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sequence satisfying

(1.3) G(uk) → a = inf G.

If such a sequence converges or has a convergent subsequence, then we indeed obtain
a minimum. However, in dealing with such sequences it is difficult, in general, to
establish the convergence of a subsequence because there is very little with which
to work.

Luckily, there is some help. In such a case, one can show that there is a sequence,
called a Palais-Smale PS sequence, satisfying

(1.4) G(uk) → a, G′(uk) → 0

where a = inf G. It is much easier to establish the existence of a convergent sub-
sequence of a PS sequence than of a minimizing sequence. In fact, a minimizing
sequence may not have a convergent subsequence while a PS sequence for the same
functional does.

Actually, one can do better. If the functional G(u) is bounded from below, then
there exists a sequence (called a Cerami sequence) satisfying

(1.5) G(uk) → a, (1 + ‖uk‖)G′(uk) → 0

for a = inf G. As in the case of a PS sequence, if a Cerami sequence has a conver-
gent subsequence, it will produce a minimum. The advantage of obtaining such a
sequence is that the additional structure allows one to prove the convergence of a
subsequence in cases where a corresponding PS sequence need not have a converging
subsequence.

However, when the functional is not semi-bounded, the methods for producing
critical points become more complicated. It appears that no one procedure works in
all cases. The same is true even for semibounded functionals if one wishes to obtain
critical points which are not extrema. We present an approach which produces
sequences similar to (1.5) when one is searching for critical points whether or not
they are extrema.

This method of detecting critical points is called linking, initiated by Ambrosetti
and Rabinowitz ( [1, 13]. It was discovered that there are pairs of sets A,B such
that whenever they separate a functional G, i.e., satisfy

a0 := sup
A
G ≤ b0 := inf

B
G,

one obtains a Cerami sequence of the form

(1.6) G(uk) → a <∞, (1 + ‖uk‖)‖G′(uk)‖ → 0,

provided the functional is bounded on bounded sets. If this sequence has a conver-
gent subsequence, we obtain a critical point. The main question is to identify such
pairs of sets. We now describe a method of obtaining them.
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2. A general linking theorem

A basic question is how to find linking subsets. Once we have them, we will have
a very useful theorem:

Theorem 2.1. Let G be a C1-functional on E, and let A,B be subsets of E such
that A links B and

a0 := sup
A
G ≤ b0 := inf

B
G ≤ b1 := sup

c(A)
G <∞,

where c(A) is the convex hull of A. Then there is a sequence {uk} ⊂ E such that

(2.1) G(uk) → a, b0 ≤ a ≤ b1, (1 + ‖uk‖)‖G′(uk)‖ → 0.

If {uk} has a convergent subsequence, then there is a solution u ∈ E of

G(u) = a, G′(u) = 0.

All the theorem requires is that A links B and

a0 ≤ b0 ≤ b1 <∞.

Finding sets A and B which separate the functional G is quite easy, but deter-
mining whether or not the set A links the set B is quite another story. There are
many criteria which are used to determine whether or not the set A links the set
B, but the most general one is the following (cf. [14, 22]):

Let E be a Banach space. Let Φ be the set of all mappings Γ(t) ∈ C(E× [0, 1], E)
having the following properties:

a): for each t ∈ [0, 1),Γ(t) is a homeomorphism of E onto itself and Γ(t)−1 is
continuous on E × [0, 1)

b): Γ(0) = I
c): for each Γ(t) ∈ Φ there is a u0 ∈ E such that Γ(1)u = u0 for all u ∈ E and

Γ(t)u→ u0 as t→ 1 uniformly on bounded subsets of E.
d): For each t0 ∈ [0, 1) and each bounded set A ⊂ E we have

sup
0≤t≤t0
u∈A

{‖Γ(t)u‖+ ‖Γ−1(t)u‖} <∞.

We have

Definition 2.2. A subset A of E links a subset B of E if A ∩B = ϕ and, for each
Γ(t) ∈ Φ, there is a t ∈ (0, 1] such that Γ(t)A ∩B 6= ϕ, i.e.,∪

t∈(0,1]

Γ(t)A ∩B 6= ϕ.

This says that if Γ(t) takes A into u0, it must intersect B.

Now that we have the general definition of linking, it appears that the only way
we can check to see if two sets link, is to require that one of them is contained in
a finite-dimensional subspace. The reason is that in order to verify the definition,
we need to invoke the Brouwer fixed point theorem. This is not easy to do, and the
following result is what is used in most cases (cf. [14, 22]).
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Theorem 2.3. Let N be a finite dimensional subspace of a Banach space E, and let
Ω be a bounded open subset of N containing a point p. Let F be a continuous map
of E onto N such that F is bijective on Ω. Then ∂Ω links F−1(p).

Proof. Assume that ∂Ω does not link F−1(p). Then there is a Γ ∈ Φ such that

Γ(t)∂Ω ∩ F−1(p) = ϕ, 0 ≤ t ≤ 1,

or, equivalently,

(2.2) F (Γ(t)∂Ω) ∩ {p} = ϕ, 0 ≤ t ≤ 1.

Let

γ(t) = F ◦ Γ(t).
Then γ(t) ∈ C(Ω, N) for each t ∈ [0, 1] and

γ(t)x 6= p, x ∈ ∂Ω, t ∈ [0, 1].

Also

(2.3) γ(0)x = F (x), x ∈ Ω.

If Γ(1)E = {u0}, then
(2.4) γ(1)x = F (u0) 6= p, x ∈ Ω,

since

F (Γ(1)∂Ω) ∩ {p} = ϕ

by (2.2).
In view of (2.2) and (2.3), the Brouwer degree satisfies

i(γ(t),Ω, p) = i(γ(0),Ω, p) = 1

for all t ∈ [0, 1]. But this contradicts (2.4). Hence ∂Ω links F−1(p). □

3. Linking sets

In order to find sets that link in the sense of Definition 2, we apply Theorem 3.
We give a partial list below.

Example 1. Let B be an open set in E, and let A consist of two points e1, e2 with
e1 ∈ B and e2 /∈ B̄. Then A links ∂B. ∂B links A as well if ∂B is bounded.

Example 2. LetM,N be closed subspaces such that dimN <∞ and E =M⊕N .
Let

(3.1) BR = {u ∈ E : ‖u‖ < R}
and take A = ∂BR ∩N, B =M . Then A links B.

