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optimality condition for convex set functions. In Section 4, we discuss about our
results and study applications to uncertain problems.

2. Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Given nonempty sets A, B ⊂ Rn, and Γ ⊂ R, we define A+B
and ΓA as follows:

A+B = {x+ y ∈ Rn | x ∈ A, y ∈ B},
ΓA = {γx ∈ Rn | γ ∈ Γ, x ∈ A}.

We define A+ ∅ = Γ∅ = ∅A = ∅. A set A is said to be convex if for each x, y ∈ A,
and α ∈ [0, 1], (1 − α)x + αy ∈ A. Let A0 be the following family of nonempty
convex sets:

A0 = {A ⊂ Rn | A : nonempty convex}.
Clearly, A0 is closed under addition and multiplication by positive scalars. A
subfamily A ⊂ A0 is said to be convex if for each A, B ∈ A, and α ∈ [0, 1],
(1 − α)A + αB ∈ A. Let C ⊂ A0 be the family of all nonempty compact convex
subsets of Rn, that is,

C = {A ⊂ Rn | A : nonempty compact convex}.

Let A, B ∈ C. We define their Hausdorff distance dH(A,B) by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
.

Let ≡ be a binary relation on C2 defined by

(A,B) ≡ (C,D) if and only if A+D = B + C,

then ≡ is an equivalence relation on C2. Denote the equivalence class of (A,B) ∈ C2

as [A,B] = {(C,D) ∈ C2 | (A,B) ≡ (C,D)}, and the quotient space of C2 by ≡ as
(C2/ ≡) = {[A,B] | (A,B) ∈ C2}. On the quotient space, we define addition, scalar
multiplication, and norm as follows:

[A,B] + [C,D] = [A+ C,B +D],

λ · [A,B] =

{
[λA, λB] if λ ≥ 0,
[(−λ)B, (−λ)A] if λ < 0.

∥[A,B]∥ = dH(A,B),

Then, C2/ ≡ is a normed space. Additionally, by the following function ψ : C →
C2/ ≡;

ψ(A) = [A, {0}],
C can be regarded as a subset of the embedding space C2/ ≡. For more detail,
see [10–12, 27, 40].

Let F be a set function from A0 to R = [−∞,∞]. We denote the domain of F
by domF , that is, domF = {A ∈ A0 | F (A) < +∞}. F is said to be proper if for
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all A ∈ A0, F (A) > −∞ and domF is nonempty. A proper set function F on A0 is
said to be convex if for each A, B ∈ domF , and α ∈ [0, 1],

F ((1− α)A+ αB) ≤ (1− α)F (A) + αF (B).

F is said to be concave if −F is a convex set function. The epigraph of F is defined
as epiF = {(A,α) ∈ A0 × R | F (A) ≤ α}. In [40], we show that a proper set
function F is a convex set function if and only if epiF is convex. F is said to be
affine if F is a convex and concave set function. F is said to be linear if F is an
affine set function and F ({0}) = 0. We can check that F is linear if and only if for
each A, B ∈ domF , and λ ≥ 0,

(2.1) F (A+B) = F (A) + F (B), F (λA) = λF (A),

see Theorem 2.5 in [40]. A set function F is said to be lower semicontinuous (lsc) on
C in terms of the Hausdorff distance if for each {Bk} ⊂ C and B ∈ C with dH(Bk, B)
converges to 0,

lim inf
k→∞

F (Bk) ≥ F (B).

F is said to be continuous on C in terms of the Hausdorff distance if F and −F are
lsc in terms of the Hausdorff distance.

We show important examples of convex and linear set functions.

Example 2.1 ([40]). Let f be a real-valued convex function on Rn. Let

F0(A) = sup
x∈A

f(x),

then F0 is a convex set function.
Let v ∈ Rn, then the following set function V is linear: for each A ∈ A0,

V (A) = sup
x∈A

⟨v, x⟩ .

Hence,

{V : A0 → R | v ∈ Rn, V (A) = sup
x∈A

⟨v, x⟩} ⊊ {V : A0 → R | V : linear }.

The converse inclusion does not hold. Actually, let V0 be the following function: for
each closed convex set A ⊂ R,

V0(A) =

{
b− a A = [a, b], a, b ∈ R,
∞ otherwise.

Then V0 is a linear set function. However, there does not exist v ∈ R such that V0
is defined by v.

We define the following set FL as follows:

FL = {V : A0 → R ∪ {+∞}, linear}.

