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The operators (−∆)sm , 1 ≤ m ≤ N in problem (1.1) describe a particular case
of the anomalous diffusion actively treated in the context of various applications in
plasma physics and turbulence [7], [21], surface diffusion [14], [19], semiconductors
[20] and so on. The anomalous diffusion can be understood as a random process
of the particle motion characterized by the probability density distribution of jump
length. The moments of this density distribution are finite in the case of the normal
diffusion, but this is not the case for the anomalous diffusion. The asymptotic
behavior at the infinity of the probability density function determines the value
sm, 1 ≤ m ≤ N of the power of the negative Laplacian (see [18]). The operators
(−∆)sm , 1 ≤ m ≤ N are defined by means of the spectral calculus. We consider
the case of 3

2 − d
4 < sm < 1, 1 ≤ m ≤ N in the present work. A similar system with

the standard Laplacians in the diffusion terms was studied recently in [29]. We note
that the restriction on the powers sm, 1 ≤ m ≤ N here is due to the solvability
conditions of our problem.

Let us set here all Dm = 1 and show the existence of solutions of the system of
equations for 3

2 − d
4 < sm < 1

(1.2) −(−∆)smum +

∫
Rd

Km(x− y)gm(u(y))dy + fm(x) = 0,

with 1 ≤ m ≤ N, d = 4, 5. We treat the case when the linear part of this operator
does not satisfy the Fredholm property. As a consequence, the conventional methods
of nonlinear analysis may not be applicable. We use the solvability conditions for
the non Fredholm operators along with the method of contraction mappings.

Consider the equation

(1.3) −∆u+ V (x)u− au = f,

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential function V (x) is either zero identically or converges to 0 at infin-
ity. This model problem is discussed here in order to illustrate some features of
the equations without Fredholm property, the methods used to solve them and the
preceding works. For a ≥ 0, the essential spectrum of the operator A : E → F cor-
responding to the left side of problem (1.3) contains the origin. As a consequence,
such operator does not satisfy the Fredholm property. Its image is not closed, for
d > 1 the dimension of its kernel and the codimension of its image are not finite.
The present work deals with the studies of certain properties of the operators of
this kind. Note that elliptic problems with non Fredholm operators were studied
actively in recent years. Approaches in weighted Sobolev and Hölder spaces were
developed in [2], [3], [4], [5], [6]. The Schrödinger type operators without Fred-
holm property were treated with the methods of the spectral and the scattering
theory in [22], [26], [32]. Nonlinear non Fredholm elliptic problems were studied
in [27] and [28]. The significant applications to the theory of reaction-diffusion
type equations were developed in [9], [10]. The non Fredholm operators arise also
when considering wave systems with an infinite number of localized traveling waves
(see [1]). In particular, when a = 0 the operator A is Fredholm in some properly
chosen weighted spaces (see [2], [3], [4], [5], [6]). However, the case of a ̸= 0 is sig-
nificantly different and the approach developed in these articles cannot be applied.
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Fredholm structures, topological invariants and their applications were discussed
in [11]. Front propagation equations with anomalous diffusion were studied largely
in recent years (see e.g. [23], [24]). The article [15] is devoted to the establishing
of the imbedding theorems and the studies of the spectrum of a certain pseudodif-
ferential operator. The form boundedness criterion for the relativistic Schrödinger
operator was established in [16]. A new type of integral equations related to the
co-area formula was considered in [17].

We set Km(x) = εmHm(x), where εm ≥ 0, such that

(1.4) ε := max1≤m≤Nεm, s := max1≤m≤Nsm

with 3
2 − d

4 < s < 1 and assume the following.

Assumption 1.1. Let 1 ≤ m ≤ N and 3
2 − d

4 < sm < 1, where d = 4, 5. Let

fm(x) : Rd → R be nontrivial for a certain m. Let

fm(x) ∈ L1(Rd), (−∆)
3
2
−smfm(x) ∈ L2(Rd).

We assume also that Hm(x) : Rd → R, such that

Hm(x) ∈ L1(Rd), (−∆)
3
2
−smHm(x) ∈ L2(Rd).

Furthermore,

H2 :=
N∑

m=1

∥Hm(x)∥2L1(Rd) > 0

and

Q2 :=
N∑

m=1

∥(−∆)
3
2
−smHm(x)∥2L2(Rd) > 0.