Example 3. Take M,N as before and let v0 6= 0 be an element of N . We write
N = {v0} ⊕N ′. We take

A = {v′ ∈ N ′ : ‖v′‖ ≤ R} ∪ {sv0 + v′ : v′ ∈ N ′, s ≥ 0, ‖sv0 + v′‖ = R},
B = {w ∈M : ‖w‖ ≥ δ} ∪ {sv0 + w : w ∈M, s ≥ 0, ‖sv0 + w‖ = δ},
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where 0 < δ < R. Then A links B.

Example 4. Let M,N be as in Example 2. Take A = ∂Bδ ∩N, and let v0 be any
element in ∂B1 ∩N . Take B to be the set of all u of the form

u = w + sv0, w ∈M,

satisfying any of the following:

(a): ‖w‖ ≤ R, s = 0
(b): ‖w‖ ≤ R, s = 2R0

(c): ‖w‖ = R, 0 ≤ s ≤ 2R0,

where 0 < δ < min(R,R0). Then A and B link each other.

Example 5. Let M,N be closed subspaces of E such that

E =M ⊕N,

with one of them being finite-dimensional. Let w0 be an element of M \ {0}, and
let 0 < δ < r < R. Take

A = {v ∈ N : δ ≤ ‖v‖ ≤ R} ∪ {sw0 + v : v ∈ N, s ≥ 0, ‖sw0 + v‖ = δ}
∪ {sw0 + v : v ∈ N, s ≥ 0, ‖sw0 + v‖ = R},

B = ∂Br ∩M, 0 ≤ δ < r < R.

Then A and B link each other.

Example 6. Let M,N be closed subspaces of E such that

E =M ⊕N,

with one of them being finite-dimensional. Let w0 be an element of M \ {0}, and
let 0 ≤ r < R,

A = {w ∈M : ‖w‖ = R},
B = {v ∈ N : ‖v‖ ≥ r} ∪ {u = v + sw0 : v ∈ N, s ≥ 0, ‖u‖ = r}.

Then A links B.

Example 7. Let M,N be as in Example 2. Take A = ∂Bδ ∩N, and let v0 be any
element in ∂B1 ∩N . Take B to be the set of all u of the form

u = w + sv0, w ∈M,

satisfying any of the following:

(a): s = 0
(b): s = 2R0

where 0 < δ < R0. Then A links B.

Example 8. Let N be a finite dimensional subspace of a Hilbert space E with
orthogonal complement M ⊕ Y, where Y is a finite dimensional subspace of E
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orthogonal to both M and N, and let δ < R be positive numbers. Let y1, · · · , yn be
an orthogonal basis for Y and let

Y+ = {y ∈ Y : (y, yk) ≥ 0, 1 ≤ k ≤ n},
Ω = {v + y : v ∈ N, y ∈ Y+, ‖v + y‖ < R},

and

(3.2) F (v + w + y) = v +
‖w + y‖
‖y‖

n∑
1

|(y, yk)|yk, v ∈ N, y ∈ Y, w ∈M.

Then AR = ∂Ω links B = F−1(Y+ ∩ ∂Bδ) = {w + y ∈M ⊕ Y : ‖w + y‖ = δ}.

Note that all of these examples follow from Theorem 2.3. Related research can
be found in [2–4,6, 10,11,31,32] and their references.

4. The limitation

The only reason these examples work is because we are able to use the Brouwer
fixed point theorem in finite-dimensional spaces. However, there are many appli-
cations for which we would like to obtain critical points if both sets are infinite-
dimensional. It is not obvious how to proceed. It is not clear that we can ob-
tain similar results in such cases. We now describe one method that works in the
infinite-dimensional case. It was initiated by Kryszewski and Szulkin [9]. It involves
adjusting the topology of the underlying space. Our aim is to find a counterpart of
Theorem 3 that holds true when N is infinite dimensional. We adjust our definitions
of the functional G and the mapping F to accommodate infinite dimensions. These
definitions reduced to the usual when N is finite dimensional. We can then prove
the counterpart of Theorem 3 when N is infinite dimensional. In order to do so, we
make adjustments to the topology of the space and introduce infinite dimensional
splitting. This allows us to use a form of compactness on the subspace N. We lose
the Brouwer index, but we are able to replace it with the Leray-Schauder index.
We carry out the details in Sections 5 and 6. In Sections 7 - 16 we solve several
equations which require infinite dimensional splitting. In Sections 7 - 10 we study
general semilinear partial differential equations, and in Sections 11, 12 we consider
the wave equation. In Sections 13 - 15 we study the n-dimensional radially sym-
metric wave equation and in Section 16 the non-periodic Schrodinger equation. In
all cases we obtain results stronger than those previously known.

5. Flows

Let Q be a set of positive functions ρ(t) on [0,∞), which are
(a) locally Lipschitz continuous,
(b) nondecreasing
(c) satisfy

(5.1)

∫ ∞

0

dt

ρ(t)
= ∞.

Moreover, Q is to satisfy
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ρ1, ρ2 ∈ Q =⇒ max(ρ1, ρ2) ∈ Q,
and contain functions of the form

(1 + |t|)β , β ≤ 1.

Let Q 6= ϕ be a subset of a Banach space E, and let ΣQ be the set of all continuous
maps σ = σ(t) from E × [0, 1] to E such that

(1) σ(0) is the identity map,
(2) for each t ∈ [0, 1], σ(t) is a homeomorphism of E onto E,
(3) σ′(t) = dσ(t)/dt is piecewise continuous and satisfies

(5.2) ‖σ′(t)u‖ ≤ Cρ(d(σ(t)u,Q)), u ∈ E,

for some ρ ∈ Q. If Q = {0}, we write Σ = ΣQ. The mappings in ΣQ are called flows.
We note the following.

Remark 5.1. If σ1, σ2 are in ΣQ, define σ3 = σ1 ◦ σ2 by

σ3(s) =

{
σ1(2s), 0 ≤ s ≤ 1

2 ,

σ2(2s− 1)σ1(1),
1
2 < s ≤ 1.

Then σ3 ∈ ΣQ, and σ3(1) = σ2(1)σ1(1).

Proof. The first two properties are obvious. To check the third, note that

σ′3(s) =

{
2σ′1(2s), 0 ≤ s ≤ (12)−,

2σ′2(2s− 1)σ1(1), (12)+ ≤ s ≤ 1.

