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We studied the local index density for Witten deformation of the de Rham and
Dolbeault complexes in two previous papers. In [1], we used invariance theory to
show that the local index density of the twisted de Rham complex is the Euler form
if m is even, and vanishes if m is odd; in particular, it does not depend on ω. A
different proof of this result was given previously by the first author, Kordyukov,
and Leichtnam [3], where it was applied to study certain trace formulas for foliated
flows. Let (E, h) be a Hermitian vector bundle over a Kähler manifold (M, g, J).
In analogy to the real setting, one may introduce the perturbed Dolbeault operator
∂̄ω̄ = ∂̄ + ext(ω̄) mapping C∞(E ⊗ Λp,q(M)) → C∞(E ⊗ Λp,q+1(M)) where ω is a
∂ closed form of type (1, 0). If ω = 0, it follows from the work of Atiyah, Bott, and
Patodi [5] and the work the second author [11, 12] that the local index density is
{Td(M, g, J) ∧ ch(E, h)}m as we shall explain presently; this result can fail if the
metric is not assumed to be Kähler. In [2], we showed that the index density of ∂̄ω̄
exhibits non-trivial dependence on ω; we summarize the results of [1, 2] below in
Theorem 1.1.

Günther and Schimming [15] defined a sequence of secondary heat invariants for
the de Rham complex of which the first is called the derived heat invariant. In a
different form, this invariant was used by Ray and Singer [25] to study the analytic
torsion. In the perturbed setting, define adeRm,n :=

∑
p(−1)pp · am,n(x,∆

p
ω), where

∆p
ω is the restriction of ∆ω to forms of degree p, and am,n(x,∆

p
ω) is its heat trace

invariant of order n. Another version of this invariant, aDol
m,n, is similarly defined for

the Witten-Novikov pertubation of the Dolbeault complex in the Kähler setting.
Our results for these invariants are given below in Theorem 1.3. We summarize
those results as follows. Consider first the Riemannian setting. Let Em,2k denote

the Euler invariant of order 2k (see Section 1.3). We prove that adeRm,n vanishes if
n < m − 1, and exhibits a nontrivial dependence on ω for even n ≥ m. We show
that adeRm,m−1 = Em,m−1 if m is odd, and that

∫
M adeRm,m dvol = m

2

∫
M Em,m dvol if m

is even. In particular,
∫
M adeRm,m dvol is independent of ω, which is relevant in [4] to

study certain zeta invariants associated to closed 1-forms (our original motivation).
In the Kähler setting, the situation is more complicated. We show that aDol

m,n = 0 if

n < m−2, and that aDol
m,n exhibits a nontrivial dependence on ω for even n ≥ m−2.

We describe aDol
m,m−2 as a perturbation of 1

(m−1)!g(Td(M, g, J)∧ch(E, h),Ωm−1). We

prove that
∫
M aDol

m,m dvol is a characteristic invariant independent of ω. We determine∫
M aDol

m,m dvol in general if m = 2 or m = 4 in terms of characteristic classes of the
complex tangent bundle of M and the twisting bundle E. This is a global result as
the local invariants aDol

m,m exhibit non-trivial dependence on the twisting (1, 0) form
ω.

1.2. The real setting. Let M := (M, g, ω) where (M, g) is an m-dimensional
Riemannian manifold without boundary which is equipped with an auxiliary real
closed 1-form ω. Let dvol be the associated Riemannian measure on M . Let Jpm,n

be the space of smooth p-form valued invariants which are homogeneous of weight n
in the derivatives of the metric and ω; we refer to Section 2 for a precise definition.
These spaces vanish for p + n odd. The First Theorem of Invariants of Weyl [26]
shows that such invariants can be expressed in terms of contractions of indices in
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pairs where the indices range from 1 to m. We illustrate this result as follows. Let
Rijkl be the components of the curvature tensor and let ωi be the components of
ω. The scalar curvature τ ∈ J0m,2, the norm squared ∥ω∥2 ∈ J0m,2, and the first

Pontryagin form p1 ∈ J4m,4 are given by

τ =
m∑

i,j,k,ℓ=1

giℓgjkRijkl, ∥ω∥2 =
m∑

j,k=1

gjkωjωk,

p1 = − 1

8π2
gadgbcRijabRklcddx

i ∧ dxj ∧ dxk ∧ dxℓ .

The restriction map r : Jpm,n → Jpm−1,n is defined by restricting the range of sum-
mation to range from 1 to m − 1 rather than from 1 to m. We shall discuss the
restriction map further in Section 2.

1.3. The Euler form. Let Em,2k be the integrand of the Chern-Gauss-Bonnet
Theorem [8]:

Em,2k :=

m∑
i1,...,ik,j1,...,jk=1

(−1)k

8kπkk!
g(ei1 ∧ · · · ∧ eik , ej1 ∧ · · · ∧ ejk)

Ri1i2j1j2 . . . Rik−1ikjk−1jk ∈ J0m,2k .

This element is universal; r(Em,2k) = Em−1,2k for any m. One has, for example,

Em,2 := (4π)−1τ and Em,4 := (32π2)−1{τ2 − 4∥ρ∥2 + ∥R∥2}
where ρ is the Ricci tensor. Similar formulas for Em,6 and Em,8 can be found in
Pekonen [23]. Let δ be the co-derivative

δ : J1m,n−1 → J0m,n .

1.4. The Kähler setting. Let K := (M, g, J,E, h, ω) where (M, g, J) is a Kähler
manifold of real dimension m = 2m, (E, h) is a holomorphic vector bundle over
M which is equipped with a Hermitian fiber metric h, and ω is a ∂ closed (1, 0)
form. Let Ω be the Kähler form of K; dvol = 1

m!Ω
m. Let Kk

m,n be the corresponding
space of invariants in the complex setting; we refer to Section 2 for precise details.
These spaces vanish for k + n odd. Again, we have a natural restriction map
r : Kk

m,n → Kk
m−2,n. We can pair form valued invariants with an appropriate power

of the Kähler form to obtain scalar invariants; if P ∈ K2k
m,2k then g(P,Ωk) ∈ K0

m,2k.

