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property was further investigated for optimal trajectories of models of economic dy-
namics. See, for example, [14, 19, 25] and the references mentioned there. Recently
it was shown that the turnpike phenomenon holds for many important classes of
problems arising in various areas of research [6,10–13,15–17,22,23,29]. For related
infinite horizon problems see [1–5, 8, 9, 20, 25]. In the present paper we generalize
the results obtained in our previous research to the case when the set-valued map-
ping generating the dynamical system acts on a metric space which is not compact
itself but all its bounded, closed sets are compact. In particular, we show that the
turnpike phenomenon is stable under small perturbations of the set-valued mapping
and an objective function.

2. Preliminaries

Assume that (X, ρ) is a metric space and that A ⊂ X ×X is a nonempty closed
subset of the metric space X ×X equipped with the metric ρ1 : X ×X → [0,∞)
defined by

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2), x1, x2, y1, y2 ∈ X.

For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.
Fix

θ̂ ∈ X.

Assume that the following assumption holds:

(A1) For each r > 0 the set B(θ̂, r) is compact.
Set

(2.1) XA = {x ∈ X : {x} ×X ∩ A ̸= ∅}.
For each x ∈ XA set

(2.2) a(x) = {y ∈ X : (x, y) ∈ A}.
For each x ∈ X and each nonempty set B ⊂ X put

ρ(x,B) = inf{ρ(x, y) : y ∈ B}.
For each (x1, x2) ∈ X ×X and each nonempty set B ⊂ X ×X put

ρ1((x1, x2), B) = inf{ρ1((x1, x2), (y1, y2)) : (y1, y2) ∈ B}.
For each nonempty subset D ⊂ X set

a(D) = ∪{a(x) : x ∈ D} and a0(E) = E.

We denote by Card(B) the cardinality of a set B and suppose that the sum over
empty set is zero.

Assume that ϕ̂ : X → R1 satisfies

(2.3) lim
ρ(x,θ̂)→∞

ϕ̂(x) = ∞

and that ϕ : X → R1 is a continuous function such that

(2.4) ϕ(z) ≥ ϕ̂(z) for all z ∈ X,
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(2.5) ϕ(y) ≤ ϕ(x) for each (x, y) ∈ A.
In this paper we study convergence and structure of trajectories of the perturbed

dynamical system generated by the set-valued mapping a. Following [18, 19] this
system is called a discrete dispersive dynamical system.

Let T2 > T1 be integers. A sequence {xt}T2
t=T1

⊂ X is called a trajectory of a (or

just a trajectory if the mapping a is understood) if (xt, xt+1) ∈ A for all integers
t ∈ {T1, . . . , T2 − 1}.

A sequence {xt}∞t=T1
⊂ X is called a trajectory of a (or just a trajectory if the

mapping a is understood) if (xt, xt+1) ∈ A for all integers t ≥ T1.

Denote by Y (T1, T2, a) the set of all trajectories {yt}T2
t=T1

of a and by Y (T1,∞, a)

the set of all trajectories {yt}∞t=T1
of a.

Evidently, the function ϕ is a Lyapunov function for the dynamical system gener-
ated by the mapping a. In economic growth theory usuallyX is a subset of the finite-
dimensional Euclidean space and ϕ is a linear functional on this space [14, 18, 25].
We study approximate solutions of the problem

ϕ(xT ) → max,

{xt}Tt=0 is a trajectory satisfying x0 = x,

where x ∈ X and a natural number T are given.
In Section 3 we will prove the following result.

Proposition 2.1. The following properties are equivalent:

(1) There exists a trajectory {xt}∞t=0 of a.
(2) There exists M > 0 and for each integer n ≥ 1 there exist a trajectory

{xt}nt=0 satisfying ρ(x0, θ̂) ≤M .

In this paper we assume that property (1) of Proposition 2.1 holds.
Define

Ω(a) = {z ∈ X : for each ϵ > 0 there is a trajectory {xt}∞t=0

(2.6) such that lim inf
t→∞

ρ(z, xt) ≤ ϵ}.

Clearly, Ω(a) is a nonempty closed subset of (X, ρ). In the literature the set Ω(a)
is called a global attractor of a. Note that in [18, 19] Ω(a) is called a turnpike set
of a. This terminology is motivated by mathematical economics [14,18,19,25].

In Section 3 we prove the following result.

Proposition 2.2. Ω(a) ̸= ∅ and for every trajectory {xt}∞t=0 of a,

lim
t→∞

ρ(xt,Ω(a)) = 0.

It is not difficult to see that the following proposition holds.

Proposition 2.3. Assume that B ⊂ X is a nonempty, closed set such that for each
trajectory {xt}∞t=0 the equation

lim
t→∞

ρ(xt, B) = 0

is true. Then Ω(a) ⊂ B holds.
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The following theorem will be proved in Section 4.

Theorem 2.4. Let ϵ,M be positive real numbers. Then there is a positive integer
T such that for every trajectory {xt}Tt=0 which satisfies

ρ(x0, θ̂) ≤M

the inequality

min{ρ(xt,Ω(a)) : t = 0, . . . , T} ≤ ϵ

holds.

The next theorem is proved in Section 5.

Theorem 2.5. The following properties are equivalent:

(1) if a sequence {xt}∞t=−∞ ⊂ X satisfies

xt+1 ∈ a(xt) and ϕ(xt+1) = ϕ(xt)

for all integers t then the inclusion xt ∈ Ω(a) holds for all integers t;
(2) for each M, ϵ > 0 there exist δ > 0 and a natural number L such that for

each integer T > 2L and each trajectory {xt}Tt=0 of a which satisfies

ρ(x0, θ̂) ≤M and ϕ(x0)− ϕ(xT ) ≤ δ

the inequality

ρ(xt,Ω(a)) ≤ ϵ

holds for all integers t = L, . . . , T − L.

From here we assume that property (1) of Theorem 2.5 hold. This property
indeed holds for models of economic dynamics which are prototypes of our dynamical
system [14,18,25].

Denote by L the set of all functions ψ : X → R1 such that

(2.7) ψ(x) ≥ ϕ̂(x) for all x ∈ X.

We equip the set L with the uniformity which is determined by the base

E(N, ϵ) = {(ψ1, ψ2) ∈ L × L : |ψ1(z)− ψ2(z)| ≤ ϵ for each z ∈ B(θ̂, N)},
where N, ϵ > 0. This uniform space is Hausdorff, has a countable base and therefore
it is metrizable. The uniformity defined above induces in L a topology.

In Section 7 we prove the following turnpike result.

Theorem 2.6. Let ϵ,M > 0. Then there exist natural numbers L,Q, a number
δ > 0 and a neighborhood U of ϕ in L such that for each integer T > L, each ψ ∈ U
and each sequence {xt}Tt=0 ⊂ X such that

ρ(x0, θ̂) ≤M

and that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and

ρ1((xt, xt+1),A) ≤ δ
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there exist nonnegative integers ai < bi ≤ T , i = 1, . . . , q, where q ∈ {1, . . . , Q} is
an integer such that

ai+1 > bi, i ∈ {1, . . . , q} \ {q},
for each i ∈ {1, . . . , q},

ρ(xt,Ω(a)) ≤ ϵ, t = ai, . . . , bi

and that
Card({0, . . . , T} \ ∪q

i=1{ai, . . . , bi}) ≤ L.

This theorem shows that a weak turnpike property holds for approximate tra-
jectories of our dynamical system. Note that the constants L,Q depend only on
ϵ,M .

In this paper we obtain a strong version of Theorem 2.6 assuming that the fol-
lowing property holds which was introduced in [28].

(P1) If z1, z2 ∈ Ω(a) satisfies ϕ(z1) = ϕ(z2), then z1 = z2.
Note that for models of economic growth which are prototype of our dynamical

system property (P1) holds [14,18,19,25].
In Section 7 we prove the following turnpike result.

Theorem 2.7. Assume that (P1) holds and that ϵ,M > 0. Then there exist natural
numbers L,Q, a number δ > 0 and a neighborhood U of ϕ in L such that for each
integer T > L, each ψ ∈ U and each sequence {xt}Tt=0 ⊂ X such that

ρ(x0, θ̂) ≤M

and that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and
ρ1((xt, xt+1),A) ≤ δ

there exist nonnegative integers ai < bi ≤ T , i = 1, . . . , q, where q ∈ {1, . . . , Q} is
an integer and zi ∈ Ω(a), i = 1, . . . , q such that

ai+1 > bi, i ∈ {1, . . . , q} \ {q},
for each i ∈ {1, . . . , q},

ρ(xt, zi) ≤ ϵ, t = ai, . . . , bi
and that

Card({0, . . . , T} \ ∪q
i=1{ai, . . . , bi}) ≤ L.

3. Proofs of Propositions 2.1 and 2.2

Proof of Proposition 2.1
Clearly, (1) implies (2). Assume that (2) holds. Then there exist M > 0 and

trajectories {x(n)t }nt=0, n = 1, 2, . . . such that

(3.1) ρ(x
(n)
0 , θ̂) ≤M, n = 1, 2, . . . .

Since the set B(θ̂,M) is compact and ϕ is continuous equation (3.1) implies that
there exists M0 > 0 such that

ϕ(x
(n)
0 ) ≤M0, n = 1, 2, . . . .