Thus, if

(5.3) ‖σ′i(t)u‖ ≤ Ciρi(d(σi(t)u,Q)), u ∈ E, i = 1, 2,

then

‖σ′3(s)u‖ ≤

{
2‖σ′1(2s)u‖, 0 ≤ s ≤ (12)−,

2‖σ′2(2s− 1)σ1(1)u‖, (12)+ ≤ s ≤ 1,

or

‖σ′3(s)u‖ ≤

{
2C1ρ(d(σ3(s)u,Q)), 0 ≤ s ≤ (12)−,

2C2ρ(d(σ3(s)u,Q)), (12)+ ≤ s ≤ 1,

where ρ = max(ρ1, ρ2). We can now take C3 = 2max(C1, C2). □

6. Infinite dimensional splitting

The idea of splitting the topologies of subspaces originated in [9]. Let N be a
closed, separable subspace of a Hilbert space E. We can define a new norm |v|w
satisfying |v|w ≤ ‖v‖ ∀v ∈ N and such that the topology induced by this norm is
equivalent to the weak topology of N on bounded subsets of N . This can be done
as follows: Let {ek} be an orthonormal basis for N . Define

(u, v)w =
∞∑
k=1

(u, ek)(v, ek)

2k
, u, v ∈ N.
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This is a scalar product. The corresponding norm squared is

|v|2w =

∞∑
k=1

|(v, ek)|2

2k
, v ∈ N.

Then |v|w satisfies |v|w ≤ ‖v‖, v ∈ N . If vj → v weakly in N , then there is a C > 0
such that

‖vj‖, ‖v‖ ≤ C, ∀j > 0.

For any ε > 0, there exist K > 0,M > 0, such that 1/2K < ε2/(8C2) and |(vj −
v, ek)| < ε/2 for 1 ≤ k ≤ K, j > M. Therefore,

|vj − v|2w =

∞∑
k=1

|(vj − v, ek)|2

2k

≤
K∑
k=1

ε2/4

2k
+

∞∑
k=K+1

4C2

2k

≤ ε2

4

∞∑
k=1

1

2k
+

4C2

2K

∞∑
k=1

1

2k

≤ ε2

2
+
ε2

2
.

Therefore, vj → v weakly in N implies |vj − v|w → 0.

Conversely, let ‖vj‖, ‖v‖ ≤ C for all j > 0 and |vj − v|w → 0. Let ε > 0 be given.

If h =
∞∑
k=1

αkek ∈ N, take K so large that ‖hK‖ < ε/(4C), where hK =
∞∑

k=K+1

αkek.

Take M so large that |vj − v|2w < ε2/(4
K∑
k=1

2k|αk|2) for all j > M . Then

|(vj − v, h− hK)|2 = |
K∑
k=1

αk(vj − v, ek)|2

≤
K∑
k=1

2k|αk|2
∞∑
k=1

|(vj − v, ek)|2

2k

< ε2/4

for j > M . Also, |(vj − v, hK)| ≤ 2C‖hK‖ < ε/2. Therefore,

|(vj − v, h)| < ε, ∀j > M,

that is, vj → v weakly in N .

For u = v + h, u1 = v1 + h1 ∈ E = N ⊕ N⊥ with v, v1 ∈ N,h, h1 ∈ N⊥, we
define the scalar product (u, u1)w = (v, v1)w+(h, h1). Thus, the corresponding norm
satisfies |u|w ≤ ‖u‖ ∀u ∈ E.
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We denote E equipped with this scalar product and norm by Ew. It is a scalar
product space with the same elements as E. In particular, if (un = vn + wn) is

‖ · ‖-bounded and un
|·|w→ u, then vn ⇀ v weakly in N , wn → w strongly in N⊥,

un ⇀ v + w weakly in E.

For u ∈ E and Q ⊂ E, we define

dw(u,Q) = inf
v∈Q

|u− v|w.

Let L be a bounded, convex, closed subset of N . Then L is | · |w-compact. In
fact, since L is bounded with respect to both norms | · |w and ‖ · ‖, for any vn ∈ L,
there is a renamed subsequence such that vn ⇀ v0 weakly in E. Then v0 ∈ L since
L is convex, and on the bounded set L the | · |w-topology is equivalent to the weak

topology. Thus, vn
|·|w→ v0 and L is | · |w-compact.

Let L be a compact subset of Ew. We define Σw(L) to be the set of all σ(t) ∈ Σ :
[0, 1]× E 7→ E such that

(1) σ(t) is | · |w-continuous.
(2) There is a finite dimensional subspace Ef of E such that dimEf > 0 and

σ(t)u− u ∈ Ef , (t, u) ∈ I × L. (Ef does not depend on t.)

Here we use Ef to denote various finite-dimensional subspaces of E when exact
dimensions are irrelevant. Note that Σw(L) is not empty since σ(t) ≡ 1 is a member.

We let ΣwQ denote the set of those σ ∈ Σw which satisfy

(6.1) |σ′(t)u|w ≤ Cρ(dw(σ(t)u,Q)), u ∈ E,

where Q ⊂ E.

We have

Lemma 6.1. If L is compact in Ew and σ ∈ Σw(L), then

L̃ = {σ(t)L : t ∈ I}

is compact in Ew.

Proof. Supose {tk} ⊂ I, {uk} ⊂ L are sequences. Then there are renamed subse-
quences such that

tk → t0, |uk − u0|w → 0.

Thus I×L is a compact subset of I×Ew. By definition, there is a finite dimensional
subspace Ef containing the set {σ(t)u−u, t ∈ I, u ∈ L}. Since this set is bounded,
every sequence has a convergent subsequence. Since every sequence in L has a
convergent subsequence, the same must be true of L̃. □

Lemma 6.2. If σ1, σ2 ∈ Σw(L), then σ3 = σ1 ◦ σ2 ∈ Σw(L).

Proof. By the definition of Σw(L), for any (s0, u0) ∈ I × L, there is a | · |w-
neighborhood U(s0,u0) such that {u − σ1(t)u : (t, u) ∈ U(s0,u0) ∩ (I × L)} ⊂ Ef .
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Note that, I × L ⊂
∪

(s,u)∈I×L

U(s,u). Since L is | · |w-compact, I × L ⊂
j0∪
i=1

U(si,ui)

where (si, ui) ∈ (I × L). Consequently, {u − σ1(t)u : (t, u) ∈ (I × L)} ⊂ Ef . The
same is true of σ2. Since

σ3(s) =

{
σ1(2s), 0 ≤ s ≤ 1

2 ,

σ2(2s− 1)σ1(1),
1
2 < s ≤ 1,

u− σ3(t)u ∈ Ef as well. □

Concerning the mapping F we define

Definition 6.3. LetN be a closed separable subspace of a Hilbert space E.We shall
call a map F of E onto N an N-weakly continuous mapping if F is a | · |w-continuous
map from E onto N satisfying

• FN = I and it maps bounded sets into bounded sets;
• There exists a fixed finite-dimensional subspace E0 of E such that
F (u− v)− (F (u)− F (v)) ∈ E0, ∀ u, v ∈ E;

• F maps finite-dimensional subspaces of E to finite-dimensional subspaces of
E;

Note that every continuous map F of E onto N satisfying FN = I is N -weakly
continuous when N is finite dimensional.