For example, if k = m, then the Hodge ⋆ operator takes the form ⋆P = 1
m!g(P,Ω

m).

1.5. The ring of characteristic forms. Let ck, chk, and Tdk be the kth Chern
class, Chern character, and Todd class, respectively (see [18]). For example, ch0 =
dim(E), Td0 = 1,

ch1 = c1, ch2 =
1
2(c

2
1 − 2c2), ch3 =

1
6(c

3
1 − 3c1c2 + 3c3),

Td1 =
c1
2 , Td2 =

c21+c2
12 , Td3 =

c1c2
24 .

Let TcM := (TM, J) be the associated complex tangent bundle. We decompose the
graded ring of characteristic forms

Cm := C[ch1(TcM), . . . , chm(TcM), ch1(E, h), . . . , chm(E, h)]
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into homogeneous components Cm = ⊕kC
2k
m where C2k

m ⊂ K2k
m,2k.

1.6. The Witten deformation. In the real setting, let dω := d + ext(ω) be the
Witten deformation of the exterior derivative; the adjoint is then given by δω :=
δ + int(ω). Decompose the associated Laplacian

∆M := dωδω + δωdω = ⊕p∆
p
M

where ∆p
M is a self-adjoint elliptic operator of Laplace type on C∞(Λp(M)). Sim-

ilarly, in the complex setting, let ∂̄ω = ∂̄ + ext(ω̄) define the deformation of the
Dolbeault operator; the adjoint is then δ′′ω = δ′′+int(ω). Decompose the associated
Laplacian

∆K := 2(∂̄ω̄δ
′′
ω + δ′′ω∂̄ω̄) = ⊕p,q∆

p,q
K

where ∆p,q
K is a self-adjoint operator of Laplace type on C∞(Λp,q(M)⊗ E).

1.7. The local index density. If ∆ is an operator of Laplace type on a com-
pact Riemannian manifold of dimension m, let am,n(x,∆) be the local heat trace
asymptotics. If f ∈ C∞(M), then

TrL2{fe−t∆} ∼
∞∑
n=0

t(n−m)/2

∫
M

f(x)am,n(x,∆)dvol as t ↓ 0 .

The invariants am,n(x,∆) vanish for n odd. We introduce the local index densities
for the de Rham complex and Dolbeault complex by setting:

adeRm,n(x) :=
∑
p

(−1)pam,n(x,∆
p
M) ∈ J0m,n,

aDol
m,n(x) :=

∑
p

(−1)pam,n(x,∆
0,p
K ) ∈ K0

m,n .

A cancellation argument due to Bott yields:

(1.1)

∫
M

adeRm,n(x) dvol(g) =

{
0 for n ̸= m
Euler characteristic(M) for n = m

}
,∫

M
aDol
m,n(x) dvol(g) =

{
0 for n ̸= m
arithmetic genus(M,E) for n = m

}
.

Let ℑ(ω) be the imaginary part of ω. Set Θ :=
∑
k

1

k!πk
{dℑ(ω)}k. We have the

following previous results [1, 2] of the authors.

Theorem 1.1. adeRm,n =

{
0 if n < m

Em,m if n = m

}
,

aDol
m,n =

{
0 if n < m
1
m!g(Ω

m, {Td(TcM) ∧ ch(E) ∧Θ}m) if n = m

}
.

Remark 1.2. We note that this result for aDol
m,n can fail in the Hermitian setting.

Although Equation (1.1) continues to hold if (M, g, J) is only assumed Hermitian,
it is necessary to restrict to the context of Kähler geometry to identify the local
index density with a characteristic form even if E is trivial and ω = 0. We refer to
Gilkey, Nikčević, and Pohjanpelto [14] for details.
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1.8. Derived invariants. The following is the first in a sequence of invariants
introduced by Günther and Schimming [15] in the real category (see the discussion
on page 181 of Gilkey [13]); a related invariant appears in the discussion by Ray
and Singer [25] of analytic torsion. Define

adeRm,n :=
∑
p

(−1)pp · am,n(x,∆
p
M) ∈ J0m,n ,

aDol
m,n :=

∑
p

(−1)pp · am,n(x,∆
0,p
K ) ∈ K0

m,n .

If we define

(1.2)
ADer
m,n(s) :=

∑
p(−1)pspam,n(x,∆

p),

ADol
m,n(s) :=

∑
p(−1)pspam,n(x,∆

0,p),

we then have

(1.3)
adeRm,n = ADer

m,n(s)|s=1, adeRm,n = ∂sA
Der
m,n(s)|s=1,

adeRm,n = ADol
m,n(s)|s=1, adeRm,n = ∂sA

Dol
m,n(s)|s=1 .

This formalism will play a useful role subsequently in Section 7 and perhaps justifies
the words “derived” in discussing these invariants. The terminology “derived”, is
of course, not ours – see for example Bismut and Zhang [6]. Ramachandran [24]
notes concerning the invariant

∑
p(−1)pp dimHp(M) that “...this secondary invari-

ant dates back to 1848 when it was introduced by A. Cayley...”.

Theorem 1.3.

(1) Let M = (M, g, ω) be a Riemannian manifold which is equipped with an
auxiliary closed 1-form ω.
(a) If n < m− 1, then adeRm,n = 0.

(b) If m is odd, then adeRm,m−1 = Em,m−1 is independent of ω.

(c) If m is even, then adeRm,m = m
2 Em,m + δQ1

m,m−1 where

Q1
m,n−1 ∈ J1m,n−1 is 1-form valued.

(2) Let K = (M, g, J,E, h, ω) where (M, g, J) is a Kähler manifold, (E, h) is
a holomorphic Hermitian vector bundle over M , and ω is an auxiliary ∂
closed form of type (1, 0).
(a) If n < m− 2, aDol

m,n(K) = 0.
(b) If n = m− 2,

aDol
m,m−2 =

1
(m−1)!g(Td(M, g, J) ∧ ch(E, h) ∧Θ,Ωm−1).

Moreover, there exists Q1
m,m−3 ∈ K1

m,m−3 so

aDol
m,m−2 =

1
(m−1)!g(Td(M, g, J) ∧ ch(E, h),Ωm−1) + δQ1

m,m−3.