Let us choose here the space dimensions d = 4, 5, which is related to the solvability
conditions for the linear Poisson type equation (5.1) stated in Lemma 4.1 below. For
the applications, the space dimensions are not limited to d = 4, 5, since the space
variable here corresponds to the cell genotype but not to the usual physical space.
In d = 1 our problem was treated in [31] with all 0 < sm = s < 1

4 based on the
solvability conditions for the analog of (5.1) on the real line. In two dimensions our
system was considered in [33] with 0 < sm < 1

2 , 1 ≤ m ≤ N . In d = 3 our problem

was studied in [30] with all 1
4 < sm = s < 3

4 . As distinct from the situations in

the lower dimensions d = 1, 2, in Rd, d = 3, 4, 5 we are able to apply the Sobolev
inequality for the fractional negative Laplacian (see Lemma 2.2 of [12], also [13]),
namely

(1.5) ∥fm(x)∥
L

2d
d−6+4sm (Rd)

≤ csob∥(−∆)
3
2
−smfm(x)∥L2(Rd),

3

2
− d

4
< sm < 1

with d = 4, 5 and 1 ≤ m ≤ N . By means of the Assumption 1.1 above along with
the standard interpolation argument, we obtain that

(1.6) fm(x) ∈ L2(Rd), d = 4, 5, 1 ≤ m ≤ N



360 VITALI VOUGALTER

as well. We use the Sobolev spaces for the technical purposes with 0 < s ≤ 1,
namely

H2s(Rd) := {ϕ(x) : Rd → R | ϕ(x) ∈ L2(Rd), (−∆)sϕ ∈ L2(Rd)}, d = 4, 5

equipped with the norm

(1.7) ∥ϕ∥2H2s(Rd) := ∥ϕ∥2L2(Rd) + ∥(−∆)sϕ∥2L2(Rd).

For a vector vector function

u(x) = (u1(x), u2(x), ..., uN (x))T ,

throughout the work we will use the norm

(1.8) ∥u∥2H3(Rd,RN ) := ∥u∥2L2(Rd,RN ) +

N∑
m=1

∥(−∆)
3
2um∥2L2(Rd),

where d = 4, 5 and

∥u∥2L2(Rd,RN ) :=

N∑
m=1

∥um∥2L2(Rd).

Let us recall the Sobolev embedding in Rd, d = 4, 5, namely

(1.9) ∥ϕ∥L∞(Rd) ≤ ce∥ϕ∥H3(Rd),

where ce > 0 is the constant of the embedding. When all the nonnegative parameters
εm vanish, we obtain the linear Poisson type equations

(1.10) (−∆)smum(x) = fm(x), 1 ≤ m ≤ N.

By means of Lemma 4.1 below under the given conditions each problem (1.10)
possesses a unique solution

u0,m(x) ∈ H2sm(Rd),
3

2
− d

4
< sm < 1, 1 ≤ m ≤ N,

and no orthogonality relations for the right side of (1.10) are necessary here. Clearly,

(−∆)
3
2u0,m(x) = (−∆)

3
2
−smfm(x) ∈ L2(Rd), 1 ≤ m ≤ N

due to Assumption 1.1. We obtain that each linear equation (1.10) admits a unique
solution u0,m(x) ∈ H3(Rd). Thus

u0(x) := (u0,1(x), u0,2(x), ..., u0,N (x))T ∈ H3(Rd,RN ).

Let us look for the resulting solution of nonlinear system of equations (1.2) as

(1.11) u(x) = u0(x) + up(x)

with
up(x) := (up,1(x), up,2(x), ..., up,N (x))T .

Apparently, we easily derive the perturbative system of equations

(1.12) (−∆)smup,m(x) = εm

∫
Rd

Hm(x− y)gm(u0(y) + up(y))dy,

where

1 ≤ m ≤ N,
3

2
− d

4
< sm < 1
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and introduce a closed ball in our Sobolev space

(1.13) Bρ := {u(x) ∈ H3(Rd,RN ) | ∥u∥H3(Rd,RN ) ≤ ρ}, 0 < ρ ≤ 1.

Let us look for the solution of system (1.12) as the fixed point of the auxiliary
nonlinear problem

(1.14) (−∆)smum(x) = εm

∫
Rd

Hm(x− y)gm(u0(y) + v(y))dy, 1 ≤ m ≤ N,

with 3
2 − d

4 < sm < 1 in ball (1.13). For a given vector function v(y) this is a system
of equations with respect to u(x). The left side of (1.14) contains the operators
which do not satisfy the Fredholm property

(1.15) (−∆)sm : H2sm(Rd) → L2(Rd).

The essential spectrum of (1.15) fills the nonnegative semi-axis [0,+∞). Therefore,
such operator does not have a bounded inverse. The similar situation appeared in
works [27] and [28] but as distinct from the present case, the problems studied there
required orthogonality conditions. The fixed point technique was used in [25] to es-
timate the perturbation to the standing solitary wave of the Nonlinear Schrödinger
(NLS) equation when either the external potential or the nonlinear term in the
NLS were perturbed but the Schrödinger operator involved in the nonlinear equa-
tion there had the Fredholm property (see Assumption 1 of [25], also [8]). Let us
introduce the closed ball in the space of N dimensions as

(1.16) I := {z ∈ RN | |z| ≤ ce∥u0∥H3(Rd,RN ) + ce}, d = 4, 5

and the closed ball DM in the space of C2(I,RN ) vector functions given by

(1.17) {g(z) := (g1(z), g2(z), ..., gN (z)) ∈ C2(I,RN ) | ∥g∥C2(I,RN ) ≤ M},

with M > 0. Here the norms

(1.18) ∥g∥C2(I,RN ) :=

N∑
m=1

∥gm∥C2(I),

(1.19) ∥gm∥C2(I) := ∥gm∥C(I) +
N∑

n=1

∥∥∥∂gm
∂zn

∥∥∥
C(I)

+
N∑

n,l=1

∥∥∥ ∂2gm
∂zn∂zl

∥∥∥
C(I)

,

where ∥gm∥C(I) := maxz∈I |gm(z)|. We make the following technical assumption on
the nonlinear part of system (1.2).