Our counterpart of Theorem 2.3 for infinite dimensional subspaces is:

Theorem 6.4. Let N be a closed, separable subspace of a Banach space E, and let Ω
be a bounded, convex, open subset of N containing a point p. Let F be an N-weakly
continuous mapping. Assume

σ(t)∂Ω ∩ F−1(p) = ϕ, 0 ≤ t ≤ 1,

for some σ ∈ Σw(Ω). Then

σ(t)Ω ∩ F−1(p) 6= ϕ, 0 ≤ t ≤ 1.

Proof. Assume that there is a σ ∈ Σw(Ω) such that

(6.2) σ(t)∂Ω ∩ F−1(p) = ϕ, 0 ≤ t ≤ 1,

and

σ(t)Ω ∩ F−1(p) = ϕ, 0 ≤ t ≤ 1,

or, equivalently,

(6.3) F (σ(t)Ω) ∩ {p} = ϕ, 0 < t ≤ 1.

Let

γ(t)x = F (σ(t)x), (t, x) ∈ I × Ω.

Then γ(t) ∈ C(I × Ω, Ew ∩N) and

(6.4) γ(t)x 6= p, x ∈ ∂Ω, t ∈ [0, 1].
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Also

(6.5) γ(0)x = F (x) = x, x ∈ Ω.

By hypothesis, there exists a fixed finite-dimensional subspace E0 of E such that
F (u − v) − (F (u) − F (v)) ∈ E0, ∀ u, v ∈ E. Take u = σ(t)x, v = x. Since Ω is
compact in Ew and σ ∈ Σw(Ω), there is a finite dimensional subspace E1 of E such
that dimE1 > 0 and σ(t)u− u ∈ E1, (t, u) ∈ I × Ω. Hence

γ(t)x = P0(Fσ(t)x− F (x)− F [σ(t)x− x])

+ FP1[σ(t)x− x] + x

= x− φ(t)x, (t, x) ∈ I × Ω,

where φ(t)x = −P0(Fσ(t)x−Fx−F [σ(t)x−x])−FP1[σ(t)x−x], and the P0, P1 are
projections onto the finite dimensional subspaces E0, E1. Thus, φ(t) is a compact
map from I × Ω to I × Ef . In view of (6.2), the Leray-Schauder degree i satisfies

i(γ(t),Ω, p) = i(γ(0),Ω, p) = 1

for all t ∈ [0, 1]. But this contradicts (6.3). Hence

σ(t)Ω ∩ F−1(p) 6= ϕ, 0 ≤ t ≤ 1.

□
Definition 6.5. Let N be a closed separable subspace of a Hilbert space E. A C ′

functional G(u) on E will be called an N -weak-to-weak continuously differentiable
functional on E if

(6.6) |vn − v|w → 0

implies

(6.7) |G′(vn)−G′(v)|w → 0.

Thus,

(6.8) vn = Pun → vweakly in E, wn = (I − P )un → w strongly in E

implies

(6.9) G′(vn + wn) → G′(v + w)weakly in E,

where P is the projection of E onto N.

Note that every C ′ functional is N -weak-to-weak continuously differentiable when
dimN <∞.

Our counterpart to Theorem 2.1 for infinite dimensional subspaces is:

Theorem 6.6. Let N be a closed separable subspace of a Hilbert space E, and let Ω
be a bounded, convex, open subset of N containing a point p. Let G be an N-weak-to-
weak continuously differentiable functional on E. Let F be an N-weakly continuous
mapping. Assume d = d(A,B) > 0, and

a0 := sup
A
G ≤ b0 := inf

B
G ≤ b1 := sup

Ω

G <∞,
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where A = ∂Ω and B = F−1(p). Then for each ρ ∈ Q and β > 0 satisfying

(6.10) β

∫ d

0

dt

ρ(t)
> b1 − b0,

there is a sequence {uk} ⊂ E such that

(6.11) G(uk) → c, b0 ≤ c ≤ b1, ρ(dw(uk, B))‖G′(uk)‖ ≤ β.

Proof. If the theorem were false, then there would be a δ > 0 such that

(6.12) ρ(dw(u,B))‖G′(u)‖ > β

when

(6.13) u ∈ U = {u ∈ E : b0 − 3δ ≤ G(u) ≤ b1 + 3δ}.

For u ∈ Ê = {u ∈ E : G′(u) 6= 0}, let h(u) = G′(u)/‖G′(u)‖. Then by (6.12)

(6.14) (G′(u), h(u)) > β/ρ(dw(u,B)), u ∈ U.

For each u ∈ U there is an Ẽ = Ew neighborhood W(u) of u such that

(6.15) (G′(v), h(u)) > β/ρ(dw(v,B)), v ∈ W(u) ∩ U.

For otherwise there would be a sequence {vk} ⊂ U such that

(6.16) |vk − u|w → 0 and (G′(vk), h(u)) ≤ β/ρ(dw(vk, B)).

(6.17) (G′(vk), h(u)) → (G′(u), h(u)) ≤ β/ρ(dw(u,B)),

by (6.7) in view of (6.16). This contradicts (6.14). Thus (6.15) holds.

Let Ũ be the set U with the inherited topology of Ẽ. It is a metric space, and
W(u) ∩ Ũ is an open set in this space. Thus, {W(u) ∩ Ũ}, u ∈ Ũ , is an open

covering of the paracompact space Ũ (cf., e.g., [8]). Consequently, there is a locally
finite refinement {Wτ} of this cover. For each τ there is an element uτ such that
Wτ ⊂ W(uτ ). Let {ψτ} be a partition of unity subordinate to this covering. Each
ψτ is locally Lipschitz continuous with respect to the norm |u|w and consequently
with respect to the norm of E. Let

(6.18) Y (u) =
∑

ψτ (u)h(uτ ), u ∈ Ũ .

Then Y (u) is locally Lipschitz continuous with respect to both norms. Moreover,

(6.19) ‖Y (u)‖ ≤
∑

ψτ (u)‖h(uτ )‖ ≤ 1

and

(6.20) (G′(u), Y (u)) =
∑

ψτ (u)(G
′(u), h(uτ )) ≥ β/ρ(dw(u,B)), u ∈ Ũ .