Let F be a proper set function on A0. Then, we define the Fenchel conjugate of F
as follows: F ∗ : FL → R,

F ∗(V ) = sup
A∈domF

{V (A)− F (A)}.
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We define the Fenchel biconjugate as follows: F ∗∗ : A0 → R,
F ∗∗(A) = sup

V ∈domF ∗
{V (A)− F ∗(V )}.

In [40], we show the following Fenchel duality theorem for convex set functions.

Theorem 2.2 ([40]). Let F and G be proper convex set functions from A0 to
R ∪ {+∞}. Assume that domF ∪ domG ⊂ C, domF ∩ domG is nonempty, and F
is continuous on C. Then

inf
A∈A0

{F (A) +G(A)} = max
V ∈FL

{−F ∗(V )−G∗(−V )}.

In convex analysis, the following theorems for the subdifferential play an impor-
tant role.

Theorem 2.3 ([4]). Let X be a Hausdorff locally convex space, X∗ the dual space
of X, f a convex function on X, x0 ∈ X, and ∂f(x0) = {v ∈ X∗ | ∀x ∈ X, f(x) ≥
f(x0) + ⟨v, x− x0⟩}. If f is finite and continuous at x0, then ∂f(x0) is nonempty.

Theorem 2.4 ([3]). Let X be a normed space, f and g proper convex functions
from X to R ∪ {+∞}. Assume that there exists x0 ∈ domf ∩ domg such that f is
continuous at x0. Then

∂(f + g)(x0) = ∂f(x0) + ∂g(x0).

3. Subdifferential and optimality conditions

In this section, we study a subdifferential and optimality conditions. We define a
subdifferential for set functions. We show optimality conditions in terms of convex
analysis on the embedding normed space C2/ ≡.

We define the subdifferential for a set function F at A0 ∈ A0 as follows:

∂F (A0) = {V ∈ FL | ∀A ∈ A0, F (A) ≥ F (A0) + V (A)− V (A0), V (A0) ∈ R}.
In the following theorem, we show some properties of ∂F (A0). The proofs are

easy and will be omitted.

Theorem 3.1. Let F be a proper set function on A0, A0 ∈ domF , and α > 0.
Then the following statements hold:

(i) ∂F (A0) is convex,
(ii) ∂(αF )(A0) = α∂F (A0),
(iii) A0 is a global minimizer of F over A0 if and only if 0 ∈ ∂F (A0).

Next, we investigate the nonemptyness of the subdifferential.

Theorem 3.2. Let F be a proper set function on A0 and A0 ∈ domF . If F is
continuous convex on C, and domF ⊂ C, then ∂F (A0) is nonempty.

Proof. Assume that F is continuous convex on C, and domF ⊂ C. We define the
following function F̄ on (C2/ ≡) as follows: for each [A, {0}] ∈ {[S, {0}] ∈ (C2/ ≡) |
S ∈ domF},

F̄ ([A, {0}]) = F (A),

and for each [A,B] /∈ {[S, {0}] ∈ (C2/ ≡) | S ∈ domF}, F̄ ([A,B]) = ∞. Since
A0 ∈ domF , F̄ ([A0, {0}]) is finite. By the similar way in the proof of Theorem 3.2
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in [40], we can show that epiF̄ is closed convex and epi(−F̄ ) is closed. Hence F̄ is
convex, and continuous at [A0, {0}]. By Theorem 2.3, ∂F̄ ([A0, {0}]) is nonempty.
Let v ∈ ∂F̄ ([A0, {0}]), and V a set function as follows: for each A ∈ C,

V (A) = v([A, {0}]),

and for each A ∈ A0 \ C, V (A) = ∞. For each A ∈ domF ,

F (A) = F̄ ([A, {0}])
≥ F̄ ([A0, {0}]) + v([A, {0}])− v([A0, {0}])
= F (A0) + V (A)− V (A0).

This shows that V ∈ ∂F (A0). □

In the following theorem, we show the subdifferential sum formula for convex set
functions in terms of convex analysis on the embedding normed space C2/ ≡.

Theorem 3.3. Let F and G be proper convex set functions from A0 to R∪{+∞},
and A0 ∈ domF ∩domG. Assume that domF ∪domG ⊂ C, and F is continuous on
C. Then,

∂(F +G)(A0) ⊃ ∂F (A0) + ∂G(A0).

Additionally, assume that V ∈ ∂(F + G)(A0) satisfies domV = C, and for each
{Ak}, {Bk} ⊂ C, A, B ∈ C,

(3.1) dH(Ak +B,Bk +A) → 0 =⇒ V (Ak)− V (Bk) → V (A)− V (B).