Assumption 1.2. Let 1 ≤ m ≤ N . Assume that gm(z) : RN → R, such that
gm(0) = 0 and ∇gm(0) = 0. It is also assumed that g(z) ∈ DM and it does not
vanish identically in the ball I.

The technical Assumptions 1.1 and 1.2 above are used in the proofs of our main
theorems. It is not clear at the moment if there is a more efficient method of
analyzing our system which would allow us to weaken such assumptions.

We introduce the operator Tg, such that u = Tgv, where u is a solution of system
(1.14). Our first main proposition is as follows.



362 VITALI VOUGALTER

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Then system (1.14) defines the
map Tg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤ ρ

M(∥u0∥H3(Rd,RN ) + 1)2
×

(1.20) ×

[
H2(∥u0∥H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|
4S

) 4S
d

+Q2

]− 1
2

with ε, s and S defined in (1.4) and (3.6). The unique fixed point up(x) of this map
Tg is the only solution of problem (1.12) in Bρ.

Apparently, the resulting solution u(x) of system (1.2) given by (1.11) will not
be equal to zero identically because the influx/efflux terms fm(x) are nontrivial for
a certain 1 ≤ m ≤ N and all gm(0) vanish as assumed. We will make use of the
following elementary lemma.

Lemma 1.4. Let R ∈ (0,+∞) and d = 4, 5. Consider the function

φ(R) := αRd−4s +
1

R4s
,

3

2
− d

4
< s < 1, α > 0.

It achieves the minimal value at R∗ :=

(
4s

α(d−4s)

) 1
d

, which is given by

φ(R∗) =

(
α

4s

) 4s
d d

(d− 4s)
d−4s

d

.

Our second main statement is devoted to the continuity of the cumulative solution
of system (1.2) given by formula (1.11) with respect to the nonlinear vector function
g. We will use the following positive technical expression

σ := M(∥u0∥H3(Rd,RN ) + 1)×

(1.21) ×

{
H2(∥u0∥H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|
4S

) 4S
d

+Q2

} 1
2

.

Theorem 1.5. Let j = 1, 2, the assumptions of Theorem 1.3 including inequality
(1.20) hold, so that up,j(x) is the unique fixed point of the map Tgj : Bρ → Bρ,
which is a strict contraction for all ε which satisfy (1.20) and the resulting solution
of system (1.2) with g(z) = gj(z) is

(1.22) uj(x) := u0(x) + up,j(x).

Then for all the values of ε satisfying inequality (1.20) the estimate

(1.23) ∥u1 − u2∥H3(Rd,RN ) ≤
εσ

M(1− εσ)
(∥u0∥H3(Rd,RN ) + 1)∥g1 − g2∥C2(I,RN )

is valid.

We turn our attention to the proof of our first main proposition.
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3. The existence of the perturbed solution

Proof of Theorem 1.3. We choose arbitrarily a vector function v(x) ∈ Bρ and denote
the terms involved in the integral expressions in the right side of system (1.14) as

Gm(x) := gm(u0(x) + v(x)), 1 ≤ m ≤ N.

Let us use the standard Fourier transform throughout the article, namely

(3.1) ϕ̂(p) :=
1

(2π)
d
2

∫
Rd

ϕ(x)e−ipxdx, d = 4, 5.

Evidently, we have the estimate from above

(3.2) ∥ϕ̂(p)∥L∞(Rd) ≤
1

(2π)
d
2

∥ϕ(x)∥L1(Rd).

Let us apply (3.1) to both sides of system (1.14). This gives us

ûm(p) = εm(2π)
d
2
Ĥm(p)Ĝm(p)

|p|2sm
, 1 ≤ m ≤ N, d = 4, 5.

Thus we have the expression for the norm as

(3.3) ∥um∥2L2(Rd) = (2π)dε2m

∫
Rd

|Ĥm(p)|2|Ĝm(p)|2

|p|4sm
dp, 1 ≤ m ≤ N

with d = 4, 5. As distinct from articles [27] and [28] with the standard Laplace
operator in the diffusion term, here we do not try to control the norms∥∥∥∥∥Ĥm(p)

|p|2sm

∥∥∥∥∥
L∞(Rd)

, 1 ≤ m ≤ N.