(c) aDol
m,m = 1

m!g(R
m
m,Ωm) + δQ1

m,m−1 where Qm,m−1 ∈ K1
m,m−1 is 1-form

valued and where Rm
m ∈ Cm

m is a characteristic form.

Assertion (1c) and Assertion (2c) show that
∫
M adeRm,m dvol is a characteristic num-

ber which is independent of ω in the Riemannian setting and
∫
M aDol

m,m dvol is a
characteristic number which is independent of the structures in the Kähler setting.
In Theorem 1.3 (2b), we may eliminate Θ at the cost of introducing an additional
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divergence term. The divergence terms are in general present. We have, for ex-
ample, Q1

2,1 = (2π)−1Θ in Assertion (2b). We will establish the following result in

Section 7. It shows, in particular, that aDol
m,m is not a multiple of aDol

m,m.

Theorem 1.4. Use Theorem 1.3 to express aDol
m,m = 1

m!g(R
m
m,Ωm) + δQ1

m,m−1 for

Q1
m,m−1 ∈ K1

m,m−1 and Rm
m ∈ Cm

m.

(1) Let M = (M, g, J,E, h) where (M, g, J) is a Kähler manifold and (E, h) is
a Hermitian vector bundle bundle.
(a) If m = 2, R2

2 = 1
3c1(TcM) ch0(E) + 1

2c1(E).
(b) If m = 4,

R4
4 = (Td2+

1
24c

2
1)(TcM) ch0(E) + 7

12c1(TcM)c1(E) + ch2(E).
(2) Let M = M1 × · · · × Mm where Mi = (Mi, gi, Ji) are Riemann surfaces

and (Ei, hi) are Hermitian line bundles.
(a) If (Mi, gi, Ji) are flat tori,

Rm
m(M) = 1

2maDol
m,m(M) = 1

2m chm(E).
(b) If (Ei, hi) is trivial for all i,

Rm
m(M) = 2

3maDol
m,m(M) = 2

3mTdm(TcM).

2. Spaces of invariants

2.1. Spaces of local formula in the real setting. It is necessary to be a bit
careful concerning what we mean by a local formula. Introduce local coordinates
x = (x1, . . . , xm) which are centered at a point P of M . Let U = (i1, . . . , ia) be a
collection of indices. Decompose ω = ωidx

i. Set |U | := a, ∂i :=
∂
∂xi ,

∂U
x := ∂i1 . . . ∂ia , gij := g(∂i, ∂j), gij/U := ∂U

x gij ,

ωi/U := ∂U
x ωi, weight{gij/U} = |U |, weight{ωi/U} = 1 + |U |.

Let Sm(R) be the vector space of symmetric m×m real matrices. Let Om ⊂ Sm(R)
be the subset of matrices g so that g defines a positive definite inner product; Om

is an open subset of Sm(R). Let
R := C∞(Om)[gij/U , ωi, ωi/U ]|U |>0 .

These are the local formulas in the derivatives of the metric and of ω with coefficients
which are smooth functions of the Riemannian metric g which we will be considering.
The weight induces a natural grading on R and we may decompose Rm = ⊕nRm,n

into the polynomials which are homogeneous of weight n. If P ∈ Rm, we can
evaluate P in a coordinate system in the obvious fashion; we say P is invariant
if the value of P is independent of the particular local coordinate system chosen
and we let Jm ⊂ Rm be the ring of invariant local formulae; we may decompose
Jm = ⊕nJm,n where Jm,n ⊂ Rm,n. The space of p-form valued invariants Jpm,n is
defined similarly.

Clearly we can express the curvature tensor R and its covariant derivatives in
terms of the derivatives of the metric. Conversely, in geodesic coordinates, we can
express the derivatives of the metric in terms of the covariant derivatives of the
curvature tensor. The weight of the curvature tensor R is 2 since it is linear in the
second derivatives of the metric and quadratic in the first derivatives of the metric.
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We increase the weight by 1 for every explicit covariant derivative which appears.
Thus, for example, the scalar curvature τ and ∥ω∥2 have weight 2 while the square of
the norms ∥ρ∥2 and ∥R∥2 of the Ricci tensor and full curvature tensor, respectively,
have weight 4. Similarly, ∥∇R∥2 has weight 6 and Em,2k has weight 2k.

2.2. Spaces of local formulae in the complex setting. The situation is con-
siderably more delicate here and we must proceed with some care. Let (M, g, J)
be a Hermitian manifold; we assume J∗g = g but do not impose the Kähler con-
dition. Let (E, h) be a holomorphic vector bundle over M of dimension ℓ. Fix a
point P of M . Choose local holomorphic coordinates z⃗ = (z1, . . . , zm) centered at
P and a local holomorphic frame s⃗ = (s1, . . . , sℓ) for E. Let U = (α1, . . . , αa) and

V = (β1, . . . , βb) be collections of indices. Expand ω = ωαdz
α and ω̄ = ω̄β̄dz̄

β̄ . Set

|U | := a, |V | := b, ∂α := ∂
∂zα , ∂z;U = ∂α1 . . . ∂αa ,

∂β̄ := ∂
∂z̄β̄

, ∂z̄;V̄ = ∂β̄1
. . . ∂β̄b

, gαβ̄ := g(∂α, ∂β̄), hpq̄ := h(sp, sq) .

Introduce the following notation for the derivatives of the structures involved:

(2.1)
gαβ̄/UV̄ := ∂z;U∂z̄;V̄ g(∂α, ∂β̄), hpq̄/UV̄ := ∂z;U∂z̄;V̄ h(sp, sq),

ωα/UV̄ := ∂z;U∂z̄;V̄ ωα, ω̄β̄/UV̄ := ∂z;U∂z̄;V̄ ω̄β̄ .

If |U | = 0, there are no holomorphic derivatives, if |V | = 0, there are no anti-
holomorphic derivatives, and if |U | + |V | = 0, there are no derivatives at all. We
have

∂̄ω = −ωα/β̄dz
α ∧ dz̄β̄ and ∂ω̄ = ω̄β̄/αdz

α ∧ dz̄β̄ .