378 ALEXANDER J. ZASLAVSKI

Together with (2.5) this implies that

ϕ(x
(n)
t ) ≤M0, t = 0, . . . , n, n = 1, 2, . . . .

Combined with (2.3) and (2.4) this implies that the set

{x(n)t : t = 0, . . . , n, n = 1, 2, . . . }

is bounded. By (A1), extracting subsequences and using the diagonalization process
we obtain that there exist a strictly increasing sequence of natural numbers {nj}∞j=1

such that for each integer t ≥ 0 there exists

xt = lim
i→∞

x
(nj)
t .

Since the set A is closed the sequence {xt}∞t=0 is a trajectory of a. Proposition 2.1
is proved.

Proof of Proposition 2.2
Let {xt}∞t=0 be a trajectory of a. In view of (2.5),

ϕ(xt+1) ≤ ϕ(xt) ≤ ϕ(x0)

for every integer t ≥ 0. Equations (2.3) and (2.4) imply that the sequence {xt}∞t=0

is bounded. In view of (A1) it has a convergent subsequence and its limit belongs
to Ω(a). Now we show that

lim
t→∞

ρ(xt,Ω(a)) = 0.

Assume the contrary. Then there exist ϵ > 0 and a strictly increasing sequence of
natural numbers {tj}∞j=1 such that

(3.2) ρ(xtj ,Ω(a)) > ϵ, j = 1, 2, . . . .

Since the sequence {xt}∞t=0 is bounded the sequence {xtj}∞j=1 has a convergent sub-

sequence and its limit belongs to Ω(a). This contradicts (3.2). The contradiction
we have reached completes the proof of Proposition 2.2.

4. Proof of Theorem 2.4

Assume that the theorem does not hold. Then for every natural number n there

exists a trajectory {x(n)t }nt=0 of a such that

(4.1) ρ(x
(n)
0 , θ̂) ≤M,

(4.2) ρ(x
(n)
t ,Ω(a)) > ϵ, t = 0, . . . , n.

Assumption (A1), (4.1) and the continuity of ϕ imply that the sequence {ϕ(x(n)0 )}∞n=1

is bounded. Together with (2.5) this implies that the set

{ϕ(x(n)t ) : t = 0, . . . , n, n = 1, 2, . . . }

is bounded from above. Combining with (2.3) and (2.4) this implies that the set

{x(n)t : t = 0, . . . , n, n = 1, 2, . . . }
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is bounded. Extracting subsequences and using the diagonalization process we
obtain that there exist a strictly increasing sequence of natural numbers {nj}∞j=1

such that for each integer t ≥ 0 there exists

(4.3) xt = lim
i→∞

x
(nj)
t .

Since the set A is closed {xt}∞t=0 is a trajectory of a. It follows from (4.2) and (4.3)
that for every integer t ≥ 0,

ρ(xt,Ω(a)) ≥ ϵ.

This contradicts Proposition 2.2. The contradiction we have reached completes the
proof of Theorem 2.4.

5. Proof of Theorem 2.5

Clearly, (2) implies (1). Assume that (1) holds and (2) does not hold. Then there
exist ϵ,M > 0 such that for each integer k ≥ 1 there exist an integer Tk > 2k and

a trajectory {x(k)t }Tk
t=0 such that

(5.1) ρ(x
(k)
0 , θ̂) ≤M,

(5.2) |ϕ(x(k)0 )− ϕ(x
(k)
T )| ≤ k−1

and

(5.3) max{ρ(x(k)t ,Ω(a)) : t = k, . . . , Tk − k} > ϵ.

In view of (5.1), the sequence {ϕ(x(k)0 )}∞k=1 is bounded. Together with (2.5) this
implies that the set

{ϕ(x(k)t ) : t = 0, . . . , Tk, k = 1, 2, . . . }

is bounded from above. Combined with (2.3) and (2.4) this implies that the set

(5.4) {x(k)t : t = 0, . . . , Tk, k = 1, 2, . . . } is bounded.

Let p ≥ 1 be an integer. In view of (5.3), there exists an integer

(5.5) τp ∈ {p, . . . , Tp − p}

such that

(5.6) ρ(x(p)τp ,Ω(a)) > ϵ.

Define

(5.7) y
(p)
t = x

(p)
t+τp , t = −τp, . . . , Tp − τp.

Equations (5.6) and (5.7) imply that

(5.8) ρ(y
(p)
0 ,Ω(a)) = ρ(x(p)τp ,Ω(a)) > ϵ

It follows from (5.4) and (5.7) that the set

{y(p)t : t = −τp, . . . , Tp − τp, p = 1, 2, . . . } is bounded.
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By (A1), (5.5) and (5.7), extracting subsequences and using the diagonalization
process we obtain that there exist a strictly increasing sequence of natural numbers
{pi}∞i=1 such that for each integer t there exists

(5.9) yt = lim
i→∞

y
(pi)
t .

Since the set A is closed and (5.2), (5.7) are true for each integer t we have

ϕ(yt) = ϕ(yt+1), yt+1 ∈ a(yt).

Property (1) implies that

yt ∈ Ω(a) for each integer t.

On the other hand it follows from (5.8) and (5.9) that

ρ(y0,Ω(a)) ≥ ϵ.

The contradiction we have reached proves (2) and Theorem 2.5.

6. An auxiliary result for Theorems 2.6 and 2.7

Lemma 6.1. Assume that ϵ,M > 0. Then there exist δ > 0, a natural number L
and a neighborhood U of ϕ in L such that for each integer T ≥ 2L, each function
ψ ∈ U and each sequence {xt}Tt=0 ⊂ X such that

ρ(x0, θ̂) ≤M,

for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt),

ρ1((xt, xt+1),A) ≤ δ

and that
ψ(x0) ≤ ψ(xT ) + δ

the inequality
ρ(xt,Ω(a)) ≤ ϵ

is valid for each t ∈ {L, . . . , T − L}.

Proof. In view of (A1), there exists M0 > 1 such that

(6.1) ϕ(B(θ̂,M)) ⊂ [−M0 + 1,M0 + 1].

There exists M1 > M +M0 such that

(6.2) {x ∈ X : ϕ̂(x) ≤M0} ⊂ B(θ̂,M1).

Assume that the lemma does not hold. Then for each integer k ≥ 1 there exist an
integer

(6.3) Tk ≥ 2k, ψk ∈ L
such that

(6.4) (ϕ, ψk) ∈ E(M1, k
−1)

and a sequence {x(k)t }Tk
t=0 ⊂ X such that

(6.5) ρ(x
(k)
0 , θ̂) ≤M,
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for each t ∈ {0, . . . , Tk − 1},

(6.6) ψk(x
(k)
t+1) ≤ ψk(x

(k)
t ), ρ1((x

(k)
t , x

(k)
t+1),A) ≤ k−1,

(6.7) ψk(x
(k)
0 ) ≤ ψk(x

(k)
T ) + 1/k

and

(6.8) max{ρ(x(k)t ,Ω(a)) : t = k, . . . , Tk − k} > ϵ.

In view of (6.1) and (6.5), for each integer k ≥ 1,

(6.9) ϕ(x
(k)
0 ) ≤M0 − 1.

It follows from (6.4), (6.5) and (6.9) that for each integer k ≥ 1,

|ψk(x
(k)
0 )− ϕ(x

(k)
0 )| ≤ 1/k,

(6.10) ψk(x
(k)
0 ) ≤ ϕ(x

(k)
0 ) + 1/k ≤M0.

By (2.7), (6.2), (6.3), (6.7) and (6.10), for each integer k ≥ 1 and each t ∈
{0, . . . , Tk},

ϕ̂(x
(k)
t ) ≤ ψk(x

(k)
t ) ≤ ψk(x

(k)
0 ) ≤M0,

(6.11) x
(k)
t ∈ B(θ̂,M1).

Equations (6.4) and (6.11) imply that for each integer k ≥ 1 and each t ∈ {0, . . . , Tk},

(6.12) |ϕ(x(k)t )− ψk(x
(k)
t )| ≤ k−1.

It follows from (6.6), (6.7) and (6.12) that for each integer k ≥ 1 and each t ∈
{0, . . . , Tk − 1} we have

(6.13) ϕ(x
(k)
t )− ϕ(x

(k)
t+1) ≤ ψk(x

(k)
t )− ψk(x

(k)
t+1) + 2/k ≤ 3/k

and in view of (6.6) and (6.12),

(6.14) ϕ(x
(k)
t ) ≥ ψk(x

(k)
t )− 1/k ≥ ψk(x

(k)
t+1)− 1/k ≥ ϕ(x

(k)
t+1)− 2/k.

By (6.7) and (6.12),

(6.15) |ϕ(x(k)0 )− ϕ(x
(k)
Tk

)| ≤ |ψk(x
(k)
0 )− ψk(x

(k)
Tk

)|+ 2/k ≤ 3/k.

Equation (6.8) implies that for each integer k ≥ 1 there exists

(6.16) τk ∈ {k, . . . , Tk − k}
such that

(6.17) ρ(x(k)τk
,Ω(a)) > ϵ.

Let k ≥ 1 be an integer. Define a finite sequence

(6.18) y
(k)
t = x

(k)
t+τk

, t = −τk, . . . , Tk − τk.