Instead, we estimate the right side of (3.3) using the analog of inequality (3.2)
applied to functions Hm and Gm with R ∈ (0,+∞) as

(2π)dε2m

[ ∫
|p|≤R

|Ĥm(p)|2|Ĝm(p)|2

|p|4sm
dp+

∫
|p|>R

|Ĥm(p)|2|Ĝm(p)|2

|p|4sm
dp
]
≤

(3.4) ≤ ε2m∥Hm∥2L1(Rd)

{
|Sd|
(2π)d

∥Gm(x)∥2L1(Rd)

Rd−4sm

d− 4sm
+

∥Gm(x)∥2
L2(Rd)

R4sm

}
.

Here and throughout the article Sd denotes the unit sphere in our d dimensional
space centered at the origin and |Sd| its Lebesgue measure. By virtue of norm
definition (1.8) along with the triangle inequality and using the fact that v(x) ∈ Bρ,
we easily obtain

∥u0 + v∥L2(Rd,RN ) ≤ ∥u0∥H3(Rd,RN ) + 1, d = 4, 5.

Sobolev embedding (1.9) implies that

|u0 + v| ≤ ce(∥u0∥H3(Rd,RN ) + 1).

Let the dot denote the scalar product of two vectors in RN . Evidently,

Gm(x) =

∫ 1

0
∇gm(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ m ≤ N.
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Using the ball I defined in (1.16) we easily derive

|Gm(x)| ≤ supz∈I |∇gm(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|.
Hence,

∥Gm(x)∥L2(Rd) ≤ M∥u0 + v∥L2(Rd,RN ) ≤ M(∥u0∥H3(Rd,RN ) + 1).

Apparently, for t ∈ [0, 1] and 1 ≤ m, j ≤ N , we can express

∂gm
∂zj

(t(u0(x) + v(x))) =

∫ t

0
∇∂gm

∂zj
(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This yields ∣∣∣∂gm
∂zj

(t(u0(x) + v(x)))
∣∣∣ ≤ supz∈I

∣∣∣∇∂gm
∂zj

∣∣∣|u0(x) + v(x)| ≤

≤
N∑

n=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0(x) + v(x)|.

Thus,
|Gm(x)| ≤ |u0(x) + v(x)|×

×
N∑

n,j=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0,j(x) + vj(x)| ≤ M |u0(x) + v(x)|2,

such that

(3.5) ∥Gm(x)∥L1(Rd) ≤ M∥u0 + v∥2L2(Rd,RN ) ≤ M(∥u0∥H3(Rd,RN ) + 1)2.

This enables us to obtain the upper bound for the right side of (3.4) as

ε2mM2∥Hm∥2L1(Rd)(∥u0∥H3(Rd,RN ) + 1)2×

×

{
|Sd|(∥u0∥H3(Rd,RN ) + 1)2Rd−4sm

(2π)d(d− 4sm)
+

1

R4sm

}
with R ∈ (0,+∞). Lemma 1.4 gives us the minimal value of the expression above.
Therefore,

∥um∥2L2(Rd) ≤ εm
2M2∥Hm∥2L1(Rd)×

×(∥u0∥H3(Rd,RN ) + 1)2+
8sm
d

(
|Sd|
4sm

) 4sm
d d

(d− 4sm)(2π)4sm
.

Let us define

(3.6)

(
|Sd|
4S

) 4S
d 1

(2π)4S
:= max1≤m≤N

(
|Sd|
4sm

) 4sm
d 1

(2π)4sm
,

where 3
2 − d

4 < S < 1. Thus

∥u∥2L2(Rd,RN ) ≤ ε2M2H2×

(3.7) ×(∥u0∥H3(Rd,RN ) + 1)2+
8s
d

d

d− 4s

(
|Sd|
4S

) 4S
d 1

(2π)4S
.
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Clearly, (1.14) yields

(−∆)
3
2um(x) = εm(−∆)

3
2
−sm

∫
Rd

Hm(x− y)Gm(y)dy, 1 ≤ m ≤ N,

where 3
2 − d

4 < sm < 1. By means of the analog of upper bound (3.2) applied to
function Gm along with (3.5) we arrive at

∥(−∆)
3
2um∥2L2(Rd) ≤ ε2m∥Gm∥2L1(Rd)∥(−∆)

3
2
−smHm∥2L2(Rd) ≤

≤ ε2M2(∥u0∥H3(Rd,RN ) + 1)4∥(−∆)
3
2
−smHm∥2L2(Rd).

Hence,

(3.8)

N∑
m=1

∥(−∆)
3
2um∥2L2(Rd) ≤ ε2M2(∥u0∥H3(Rd,RN ) + 1)4Q2.