Consequently, the variables {ωα, ωα/β̄ , ω̄β̄ , ω̄β̄/α} are tensorial unlike the remainder

of the variables defined in Equation (2.1). Define

weight{gαβ̄/UV̄ } = weight{hpq̄/UV̄ } = |U |+ |V |,
weight{ωα;UV̄ } = weight{ω̄β̄;UV̄ } = 1 + |U |+ |V |.

Let Sk(C) be the vector space of Hermitian k × k complex matrices. Let Um ⊂
Sm(C) ⊗ Sℓ(C) be the subset of matrices (g, h) so that g and h define positive
definite inner products; Um is an open subset of Sm(C) ⊗ Sℓ(C). We suppress the
dependence upon ℓ in the interests of notational simplicity as it will play no role in
our further development whereas the dependence on m will be crucial. We consider
the polynomial ring

Pm := C∞(Um)[gαβ̄/UV̄ , hpq̄/UV̄ , ωα/UV̄ , ω̄β̄/UV̄ , ωα, ω̄β̄ ]|U |+|V |>0 .

As in the real setting, we say that P ∈ Pm is invariant if the evaluation is indepen-
dent of the particular coordinate system z⃗ and frame s⃗ chosen. Let Km be the ring
of invariants in the Kähler context; Km is a graded ring and we may use the weight
to decompose Km = ⊕nKm,n into the polynomials which are homogeneous of weight
n. For example, am,n(∆

p,q) ∈ Km,n. The spaces Kp
m,n of p-form valued invariants

are defined similarly. For example, dω ∈ K2
m,2.
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2.3. Homotheties. The weight of a polynomial describes its behaviour under ho-
motheties. The following is immediate from the definition and could be used to give
an equivalent definition of the weight.

Lemma 2.1.

(1) Let P ∈ Jpm,k. Then P (x, c2g, ω) = cp−kP (x, g, ω).

(2) Let P ∈ Kp
m,k. Then P (x, c2g, J,E, h, ω) = cp−kP (x, g, J,E, h, ω).

Example 2.2. It is worth giving some examples to illustrate Lemma 2.1. We
work in the real context. Let ∥ω∥2g := gijωiωj . Since ωi has weight 1, ∥ω∥2g has

weight 2 so ∥ω∥2g ∈ J0m,2. If we rescale the metric and set gc;ij = c2gij , then

gijc = c−2gij so ∥ω∥2gc = c−2∥ω∥2g. The components of the curvature tensor Rijk
ℓ

have weight 2 since they are linear in the 2-jets of the metric and quadratic in
the 1-jets of the metric. The Levi-Civita connection is unchanged if we rescale
the metric and thus Rgc;ijk

ℓ = Rg;ijk
ℓ. Let τg ∈ J0m,2 be the scalar curvature;

τgc = gjkc Rijk
i = c−2gjkRijk

i = c−2τg. We have dτg ∈ J1m,3 and dτgc = c−2dτg.

2.4. The restriction map. As noted in the introduction, a spanning set for the
space of invariants in the real setting is given by contraction of indices in pairs and
alternations of indices where the indices range from 1 to m; there is an analogous
result in the complex setting. If P ∈ Jpm,n, r(P ) ∈ Jpm−1,n is defined by restricting
the range of summation to range from 1 to m− 1. Although Weyl’s First Theorem
of Invariants yields a spanning set, it is not a basis as one has the Bianchi identities
and higher order analogues. Thus it is not immediately obvious that the restric-
tion map is independent of the particular expression of an invariant in terms of a
Weyl spanning set. To get around this difficulty, it is convenient to use a slightly
different more geometric formalism. Let T1 = (S1, dθ2, 0) be the circle with the flat
structures. If N = (N, ds2N , ωN ) is an m − 1 dimensional structure, one forms the
m dimensional structure

M = N × T1 := (N × S1, ds2N + dθ2, π∗
1ωN ) .

Let iθ(x) = (x, θ) be an inclusion of N in N ×S1; the particular basepoint θ chosen
is irrelevant since T1 is homogeneous. Then r(P ) ∈ Jpm−1,n is characterized by the
identity

(2.2) r(P )(N ) := i∗θP (N × T1) .

In the complex setting, the invariance theory is that of the unitary group rather than
the orthogonal group and one sums over pairs of holomorphic and anti-holomorphic
indices where the indices range from 1 to m. Instead of considering T1 one considers
the flat 2-torus T2 but the remainder of the analysis is the same and one obtains:

Lemma 2.3.

(1) r is a well defined map from Jpm,n onto Jpm−1,n.

(2) r is a well defined map from Kp
m,n onto Kp

m−2,n.

We introduce the ring

Tm := C[chk(TM, J, g), chk(E, h), dω, dω̄, ω, ω̄] .
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We may decompose Tm := ⊕kT
k
m where Tk

m ⊂ Kk
m,k. We refer to [1] for the proof

of Assertions (1) and to [2] for the proof of Assertions 2 in the following result; it
is necessary to restrict to the Kähler setting.

Lemma 2.4.

(1) In the Riemannian setting, we have that:
(a) r : J0m,n → J0m−1,n is injective if n < m.

(b) If m is even, then ker{r : J0m,m → J0m−1,m} = Em,m · R.
(2) In the Kähler setting, we have that:

(a) r : K0
m,n → K0

m−2,n is injective if n < m.

(b) ker{r : K0
m,m → K0

m−2,m} = ⋆Tm
m.

We have the following useful result.

Lemma 2.5. r(adeRm,n) = −(4π)−1/2adeRm−1,n and r(aDol
m,n) = −(4π)−1aDol

m−1,n.

