = 4.
Since max( r

l2
, 1l )(LF + LG) = 3

4 < 1, then (H̃1) is satisfied. This permits to
give thanks to Theorem 2.1 a continuous 2π-periodic solution to the equation (E).
Moreover, there exists a unique solution in B[0,1].

3. Global attractivity of solutions

In this section, we give a result on the attractivity of solutions of the equation
(E).

Definition 3.1. A solution x∗ of the equation (E), is said to be globally attractive
if for any other solution x of (E), we have that limt→+∞ |x(t)− x∗(t)| = 0.
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Consider the following condition:
(C) the functions F,G : X → X satisfies (H1) and moreover: there exists

LF , LG ≥ 0 such that
(i) |F (x)(t)−F (y)(t)| ≤ LF |x(t)−y(t)| and |G(x)(t)−G(y)(t)| ≤ LG|x(t)−y(t)|,

∀x, y ∈ X and t ∈ R.
(ii) l > LGmax(M,−k) + LF , where l := infx∈X,t∈RG(x)(t) > 0, k and M

(k ≤ M) are given by the assumption (H1).
Notice that general examples of functions satisfying the point (i) above, are given

by Proposition 2.14 (see also Example 3.4).

Recall that the upper Dini derivative of a function W : R → R is given by the
following formula:

D+W (t) = lim sup
h→0+

W (t+ h)−W (t)

h
.

We need the following result from [12].

Theorem 3.2. ( [12, Theorem 3.]) If W is a continuous function that has a finite
Dini derivative D+W (t) at every point t of R, then∫ b

a
D+W (t)dt ≤ W (b)−W (a) ≤

∫ b

a
D+W (t)dt,

for each interval [a, b], where the integrals are the lower and upper Riemann inte-
grals, respectively.

The previous theorem applies in particular to W (t) = |f(t)|, for all t ∈ R, where
f is a continuously differentiable function on R. Recall that in this case, we have: W
is a continuous function and D+W (t) = sgn(f(t))f ′(t) for all t ∈ R, where sgn(t)
denotes the number which is equal to 1 if t ≥ 0 and −1 otherwize. Thus, the above
theorem applies in this case, this is what we will need in the prove the following
theorem.

Theorem 3.3. Under the assumption (H0) and (C), there exists at last one solution
x∗ ∈ X for the equation (E), which is globally attractive.

Proof. By Theorem 2.1, there exists at last one solution x∗ ∈ B[k,M ], this implies
that ‖x∗‖∞ ≤ max(M,−k). Suppose that x is another solution of (E). In this case,
we have

x′ = −G(x)x+ F (x),

(x∗)′ = −G(x∗)x∗ + F (x∗).

In particular, x, x∗ are continuously differentiable functions. On the other hand,
we have |x′(t)| ≤ ‖G(x)‖∞‖x‖∞ + ‖F (x)‖∞ < +∞ for every t ∈ R and so x is a
Lipschitz function on R by the mean value theorem. Similarily, x∗ is a Lipschitz
function on R. Consider the following Lyapunov functional:

W (t) = |x(t)− x∗(t)|, ∀t ∈ R.
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After calculating the Dini derivative of W , we get,

D+W (t) = sgn(x(t)− x∗(t))
(
x′(t)− (x∗)′(t)

)
= sgn(x(t)− x∗(t))[−G(x)(t)x(t) +G(x∗)(t)x∗(t) + F (x)(t)− F (x∗)(t)]

= sgn(x(t)− x∗(t))[−(G(x)(t)(x(t)− x∗(t)) +

(G(x∗)(t)−G(x)(t))x∗(t) + F (x)(t)− F (x∗)(t)]

= −G(x)(t)|x(t)− x∗(t)|+ sgn(x(t)− x∗(t))[G(x∗)(t)−G(x)(t)]x∗(t) +

sgn(x(t)− x∗(t))[F (x)(t)− F (x∗)(t)]

≤ −l|x(t)− x∗(t)|+ (LG‖x∗‖∞ + LF )|x(t)− x∗(t)|
≤ −(l − (LGmax(M,−k) + LF ))|x(t)− x∗(t)|.

By using the right hand inequality in Theorem 3.2, we get

W (t) +

∫ t

0
(l − (LGmax(M,−k) + LF ))|x(t)− x∗(t)|ds ≤ W (0).

Since W (t) ≥ 0 for every t ∈ R, it follows that

lim sup
t→+∞

∫ t

0
|x(t)− x∗(t)|ds ≤ W (0)

l − (LGmax(M,−k) + LF )
< +∞.

Since x, x∗ ∈ X are uniformly continuous on R (in fact Lipschitz), we obtain that
limt→+∞ |x(t)− x∗(t)| = 0. □

Example 3.4. (Example of globally attractive solution in the space PAP (R)
under the assumption (C).)

• G : PAP (R) → PAP (R), defined by

G(x)(t) = 4 + sin(t) + sin(
√
2t) +

1

1 + t2
cos(x(t)),

is 1-Lipschitz (on the variable x) and l := infx∈X,t∈RG(x)(t) ≥ 1 > 0.
• F : PAP (R) → PAP (R), defined by

F (x)(t) :=
1

10
[2 + cos(t) +

1

1 + t2
sin(x(t))],

is 1/10-Lipschitz (on the variable x) and 0 ≤ F (x)(t) ≤ 4/10.
We have that

0 = k ≤ F (x)(t)

G(x)(t)
≤ M = 4/10.

As in the Example 2.16 the assumption (H1) is satisfied. Since max(M,−k) =
4/10, LG ≤ 1, LF ≤ 1/10 we have l ≥ 1 > 4/10 + 1/10 ≥ max(M,−k)LG + LF ,
then the condition (C) is satisfied and so by Theorem 3.3 there exists at last one
positive solution in PAP (R) which is globally attractive.
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