Therefore, by virtue of the definition of the norm (1.8) along with inequalities (3.7)
and (3.8) we derive the estimate from above for the norm ∥u∥H3(Rd,RN ) as

εM(∥u0∥H3(Rd,RN ) + 1)2×

(3.9) ×

[
H2(∥u0∥H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|
4S

) 4S
d

+Q2

] 1
2

≤ ρ

for all values of ε which satisfy (1.20), such that u(x) ∈ Bρ as well. Suppose for a
certain v(x) ∈ Bρ there exist two solutions u1,2(x) ∈ Bρ of system (1.14). Clearly,

their difference w(x) := u1(x)− u2(x) ∈ L2(Rd,RN ) satisfies

(−∆)smwm(x) = 0,
3

2
− d

4
< sm < 1, 1 ≤ m ≤ N.

Because each operator (−∆)sm considered on the whole Rd does not possess any
nontrivial square integrable zero modes, w(x) vanishes identically in Rd. Therefore,
problem (1.14) defines a map Tg : Bρ → Bρ for all ε satisfying inequality (1.20).

Our goal is to demonstrate that this map is a strict contraction. Let us choose
arbitrarily v1,2(x) ∈ Bρ. According to the argument above u1,2 := Tgv1,2 ∈ Bρ as
well if ε satisfies (1.20). Evidently, by means of (1.14) we obtain for 1 ≤ m ≤ N

(3.10) (−∆)smu1,m(x) = εm

∫
Rd

Hm(x− y)gm(u0(y) + v1(y))dy,

(3.11) (−∆)smu2,m(x) = εm

∫
Rd

Hm(x− y)gm(u0(y) + v2(y))dy

with all 3
2 − d

4 < sm < 1. We introduce

G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)), 1 ≤ m ≤ N

and apply the standard Fourier transform (3.1) to both sides of systems (3.10) and
(3.11). This yields

û1,m(p) = εm(2π)
d
2
Ĥm(p)Ĝ1,m(p)

|p|2sm
, û2,m(p) = εm(2π)

d
2
Ĥm(p)Ĝ2,m(p)

|p|2sm
.
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Apparently,

(3.12) ∥u1,m − u2,m∥2L2(Rd) = ε2m(2π)d
∫
Rd

|Ĥm(p)|2|Ĝ1,m(p)− Ĝ2,m(p)|2

|p|4sm
dp.

Obviously, the right side of (3.12) can be estimated from above using inequality
(3.2) as

ε2m(2π)d
[∫

|p|≤R

|Ĥm(p)|2|Ĝ1,m(p)− Ĝ2,m(p)|2

|p|4sm
dp+

+

∫
|p|>R

|Ĥm(p)|2|Ĝ1,m(p)− Ĝ2,m(p)|2

|p|4sm
dp

]
≤ ε2∥Hm∥2L1(Rd)×

×

{
∥G1,m(x)−G2,m(x)∥2

L1(Rd)

(2π)d
|Sd|Rd−4sm

d− 4sm
+

∥G1,m(x)−G2,m(x)∥2
L2(Rd)

R4sm

}
with R ∈ (0,+∞). Evidently, we have the identity for 1 ≤ m ≤ N

G1,m(x)−G2,m(x) =

∫ 1

0
∇gm(u0(x) + tv1(x) + (1− t)v2(x)).(v1(x)− v2(x))dt.

Apparently, for t ∈ [0, 1]

∥v2(x) + t(v1(x)− v2(x))∥H3(Rd,RN ) ≤ t∥v1(x)∥H3(Rd,RN )+

+(1− t)∥v2(x)∥H3(Rd,RN ) ≤ ρ,

which implies that v2(x) + t(v1(x)− v2(x)) ∈ Bρ. Hence,

|G1,m(x)−G2,m(x)| ≤ supz∈I |∇gm(z)||v1(x)− v2(x)| ≤ M |v1(x)− v2(x)|,
so that

∥G1,m(x)−G2,m(x)∥L2(Rd) ≤ M∥v1 − v2∥L2(Rd,RN ) ≤ M∥v1 − v2∥H3(Rd,RN ).

Clearly, we can express ∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x)) for 1 ≤ m, j ≤ N as∫ 1

0
∇∂gm

∂zj
(τ [u0(x) + tv1(x) + (1− t)v2(x)]).[u0(x) + tv1(x) + (1− t)v2(x)]dτ.

Therefore, for t ∈ [0, 1]∣∣∣∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))
∣∣∣ ≤

≤
N∑

n=1

∥∥∥∥∥ ∂2gm
∂zn∂zj

∥∥∥∥∥
C(I)

(|u0(x)|+ t|v1(x)|+ (1− t)|v2(x)|).

Hence, we obtain the upper bound for G1,m(x)−G2,m(x) in the absolute value given
by

M |v1(x)− v2(x)|
(
|u0(x)|+

1

2
|v1(x)|+

1

2
|v2(x)|

)
.

By means of the Schwarz inequality we derive the estimate from above for the norm
∥G1,m(x)−G2,m(x)∥L1(Rd) as

M∥v1 − v2∥L2(Rd,RN )

(
∥u0∥L2(Rd,RN ) +

1

2
∥v1∥L2(Rd,RN ) +

1

2
∥v2∥L2(Rd,RN )

)
≤
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(3.13) ≤ M∥v1 − v2∥H3(Rd,RN )(∥u0∥H3(Rd,RN ) + 1).