Proof. Although the lemma in the real setting follows from work of Günther and
Schimming [15], we shall give a direct proof in the interests of completeness. Let
Mm = Nm−1 × T1. We compute:

ΛpM = ΛpN ⊕ Λp−1N ∧ dθ,

∆p
M = {∆p

N ⊗ id+ id⊗∆0
T1} ⊕ {∆p−1

N ⊗ id+ id⊗∆1
T1},

am,n((x, θ),∆
p
M) = (4π)−1/2{am−1,n(x,∆

p
N ) + am−1,n(x,∆

p−1
N )},∑

p

(−1)pp · am,n((x, θ),∆
p
M)

= (4π)−1/2
∑
p

(−1)pp ·
{
am−1,n(x,∆

p
N ) + am−1,n(x,∆

p−1
N )

}
= (4π)−1/2

∑
p

(−1)pam−1,n(x,∆
p
N ){p− (p+ 1)}.

Assertion 1 now follows from Equation (2.2); the argument is the same for the
Dolbeault complex. □

2.5. Low dimensional computations. We refer to [1] for the following result:

Lemma 2.6. adeR1,2 = − δω√
π

and aDol
2,2 =

τ

8π
− 1

π
δ(ℜ(ω)).

3. The proof of Theorem 1.3 (1a,2a)

Let n < m− 1. By Lemma 2.5, r(adeRm,n) = adeRm−1,n. By Theorem 1.1, adeRm−1,n = 0.

By Lemma 2.4, r : Jm,n → Jm−1,n is injective for n < m. This shows that adeRm,n = 0
which establishes Theorem 1.3 (1a); the proof of Theorem 1.3 (2a) is the same in
the Kähler setting. □
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4. The proof of Theorem 1.3 (1b,2b)

We use Lemma 2.5 and Theorem 1.1 to see

r(adeR2k+1,2k) = −(4π)−1/2adeR2k,2k and adeR2k,2k = E2k,2k .
By Lemma 2.4, r : J2k+1,2k → J2k,2k is injective. By construction, we have that
rE2k+1,2k = E2k,2k. Assertion (1b) follows. The same argument in the Kähler setting
shows

aDol
m,m−2 =

1

(m− 1)!
g(Td(M, g, J) ∧ ch(E, h) ∧Θ,Ωm−1)

which establishes the first part of Assertion 2b. It is immediate from the definition
that Θ = 1 + dΦ. Since Td and ch are closed,

{Td(M, g, J) ∧ ch(E, h) ∧Θ}m−2

= {Td(M, g, J) ∧ ch(E, h)}m−2 + d{Td(M, g, J) ∧ ch(E, h) ∧ Φ}m−3 .

Taking the inner product with 1
(m−1)!Ω

m−1 is just the Hodge ⋆ operator in complex

dimension m− 1. Thus

(4.1)

1
(m−1)!g(Td(M, g, J) ∧ ch(E, h) ∧Θ,Ωm−1)

= 1
(m−1)!g(Td(M, g, J) ∧ ch(E, h),Ωm−1) + δQ1

m−2,m−3

for Q1
m−2,m−3 = ⋆{Td(M, g, J)∧ch(E, h)∧Φ}m−3. We have δr = rδ. By Lemma 2.3

and Lemma 2.4, we can lift Equation (4.1) to a corresponding equation in complex
dimension m and thereby complete the proof of Assertion (2b). □
Remark 4.1. This gives an explicit description of the 1-form Q1

m,m−3 of Theo-

rem 1.3 (2b) as the unique element Q1
m,m−3 ∈ K1

m,m−3 such that

r(Q1
m,m−3) = ⋆{Td∧ ch∧Φ}m−3 ∈ K1

m−2,m−3.

5. The proof of Theorem 1.3 (1c)

We continue our discussion by generalizing a result of Gilkey [13] (see Asser-
tion 4 of Lemma 2.9.1 on page 210) from the context of purely metric invariants to
invariants which also depend upon the derivatives of ω.

Lemma 5.1. Let P ∈ Jm,n where n ̸= m. Suppose
∫
M P (x, g, ω) dvol(g) is in-

dependent of (g, ω) for all closed m-dimensional manifolds M . Then there exists
Qm,n−1 ∈ J1m,n−1 so that P = δQm,n−1.

Proof. Let f ∈ C∞(M) and ε ∈ R. We consider the conformal variation

P1(f, g, ω) dvol(g) := ∂ε

{
P (x, e2εfg, ω) dvol(e2εfg)

}∣∣∣
ε=0

.

Since P1 is linear in the jets of f , we have that

P1(f, g, ω) =
∑
k

∑
i1,...,ik

f;i1...ikQ
i1...ik(g, ω) .

We integrate by parts formally to express

P1 = δQ+
∑
k

∑
i1,...,ik

(−1)kfQi1...ik
;ik...i1 .
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By assumption,

0 = ∂ε

{∫
M

P (x, e2εfg, ω) dvol(e2εfg)

}∣∣∣∣
ε=0

=

∫
M

P1(f, g, ω) dvol(g)

=

∫
M

f
∑
k

∑
i1,...,ik

(−1)kQi1...ik
;ik...i1 dvol(g) .

Since f was arbitrary, ∑
k

∑
i1,...,ik

(−1)kQi1...ik
;ik...i1 = 0 .

Thus P1(f, g, ω) = δQ(f, g, ω). We set f = 1 to see

(5.1) P1(1, g, ω) = δQ(1, g, ω) .

We have that dvol(e2εg) = emε dvol(g). Since P is homogeneous of weight n,

Lemma 2.1 yields P (x, e2εg, ω) dvol(e2εg) = e(m−n)εP (x, g, ω) dvol(g). Differenti-
ating this identity shows P1 = (m − n)P ; the Lemma now follows from Equa-
tion (5.1). □

We now establish Assertion (1c) of Theorem 1.3. Let P = r(adeRm,m) belong to

J0m−1,m. By Lemma 2.5, P is a multiple of adeRm−1,m. The hypothesis of Lemma 5.1

are satisfied by Equation (1.1). Consequently, Lemma 5.1 shows that r(adeRm,m) =

δQ1
m−1,m−1. By Lemma 2.4, we may choose Q1

m,m−1 so r(Q1
m,m−1) = Q1

m−1,m−1.

Since δr = rδ, r(adeRm,m − δQ1
m,m−1) = 0. We use Lemma 2.4 to see that

adeRm,m − δQm,m−1 = c(m)Em,m .