In view of (6.17) and (6.18), for each integer k ≥ 1 and each t ∈ {−τk, . . . , Tk − τk},

ρ(y
(k)
t , θ̂) ≤M1.
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Extracting a subsequence and using a diagonalization process we obtain that there
exists a strictly increasing sequence of natural numbers {ki}∞i=1 such that for each
integer t there exists

(6.19) yt = lim
i→∞

y
(ki)
t .

Let t be an integer. By (6.6), (6.18) and (6.19),

ρ1((yt, yt+1),A) = lim
i→∞

ρ1((y
(ki)
t , y

(ki)
t+1),A) = lim

i→∞
ρ1((x

(ki)
t+τki

, x
(ki)
t+τki+1),A) = 0

and
yt+1 ∈ a(yt).

It follows from (6.13), (6.14), (6.18) and (6.19) that

|ϕ(yt)− ϕ(yt+1)| = lim
i→∞

|ϕ(y(ki)t )− ϕ(y
(ki)
t+1)| = lim

i→∞
|ϕ(x(ki)t+τki

)− ϕ(x
(ki)
t+τki

)| = 0.

In view of property (1),
yt ∈ Ω(a)

for every integer t and in particular,

y0 ∈ Ω(a).

On the other hand it follows from (6.17)-(6.19) that for every integer k ≥ 1,

ρ(y
(k)
0 ,Ω(a)) = ρ(x(k)τk

,Ω(a)) > ϵ.

and
ρ(y0,Ω(a)) ≥ ϵ.

The contradiction we have reached completes the proof of Lemma 6.1. □
Lemma 6.2. Assume that (P1) holds and that M, ϵ > 0. Then there exists δ > 0
such that for each

z1, z2 ∈ Ω(a) ∩B(θ̂,M)

satisfying
|ϕ(z1)− ϕ(z2)| ≤ δ

the inequality ρ(z1, z2) ≤ ϵ holds.

Proof. Assume that the lemma does not hold. Then for each integer k ≥ 1 there
exist

zk,1, zk,2 ∈ Ω(a) ∩B(θ̂,M)

such that
|ϕ(zk,1)− ϕ(zk,2)| ≤ k−1, ρ(zk,1, zk,2) > ϵ.

By (A1), {zk,1}∞k=1 has a convergent subsequence. We may assume without loss of
generality that {zk,1}∞k=1 converges. Analogously we may assume that the sequence
{zk,2}∞k=1 converges too. Set

zi = lim
k→∞

zk,i, i = 1, 2.

By the equations above,
z1, z2 ∈ Ω(a),

ρ(z1, z2) ≥ ϵ, ϕ(z1) = ϕ(z2).
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This contradicts (P1). The contradiction we have reached completes the proof of
Lemma 6.2. □
Lemma 6.3. Assume that property (P1) holds, ϵ ∈ (0, 1), M > 0. Then there
exist δ > 0, a natural number L and a neighborhood U of ϕ in L such that for each
integer T ≥ 2L, each function ψ ∈ U and each sequence {xt}Tt=0 ⊂ X such that

(6.20) ρ(x0, θ̂) ≤M,

for all integers t = 0, . . . , T − 1,

(6.21) ψ(xt+1) ≤ ψ(xt), ρ1((xt, xt+1),A) ≤ δ

and that

(6.22) ψ(x0) ≤ ψ(xT ) + δ

there exists z ∈ Ω(a) such that the inequality

ρ(xt, z) ≤ ϵ

holds for each t ∈ {L, . . . , T − L},

Proof. There exists M0 > 1 such that

(6.22) ϕ(B(θ̂,M)) ⊂ [−M0 + 1,M0 − 1].

In view of (2.3), there exists M1 > M +M0 such that

(6.23) {x ∈ X : ϕ̂(x) ≤M0} ⊂ B(θ̂,M1).

Lemma 6.2 implies that there exists ϵ1 ∈ (0, ϵ/4) such that the following property
holds:

(i) for each

z1, z2 ∈ Ω(a) ∩B(θ̂,M1 + 1)

satisfying
|ϕ(z1)− ϕ(z2)| ≤ ϵ1

the inequality ρ(z1, z2) ≤ ϵ/4 holds.
In view of the continuity of ϕ, there exists ϵ0 ∈ (0, ϵ1) such that the following

property holds:
(ii) for each

z1, z2 ∈ B(θ̂,M1 + 4)

satisfying ρ(z1, z2) ≤ ϵ0 we have

|ϕ(z1)− ϕ(z2)| ≤ ϵ1/8.

Lemma 6.1 implies that there exist

δ ∈ (0, ϵ0/8),

a natural number L and a neighborhood U of ϕ in L such that

U ⊂ {ψ ∈ L : (ϕ, ψ) ∈ E(M1 + 2, ϵ0/8)}
and that the following property holds:

(iii) for each integer T ≥ 2L, each function ψ ∈ U and each sequence {xt}Tt=0 ⊂ X
such that

ρ(x0, θ̂) ≤M
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and that for all integers t = 0, . . . , T − 1, equations (6.21) and (6.22) are valid we
have

(6.24) ρ(xt,Ω(a)) ≤ ϵ0/4, t ∈ {L, . . . , T − L}.
Assume that an integer

(6.25) T ≥ 2L, ψ ∈ U ,

a sequence {xt}Tt=0 ⊂ X satisfies (6.20) and that for all integers t = 0, . . . , T − 1,
equations (6.21) and (6.22) are true. In view of property (iii), (6.24) is valid.
Equations (6.20) and (6.22) imply that

(6.26) ϕ(x0) ≤M0 − 1.

By the choice of U , (6.20), (6.25) and (6.26),

(6.27) ψ(x0) ≤ ϕ(x0) + 4−1 ≤M0.

Equations (2.7), (6.21), (6.23) and (6.27) imply that for all t = 0, . . . , T ,

(6.28) ψ(xt) ≤M0, ρ(xt, θ̂) ≤M1.

Let

(6.29) t ∈ {L, . . . , T − L}.
In view of (6.24) and (6.29), there exists

(6.30) zt ∈ Ω(a)

such that

(6.31) ρ(xt, zt) ≤ ϵ0/4.

It follows from (6.28) and (6.31) that

(6.32) ρ(zt, θ̂) ≤M1 + 2−1.

By (6.21) and (6.22), for each t, s ∈ {0, . . . , T},
(6.33) |ψ(xt)− ψ(xs)| ≤ δ.

By the choice of U and equations (6.25), (6.28) and (6.33), for each s, t ∈ {0, . . . , T},
|ϕ(xt)− ϕ(xs)|

≤ |ϕ(xt)− ψ(xt)|+ |ψ(xt)− ψ(xs)|+ |ψ(xs)− ϕ(xs)|

(6.34) ≤ ϵ0/8 + δ + ϵ0 < ϵ0/2.

Property (ii) and equations (6.28), (6.31) and (6.32) imply that for each t ∈
{L, . . . , T − L},

|ϕ(xt)− ϕ(zt)| ≤ ϵ1/8.

In view of the equation above and (6.34), for each t ∈ {L, . . . , T − L},
|ϕ(zL)− ϕ(zt)|

≤ |ϕ(zL)− ϕ(xL)|+ |ϕ(xL)− ϕ(xt)|+ |ϕ(xt)− ϕ(zt)|
≤ ϵ1/8 + ϵ0/2 + ϵ1/8 ≤ 3ϵ1/4.
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Property (i) and equations (6.30)-(6.32) imply that for each t ∈ {L, . . . , T − L},
ρ(zt, zL) ≤ ϵ/4,

ρ(xt, zL) ≤ ρ(xt, zt) + ρ(zt, zL) ≤ ϵ0/4 + ϵ/4 < ϵ.

Lemma 6.3 is proved. □

7. Proofs of Theorems 2.6 and 2.7

We prove Theorems 2.6 and 2.7 simultaneously. We may assume that ϵ < 1 < M .
There exists M0 > M + 1 such that

(7.1) ϕ(B(θ̂,M)) ⊂ [−M0 + 1,M0 − 1].

In view of (2.3), there exist M1 > M +M0 such that

(7.2) {x ∈ X : ϕ̂(x) ≤M0} ⊂ B(θ̂,M1)

and M2 > M1 + 1 such that

(7.3) ϕ(B(θ̂,M1)) ⊂ [−M2,M2].

Lemmas 6.1 and 6.3 imply that there exist

δ ∈ (0, ϵ),

a natural number L0 and a neighborhood U of ϕ in L such that

(7.4) U ⊂ {ψ ∈ L : (ϕ, ψ) ∈ E(M1 + 2, 1/8)}
and that the following property holds:

(i) for each integer T ≥ 2L0, each function ψ ∈ U and each sequence {xt}Tt=0 ⊂ X
such that

ρ(x0, θ̂) ≤M1

and that for all integers t = 0, . . . , T − 1,

(7.5) ψ(xt+1) ≤ ψ(xt), ρ1((xt, xt+1),A) ≤ δ

and that

(7.6) ψ(x0) ≤ ψ(xT ) + δ

we have

ρ(xt,Ω(a)) ≤ ϵ, t ∈ {L0, . . . , T − L0}
and if property (P1) holds, then there exists z ∈ Ω(a) such that

ρ(xt, z) ≤ ϵ, t = L0, . . . , T − L0.