Therefore, we arrive at the upper bound for the norm

∥u1,m(x)− u2,m(x)∥2L2(Rd)

given by

ε2∥Hm∥2L1(Rd)M
2∥v1 − v2∥2H3(Rd,RN )×

×
{(∥u0∥H3(Rd,RN ) + 1)2|Sd|Rd−4sm

(2π)d(d− 4sm)
+

1

R4sm

}
.

We minimize the expression above over R ∈ (0,+∞) by means of our Lemma 1.4,
such that

∥u1,m(x)− u2,m(x)∥2L2(Rd) ≤ ε2∥Hm∥2L1(Rd)M
2∥v1 − v2∥2H3(Rd,RN )×

×(∥u0∥H3(Rd,RN ) + 1)
8sm
d

(
|Sd|
4sm

) 4sm
d d

(2π)4sm(d− 4sm)
.

Thus,

∥u1(x)− u2(x)∥2L2(Rd,RN ) ≤ ε2H2M2∥v1 − v2∥2H3(Rd,RN )×

(3.14) ×(∥u0∥H3(Rd,RN ) + 1)
8s
d

d

(2π)4S(d− 4s)

(
|Sd|
4S

) 4S
d

.

By means of formulas (3.10) and (3.11) with 1 ≤ m ≤ N we have

(−∆)
3
2 (u1,m(x)− u2,m(x)) =

= εm(−∆)
3
2
−sm

∫
Rd

Hm(x− y)[G1,m(y)−G2,m(y)]dy.

Upper bounds (3.2) and (3.13) give us ∥(−∆)
3
2 (u1,m(x)− u2,m(x))∥2

L2(Rd)
≤

≤ ε2∥G1,m −G2,m∥2L1(Rd)∥(−∆)
3
2
−smHm∥2L2(Rd) ≤

≤ ε2M2∥v1 − v2∥2H3(Rd,RN )(∥u0∥H3(Rd,RN ) + 1)2∥(−∆)
3
2
−smHm∥2L2(Rd).

Hence,
∑N

m=1 ∥(−∆)
3
2 (u1,m(x)− u2,m(x))∥2

L2(Rd)
≤

(3.15) ≤ ε2M2∥v1 − v2∥2H3(Rd,RN )(∥u0∥H3(Rd,RN ) + 1)2Q2.

Inequalities (3.14) and (3.15) yield that the norm ∥u1 − u2∥H3(Rd,RN ) can be esti-
mated from above by the expression

εM(∥u0∥H3(Rd,RN ) + 1)

{
H2(∥u0∥H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|
4S

) 4S
d

+

(3.16) +Q2

} 1
2

∥v1 − v2∥H3(Rd,RN ).
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It can be easily verified that for all values of ε satisfying (1.20) the constant in
the right side of (3.16) is less than one, such that the map Tg : Bρ → Bρ defined
by system (1.14) is a strict contraction. Its unique fixed point up(x) is the only

solution of problem (1.12) in the ball Bρ. The cumulative u(x) ∈ H3(Rd,RN ) given
by (1.11) is a solution of system (1.2). Evidently, by means of (3.9) up(x) tends to

zero in the H3(Rd,RN ) norm as ε → 0. □

We proceed to the proof of the second main statement of the article.

4. The continuity of the resulting solution

Proof of Theorem 1.5. Obviously, for all the values of ε satisfying (1.20)

up,1 = Tg1up,1, up,2 = Tg2up,2,

so that

up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Hence, ∥up,1 − up,2∥H3(Rd,RN ) ≤

≤ ∥Tg1up,1 − Tg1up,2∥H3(Rd,RN ) + ∥Tg1up,2 − Tg2up,2∥H3(Rd,RN ).

Upper bound (3.16) yields

∥Tg1up,1 − Tg1up,2∥H3(Rd,RN ) ≤ εσ∥up,1 − up,2∥H3(Rd,RN )

with σ defined in (1.21). We have εσ < 1 since the map Tg1 : Bρ → Bρ is a strict
contraction under our assumptions. Therefore,

(4.1) (1− εσ)∥up,1 − up,2∥H3(Rd,RN ) ≤ ∥Tg1up,2 − Tg2up,2∥H3(Rd,RN ).

Apparently, for the fixed point Tg2up,2 = up,2. Let us denote ξ(x) := Tg1up,2. For
1 ≤ m ≤ N , we arrive at

(4.2) (−∆)smξm(x) = εm

∫
Rd

Hm(x− y)g1,m(u0(y) + up,2(y))dy,

(4.3) (−∆)smup,2,m(x) = εm

∫
Rd

Hm(x− y)g2,m(u0(y) + up,2(y))dy,

with all 3
2 − d

4 < sm < 1. Let us introduce

G1,2,m(x) := g1,m(u0(x) + up,2(x)), G2,2,m(x) := g2,m(u0(x) + up,2(x)).