To evaluate the coefficient c(m), we may take ω = 0 and use (local) Poincare duality

to see that am,m(∆p
M) = am,m(∆m−p

M ). Consequently, we may show that c(m) = 1
2m

by computing:

2adeRm,m =
∑
p

(−1)pp ·
{
am,m(x,∆p

M) + am,m(x,∆m−p
M )

}
=

∑
p

(−1)pam,m(x,∆p
M){p+m− p} = m · adeRm,m .

Suppose m = 2. We use Lemma 2.6 to see −(4π)−1/2adeR1,2 = (2π)−1δω. Conse-

quently, r(Q1
2,1) is non-zero. □

6. The proof of Theorem 1.3 (2c)

There are several fundamental differences between the real and the complex set-
tings and we must treat the variables {ωα, ω̄β̄} differently from the other variables.
In Section 6.1, we introduce some additional notation. Section 6.2 is devoted to
showing that in fact the heat trace invariants am,n(∆

p,q) do not involve the {ωα, ω̄β̄}
variables but only the derivatives of positive order in ω are present; this uses a gauge
renormalization. This is in marked contrast to the real setting. In Section 6.3, we
complete the analysis; again, there is a subtlety in that the conformal variation of
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a Kähler metric need no longer be Kähler. Consequently, we pass (temporarily) to
the Hermitian setting.

6.1. Spaces of invariants. We adopt the notation of Section 2.2. Recall that
Um ⊂ Sm(C)⊗ Sℓ(C) is the subset of matrices (g, h) so that g and h define positive
definite inner products on Cm and Cℓ, respectively. We adjoin variables sucessively
to the ground ring C∞(Um) to define the sub-rings:

Um := C∞(Um)[gαβ̄/UV̄ , hpq̄/UV̄ ]|U |+|V |>0,

Vm := Um[ωα/UV , ω̄β̄/UV ]|U |+|V |>0 .

We explicitly exclude the variables {ωα, ω̄β̄} from Um and from Vm. Let Um,n ⊂ Um

and Vm,n ⊂ Vm be the subspaces of weight n. We impose no assumption of
invariance as we are simply interested in the nature of the polynomials for the
moment. Let

End(Λp,q(M)⊗ E;U) and End(Λp,q(M)⊗ E;V)

be the vector space of endomorphisms of Λp,q(M)⊗E with coefficients in the rings
U and V, respectively.

6.2. Normalizing the gauge. The variables {ωα, ω̄β̄} are troublesome and we
eliminate them from consideration as follows. We work in the Hermitian setting as
we have imposed no conditions on Ω.

Lemma 6.1. am,n(x,∆
p,q) ∈ Vm,n, i.e., am,n(x,∆

p,q) does not involve the vari-
ables {ωα, ω̄β̄}.

Proof. We may decompose

∂̄ω̄ = ext(dz̄β̄)
{
∂β̄ + ω̄β̄

}
and δ′′ω = int(dzα) {−∂α + ωα}+ L

where L ∈ End(Λ(M) ⊗ E;Um,1) arises by taking the adjoint of ∂̄ and is linear in
the first derivatives of g and of h; L and int(dzα) lower the anti-holomorphic index

q by 1 and ext(dz̄β̄) raises the anti-holomorphic index q by 1. We define:

Ep,q
1 := ext(dz̄β̄) int(dzα)ωα/β̄ ∈ End(Λp,q(M)⊗ E;Vm,2),

Ep,q
2 := int(dzα) ext(dz̄β̄)ω̄β̄/α ∈ End(Λp,q(M)⊗ E;Vm,2),

Lp,q,α := ext(dz̄β̄)∂β̄{int(dzα)} ∈ End(Λp,q(M)⊗ E;Um,1),

Lp,q,β̄ := ext(dz̄β̄)L+ L ext(dz̄β̄) ∈ End(Λp,q(M)⊗ E;Um,1),

Qp,q := ext(dz̄β̄)∂β̄{L} ∈ End(Λp,q(M)⊗ E;Um,2).

Since the matrices ext(dzβ̄) are constant with respect to the coordinate frame, we
do not need to introduce their derivatives. Note that Ep,q

1 and Ep,q
2 are invariantly

defined while Lp,q,α, Lp,q,β̄ , and Qp,q are not invariantly defined but rather depend
on (z⃗, s⃗). We use the identity

int(dzα) ext(dz̄β̄) + ext(dz̄β̄) int(dzα) = gαβ̄

to express ∆p,q := 2δ′′ω∂ω̄ + 2∂ω̄δ
′′
ω in the form:
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∆p,q = 2gαβ̄{−∂α∂β̄ + ωα∂β̄ − ωβ̄∂α + ωαω̄β̄}+ 2Ep,q
1 − 2Ep,q

2 + 2Qp,q

+2Lp,q,α(−∂α + ωα) + 2Lp,q,β̄(∂β̄ + ω̄β̄).

Fix a point P of M and let ξ := ωα(P )zα − ω̄β̄(P )zβ̄ . Since ξ is purely imaginary,

∆p,q
ξ := e−ξ∆p,qeξ is defined by a unitary change of gauge. We compute

∆p,q
ξ = 2gαβ̄{−∂α∂β̄ + (ωα − ωα(P ))∂β̄ − (ω̄β̄ − ω̄β̄(P ))∂α}

+2gαβ̄(ωα − ωα(P ))(ω̄β̄ − ω̄β̄(P )) + 2Ep,q
1 − 2Ep,q

2 + 2Qp,q

+2Lp,q,α(−∂α + ωα − ωα(P )) + 2Lp,q,β̄(∂β̄ + ω̄β̄ − ω̄β̄(P )).

Since ∆p,q and ∆p,q
ξ differ by a gauge transformation,

am,n(∆
p,q) = am,n(∆

p,q
ξ ) .