Reduce δ to satisfy

β

∫ d

δ

dt

ρ(t)
≥ b1 − b0 + δ.
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Let

Q0 = {u ∈ E : b0 − 2δ ≤ G(u) ≤ b1 + 2δ},
Q1 = {u ∈ E : b0 − δ ≤ G(u) ≤ b1 + δ},
Q2 = E \Q0,

η(u) = dw(u,Q2)/[dw(u,Q1) + dw(u,Q2)].

It is easily checked that η(u) is locally Lipschitz continuous (with respect to the Ew

norm) on E and satisfies

(6.21)


η(u) = 1, u ∈ Q1,

η(u) = 0, u ∈ Q̄2,

η(u) ∈ (0, 1), otherwise.

Let

W̃ (u) = −η(u)Y (u)ρ(dw(u,B)).

Then

‖W̃ (u)‖ ≤ ρ(dw(u,B)) ≤ ρ(d(u,B)), u ∈ Ũ .

Then, for each v ∈ U there is a unique solution σ(t)v of

(6.22) σ′(t) = W̃ (σ(t)), t ∈ R+, σ(0) = v.

Take

(6.23) T =

∫ d

δ

dt

ρ(t)
≥ (b1 − b0 + δ)/β.

Let

K = {(u, t) : u = σ(t)v, v ∈ Ω̄, t ∈ [0, T ]}.
Then K is a compact subset of Ẽ×R. To see this, let (uk, tk) be any sequence in K.
Then uk = σ(tk)vk, where vk ∈ Ω̄. Since Ω is bounded, there is a subsequence such
that vk → v0 weakly in E and tk → t0 in [0, T ]. Since Ω̄ is convex and bounded, v0
is in Ω̄ and |vk − v0|w → 0. Since σ(t) is continuous in Ẽ × R, we have

uk = σ(tk)vk ⇀ σ(t0)v0 ∈ K.

Each u0 ∈ U has a neighborhood W(u0) in Ẽ and a finite dimensional subspace
S(u0) such that Y (u) ⊂ S(u0) for u ∈ W(u0) ∩ U. Since σ(t)u is continuous in

Ẽ × R, for each (u0, t0) ∈ K there is a neighborhood W(u0, t0) ⊂ Ẽ × R and a
finite dimensional subspace S(u0, t0) ⊂ E such that zt(u) ⊂ S(u0, t0) for (u, t) ∈
W(u0, t0), where

(6.24) zt(u) := u− σ(t)u =

{∫ t
0 Y (σ(s)u)ρ(dw(σ(s), B))ds, u ∈ U,

0, u 6∈ U.

Since K is compact, there is a finite number of points (uj , tj) ⊂ K such that
K ⊂ W = ∪W(uj , tj). Let S be a finite dimensional subspace of E containing p
and all the S(uj , tj) and such that FS 6= {0}. Then for v ∈ Ω̄ and t ∈ [0, T ] we have

zt(v) ∈ S. Thus σ ∈ Σw(Ω).
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We also have

dG(σ(t)v)/dt = −η(σ(t)v)(G′(σ(t)v), Y (σ(t)v))ρ(dw(σ(t)v,B))

≤ −βη(σ).

Let v ∈ A. If there is a t1 ≤ T such that σ(t1)v /∈ Q1, then

(6.25) G(σ(T )v) ≤ G(σ(t1)v) ≤ b0 − δ.

On the other hand, if σ(t)v ∈ Q1 for all t ∈ [0, T ], then we have by (6.25)

G(σ(T )v) ≤ b1 − βT ≤ b0 − δ.

Hence

(6.26) G(σ(T )v) ≤ b0 − δ, v ∈ A.

Let u(t) be the solution of

u′(t) = −ρ(u(t)), t ∈ [0, T ], u(0) = d = d(A,B).

Then,

d(σ(t)v,B) ≥ u(t), t ∈ [0, T ], v ∈ A.

But ∫ d

u(t)

dτ

ρ(τ)
= t, t ∈ [0, T ].

Consequently,

u(t) ≥ u(T ) ≥ δ, t ∈ [0, T ],

since

T =

∫ d

δ

dt

ρ(t)
≥ (b0 − a0 + δ)/β.

Thus,

d(σ(t)v,B) ≥ δ, t ∈ [0, T ], v ∈ A.

Consequently, σ(t)v ∩B = ϕ, t ∈ (0, T ]. This means that

σ(t)v ∩B = ϕ, v ∈ A, t ∈ (0, T ].

Hence,

σ(t)A ∩B = ϕ, t ∈ (0, T ],

and

sup
σ(T )A

G ≤ b0 − δ.

But σ ∈ Σw(Ω). By Theorem 6.4, this implies

σ(t)Ω ∩B 6= ϕ, 0 < t ≤ T.

Thus, there is a u ∈ Ω such that σ(T )u ∈ B. But that would mean that G(σ(T )u) ≥
b0, contradicting (6.26). This completes the proof. □
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Theorem 6.7. Let N be a closed, separable subspace of a Hilbert space E with
orthogonal complement M ⊕ Y, where Y is a finite dimensional subspace of E or-
thogonal to both M and N, and let δ < R0 be positive numbers. Let y1, · · · , yn be an
orthogonal basis for Y and let

Y+ = {y ∈ Y : (y, yk) ≥ 0, 1 ≤ k ≤ n},

ΩR = {v + y : v ∈ N, y ∈ Y+, ‖v + y‖ < R}, R > R0,

and

(6.27) F (v + w + y) = v +
‖w + y‖
‖y‖

n∑
1

|(y, yk)|yk, v ∈ N, y ∈ Y, w ∈M.

Let G be a an N-weak-to-weak continuously differentiable functional on E and as-
sume

(6.28) −∞ < sup
AR

G ≤ b0 = inf
B
G ≤ sup

ΩR

G ≤ b1 <∞, R > R0,

holds with AR = ∂Ω and B = F−1(Y+ ∩ ∂Bδ) = {w + y ∈ M ⊕ Y : ‖w + y‖ = δ}.
Then for each sequence νk → ∞ there is a β > 0 and a sequence {uk} ⊂ E such
that

(6.29) G(uk) → c, b0 ≤ c ≤ b1, (νk + |uk|w)‖G′(uk)‖ ≤ β.

Proof. If y ∈ Y \{0}, let

ỹ =
1

‖y‖

n∑
1

|(y, yk)|yk.

Then ‖ỹ‖ = 1, ỹ ∈ Y+ ∩ ∂B1, and

F (v + w + y) = v + ‖w + y‖ · ỹ.

Consequently,

F−1(δỹ) = {w + y : w ∈M, y ∈ Y, ‖w + y‖ = δ}.