Then V ∈ ∂F (A0) + ∂G(A0).

Proof. Let V1 ∈ ∂F (A0) and V2 ∈ ∂G(A0). By the definition of the subdifferential,
for each A ∈ A0,

F (A) ≥ F (A0) + V1(A)− V1(A0),

G(A) ≥ G(A0) + V2(A)− V2(A0).

We can easily show that V1 + V2 ∈ ∂(F +G)(A0).
Conversely, let V ∈ ∂(F + G)(A0). We define F̄ and Ḡ by the similar way in

the proof of Theorem 3.2. Then, F̄ and Ḡ are proper convex functions, [A0, {0}] ∈
domF̄ ∩domḠ, and F̄ is continuous at [A0, {0}]. Let v be the following function on
C2/ ≡: for each [A,B] ∈ C2/ ≡,

v([A,B]) = V (A)− V (B).

Then, v is well-defined, real-valued and linear. Actually, if (A,B) ≡ (C,D), then
A+D = B + C. By Equation 2.1,

V (A) + V (D) = V (A+D) = V (B + C) = V (B) + V (C).

This shows that V (A) − V (B) = V (C) − V (D). Let [A,B], [C,D] ∈ C2/ ≡, and
λ > 0. Then,

v([A,B] + [C,D]) = v([A+ C,B +D]) = V (A+ C)− V (B +D)

= V (A) + V (C)− V (B)− V (D)

= v([A,B]) + V ([C,D]),



350 SATOSHI SUZUKI

v(λ[A,B]) = v([λA, λB])

= V (λA)− V (λB)

= λV (A)− λV (B)

= λv(λ[A,B]),

v(−λ[A,B]) = v([−λB,−λA])
= V (−λB)− V (−λA)
= −λV (B) + λV (A)

= −λv([A,B]).

This shows that v is linear. Next, we show that v is continuous on C2/ ≡. Actually,
if {[Ak, Bk]} ⊂ C2/ ≡ converges to [A,B], then

dH(Ak +B,Bk +A) = ∥[Ak +B,Bk +A]∥ = ∥[Ak, Bk]− [A,B]∥ → 0.

By the assumption,

v([Ak, Bk]) = V (Ak)− V (Bk) → V (A)− V (B) = v([A,B]).

This shows that v is continuous. Additionally, v ∈ ∂(F̄ + Ḡ)([A0, {0}]). Actually,
let [A,B] ∈ C2/ ≡. If there exists B0 ∈ C such that [A,B] = [B0, {0}], then

(F̄ + Ḡ)(A,B) = (F̄ + Ḡ)(B0, {0})
= F (B0) +G(B0)

≥ F (A0) +G(A0) + V (B0)− V (A0)

= F̄ ([A0, {0}]) + Ḡ([A0, {0}]) + v([B0, {0}])− v([A0, {0}])
= (F̄ + Ḡ)([A0, {0}]) + v([A,B])− v([A0, {0}]).

On the other hand if there does not exists B0 ∈ C such that [A,B] = [B0, {0}],
then (F̄ + Ḡ)(A,B) = ∞. This shows that v ∈ ∂(F̄ + Ḡ)([A0, {0}]). Hence,
by Theorem 2.4, there exist v1 ∈ ∂F̄ ([A0, {0}]) and v2 ∈ ∂Ḡ([A0, {0}]) such that
v = v1 + v2. By the similar way in the proof of Theorem 3.2, let V1 and V2 be set
functions as follows: for each A ∈ C,

V1(A) = v1([A, {0}]), V2(A) = v2([A, {0}]).

Then, V1 ∈ ∂F (A0), V2 ∈ ∂G(A0), and V = V1 + V2. This completes the proof. □

Next, we show a relation between the subdifferential and Fenchel conjugate.

Theorem 3.4. Let F be a set function and V0 ∈ FL. Then, the following statements
are equivalent.

(i) V0 ∈ ∂F (A0),
(ii) F (A0) + F ∗(V0) = V0(A0),
(iii) F (A0) + F ∗(V0) ≤ V0(A0).

Proof. Let V0 ∈ ∂F (A0), then by the definition of the subdifferential, F (A) ≥
F (A0) + V0(A)− V0(A0) for each A ∈ domF . This shows that

V0(A0)− F (A0) ≤ F ∗(V0) = sup
A∈domF

{V0(A)− F (A)} ≤ V0(A0)− F (A0).
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This shows that (i)→(ii)→(iii). The proof of (iii)→(i) is similar and will be omitted.
□

We define the indicator function of A as follows:

δA(A) =

{
0 A ∈ A,
∞ otherwise.