Choose integers

(7.7) Q > 2 + (2M2 + 4)δ−1

and

(7.8) L > Q(4L0 + 8).

Suppose that an integer

(7.9) T > L, ψ ∈ U
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and that a sequence {xt}Tt=0 ⊂ X is such that

(7.10) ρ(x0, θ̂) ≤M

and that for each t ∈ {0, . . . , T} (7.5) is true. It follows from (7.1) and (7.10) that

(7.11) ϕ(x0) ≤M0 − 1.

In view (7.4) and (7.9)-(7.11),

ψ(x0) ≤M0.

Together with (2.7), (7.2) and (7.5) this implies that

(7.12) ψ(xt) ≤M0, ρ(xt, θ̂) ≤M1, t = 0, . . . , T.

By induction we define a strictly increasing finite sequence ti ∈ {0, . . . , T}, i =
0, . . . , q. Set

t0 = L0.

If

ψ(xT ) ≥ ϕ(xt0)− δ,

then set t1 = T and complete to construct the sequence.
Assume that

ψ(xT ) < ψ(xt0)− δ.

Evidently, there is an integer t1 ∈ (t0, T ] satisfying

(7.13) ψ(xt1) < ψ(x0)− δ

and that if an integer S satisfies t0 < S < t1, then

(7.14) ψ(xS) ≥ ψ(xt0)− δ.

If t1 = T , then we complete to construct the sequence.
Assume that k ∈ {1, 2, . . . } and that we defined a strictly increasing sequence

t0, . . . , tk ∈ {0, 1, . . . , T} such that

t0 = L0, tk ≤ T

and that for each i ∈ {0, . . . , k − 1},

ψ(xti+1) < ψ(xti)− δ

and if an integer S satisfies ti < S < ti+1, then

ψ(xS) ≥ ψ(xti)− δ.

(It is not difficult to see that the assumption is true with k = 1).
If tk = T, then we complete to construct the sequence. Assume that tk < T . If

ψ(xT ) ≥ ψ(xtk)− δ,

then we set tk+1 = T and complete to construct the sequenced.
Assume that

ψ(xT ) < ψ(xtk)− δ.

Evidently, there is a natural number tk+1 ∈ (tk, T ] for which

ψ(xtk+1
) < ψ(xtk)− δ
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and that if an integer S satisfies tk < S < tk+1, then

ψ(xS) ≥ ψ(xtk)− δ.

Evidently, the assumption made for k is true for k+1 too. Therefore by induction, we
constructed the strictly increasing finite sequence of integers ti ∈ [0, T ], i = 0, . . . , q
such that

(7.15) t0 = L0, tq = T

and that for every i satisfying 0 ≤ i < q − 1,

(7.16) ψ(xti+1) < ψ(xti)− δ

and for each i ∈ {0, . . . , q − 1} and each integer S satisfies ti < S < ti+1, we have

(7.17) ψ(xS) ≥ ψ(xti)− δ.

By (7.3), (7.4), (7.9) and (7.12),

(7.18) ψ(xt0)− ψ(xtq−1) ≤ ϕ(xt0)− ϕ(xtq−1) + 1 ≤ 2M2 + 1.

It follows from (7.5), (7.7), (7.16) and (7.18) that

2M2 + 1 ≥ ψ(xt0)− ψ(xtq−1)∑
{ψ(xti)− ψ(xti+1) : i is an integer, 0 ≤ i ≤ q − 2} ≥ δ(q − 1)

and

(7.19) q ≤ 1 + δ−1(2M2 + 1) < Q.

Set

(7.20) E = {i ∈ {0, . . . , q − 1} : ti+1 − ti ≥ 2L0 + 4}.
Let

(7.21) i ∈ E.

By (7.4), (7.5), (7.20) and (7.21),

(7.22) ti+1 − 1− ti ≥ 2L0 + 3.

Equations (7.17), (7.21) and (7.22) imply that

ψ(xti+1−1) ≥ ψ(xti)− δ.

Equation above, (7.5), (7.9), (7.12), (7.17), (7.21), (7.22) and property (i) applied

to the program {xt}ti+1−1
t=ti

imply that

ρ(xt,Ω(a)) ≤ ϵ, t = ti + L0, . . . , ti+1 − 1− L0

and if property (P1) holds, then there exists

zi ∈ Ω(a)

such that

ρ(xt, zi) ≤ ϵ, t = ti + L0, . . . , ti+1 − 1− L0.

Set

ai = ti + L0, bi = ti+1 − L0 − 1, i ∈ E.
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By (7.8), (7.15), (7.19) and (7.20),

Card({0, . . . , T} \ ∪i∈E{ai, . . . , bi})

≤ Card(∪{{ti, . . . , ti+1} : i ∈ {0, . . . , q − 1} \ E})

+Card(∪{{ti, . . . , ti + L0 − 1} ∪ {ti+1 − L0, . . . , ti+1} : i ∈ E})

≤ q(2L0 + 5) + (2L0 + 2)q + L0 ≤ q(4L0 + 7) + L0

≤ (4L0 + 7)(Q− 1) + L0 ≤ (4L0 + 7)Q < L.

Theorems 2.6 and 2.7 are proved.

8. An extension of the weak turnpike result

Lemma 8.1. Let M > 0. Then there exist M1 > 0 and a neighborhood V of ϕ in
L such that for each integer T ≥ 1, each function

(8.1) ψ ∈ V

and each sequence {xt}Tt=0 ⊂ X such that

(8.2) ρ(x0, θ̂) ≤M, ψ(xt+1) ≤ ψ(xt), t = 0, . . . , T − 1

the inequality ρ(xt, θ̂) ≤M1 holds for all t = 0, . . . , T .

Proof. There exists M0 > 0 such that

ϕ(B(θ̂,M)) ⊂ [−M0,M0].

In view of (2.3), there exist M1 > M +M0 + 1 such that

{x ∈ X : ϕ̂(x) ≤M +M0 + 1} ⊂ B(θ̂,M1).

Set

V = {ψ ∈ L : (ϕ, ψ) ∈ E(M1, 1/4)}.

Assume that T ≥ 1 is an integer, (8.1) holds and {xt}Tt=0 ⊂ X satisfies (8.2). By
the relations above, (8.1) and (8.2),

ϕ(x0) ≤M0, ψ(x0) < M0 + 1/4, ψ(xt) < M0 + 1/4, t = 0, . . . , T,

ρ(xt, θ̂) ≤M1, t = 0, . . . , T.

Lemma 8.1 is proved. □

For each ϵ,M > 0 denote by V(M, ϵ) the set of all nonempty sets B ⊂ X × X

such that for each (ξ1, ξ2) ∈ (B(θ̂,M)×B(θ̂,M)) ∩ B,

ρ1((ξ1, ξ2),A) ≤ ϵ.

Theorems 2.6 and 2.7 and Lemma 8.1 imply the following result.
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Theorem 8.2. Let ϵ,M > 0. Then there exist natural numbers L,Q, numbers
δ > 0,M0 > M and a neighborhood U of ϕ in L such that for each integer T > L,
each B ∈ V(M0, δ), each ψ ∈ U and each sequence {xt}Tt=0 such that

ρ(x0, θ̂) ≤M

and that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and
(xt, xt+1) ∈ B

there exist nonnegative integers ai < bi ≤ T , i = 1, . . . , q, where q ∈ {1, . . . , Q} is
an integer such that

ai+1 > bi, i ∈ {1, . . . , q} \ {q},
for each i ∈ {1, . . . , q},

ρ(xt,Ω(a)) ≤ ϵ, t = ai, . . . , bi

and that
Card({0, . . . , T} \ ∪q

i=1{ai, . . . , bi}) ≤ L

and if (P1) holds then there exist zi ∈ Ω(a), i = 1, . . . , q such that

ρ(xt, zi) ≤ ϵ, t ∈ {ai, . . . , bi}, i = 1, . . . , q.

9. Stability of the turnpike phenomenon

In this section we state the main result of the paper (Theorem 9.2) which shows
that the turnpike phenomenon is stable under perturbations of the set-valued map-
ping and the objective function.

Denote by M the set of all pairs (B, ψ) such that ψ ∈ L and B is a nonempty
subset of X ×X such that

(9.1) ψ(z) ≤ ψ(y) for each (y, z) ∈ B.
We use the following assumption.

(C1) For eachM, ϵ > 0 there exist δ > 0,M0 > M , ϵ0 ∈ [0, ϵ] and a neighborhood

U of ϕ in L such that for each z ∈ B(θ̂,M) satisfying ρ(x,Ω(a)) ≤ δ there exist
ξ1, ξ2 ∈ Ω(a) such that

ρ(z, ξi) ≤ ϵ, i = 1, 2

and such that for each integer T ≥ 1 and each (B, ψ) ∈ M such that ψ ∈ U and
B ∈ V(M0, δ) the following inequality holds:

sup{ψ(zT ) : {zt}Tt=0 ⊂ X, z0 = ξ1, (zt, zt+1) ∈ B, t = 0, . . . , T − 1} − ϵ0

≤ sup{ψ(zT ) : {zt}Tt=0 ⊂ X, z0 = z, (zt, zt+1) ∈ B, t = 0, . . . , T − 1}

(9.1) ≤ sup{ψ(zT ) : {zt}Tt=0 ⊂ X, z0 = ξ2, (zt, zt+1) ∈ B, t = 0, . . . , T − 1}+ ϵ0.