Thus, if z ∈ Y+ ∩ ∂B1, then

F−1(δz) = {w ∈M, y ∈ Y : ‖w + y‖ = δ, ỹ = z}

and

F−1(Y+ ∩ ∂Bδ) = {w ∈M, y ∈ Y : ‖w + y‖ = δ, ỹ ∈ Y+ ∩ ∂B1}

= {w ∈M, y ∈ Y : ‖w + y‖ = δ}.
Apply Theorem 6.6.

□

Definition 6.8. We shall say that a set A ⊂ E links a set B ⊂ E weakly if
d = d(A,B) > 0 and whenever

a0 := sup
A
G ≤ b0 := inf

B
G ≤ b1 := sup

Ω

G <∞
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holds for some N-weak-to-weak continuously differentiable functional G on E, then
for each ρ ∈ Q and β > 0 satisfying

(6.30) β

∫ d

0

dt

ρ(t)
> b1 − b0,

there is a sequence {uk} ⊂ E such that

(6.31) G(uk) → c, b0 ≤ c ≤ b1, ρ(dw(uk, B))‖G′(uk)‖ ≤ β.

Corollary 6.9. Let N be a closed, separable subspace of a Hilbert space E with
orthogonal complement M ⊕ Y, where Y is a finite dimensional subspace of E or-
thogonal to both M and N, and let δ < R be positive numbers. Let y1, · · · , yn be an
orthogonal basis for Y and let

Y+ = {y ∈ Y : (y, yk) ≥ 0, 1 ≤ k ≤ n},

Ω = {v + y : v ∈ N, y ∈ Y+, ‖v + y‖ < R},

and

(6.32) F (v + w + y) = v +
‖w + y‖
‖y‖

n∑
1

|(y, yk)|yk, v ∈ N, y ∈ Y, w ∈M.

Then F is N -weakly continuous and AR = ∂Ω links B = F−1(Y+∩∂Bδ) = {w+y ∈
M ⊕ Y : ‖w + y‖ = δ} weakly.

Remark 6.10. It follows from Theorem 6.7 that Examples 2 - 8 produce weakly
linking sets when the subspace N is separable but not finite dimensional.

7. Applications

We consider semilinear partial differential equations of the form

(7.1) Au = f(x, u), u ∈ D

in unbounded domains. Included is the case of the Schrödinger operator A =
−∆ + V(x) on D = H1(Rn), where V(x) is a given potential. One wishes to find
nontrivial solutions and, in particular, the so called “minimizing solutions.” These
are solutions that minimize the corresponding energy functional. If they are not
trivial, they are called “ground state solutions.”

The existence of solutions depends both on the linear operator A and the non-
linear term f(x, u). We shall study the problem for the case when A is selfadjoint,
having a nonempty resolvent set, and f(x, u) is superlinear. The results are stated
in the next section and proved in Sections 9 and 10.
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8. Superlinear problems

Let Ω ⊂ Rn be an open set and A a selfadjoint operator on L2(Ω). We assume
that σe(A) is not the whole of R. (The essential spectrum σe(A) of a selfadjoint
operator A consists of those points of the spectrum that are not isolated eigenvalues
of finite multiplicity.) For convenience, we assume there is an interval [0, b] satisfying

[0, b] ∩ σe(A) = ϕ, but [a, b] ∩ σ(A) 6= ϕ, where 0 < a < b. We let D = D(|A|(1/2)).
With the scalar product (u, v)D = (|A|(1/2)u, |A|(1/2)v), it becomes a Hilbert space.
We let

N = E(−∞, 0), M = E(b,∞), Y = E[a, b]

be orthogonal invariant subspaces of A with D = N ⊕ Y ⊕M. Hence,

(Av, v) ≤ 0, v ∈ N,

(Aw,w) ≥ b‖w‖2, w ∈M,

and

a‖y‖2 ≤ (Ay, y) ≤ b‖y‖2, y ∈ Y.

We assume that C∞
0 (Ω) ⊂ D ⊂ Hm,2(Ω) for some m > 0. In particular,

(8.1) ‖u‖m,2 ≤ C‖u‖D, u ∈ D.

Let q be a number satisfying

2 < q < 2∗ := 2n/(n− 2m), 2m < n

2 < q <∞, n ≤ 2m.

We assume that D is compact in Lq
loc(Ω) and

(8.2) ‖u‖q ≤ C‖u‖D, u ∈ D,

where ‖ · ‖q is the norm of Lq(Ω). Let f(x, t) be a Caratheódory function on Ω×R
satisfying

(8.3) |f(x, t)| ≤ V (x)2(|t|+ 1), x ∈ Ω, |t| ≥ δ,

and

(8.4) |f(x, t)| ≤ σ|t|, |t| < δ, x ∈ Ω, t ∈ R,

for some σ < a, δ > 0, where V (x) > 0 is a function in L2(Ω) such that

‖V u‖ ≤ C‖u‖D, u ∈ D

and multiplication by V (x) is a compact operator from D to L2(Ω). Assume that

F (x, t) :=

∫ t

0
f(x, s) ds

satisfies

(8.5) F (x, t) ≥ 0, x ∈ Ω, t ∈ R,

and

(8.6) F (x, t)/t2 → ∞ as t2 → ∞.

We shall prove:
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Theorem 8.1. Under the above hypotheses there is a nontrivial solution of

(8.7) Au = f(x, u), u ∈ D.

Theorem 8.2. Assume, in addition, that

(8.8) H(x, t) := tf(x, t)− 2F (x, t) ≥ −W (x) ∈ L1(Ω).

Let M be the collection of solutions of (8.7). Then there is a nontrivial solution
that minimizes the energy functional

(8.9) G(u) = (Au, u)− 2

∫
Ω
F (x, u), u ∈ D

over M\{0}.

Remark 8.3. A nontrivial solution that minimizes the energy functional is called
a ground state solution.

9. Some lemmas

Before proving our main theorems (Theorem 8.1 and Theorem 8.2), we shall prove
a few lemmas. We define

(9.1) G(u) = (Au, u)− 2

∫
Ω
F (x, u), u ∈ D,

where we write u = v + y + w, v ∈ N, y ∈ Y, w ∈M.

Lemma 9.1. Let r > 0 and q ∈ [2, 2∗), where 2∗ = 2n/(n−2). If {uk} is a bounded
sequence in E := H1(Rn), and

(9.2) sup
y∈Rn

∫
B(y,r)

|uk|qdx→ 0, k → ∞,

where B(y, r) := {u ∈ E : ‖u− y‖ ≤ r}, then uk → 0 in Lp(Rn) for q < p < 2∗.