For a convex subfamily A of A0, the normal cone of A at A0 ∈ A is defined by

NA(A0) = {V ∈ FL | ∀A ∈ A, V (A)− V (A0) ≤ 0}.
We can easily see that NA(A0) is a convex cone, and

NA(A0) = ∂δA(A0).

Next, we show characterizations of a global minimizer of F in terms of the subdif-
ferential. In Theorem 3.1, we show that A0 is a global minimizer of F over A0 if and
only if 0 ∈ ∂F (A0). In the following theorem, we show a necessary and sufficient
optimality condition for constrained optimization in terms of the subdifferential.

Theorem 3.5. Let F be a proper convex set function from A0 to R ∪ {+∞}, and
A ⊂ C is convex. Assume that domF ⊂ C, A0 ∈ domF ∩ A, and F is continuous
on C. Then, A0 is a global minimizer of F over A if and only if

0 ∈ ∂F (A0) +NA(A0).

Proof. Assume that A0 is a global minimizer of F over A. By Theorem 2.2,

inf
A∈A0

{F (A) + δA(A)} = max
V ∈FL

{−F ∗(V )− δ∗A(−V )}.

Hence, there exists V0 ∈ FL such that

F (A0) = inf
A∈A0

{F (A) + δA(A)}

= max
V ∈FL

{−F ∗(V )− δ∗A(−V )}

= −F ∗(V0)− δ∗A(−V0).
By the definition of the Fenchel conjugate,

F (A0) + F ∗(V0) = −δ∗A(−V0)
= inf

A∈domδA
{V0(A) + δA(A)}

≤ V0(A0) + δA(A0)

= V0(A0).

By Theorem 3.4, V0 ∈ ∂F (A0). Similarly, we can show that −V0 ∈ NA(A0). Hence,
0 ∈ ∂F (A0) +NA(A0) holds.

Conversely, if 0 ∈ ∂F (A0) + NA(A0), then there exists V ∈ ∂F (A0) such that
−V ∈ NA(A0). Since −V ∈ NA(A0), −V (A) − (−V (A0)) ≤ 0 for each A ∈ A. By
the definition of the subdifferential,

F (A) ≥ F (A0) + V (A)− V (A0) ≥ F (A0),

that is, A0 is a global minimizer of F over A. This completes the proof. □
Next, we consider the following optimization problem:
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Minimize F (A),
subject to A ∈ A = {A ∈ C | ∀i ∈ I,Gi(A) ≤ 0},

where F is a convex set function on C, I is an index set, and Gi is a convex set
function on C for each i ∈ I. In the following theorem, we investigate Karush-Kuhn-
Tucker (KKT) type necessary and sufficient optimality condition for the problem.

Theorem 3.6. Let F be a real-valued continuous convex set function on C, I an
index set, Gi a real-valued convex set function on C for each i ∈ I, A0 ∈ A =
{A ∈ C | ∀i ∈ I,Gi(A) ≤ 0}, and I(A0) = {i ∈ I | Gi(A0) = 0}. Assume that the
following equation holds:

(3.2) NA(A0) =
∪

λ∈R(I)
+

∑
i∈I(A0)

λi∂Gi(A0),

where R(I)
+ = {λ ∈ RI | ∀i ∈ I, λi ≥ 0, {i ∈ I | λi ̸= 0} : finite}. Then, A0 is a

global minimizer of F over A if and only if there exists λ ∈ R(I)
+ such that

0 ∈ ∂F (A0) +
∑

i∈I(A0)

λi∂Gi(A0).

Proof. Let A0 is a global minimizer of F over A. By Theorem 3.5, 0 ∈ ∂F (A0) +

NA(A0). By the assumption, there exist V ∈ ∂F (A0) and λ ∈ R(I)
+ such that

−V ∈
∑

i∈I(A0)
λi∂Gi(A0). This shows that 0 ∈ ∂F (A0) +

∑
i∈I(A0)

λi∂Gi(A0).

Conversely, assume that there exists λ̄ ∈ R(I)
+ such that 0 ∈ ∂F (A0)+∑

i∈I(A0)
λ̄i∂Gi(A0). Then,

0 ∈ ∂F (A0) +
∑

i∈I(A0)

λ̄i∂Gi(A0)

⊂ ∂F (A0) +
∪

λ∈R(I)
+

∑
i∈I(A0)

λi∂Gi(A0)

= ∂F (A0) +NA(A0).