Note that as special cases we can have ϵ0 = ϵ and ϵ0 = 0. Clearly, (9.1) holds
with ϵ0 = 0 if

{ξ ∈ X : (ξ1, ξ) ∈ B} ⊂ {ξ ∈ X : (z, ξ) ∈ B} ⊂ {ξ ∈ X : (ξ2, ξ) ∈ B}.
We also use the following assumption.
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(C2) For each M, ϵ > 0 there exist δ > 0, M0 > M and a neighborhood U of ϕ in

L such that for each ξ1, ξ2 ∈ B(θ̂,M) ∩ Ω(a) satisfying ϕ(ξ1) ≤ ϕ(ξ2)− ϵ, each pair
of natural numbers T1, T2 and each (B, ψ) ∈ M such that ψ ∈ U and B ∈ V(M0, δ)
the following inequality holds:

ψ(ξ1) + δ,

sup{ψ(zT2) : {zt}T2
t=0 ⊂ X, z0 = ξ1, (zt, zt+1) ∈ B, t = 0, . . . , T2 − 1}+ δ

≤ sup{ψ(zT1) : {zt}T1
t=0 ⊂ X, z0 = ξ2, (zt, zt+1) ∈ B, t = 0, . . . , T1 − 1}.

The next assumption is a strong version of (C1).
(C1’) For each M, ϵ > 0 there exist δ > 0, M0 > M and a neighborhood U of ϕ in

L such that for each z ∈ B(θ̂,M) satisfying ρ(z,Ω(a)) ≤ δ there exist ξ1, ξ2 ∈ Ω(a)
such that

ρ(z, ξi) ≤ ϵ, i = 1, 2

and such that for each (B, ψ) ∈ M satisfying ψ ∈ U and B ∈ V(M0, δ) the following
inclusion holds:

{ξ ∈ X : (ξ1, ξ) ∈ B} ⊂ {ξ ∈ X : (z, ξ) ∈ B} ⊂ {ξ ∈ X : (ξ2, ξ) ∈ B}.

Clearly, (C1)’ implies (C1). The next assumption is a strong version of (C2).
(C2’) For each M, ϵ > 0 there exist δ > 0, M0 > M and a neighborhood U of ϕ

in L such that for each ξ ∈ B(θ̂,M) ∩ Ω(a) and each (B, ψ) ∈ M satisfying ψ ∈ U
and B ∈ V(M0, δ) there exist η1, η2 ∈ X such that

ρ(ηi, ξ) ≤ ϵ, i = 1, 2, (ηi, ηi) ∈ B, i = 1, 2, (η1, ξ), (ξ, η2) ∈ B.

Note that (C1’) and (C2’) hold for the von Neumann-Gale model [14,18,19,25].

Proposition 9.1. (C2’) implies (C2).

Proof. Assume that (C2’) holds. Let ϵ ∈ (0, 1), M > 0. In view of the continuity

of ϕ, there exists ϵ0 ∈ (0, ϵ/4) such that for each η1, η2 ∈ B(θ̂,M + 2) satisfying
ρ(η1, η2) ≤ ϵ0 we have

(9.2) |ϕ(η1)− ϕ(η2)| ≤ ϵ/8.

Assumption (C2’) implies that there exist δ ∈ (0, ϵ0), M0 > M + 1 and a neighbor-
hood U0 of ϕ in L such that the following property holds:

(i) for each ξ ∈ B(θ̂,M) ∩ Ω(a) and each (B, ψ) ∈ M satisfying ψ ∈ U and
B ∈ V(M0, δ) there exist η1, η2 ∈ X such that

ρ(ηi, ξ) ≤ ϵ0, i = 1, 2, (ηi, ηi) ∈ B, i = 1, 2, (η1, ξ), (ξ, η2) ∈ B.

Define

(9.3) U = U0 ∩ {ψ ∈ L : (ϕ, ψ) ∈ E(M0, ϵ/8)}.

Assume that

(9.4) ξ1, ξ2 ∈ B(θ̂,M) ∩ Ω(a)

satisfy

(9.5) ϕ(ξ1) ≤ ϕ(ξ2)− ϵ,
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T1, T2 are natural numbers and

(9.6) (B, ψ) ∈ M, ψ ∈ U , B ∈ V(M0, δ).

Property (i) and (9.3), (9.4) and (9.6) imply that there exist η1, η2 ∈ X such that

(9.7) (ηi, ηi) ∈ B, i = 1, 2,

(9.8) ρ(η1, ξ1), ρ(ξ2, η2) ∈ B, ρ(ξi, ηi) ≤ ϵ0, i = 1, 2.

By (9.1) and (9.8),

ψ(ξ1), sup{ψ(zT2) : {zt}T2
t=0 ⊂ X, z0 = ξ1, (zt, zt+1) ∈ B, t = 0, . . . , T2 − 1}

(9.9) ≤ ϕ(η1),

sup{ψ(zT1) : {zt}T1
t=0 ⊂ X, z0 = ξ2, (zt, zt+1) ∈ B, t = 0, . . . , T1 − 1}

≥ sup{ψ(zT1−1) : {zt}T1−1
t=0 ⊂ X, z0 = η2,

(9.10) (zt, zt+1) ∈ B, t ∈ {0, . . . , T1 − 1} \ {T1 − 1}} ≥ ϕ(η2).

In view of (9.4) and (9.8), for i = 1, 2,

(9.11) ρ(θ̂, ηi) ≤M + 1 ≤M0.

Equations (9.3), (9.6) and (9.11) imply that

(9.12) |ϕ(ηi)− ψ(ηi)| ≤ ϵ/8, i = 1, 2.

It follows from (9.2), (9.4), (9.5), (9.11) and (9.12) that

ψ(η2) ≥ ϕ(η2)− ϵ/8 ≥ ϕ(ξ2)− ϵ/8− ϵ/8

≥ ϕ(ξ1) + ϵ− ϵ/8− ϵ/8

(9.13) ≥ ϕ(η1) + ϵ− 3ϵ/8 ≥ ψ(η1) + ϵ/2.

By (9.6), (9.10) and (9.13),

ψ(ξ1), sup{ψ(zT2) : {zt}T2
t=0 ⊂ X, z0 = ξ1, (zt, zt+1) ∈ B, t = 0, . . . , T2 − 1}
≤ ψ(η1) ≤ ψ(η2)− ϵ/2

≤ sup{ψ(zT1) : {zt}T1
t=0 ⊂ X, z0 = ξ2, (zt, zt+1) ∈ B, t = 0, . . . , T1 − 1} − ϵ/2.

Thus (C2) holds and Lemma 9.1 is proved. □
We prove the following result.

Theorem 9.2. Assume that assumptions (C1) and (C2) hold. Let ϵ,M > 0. Then
there exist a natural number L, M0 > M , δ ∈ (0, ϵ) and a neighborhood U of ϕ
in L such that for every integer T ≥ 2L, each (B, ψ) ∈ M satisfying ψ ∈ U and
B ∈ V(M0, δ) and every sequence {xt}Tt=0 ⊂ X which satisfies

ρ(x0, θ̂) ≤M,

for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and
(xt, xt+1) ∈ B,
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ψ(xT ) ≥ sup{ψ(zT ) : {zt}Tt=0 ⊂ X, z0 = x0 for all t = 0, . . . , T − 1,

ψ(zt+1) ≤ ψ(zt), (zt, zt+1) ∈ B} − δ

there exist integer τ1 ∈ {0, . . . , L}, τ2 ∈ {T − L, . . . , T} such that

ρ(xt,Ω(a)) ≤ ϵ, t = τ1, . . . , τ2

and if (P1) holds then there exist w ∈ Ω(a) such that

ρ(xt, w) ≤ ϵ, t ∈ τ1, . . . , τ2.

Moreover, if ρ(x0,Ω) ≤ δ, then τ1 = 0 and if ρ(xT ,Ω) ≤ δ, then τ2 = T .

10. Auxiliary result for Theorem 9.2

Proposition 10.1. Let x ∈ Ω(a). Then there exists a bounded sequence {yi}∞i=−∞ ⊂
Ω(a) such that y0 = x and for all integers t,

(yt, yt+1) ∈ A, ϕ(yt) = ϕ(y0), yt ∈ Ω(a).

Proof. Let k ≥ 1 be an integer. There exists δk ∈ (0, 1/k) such that for each
z ∈ B(x, δk),

(10.1) |ϕ(x)− ϕ(z)| ≤ 1/k.

There exists a trajectory {x(k)t }∞t=0 ∈ Y (0,∞, a) such that

(10.2) lim inf
t→∞

ρ(x
(k)
t , x) < δk.

In view of (10.1) and (10.2), we may assume without loss of generality that

(10.3) ρ(x
(k)
0 , x) < δk, |ϕ(x

(k)
0 )− ϕ(x)| ≤ 1/k.

Clearly, the sequence {ϕ(x(k)t )}∞t=0 is decreasing. Together with (10.1)-(10.3) this
implies that

(10.4) |ϕ(x(k)t )− ϕ(x)| ≤ 1/k for all integers t ≥ 0.