We apply the standard Fourier transform (3.1) to both sides of formulas (4.2) and
(4.3). This yields

ξ̂m(p) = εm(2π)
d
2
Ĥm(p)Ĝ1,2,m(p)

|p|2sm
, ûp,2,m(p) = εm(2π)

d
2
Ĥm(p)Ĝ2,2,m(p)

|p|2sm
,

such that ∥ξm(x)− up,2,m(x)∥2
L2(Rd)

=

(4.4) = ε2m(2π)d
∫
Rd

|Ĥm(p)|2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|2

|p|4sm
dp.
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Let us obtain the upper bound on the right side of (4.4) using (3.2) as

ε2m(2π)d
[∫

|p|≤R

|Ĥm(p)|2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|2

|p|4sm
dp+

+

∫
|p|>R

|Ĥm(p)|2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|2

|p|4sm
dp

]
≤ ε2∥Hm∥2L1(Rd)×

×

{
|Sd|
(2π)d

∥G1,2,m −G2,2,m∥2
L1(Rd)

Rd−4sm

d− 4sm
+

∥G1,2,m −G2,2,m∥2
L2(Rd)

R4sm

}
with R ∈ (0,+∞). Obviously, we can represent G1,2,m(x)−G2,2,m(x) =

=

∫ 1

0
∇[g1,m − g2,m](t(u0(x) + up,2(x))).(u0(x) + up,2(x))dt,

such that

|G1,2,m(x)−G2,2,m(x)| ≤ ∥g1,m − g2,m∥C2(I)|u0(x) + up,2(x)|.
This implies

∥G1,2,m −G2,2,m∥L2(Rd) ≤ ∥g1,m − g2,m∥C2(I)∥u0 + up,2∥L2(Rd,RN ) ≤

≤ ∥g1,m − g2,m∥C2(I)(∥u0∥H3(Rd,RN ) + 1).

Let us make use of another representation formula with 1 ≤ j ≤ N and t ∈ [0, 1],
namely

∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x))) =

=

∫ t

0
∇
[ ∂

∂zj
(g1,m − g2,m)

]
(τ(u0(x) + up,2(x))).(u0(x) + up,2(x))dτ.

Therefore, ∣∣∣ ∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x)))

∣∣∣ ≤
≤

N∑
n=1

∥∥∥∥∥∂2(g1,m − g2,m)

∂zn∂zj

∥∥∥∥∥
C(I)

|u0(x) + up,2(x)|.

Hence,

|G1,2,m(x)−G2,2,m(x)| ≤ ∥g1,m − g2,m∥C2(I)|u0(x) + up,2(x)|2,
so that

∥G1,2,m −G2,2,m∥L1(Rd) ≤ ∥g1,m − g2,m∥C2(I)∥u0 + up,2∥2L2(Rd,RN ) ≤

(4.5) ≤ ∥g1,m − g2,m∥C2(I)(∥u0∥H3(Rd,RN ) + 1)2.

This enables us to derive the upper bound for the norm ∥ξm − up,2,m∥2
L2(Rd)

as

ε2∥Hm∥2
L1(Rd)

(∥u0∥H3(Rd,RN ) + 1)2×

×∥g1,m − g2,m∥2C2(I)

[
(∥u0∥H3(Rd,RN ) + 1)2

|Sd|Rd−4sm

(2π)d(d− 4sm)
+

1

R4sm

]
.
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Let us minimize this expression over R ∈ (0,+∞) using Lemma 1.4. We arrive at
the estimate from above ∥ξm(x)− up,2,m(x)∥2

L2(Rd)
≤

≤ ε2∥Hm∥2L1(Rd)(∥u0∥H3(Rd,RN ) + 1)2+
8sm
d

(
|Sd|
4sm

) 4sm
d d∥g1,m − g2,m∥2C2(I)

(2π)4sm(d− 4sm)
.

Therefore, ∥ξ(x)− up,2(x)∥2L2(Rd,RN )
≤

≤ ε2H2(∥u0∥H3(Rd,RN ) + 1)2+
8s
d

d∥g1 − g2∥2C2(I,RN )

(d− 4s)(2π)4S

(
|Sd|
4S

) 4S
d

.

Formulas (4.2) and (4.3) with 1 ≤ m ≤ N yield

(−∆)
3
2 ξm(x) = εm(−∆)

3
2
−sm

∫
Rd

Hm(x− y)G1,2,m(y)dy,

(−∆)
3
2up,2,m(x) = εm(−∆)

3
2
−sm

∫
Rd

Hm(x− y)G2,2,m(y)dy.