Proof. We consider n ≥ 3 and make use of the fact that∫
B(y,r)

|u(x)|qdx ≤ C
(∫

B(y,r)
(u2 + |∇u|2)dx

)q/2
, 2 ≤ q ≤ 2∗, u ∈ H1(Rn).

Choose

p1 = q
2∗ − p

2∗ − q
, p2 = 2∗

p− q

2∗ − q
, t =

2∗ − q

2∗ − p
> 1, t′ =

t

t− 1
> 1.

Then p1t = q, p2t
′ = 2∗, 1/t + 1/t′ = 1, p1 + p2 = p. By Hölder’s Inequality, we

have ∫
B(y,r)

|uk|pdx

≤
(∫

B(y,r)
|uk|p1tdx

)1/t(∫
B(y,r)

|uk|p2t
′
dx
)1/t′

≤ c
(∫

B(y,r)
|uk|qdx

)1/t(∫
B(y,r)

|uk|2
∗
dx
)1/t′

≤ c
(∫

B(y,r)
|uk|qdx

)1/t(∫
B(y,r)

(u2k + |∇uk|2)dx
)p2/2

.
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Covering Rn by balls with radius r in such a way that each point of Rn is contained
in at most n+ 1 balls, we have∫

Rn

|uk|pdx ≤ (n+ 1)c sup
y∈Rn

(∫
B(y,r)

|uk|qdx
)1/t

,

which implies the conclusion of the lemma. □

Lemma 9.2. Assume that ρk = ‖uk‖D → ∞ and ũk = uk/ρk → ũ a.e. If ũ 6≡ 0,
then

(9.3)

∫
Ω
F (x, uk)/ρ

2
k → ∞.

Proof. Let Ω0 be the subset of Ω where ũ 6= 0. If the measure of Ω0 is positive, then∫
Ω
F (x, uk)/ρ

2
k ≥

∫
Ω0

F (x, uk)

u2k
ũ2k → ∞,

since the integrand is bounded below and u2k → ∞ on Ω0. □

Lemma 9.3.

(9.4) vk = Puk → v weakly in D, gk = (I − P )uk → g strongly in D

implies

(9.5) G′(vk + gk) → G′(v + g)weakly in D,

where P is the projection of D onto N .

Proof. Since the uk are bounded in D, there is a renamed subsequence converging
to a limit u weakly in D, V uk → V u in L2(Ω) and a.e. in Ω. Let ε > 0 and h ∈ D
be given. Then f(x, uk)h(x) converges to f(x, u)h(x) a.e. and is dominated by
(|V uk|+ V )|V h| which converges to (|V u|+ V )|V h| in L1(Ω), we have∫

Ω
f(x, uk)h(x)dx→

∫
Ω
f(x, u)h(x)dx as k → ∞.

Thus,

(G′(uk), h)/2 = (Auk, h)−
∫
Ω
f(x, uk(x))h(x)

→ (Au, h)−
∫
Ω
f(x, u(x))h(x)

= (G′(u), h)/2.

This gives (9.5). □

Lemma 9.4. For each ρ > 0 sufficiently small there is an ε > 0 such that

(9.6) G(h) ≥ ε, h = y + w ∈ Y ⊕M, ‖h‖D = ρ.

Proof. By (8.3) and (16.13),

2

∫
|h|<δ

|F (x, h)| ≤ σ

∫
|h|<δ

h2
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and ∫
|h|>δ

|F (x, h)| ≤ C

∫
|h|>δ

(|h|2 + |h|)

≤ C

∫
|h|>δ

(|h|q/δq−2 + |h|q/δq−1)

≤ C

∫
|h|>δ

|h|q

≤ C‖h‖qq.
Consequently,

G(h) ≥ ‖h‖2D − σ

∫
|h|<δ

h2 − C

∫
|h|>δ

(|h|q + |h|) ≥ (1− a−1σ − C ′‖h‖q−2
q )‖h‖2D.

We take ‖h‖2D sufficiently small. □
Lemma 9.5. Let

(9.7) QR = {v + y : v ∈ N, y ∈ Y+ : ‖v + y‖D ≤ R}.
Then there is an R > 0 such that

(9.8) G(u) ≤ 0, u ∈ ∂QR.

Proof. If not, ∃Rk → ∞, uk = vk + yk ∈ ∂QRk
, such that G(uk) > 0. If yk = 0,

then

G(vk) = −‖vk‖2D − 2

∫
Ω
F (x, vk) ≤ −‖vk‖2D ≤ 0.

Hence, yk 6= 0 and
‖vk‖2D + ‖yk‖2D = R2

k.

Let ũk = uk/Rk = ṽk + ỹk. Then

‖ṽk‖2D + ‖ỹk‖2D = 1.

Since dimY < ∞, there are renamed subsequences such that ỹk → ỹ in D and
ũk = uk/Rk = ṽk + ỹk → ũ a.e. Since,

0 < G(uk)/R
2
k ≤ ‖ỹk‖2D − ‖ṽk‖2D − 2

∫
Ω
F (x, uk)/R

2
k,

we have by hypothesis
‖ỹk‖2D − (1− ‖ỹk‖2D) ≥ 0,

or

‖ỹk‖2D ≥ 1

2
.

Thus, ũ 6≡ 0. Lemma 9.2 implies

(9.9)

∫
Ω
F (x, uk)/R

2
k → ∞.

Since,

0 < G(uk)/R
2
k = ‖ỹk‖2D − ‖ṽk‖2D − 2

∫
Ω
F (x, uk)/R

2
k → −∞,

this produces a contradiction, and the lemma follows. □
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Lemma 9.6. For any R > 0

(9.10) b1 = sup
QR

G <∞.

Proof. If not, there is a sequence uk = vk + yk ∈ QR, such that G(uk) → ∞.
Consequently,

‖yk‖2D − ‖vk‖2D − 2

∫
Ω
F (x, uk) ≥ G(uk) → ∞.

Thus ‖yk‖2D → ∞. Since the sequence uk is bounded, there are subsequences such
that yk → y in Y and uk = vk + yk → u a.e. This provides a contradiction. □
Lemma 9.7. If uk, gk are bounded sequences in D, then there are renamed subse-
quences such that uk → u, gk → g a.e. and

(9.11)

∫
Ω
f(x, uk)gk →

∫
Ω
f(x, u)g

and

(9.12)

∫
Ω
F (x, uk) →

∫
Ω
F (x, u).