By (10.2), there exists an integer

(10.5) tk ≥ 4k

such that

(10.6) ρ(x
(k)
tk
, x) < δk.

For each integer t ≥ −tk define

(10.7) y
(k)
t = x

(k)
t+tk

.

It follows from (10.3) and (10.7) that

(10.8) ρ(y
(k)
−tk

, x) < δk, ρ(y
(k)
0 , x) < δk

and for all integers t ≥ −tk,

(10.9) |ϕ(y(k)t )− ϕ(x)| = |ϕ(x(k)t+tk
)− ϕ(x)| ≤ 1/k.

In view of (2.3), (2.4) and (10.9) the set

{y(k)t : t ≥ −tk is an integer, k = 1, 2, . . . }
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is bounded. Extracting subsequences and using diagonalization process we obtain
that there exists a strictly increasing sequence of natural numbers {kj}∞j=1 and a

sequence {yt}∞t=−∞ ⊂ X such that for each integer t,

(10.10) lim
j→∞

y
(kj)
t = yt.

By (10.8) and (10.10), y0 = x, the sequence {yi}∞i=−∞ is bounded and ϕ(yt) = ϕ(x)
for all integers t. Since the set A is closed we have (yt, yt+1) ∈ A for all integers t.
Property (1) of Theorem 2.5 and the equation above imply that yt ∈ Ω(a) for all
integers t. Proposition 10.1 is proved. □

Lemma 10.2. Assume that {xt}t=0
−∞ ⊂ X satisfies

xt+1 ∈ a(xt), ϕ(xt) = ϕ(x0), t = −1,−2, . . . ,

x0 ∈ Ω(a).

Then xt ∈ Ω(a) for every integer t ≤ 0.

Proof. Proposition 10.1 implies that there exists a sequence {yt}∞t=−∞ ⊂ Ω(a) such
that

y0 = x0

and for every integer t,

yt+1 ∈ a(yt), ϕ(yt) = ϕ(y0).

For every integer t > 0 set

xt = yt.

Property (1) of Theorem 2.5 implies that {xt}∞t=−∞ ⊂ Ω(a). Lemma 10.2 is proved.
□

Analogously to Lemma 10.2 we can prove the next result.

Lemma 10.3. Assume that {xt}∞t=0 ⊂ X satisfies

xt+1 ∈ a(xt), ϕ(xt) = ϕ(x0), t = 1, 2, . . . ,

x0 ∈ Ω(a).

Then xt ∈ Ω(a) for every integer t ≥ 0.

Lemma 10.4. Let ϵ ∈ (0, 1), M > 1. Then there exist δ > 0 and a neighborhood U
of ϕ in L such that for each natural number T ≥ 2, each ψ ∈ U and each sequence

{xt}Tt=0 ⊂ X satisfying ρ(x0, θ̂) ≤M and for each t ∈ {0, . . . , T − 1},

ψ(xt+1) ≤ ψ(xt), ρ1((xt, xt+1),A) ≤ δ,

ψ(x0) ≤ ψ(xT ) + δ,

ρ(xj ,Ω(a)) ≤ δ, j = 0, T

the inequality ρ(xt,Ω(a)) ≤ ϵ holds for all t = 0, . . . , T.
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Proof. Lemma 8.1 implies that there exists M0 > M and a neighborhood V0 of ϕ
in L such that the following property holds:

(a) for each integer T ≥ 1, each function ψ ∈ V0 and each sequence {xt}Tt=0 ⊂ X
such that

ρ(x0, θ̂) ≤M, ψ(xt+1) ≤ ψ(xt), t = 0, . . . , T − 1

the inequality ρ(xt, θ̂) ≤M0 holds for all t = 0, . . . , T .
Assume that the lemma does not hold. Then for each integer k ≥ 1 there exists

an integer

Tk ≥ 2, ψk ∈ L
such that

(10.11) (ϕ, ψk) ∈ E(M0, 2
−kϵ), ψk ∈ V0

and a sequence {x(k)t }Tk
t=0 ⊂ X such that

(10.12) ρ(x
(k)
0 , θ̂) ≤M,

for each t ∈ {0, . . . , Tk − 1},

(10.13) ψk(x
(k)
0 ) ≤ ψ(x

(k)
Tk

) + 2−kϵ,

(10.14) ψk(x
(k)
t+1) ≤ ψk(x

(k)
t ), ρ1((x

(k)
t , x

(k)
t+1),A) ≤ 2−kϵ,

(10.15) ρ(x
(k)
i ,Ω(a)) ≤ 2−kϵ, i = 0, . . . , Tk

and

(10.16) max{ρ(x(k)t ,Ω(a)) : t = 0, . . . , Tk} > ϵ.

In view of (10.11)-(10.14), for each integer k ≥ 1,

(10.17) ρ(x
(k)
t , θ̂) ≤M0, t = 0, . . . , Tk,

(10.18) ψk(x
(k)
0 )− 2−kϵ ≤ ψk(x

(k)
t ) ≤ ψk(x

(k)
0 ), t = 0, . . . , Tk.

Equations (10.15) and (10.16) imply that for each integer k ≥ 1 there exists

τk ∈ {1, . . . , Tk − 1}

such that

(10.19) ρ(x(k)τk
,Ω(a)) > ϵ.

Extracting a subsequence, re-indexing and using a diagonalization process we obtain
that at least one of the following cases holds:

(a) limk→∞ τk = ∞, limk→∞(Tk − τk) = ∞;
(b) lim supk→∞ τk <∞, limk→∞(Tk − τk) = ∞;
(C) limk→∞ τk = ∞, lim supk→∞(Tk − τk) <∞;
(d) lim supk→∞ τk <∞, lim supk→∞(Tk − τk) <∞.
Assume that the case (a) holds. For each integer k ≥ 1 set

(10.20) y
(k)
t = x

(k)
t+τk

, t = −τk, . . . , Tk − τk.
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Extracting a subsequence, using a diagonalization process and re-indexing we may
assume without loss of generality that for each integer t there exists

(10.21) zt = lim
i→∞

y
(ki)
t .

It follows from (10.11), (10.17), (10.18), (10.20) and (10.21) that for each integer t,

|ϕ(zt)− ϕ(zt+1)| = lim
k→∞

|ϕ(y(k)t )− ϕ(y
(k)
t+1)| = lim

k→∞
|ϕ(x(k)t+τk

)− ϕ(x
(ki)
t+τk+1)|

(10.22) = lim
k→∞

|ψk(x
(k)
t+τk

)− ψk(x
(ki)
t+τk+1)| = 0.

By (10.14) and (10.20)-(10.22), for each integer t,
(10.23)

ρ1((zt, zt+1),A) ≤ lim
k→∞

ρ1((y
(k)
t , y

(k)
t+1),A) = lim

k→∞
ρ1((x

(k)
t+τk

, x
(k)
t+τk+1),A) = 0.

It follows from property (1) of Theorem 2.5 and (10.22) and (10.23) that

zt ∈ Ω(a)

for all integers t. On the other hand it follows from (10.11) and (10.20) that for
every integer k ≥ 1,

ρ(y
(k)
0 ,Ω(a)) = ρ(x(k)τk

,Ω(a)) ≥ ϵ.

and
ρ(y0,Ω(a)) ≥ ϵ.

The contradiction we have reached proves that the case (a) does not hold.
Assume that the case (b) holds. In view (10.12), extracting a subsequence, using

a diagonalization process and re-indexing we may assume without loss of generality
that

(10.24) τk = τ1, k = 1, 2, . . .

and that for each integer t ≥ 0 there exists

(10.25) zt = lim
k→∞

x
(k)
t .

It follows from (10.11), (10.12), (10.18) and (10.25) that for each integer t ≥ 0,

(10.26) |ϕ(zt)−ϕ(zt+1)| = lim
k→∞

|ϕ(x(k)t )−ϕ(x(k)t+1)| = lim
k→∞

|ψk(x
(k)
t )−ψk(x

(k)
t+1)| = 0.

By (10.14) and (10.25), for every integer t ≥ 0,

(10.27) ρ1((zt, zt+1),A) ≤ lim
k→∞

ρ1((x
(k)
t , x

(k)
t+1),A) = 0.

It follows from (10.15) and (10.25) that

z0 ∈ Ω(a).

Lemma 10.3, the equation above, (10.26) and (10.27) imply that

zt ∈ Ω(a)

for all integers t ≥ 0. On the other hand it follows from (10.11), (10.24) and (10.25)
that

ρ(zτ1 ,Ω(a)) = lim
k→∞

ρ(x(k)τ1 ,Ω(a)) ≥ ϵ.
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The contradiction we have reached proves that the case (b) does not hold.
Assume that the case (c) holds. We may assume without loss of generality that

(10.28) Tk − τk = T1 − τ1, k = 1, 2, . . .

For each integer k ≥ 1 set

(10.29) y
(k)
t = x

(k)
t+τk

, t = 0,−1,−2, . . . ..

In view of (10.17), extracting a subsequence, using a diagonalization process and
re-indexing we may assume without loss of generality that for each integer t ≤ 0
there exists

(10.30) zt = lim
k→∞

y
(k)
t .

By (10.14), (10.29) and (10.30), for every integer t ≤ 0,
(10.31)

ρ1((zt, zt+1),A) = lim
k→∞

ρ1((y
(k)
t , y

(k)
t+1),A) = lim

k→∞
ρ1((x

(k)
t+τk

, x
(k)
t+τk+1),A) = 0.