By Theorem 3.5, A0 is a global minimizer of F overA. This completes the proof. □

4. Discussion and applications

In this section, we discuss about our results and study applications to uncertain
problems with motion uncertainty. We regard a decision variable set as an error
caused by a motion, and introduce robust approach for the uncertain problem.

4.1. Subdifferential sum formula. The following equation is known as a subd-
ifferential sum formula in convex analysis:

∂(f + g)(x0) = ∂f(x0) + ∂g(x0).

In Theorem 3.3, we show the following similar statement:

∂(F +G)(A0) ⊃ ∂F (A0) + ∂G(A0).

Additionally, if V ∈ ∂(F + G)(A0) satisfies domV = C and the continuity con-
dition (3.1), then V ∈ ∂F (A0) + ∂G(A0). By the condition (3.1), we can show
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that v in Theorem 3.3 is continuous on C2/ ≡. Unfortunately, we can not show
that v is continuous even if we assume that V is continuous on C. Actually, if
{[Ak, Bk]} ⊂ C2/ ≡ converges to {[A,B]}, then dH(Ak +B,Bk +A) converges to 0.
However, we can not prove that Ak and Bk converge some sets in C. Hence, we can
not apply the continuity of V . See the following example.

Example 4.1. For a nonempty compact convex subset A ⊂ R2, we define a set
function V as follows:

V (A) = sup{x1 | (x1, x2) ∈ A}.

Then V is real-valued linear and continuous on C. Let A = {x ∈ R2 | ∥x∥ ≤ 1},
B = {x ∈ R2 | ∥x − (2, 0)∥ ≤ 1}, Ak = {( 1k , k)}, and Bk = {(2 + 1

k , k)}. Then,
dH(Ak +B,Bk +A) converges to 0 and Ak and Bk do not converge. Hence, we can
not apply the continuity of V .

On the other hand, the continuity condition (3.1) holds. Therefore, we can apply
Theorem 3.3 to the function V .

4.2. Necessary and sufficient constraint qualification. (3.2) in Theorem 3.6
is a constraint qualification for KKT optimality condition. We show the following
theorem for the normal cone and constraint functions without proof.

Theorem 4.2. Let I be an index set, Gi a real-valued convex set function on C for
each i ∈ I, A0 ∈ A = {A ∈ C | ∀i ∈ I,Gi(A) ≤ 0}, and I(A0) = {i ∈ I | Gi(A0) =
0}. Then,

NA(A0) ⊃
∪

λ∈R(I)
+

∑
i∈I(A0)

λi∂Gi(A0).

By Theorem 4.2, the constraint qualification (3.2) and the following inclusion are
equivalent:

NA(A0) ⊂
∪

λ∈R(I)
+

∑
i∈I(A0)

λi∂Gi(A0).

Similar constraint qualifications have been studied for convex and quasiconvex opti-
mization, see [21, 30–33, 38]. These constraint qualifications are known as necessary
and sufficient constraint qualifications. However, we show that (3.2) is only suffi-
cient. Actually, let V ∈ NA(A0), then A0 is a global minimizer of V over A. By
KKT condition, we can show that

0 ∈ ∂V (A0) +
∑

i∈I(A0)

λi∂Gi(A0).

Although we can show that ∂v(x0) = {v} for v ∈ Rn, we can not show that ∂V (x0) =
{V } for a linear set function V . Hence, we can not clarify whether (3.2) is a
necessary constraint qualification or not by the usual way. The difficulty causes
from ”−[A,B] = [B,A]” and ”{0} ̸= A+ (−A)”.

4.3. Application to motion uncertainty. Optimization problems with data un-
certainty have been studied extensively, see [2, 13–16, 22, 39, 42]. On the other
hand, in [40, 41], we study uncertain problems with motion uncertainty. We regard
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a decision variable set as an error caused by a motion, and investigate a robust
approach for the problem with motion uncertainty.

Let I be an index set, f a real-valued convex function on Rn, gi a real-valued
convex function on Rn for each i ∈ I. We study the following convex programming
problem (P ):

(P )

{
minimize f(x),
subject to gi(x) ≤ 0, ∀i ∈ I.

For such a problem, we may not be able to choose an exact vector because of an
error by a motion. In [40, 41], we introduce the following worst case approach with
motion uncertainty. Let F be the following function on A0: for each A ∈ A0,

F (A) = sup
x∈A

f(x).

We define Gi similarly, and consider the following robust problem (RP ) with motion
uncertainty:

(RP )

{
minimize F (A),
subject to Gi(A) ≤ 0, ∀i ∈ I.

We can solve the problem (RP ) by using our results, for example Theorem 3.5.
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