It is immediate that the symbol of ∆p,q
ξ and all the derivatives of the symbol of ∆p,q

ξ

at P do not involve the ωα and ω̄β̄ variables. Consequently, am,n(∆
p,q
ξ ) ∈ Vm,n. □

Remark 6.2. We have exploited a fundamental difference between the deformed
real Laplacian and the deformed complex Laplacian that relates to gauge freedom.
We illustrate this as follows. Suppose m = 1. We work on the circle. Let ω = adx
for a ∈ R. Then da = ∂x + a and δa = −∂x + a; ∆0

a = ∆1
a = δada = −(∂2

x + a2)
is already normalized optimally since there is no first order term and, unlike in the
complex setting, it is not possible to make a change of gauge that eliminates the
dependence of the symbol on a.

6.3. Conformal variations. If g is a Kähler metric, then the conformal varia-
tion e2εfg need no longer be Kähler. However, this variation remains within the
class of Hermitian manifolds. Since Equation (1.1) continues to hold for Hermit-
ian manifolds, the argument given to prove Lemma 5.1 shows that we may express
aDol
m−2,m = δQ1

m−2,m−1 in the class of Hermitian and hence in the class of Kähler

manifolds. Thus we may choose Q1
m,m−1 so that

aDol
m,m − δQ1

m,m−1 ∈ ker(r) .

The integration by parts procedure discussed in Section 5 arises from a conformal
variation of g; thus although additional derivatives of ω may be introduced, the
number of derivatives of ω are not reduced. Thus Q belongs to V1

m,m−1 and we

have aDol
m,m − δQ ∈ Vm,m. Let

Sm := C[chk(TM, J, g), chk(E, h), dω, dω̄] ⊂ Tm

be obtained by omitting the {ωα, ω̄β̄} variables. We restrict to the Kähler setting
to obtain

aDol
m,m − δQ ∈ ⋆{Tm

m} ∩Vm,m = ⋆Sm
m .

Since we have omitted the {ωα, ω̄β̄} variables, and since chk is a closed differential
form, we complete the proof of Theorem 1.3 by computing

Sm
m = Cm

m + d{ω ∧Sm−2
m + ω̄ ∧Sm−2

m },
⋆Sm

m = ⋆Cm
m + δ ⋆ {ω ∧Sm−2

m + ω̄ ∧Sm−2
m } .
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7. The proof of Theorem 1.4

Let ∆p,q
E be the complex Laplacian with coefficients in E. Let ∆n be the real

Laplacian. If P is a local invariant, let P [M] =
∫
M P (M) dvol. We will use

the following resuls in our analysis. Assertion 1 is immediate from the definition,
Assertions (2,3) are Serre-duality, and Assertions (4,5) follow by specializing the
Hirzebruch-Riemann-Roch Theorem.

Theorem 7.1. Let E be a holomorphic vector bundle over a Kähler manifold M.

(1) ∆p,q
E = ∆0,q

Λp,0⊗E
.

(2) There exists a conjugate linear isomorphism intertwining ∆p,q
E and ∆m−p,m−q

E∗ .
(3) Complex conjugation intertwines ∆p,q and ∆q,p; ∆n = ⊕p+q=n∆

p,q.
(4) If m=2, then index(∂̄) = {1

2c1(TcM) ch0(E) + c1(E)}[M ].
(5) If m=4, then

index(∂̄) = {Td2(TcM) ch0(E) + ch1(TcM) ch1(E) + ch2(E)}[M].

We use Leibnitz’s formula to establish the following result.

Lemma 7.2. Let Mj have real dimension mj. Then

aDol
m1+m2,m1+m2

[M1 ×M2]

= aDol
m1,m1

[M1]a
Dol
m2,m2

[M2] + aDol
m1,m1

[M1]a
Dol
m2,m2

[M2] .

Proof. We adopt the notion of Equation (1.2) and set

ADol
m,n[M](s) :=

∑
p

(−1)pam,n(∆
(0,p))[M]sp .

We have the following product formula for the heat trace asymptotics:

am,n(∆
(0,p))[M1 ×M2]

=
∑

p1+p2=p

∑
n1+n2=n

am1,n1(∆
(0,p1))[M1] · am2,n2(∆

(0,p2))[M2] .

This then yields that

(7.1) ADol
m,n[M1 ×M2](s) =

∑
n1+n2=n

ADol
m1,n1

[M1](s) · ADol
m2,n2

[M2](s) .

We differentiate Equation (7.1) and use Equation (1.3) to obtain

aDol
m,m[M] =

∑
n1+n2=m

aDol
m1,n1

[M1] · aDol
m2,n2

[M2] + aDol
m1,n1

[M1] · aDol
m2,n2

[M2] .

We have that aDol
m1,n1

[M1] = 0 if m1 ̸= n1 and aDol
m2,n2

[M2] = 0 if m2 ̸= n2. We may
therefore safely set n1 = m1 and n2 = m2 in the above identity to complete the
proof of Lemma 7.2. □

The heat trace invariants are additive with respect to direct sums, i.e.

am,n(∆
p,q)(M, g, J,E1 ⊕ E2, h1 ⊕ h2)

= am,n(∆
p,q)(M, g, J,E1, h1) + am,n(∆

p,q)(M, g, J,E2, h2) .
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Since aDol
m,m and aDol

m,m can be expressed in terms of characteristic classes, only the
Chern character ch(E) enters. If E is a line bundle, then we have that chk(E, h) =
1
k!c

k
1(E, h).

7.1. The proof of Theorem 1.4 (1a). Suppose thatm = 2. There exist constants

αq and βq so that a2,2(∆
0,q
E ) = αqc1(TcM) ch0(E) + βqc1(E). We have c1(E

∗) =
−c1(E). Since Λ1,0(M) is the dual of TcM , we have that c1(Λ

1,0M) = −c1(TcM).
We suppose dimE = 1 and use Theorem 7.1 to compute:

{α1c1(TcM) + β1c1(E)}[M] = a2,2(∆
0,1
E )[M]

= a2,2(∆
1,0
E∗)[M] = a2,2(∆

0,0
Λ1,0(M)⊗E∗)[M]

= {α0c1(TcM) + β0c1(Λ
1,0(M)) + β0c1(E

∗)}[M]

=
{
(α0 − β0)c1(TcM)− β0c1(E)}

[
M] .