It follows from (10.11), (10.17), (10.18), (10.29) and (10.30) that for each integer
t ≤ 0,

|ϕ(zt)− ϕ(zt+1)| = lim
k→∞

|ϕ(y(k)t )− ϕ(y
(k)
t+1)| = lim

k→∞
|ϕ(x(k)t+τk

)− ϕ(x
(k)
t+τk+1)|

(10.32) = lim
k→∞

|ψk(x
(k)
t+τk

)− ψk(x
(ki)
t+τk+1)| = 0.

By (10.15), (10.29) and (10.30),

(10.33) ρ(z0,Ω(a)) = lim
k→∞

ρ(y0,Ω(a)) = lim
k→∞

ρ(x
(k)
Tk
,Ω(a)) = 0.

It follows from Lemma 10.2 and (10.31)-(10.33) that

zt ∈ Ω(a)

for all integers t ≤ 0. On the other hand it follows from (10.28)-(10.30) that

ρ(zτ1−T1 ,Ω(a)) = lim
k→∞

ρ(y
(k)
τ1−T1

,Ω(a)) = lim
k→∞

ρ(x(k)τk
,Ω(a)) ≥ ϵ.

The contradiction we have reached proves that the case (c) does not hold.
Therefore case (d) holds. Extracting a subsequence, using a diagonalization pro-

cess and re-indexing we may assume without loss of generality that

(10.34) Tk = T1, τk = τ1, k = 1, 2, . . .

and that for each integer t ∈ {0, . . . , T1} there exists

(10.35) yt = lim
k→∞

x
(k)
t .

By (10.15), (10.34) and (10.35),
(10.36)

ρ(y0,Ω(a)) = lim
k→∞

ρ(x
(k)
0 ,Ω(a)) = 0, ρ(yT1 ,Ω(a)) = lim

k→∞
ρ(x

(k)
Tk
,Ω(a)) = 0.

By (10.14) and (10.35), for every integer t = 0, . . . , T1 − 1,

(10.37) ρ1((yt, yt+1),A) = lim
k→∞

ρ1((x
(k)
t , x

(k)
t+1),A) = 0.
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It follows from (10.11), (10.17), (10.18) and (10.35) that for each integer t ∈
{0, . . . , T1 − 1},

(10.38) |ϕ(yt)−ϕ(yt+1)| = lim
k→∞

|ϕ(x(k)t )−ϕ(x(k)t+1)| = lim
k→∞

|ψk(x
(k)
t )−ψk(x

(k)
t+1)| = 0.

It follows from (10.19), (10.34), (10.35) and (10.38) that

ρ(yτ1 ,Ω(a)) = lim
k→∞

ρ(x(k)τ1 ,Ω(a)) ≥ ϵ.

Property (1) of Theorem 2.5, Proposition 10.1 (10.37) and (10.38) imply that

yt ∈ Ω(a)

for all integers t = 0, . . . , T1. The contradiction we have reached proves Lemma
10.4. □

Lemma 10.5. Assume that property (P1) holds and that ϵ ∈ (0, 1), M > 1. Then
there exist δ > 0 and a neighborhood U of ϕ in L such that for each natural number
T ≥ 2, each ψ ∈ U and each sequence {xt}Tt=0 ⊂ X satisfying

(10.39) ρ(x0, θ̂) ≤M

and for each t ∈ {0, . . . , T − 1},

(10.40) ψ(xt+1) ≤ ψ(xt), ρ1((xt, xt+1),A) ≤ δ,

(10.41) ψ(x0) ≤ ψ(xT ) + δ,

(10.42) ρ(xj ,Ω(a)) ≤ δ, j = 0, T

there exists η ∈ Ω(a) such that the inequality ρ(xt, η) ≤ ϵ holds for all t = 0, . . . , T.

Proof. Lemma 8.1 implies that there exists M0 > M and a neighborhood U0 of ϕ
in L such that the following property holds:

(a) for each integer S ≥ 1, each function ψ ∈ U0 and each sequence {xt}St=0 ⊂ X
such that

ρ(x0, θ̂) ≤M, ψ(xt+1) ≤ ψ(xt), t = 0, . . . , S − 1

the inequality ρ(xt, θ̂) ≤M1 holds for all t = 0, . . . , S.
Lemma 6.2 implies that there exists ϵ0 ∈ (0, ϵ/4) such that the following property

holds:
(b) for each η1, η2 ∈ Ω(a) ∩ B(θ̂,M1 + 2) which satisfy |ϕ(η1) − ϕ(η2)| ≤ 2ϵ0 we

have ρ(η1, η2) ≤ ϵ/8.
It follows from the uniform continuity of the function ϕ on compact sets that

there exists ϵ1 ∈ (0, ϵ0/4) such that the following property holds:

(c) for each η1, η2 ∈ B(θ̂,M1 + 4) satisfying ρ(η1, η2) ≤ ϵ1 we have

|ϕ(η1)− ϕ(η2)| ≤ ϵ0/8.

Lemma 10.4 implies that there exist δ ∈ (0, ϵ1/4) and a neighborhood U of ϕ in
L such that

U ⊂ U0 ∩ {ψ ∈ L : (ϕ, ψ) ∈ E(M1 + 4, ϵ0/16)}
and such that the following property holds:
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(d) for each integer T ≥ 2, each ψ ∈ U and each sequence {xt}Tt=0 ⊂ X satisfying
(10.39) and for each t ∈ {0, . . . , T − 1}, satisfying (10,40)-(10.42) we have

(10.43) ρ(xt,Ω(a)) ≤ ϵ1, t = 0, . . . , T.

Assume that T ≥ 2 is an integer ,

(10.44) ψ ∈ U ,

{xt}Tt=0 ⊂ X, (10.39) holds and for each t ∈ {0, . . . , T − 1}, (10.40)-(10.42) hold.
Property (d) and equations (10.39)-(10.42), (10.44) imply that (10.43) holds for all
t = 0, . . . , T . In view of (10.43), for each t ∈ {0, . . . , T}, there exists

(10.45) ηt ∈ Ω(a)

such that

(10.46) ρ(xt, ηt) ≤ ϵ1.

Property (a), (10.40) and (10.44) imply that

(10.47) ρ(xt, θ̂) ≤M1, ρ(ηt, θ̂) ≤M1 + 1, t = 0, . . . , T.

It follows from the choice of U , (10.44) and (10.47) that for all t = 0, . . . , T ,

(10.48) |ϕ(xt)− ψ(xt)| ≤ ϵ0/16.

In view of (10.40) and (10.41), for each t ∈ {0, . . . , T},

(10.49) ψ(x0)− δ ≤ ψ(xt) ≤ ψ(x0).

Let t ∈ {0, . . . , T}. Equations (10.48) and (10.49) imply that

(10.50) |ϕ(xt)− ϕ(x0)| ≤ ϵ0/8 + |ψ(xt)− ψ(x0)| ≤ δ + ϵ0/8.

Property (c), (10.46) and (10.47) imply that

(10.51) |ϕ(xt)− ϕ(ηt)| ≤ ϵ0/8.

By (10.50) and (10.51),

|ϕ(η0)− ϕ(ηt| ≤ |ϕ(η0)− ϕ(x0)|+ |ϕ(x0)− ϕ(xt)|+ |ϕ(xt)− ϕ(ηt|

(10.52) ≤ ϵ0/4 + δ + ϵ0/8 < ϵ0.

Property (b), (10.47) and (10.52) imply that

ρ(η0, ηt) ≤ ϵ/8.

Together with (10.46) this implies that

ρ(xt, η0) ≤ ϵ1 + ϵ/8 < ϵ.

Lemma 10.5 is proved. □



TURNPIKE PHENOMENON AND ITS STABILITY 399

11. Proof of Theorem 9.2

Lemma 8.1 implies that there exist M1 > M + 1 and a neighborhood U0 of ϕ in
L such that the following property holds:

(a) for each integer S ≥ 1, each function ψ ∈ U0 and each sequence {xt}St=0 ⊂ X
such that

ρ(x0, θ̂) ≤M, ψ(xt+1) ≤ ψ(xt), t = 0, . . . , S − 1

the inequality ρ(xt, θ̂) ≤M1 holds for all t = 0, . . . , S.
Lemmas 10.4 and 10.5 imply that there exist δ0 ∈ (0, ϵ) and a neighborhood U1

of ϕ in L such that the following property holds:
(b) for each natural number S ≥ 2, each ψ ∈ U1 and each sequence {xt}St=0 ⊂ X

satisfying ρ(x0, θ̂) ≤M1 + 1 and for each t ∈ {0, . . . , S − 1},
ψ(xt+1) ≤ ψ(xt), ρ1((xt, xt+1),A) ≤ δ0,

ψ(x0) ≤ ψ(xS) + δ0,

ρ(xj ,Ω(a)) ≤ δ0, j = 0, S

the inequality ρ(xt,Ω(a)) ≤ ϵ holds for all t = 0, . . . , S and if (P1) holds, then
ρ(xt, η) ≤ ϵ, t = 0, . . . , S, where η ∈ Ω(a).