By means of (3.2) and (4.5) the norm ∥(−∆)
3
2 (ξm(x) − up,2,m(x))∥2

L2(Rd)
can be

estimated from above by

ε2∥G1,2,m −G2,2,m∥2L1(Rd)∥(−∆)
3
2
−smHm∥2L2(Rd) ≤

≤ ε2∥g1,m − g2,m∥2C2(I)(∥u0∥H3(Rd,RN ) + 1)4∥(−∆)
3
2
−smHm∥2L2(Rd).

Thus,
∑N

m=1 ∥(−∆)
3
2 (ξm(x)− up,2,m(x))∥2

L2(Rd)
≤

≤ ε2∥g1 − g2∥2C2(I,RN )(∥u0∥H3(Rd,RN ) + 1)4Q2.

Hence, we arrive at ∥ξ(x)− up,2(x)∥H3(Rd,RN ) ≤ ε∥g1 − g2∥C2(I,RN )×

×(∥u0∥H3(Rd,RN ) + 1)2

[
H2(∥u0∥H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|
4S

) 4S
d

+Q2

] 1
2

.

By virtue of (4.1), the norm ∥up,1 − up,2∥H3(Rd,RN ) can be bounded from above by

ε

1− εσ
(∥u0∥H3(Rd,RN ) + 1)2×

×

[
H2(∥u0∥H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|
4S

) 4S
d

+Q2

] 1
2

∥g1 − g2∥C2(I,RN ).

We use formulas (1.21) and (1.22) to complete the proof of our theorem. □
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5. Auxiliary results

Let us formulate the solvability conditions for the linear Poisson type equation
with a square integrable right side

(5.1) (−∆)su = f(x), x ∈ Rd, d = 4, 5, 0 < s < 1.

This proposition was established in the one of the previous articles (see the part d)
of Theorem 1.1 of [32]) by applying the standard Fourier transform (3.1) to both
sides of problem (5.1).

Lemma 5.1. Let 0 < s < 1, f(x) : Rd → R, d = 4, 5 and f(x) ∈ L1(Rd)∩L2(Rd).
Then problem (5.1) possesses a unique solution u(x) ∈ H2s(Rd).

Note that in the lemma above we establish the solvability of equation (5.1) in
H2s(Rd), d = 4, 5 for all values of the power of the negative Laplacian 0 < s < 1
and no orthogonality conditions are imposed on the right side f(x).
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de Dirichlet, Comm. Partial Differential Equations 26 (2001), 315–334.
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holm, C. R. Math. Acad. Sci. Paris 340 (2005), 659–664.

[10] A. Ducrot, M. Marion and V. Volpert, Reaction-diffusion problems with non-Fredholm opera-
tors, Adv. Differential Equations 13 (2008), 1151–1192.

[11] M. Efendiev, Fredholm structures, topological invariants and applications, AIMS Series on Dif-
ferential Equations & Dynamical Systems, vol. 3, American Institute of Mathematical Sciences
(AIMS), Springfield, MO, 2009.

[12] H. Hajaiej, X. Yu and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under
Lorentz norms, J. Math. Anal. Appl. 396 (2012), 569–577.

[13] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of
Math. (2) 118 (1983), 349–374.

[14] P. Manandhar, J. Jang, G.C. Schatz, M. A. Ratner and S. Hong, Anomalous surface diffusion
in nanoscale direct deposition processes, Phys. Rev. Lett. 90 (2003), 4043–4052.

[15] V.G. Maz’ja and M. Otelbaev, Imbedding theorems and the spectrum of a certain pseudodif-
ferential operator, (Russian) Sibirsk. Mat. Z. 18 (1977), 1073–1087.

[16] V. G. Maz’ya and I. E. Verbitsky, The form boundedness criterion for the relativistic
Schrödinger operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 317–339.



372 VITALI VOUGALTER

[17] V. Maz’ya, A new type of integral equations related to the co-area formula (reduction of di-
mension in multi-dimensional integral equations), J. Funct. Anal. 245 (2007), 493–504.

[18] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional
dynamics approach, Phys. Rep. 339 (2000), 1–77.

[19] J. Sancho, A. Lacasta, K. Lindenberg, I. Sokolov and A. Romero, Diffusion on a solid surface:
anomalous is normal, Phys. Rev. Lett. 92 (2004), 250601.

[20] H. Scher and E. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev.
B 12 (1975), 2455–2477.

[21] T. Solomon, E. Weeks and H. Swinney, Observation of anomalous diffusion and Lévy flights
in a two- dimensional rotating flow, Phys. Rev. Lett. 71 (1993), 3975–3978.

[22] V. Volpert, Elliptic partial differential equations. Volume 1: Fredholm theory of elliptic prob-
lems in unbounded domains, Monographs in Mathematics, vol. 101, Birkhäuser/Springer Basel
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Trends Math. Birkhäuser / Springer, Cham, 2017, pp. 161–179.

[32] V. Vougalter and V. Volpert, On the solvability in the sense of sequences for some non-
Fredholm operators related to the anomalous diffusion. Analysis of pseudo-differential opera-
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