Consequently, α1 = α0 − β0 and β1 = −β0. Therefore,

index(∂̄E) =
1
2{c1(TcM) + c1(E)}[M] = aDol

2,2 [M]

= {(α0 − α1)c1(TcM) + (β0 − β1)c1(E)}[M]

= {β0c1(TcM) + 2β0c1(E)}[M] .

Consequently, β0 = 1
2 and β1 = −1

2 . Let S
2 be the unit sphere in R3 with the usual

metric and complex structure; τ = 2 and vol(S2) = 4π. We compute

1
8π τ [S

2] = 1 = index(∂̄)[S2] = 1
2c1[S

2]

so c1(S2) = 1
4π τ . Take E trivial. McKean and Singer [19] (see also Patodi [21])

computed a2,2(∆
p). Together with Theorem 7.1, this shows

a2,2(∆
0,0) = a2,2(∆

0) = 1
24π τ = 1

6c1(Tc),

a2,2(∆
0,1) = 1

2a2,2(∆
1) = 1

2
1

24π (−4τ) = −1
3c1(Tc) .

Thus α0 = 1
6 and α1 = α0 − β0 = 1

6 − 1
2 = −1

3 . □

7.2. The proof of Theorem 1.4 (1b). Suppose that m = 4 and that M =
(M, g, J,E, h) is a complex surface. There exist constants α and β and a character-
istic class P2(TcM) so that

aDol
4,4 [M] = {P2(TcM) ch0(E) + αc1(TcM)c1(E) + β ch2(E)}[M] .

Let M = M1×M2. Suppose first that Mi are flat tori and (Ei, hi) are line bundles
with c1(Ei)[Mi] ̸= 0. Then

c1(Tc(M))[M] = 0, {P2(TcM) ch0(E)}[M] = 0,

ch2(E1 ⊗ E2)[M] = c1(E1)[M1] · c1(E2)[M2] .

Thus Theorem 7.1, Lemma 7.2 and Theorem 1.4 (1a) yield

βc1(E1)[M1] · c1(E2)[M2] = β ch2(E1 ⊗ E2)[M] = aDol
4,4 [M]

= aDol
2,2 [M1] · aDol

2,2 [M2] + aDol
2,2 [M1] · aDol

2,2 [M2]

= 1
2c1(E1)[M1] · c1(E2)[M2] + c1(E1)[M1] · 1

2c1(E2)[M2]

= c1(E1)[M1] · c1(E2)[M2] .
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This shows that β = 1. Suppose M1 = S2, E1 is trivial, M2 is the flat torus,
and c1(E2)[M2] ̸= 0. Then P2(TcM) ch0(E) = P2(TcM1 ⊕ 1) ch0(E) = 0 and
ch2(E) = ch2(E2) = 0 . Thus

αc1(TcM1)[M1] · c1(E2)[M2] = aDol
4,4 [M]

= aDol
2,2 [M1] · aDol

2,2 [M2] + aDol
2,2 [M1] · aDol

2,2 [M2]

= 1
3c1(TcM1)[M1] · c1(E2)[M2] +

1
2c1(TcM1)[M1] · 1

2c1(E2)[M2] .

This shows that α = 1
3 + 1

4 = 7
12 . Therefore, we have that

(7.2) aDol
4,4 [M] = {P2(TcM) ch0(E) + 7

12c1(TcM)c1(E) + ch2(E)}[M] .

We now use Serre duality. Let E = 1⊕ Λ2,0(TcM). We have

(7.3)

aDol
4,4 (M) = −a4,4(∆

0,1
1⊕Λ2,0) + 2a4,4(∆

0,2
1⊕Λ2,0)

= −a4,4(∆
2,1
1⊕(Λ2,0)∗

) + 2a4,4(∆
2,0
1⊕(Λ2,0)∗

)

= −a4,4(∆
0,1
Λ2,0⊕1

) + 2a4,4(∆
0,0
Λ2,0⊕1

)

We add the expressions of the second and third lines of Equation (7.3) to see

(7.4) 2aDol
4,4 (M) = 2a4,4(∆

0,0
E )− 2a4,4(∆

0,1
E ) + 2a4,4(∆

0,2
E ) = 2aDol

4,4 (M) .

We use Equation (7.2), Equation (7.4), and Theorem 1.4 to see

{P2(TcM) ch0(E) + 7
12c1(TcM)c1(E) + ch2(E)}[M]

= {Td2(TcM) ch0(E) + 1
2c1(TcM)c1(E) + ch2(E)}[M] .

We have ch0(E) = 2 and ch1(E) = c1(Λ
2,0) = −c1(TcM). Consequently

P2(TcM) = Td2(TcM) + 1
2(

1
2 − 7

12)(−c21(TcM))

= Td2(TcM) + 1
24c

2
1(TcM). □

7.3. The proof of Theorem 1.4 (2a,2b). Let M := N1 × · · · × Nm where
(Ni, gi, Ji) are flat tori of real dimension 2 and (Ei, hi) are Hermitian line bun-
dles over Ni. Let E = E1 ⊗ · · · ⊗ Em. Then chm(E) = c1(E1) . . . c1(Em). We apply
Lemma 7.2 and Theorem 1.4 to prove Theorem 1.4 (2a) by computing

aDol
2,2 [M] =

∏
i c1(Ei)[Ni], ADol

2,2 (s)[Ni] =
1
2(1 + s)c1(Ei)[Ni],

aDol
m,m[M] = ∂s

{
ADol
m,m(s)[M]

}
|s=1

= ∂s {2−m(1 + s)m
∏

i c1(Ei)[Ni]}|s=1

= 1
2m chk(E)[M] = 1

2m
Dol
2,2 [M].

Similarly, let Mi be arbitrary Riemann surfaces and let (Ei, hi) be trivial. We
complete the proof of Theorem 1.4 (2b) by computing

aDol
2,2 [M] = 2−m

∏
i c1(Tc)[Mi],

aDol
m,m[M] = ∂s

{
ADol
m,m(s)[M]

}
|s=1

= ∂s {6−m(1 + 2s)m
∏

i c1(Tc)[Mi]} |s=1

= 1
3m2−m+1

∏
i c1(Tc)[Mi] =

2
3maDol

m,m[M]. □
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