It follows from the continuity of the function ϕ that there exists δ1 ∈ (0, δ0) such
that the following property holds:

(c) for each η1, η2 ∈ B(θ̂,M1 + 1) satisfying ρ(η1, η2) ≤ 2δ1 we have

|ϕ(η1)− ϕ(η2)| ≤ δ0/16.

Assumption (C2) implies there exist δ2 ∈ (0, δ1),M2 > M1+2 and a neighborhood
U2 of ϕ in L such that the following property holds:

(d) for each ξ1, ξ2 ∈ B(θ̂,M1+2)∩Ω(a) satisfying ϕ(ξ1) ≤ ϕ(ξ2)−δ1/8, each pair
of natural numbers S1, S2 and each (B, ψ) ∈ M such that ψ ∈ U2 and B ∈ V(M2, δ2)
we have

ψ(ξ1) + δ2 ≤ ψ(ξ2),

ψ(ξ2) + δ2,

sup{ψ(zS2) : {zt}S2
t=0 ⊂ X, z0 = ξ1, (zt, zt+1) ∈ B, t = 0, . . . , S2 − 1}+ δ2

≤ sup{ψ(zS1) : {zt}S1
t=0 ⊂ X, z0 = ξ2, (zt, zt+1) ∈ B, t = 0, . . . , S1 − 1}.

Assumption (C1) implies that there exist δ3 ∈ (0, δ2), M3 > M2 and a neighbor-
hood U3 of ϕ in L such that the following property holds:

(e) for each z ∈ B(θ̂,M2) satisfying ρ(z,Ω(a)) ≤ δ3 there exist ξ1, ξ2 ∈ Ω(a) such
that

ρ(z, ξi) ≤ δ2, i = 1, 2

and such that for each integer S ≥ 1 and each (B, ψ) ∈ M satisfying ψ ∈ U3 and
B ∈ V(M2, δ3) we have

ψ(ξ1)− δ2/16 ≤ ψ(z) ≤ ψ(ξ2) + δ2/16,

sup{ψ(zS) : {zt}St=0 ⊂ X, z0 = ξ1, (zt, zt+1) ∈ B, t = 0, . . . , S − 1} − δ2/16

≤ sup{ψ(zS) : {zt}St=0 ⊂ X, z0 = z, (zt, zt+1) ∈ B, t = 0, . . . , S − 1}
≤ sup{ψ(zS) : {zt}St=0 ⊂ X, z0 = ξ2, (zt, zt+1) ∈ B, t = 0, . . . , S − 1}+ δ2/16.
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Theorem 8.2 implies that there exist a natural number L, δ4 > 0, M0 > M3 + 1
and a neighborhood U4 of ϕ in L such that the following property holds:

(f) for each integer T > L, each B ∈ V(M0, δ4), each ψ ∈ U4 and each sequence
{xt}Tt=0 such that

ρ(x0, θ̂) ≤M

and that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and

(xt, xt+1) ∈ B
we have

Card({0, . . . , T} : ρ(xt,Ω(a)) ≥ δ3} ≤ L.

Set

(11.1) δ = min{δi : i = 0, 1, 2, 3, 4}/4,

(11.2) U = ∩4
i=0Ui ∩ {ψ ∈ L : (ϕ, ψ) ∈ E(M0 + 1, δ)}.

Assume that an integer

(11.3) T ≥ 2L, (B, ψ) ∈ M, ψ ∈ U , B ∈ V(M0, δ),

{xt}Tt=0 ⊂ X,

(11.4) ρ(x0, θ̂) ≤M,

for all integers t = 0, . . . , T − 1,

(11.5) ψ(xt+1) ≤ ψ(xt), (xt, xt+1) ∈ B,

ψ(xT ) ≥ sup{ψ(zT ) : {zt}Tt=0 ⊂ X, z0 = x0 for all t = 0, . . . , T − 1,

(11.6) ψ(zt+1) ≤ ψ(zt), (zt, zt+1) ∈ B} − δ.

Property (f) and (11.1)-(11.5) imply that

(11.7) Card({0, . . . , T} : ρ(xt,Ω(a)) ≥ δ3} ≤ L.

In view of (11.7), there exist

(11.8) τ1 ∈ {0, . . . , L}, τ2 ∈ {T − L, . . . , T}
such that

(11.9) ρ(xτi ,Ω(a)) < δ3, i = 1, 2.

If ρ(x0,Ω(a)) ≤ δ, then we set τ1 = 0 and if ρ(xT ,Ω(a)) ≤ δ, then we set τ2 = T .
Property (a) and equations (11.2)-(11.5) imply that

(11.10) ρ(xt, θ̂) ≤M1, t = 0, . . . , T.

In view of (11.5) and (11.8),

(11.11) ψ(xτ2) ≤ ψ(xτ1).

We show that

ψ(xτ1) ≤ ψ(xτ2) + δ0.
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Assume the contrary. Then

(11.12) ψ(xτ1) > ψ(xτ2) + δ0.

Property (e) applied to z = xτi , i = 1, 2, (11.9) and (11.10) imply that for i = 1, 2
there exist

(11.13) ξi,1, ξi,2 ∈ Ω(a)

such that

(11.14) ρ(xτi , ξi,j) ≤ δ2, j = 1, 2

and that for i = 1, 2 and each integer S ≥ 1 we have

(11.15) ψ(ξi,1)− δ2/16 ≤ ψ(xτi) ≤ ψ(ξi,2) + δ2/16,

sup{ψ(zS) : {zt}St=0 ⊂ X, z0 = ξi,1, (zt, zt+1) ∈ B, t = 0, . . . , S − 1} − δ2/16

≤ sup{ψ(zS) : {zt}St=0 ⊂ X, z0 = xτi , (zt, zt+1) ∈ B, t = 0, . . . , S − 1}
(11.16)

≤ sup{ψ(zS) : {zt}St=0 ⊂ X, z0 = ξi,2, (zt, zt+1) ∈ B, t = 0, . . . , S − 1}+ δ2/16.

By (11.1)-(11.3), (11.10) and (11.12),

ϕ(xτ1)− ϕ(xτ2) ≥ ψ(xτ1)− ψ(xτ2)− |ϕ(xτ1)− ψ(xτ1)|

(11.17) −|ϕ(xτ2)− ψ(xτ2)| > δ0 − 2δ > δ0/2.

Property (c) and equations (11.10), (11.14) and (11.17) imply that for j, p ∈ {1, 2},
ϕ(ξ1,p)− ϕ(ξ2,j) ≥ ϕ(xτ1)− ϕ(xτ2)− |ϕ(xτ1)− ϕ(ξ1,p)|

(11.18) −|ϕ(ξ2,j)− ϕ(xτ2)| > δ0/2− δ0/8 = 3δ0/8.

Property (d) and (11.1)-(11.3), (11.10), (11.13), (11.14) and (11.18) imply that for
each pair of integers S1, S2 ≥ 1 and each j, p ∈ {1, 2},

sup{ψ(zS2) : {zt}S2
t=0 ⊂ X, z0 = ξ2,j , (zt, zt+1) ∈ B, t = 0, . . . , S2 − 1}+ δ2

≤ ψ(ξ1,p)

(11.19) ≤ sup{ψ(zS1) : {zt}S1
t=0 ⊂ X, z0 = ξ1,p, (zt, zt+1) ∈ B, t = 0, . . . , S1 − 1},

(11.20) ψ(ξ2,j) + δ2 ≤ ψ(ξ1,p).

By (11.6), (11.8), (11.15), (11.16), (11.19) and (11.20),

ψ(xT )

≤ sup{ψ(zT−τ2) : {zt}T−τ2
t=0 ⊂ X,

z0 = xτ2 , (zt, zt+1) ∈ B, t ∈ {0, . . . , T − τ2} \ {T − τ2}}
≤ sup{ψ(zT−τ2) : {zt}T−τ2

t=0 ⊂ X,

z0 = ξ2,2, (zt, zt+1) ∈ B, t ∈ {0, . . . , T − τ2} \ {T − τ2}}+ δ2/16

≤ sup{ψ(zT−τ1) : {zt}T−τ1
t=0 ⊂ X,

z0 = ξ1,1, (zt, zt+1) ∈ B, t ∈ {0, . . . , T − τ1 − 1}}+ δ2/16− δ2

≤ sup{ψ(zT−τ1) : {zt}T−τ1
t=0 ⊂ X,

z0 = xτ1 , (zt, zt+1) ∈ B, t ∈ {0, . . . , T − τ1 − 1}}+ δ2/16− δ2 + δ2/16
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≤ sup{ψ(zT ) : {zt}Tt=0 ⊂ X,

z0 = x0, (zt, zt+1) ∈ B, t ∈ {0, . . . , T − 1}} − δ2/2

≤ ψ(xT ) + δ − δ2/2.

This contradicts (11.1). The contradiction we have reached proves that

(11.21) ψ(xτ1) ≤ ψ(xτ2) + δ0.

Property (b) equations (11.1)-(11.3), (11.5), (11.10), (11.14) and (11.21) imply that

ρ(xt,Ω(a)) ≤ ϵ, t = τ1, . . . , τ2

and that if (P1) holds then there exists η ∈ Ω(a) such that

ρ(xt, η) ≤ ϵ, t = τ1, . . . , τ2.

Theorem 9.2 is proved.
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