Proof. Since uk, gk are bounded in D, there are renamed subsequences for which
they converge weakly and a.e. to limits u, g. On renamed subsequences V uk → V u
and V gk → V g in L2(Ω). Since f(x, uk)gk → f(x, u)g a.e., and it is dominated by
|(|V uk|+ V )|V gk| which converges to |(|V u|+ V )|V g| in L1(Ω), we see that (9.11)
holds. The same argument applies to (9.12). □

10. Proofs of the theorems

Proof of Theorem 8.1. Let 0 < ρ < δ < R be such that Lemmas 9.4 and 9.5 hold.
Then

sup
A
G < inf

B
G,

where A = ∂QR and B = {w ∈M : ‖w‖D = ρ.} We let Ω be the interior of QR. By
Theorem 6.7, there is a sequence {uk} ⊂ D satisfying (6.29) with c ≥ b0 > 0. Let
ρk = ‖uk‖D, and assume that ρk → ∞. Let ũk = uk/ρk. Then ‖ũk‖D = 1. Hence,
there is a renamed subsequence such that ũk ⇀ ũ in D, and V ũk → V ũ in L2(Ω)
and a.e. This implies

1 =‖ũk‖2D ≤ [|(G′(uk), vk)|/2 + |(G′(uk), wk)|/2 + |(G′(uk), yk)|/2]/ρ2k

+

∫
Ω
|f(uk)| · (|wk|+ |yk|+ |vk|)/ρ2k.

Since |f(uk)| ·(|wk|+ |yk|+ |vk|)/ρ2k is dominated by |(|V ũk|+V ρ−1
k )(|V w̃k|+ |V ỹk|+

|V ṽk|) which converges in L1(Ω), we have in the limit

1 ≤
∫
Ω
|V ũ|(|V w̃|+ |V ỹ|+ |V ṽ|).

This shows that ũ 6≡ 0. Then by Lemma 9.2

(10.1) G(uk)/ρ
2
k = ‖w̃k‖2D + ‖ỹk‖2D − ‖ṽk‖2D − 2

∫
Ω
F (x, uk)/ρ

2
k → −∞.
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But this contradicts (6.29). Hence, the ρk are bounded.

Consequently, there is a renamed subsequence converging to a limit u weakly in
D and a.e. in Ω. For any φ ∈ C∞

0 (Ω), we have

(G′(uk), φ)/2 = (Auk, φ)−
∫
Ω
f(x, uk(x))φ(x) → 0.

Hence,

(G′(u), φ)/2 = (Au, φ)−
∫
Ω
f(x, u)φ(x) = 0,

showing that G′(u) = 0.

To show that u 6= 0, note that

(10.2) G(uk) = (Auk, uk)− 2

∫
Ω
F (x, uk).

By Lemma 9.7,

(Auk, uk) = (G′(uk), uk)/2−
∫
Ω
f(x, uk)uk(x) → −

∫
Ω
f(x, u)u(x) = (Au, u).

Since

(10.3)

∫
Ω
F (x, uk) →

∫
Ω
F (x, u),

we see that G(uk) → G(u). But G(uk) → c ≥ b0 > 0. Hence, G(u) > 0. Since
G(0) = 0, we see that u 6= 0. □
Proof of Theorem 8.2. By Theorem 8.1, M\{0} 6= ϕ. Let

γ = inf
M\{0}

G.

We must show that γ 6= −∞. Let {uk} be a sequence in M\{0} such that

G(uk) → γ.

Thus

(10.4) G(uk) = ‖wk‖2D + ‖yk‖2D − ‖vk‖2D − 2

∫
Ω
F (x, uk) → γ.

Note that ∫
Ω
H(x, uk(x)) = G(uk)− (G′(uk), uk)/2 → γ,

where
H(x, t) := tf(x, t)− 2F (x, t).

Also, H(x, uk(x)) ≥ −W (x) a.e. by (8.8). Hence,

(10.5) γ ≥ −
∫
Ω
W (x).

Since uk ∈ M\{0}, we have

(G′(uk), wk)/2 = ‖wk‖2D −
∫
Ω
f(x, uk(x))wk(x) = 0,
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(G′(uk), yk)/2 = ‖yk‖2D −
∫
Ω
f(x, uk(x))yk(x) = 0

and

(G′(uk), vk)/2 = −‖vk‖2D −
∫
Ω
f(x, uk(x))vk(x) = 0.

Let ρk = ‖uk‖D. Assume that ρk → ∞. Let ũk = uk/ρk. Then ‖ũk‖D = 1. Hence,
there is a renamed subsequence such that ũk ⇀ ũ in D, and V ũk → V ũ in L2(Ω)
and a.e. This implies

(10.6) 1 = ‖ũk‖2D ≤
∫
Ω
|f(uk)| · (|wk|+ |yk|+ |vk|)/ρ2k.

Since |f(uk)| ·(|wk|+ |yk|+ |vk|)/ρ2k is dominated by |(|V ũk|+V ρ−1
k )(|V w̃k|+ |V ỹk|+

|V ṽk|), in the limit we have,

1 ≤ C‖V ũ‖2.
This shows that ũ 6≡ 0.

Then by Lemma 9.2

(10.7) G(uk)/ρ
2
k = ‖w̃k‖2D + ‖ṽk‖2D − ‖ṽk‖2D − 2

∫
Ω
F (x, uk)/ρ

2
k → −∞.

But this contradicts (10.5). Hence, the ρk are bounded.

Consequently, there is a renamed subsequence converging to a limit u weakly in
D and a.e. in Ω. For any φ ∈ C∞

0 (Ω), we have

(G′(uk), φ)/2 = (wk, φ)D + (yk, φ)D − (vk, φ)D −
∫
Ω
f(x, uk(x))φ(x) → 0.

Hence,

(G′(u), φ)/2 = (w,φ)D + (y, φ)D − (v, φ)D −
∫
Ω
f(x, u)φ(x) = 0,

showing that G′(u) = 0. Thus u ∈ M.

I claim that u 6= 0. To see this, note that

(G′(uk), ûk)/2 = (wk, ûk)D + (yk, ûk)D − (vk, ûk)D −
∫
Ω
f(x, uk(x))ûk(x) = 0,

where ûk = wk − vk. Thus,

‖wk‖2D + ‖yk‖2D + ‖vk‖2D =

∫
Ω
f(x, uk)ûk =

∫
|uk|<δ

+

∫
|uk|>δ

≤ σ‖uk‖ · ‖ûk‖+ C‖uk‖q−1
q ‖ûk‖q.

Hence,
ε‖uk‖2D ≤ ‖uk‖2D − σ‖uk‖2 ≤ C ′‖uk‖q−1

q ‖ûk‖D
for some ε > 0. Since uk 6= 0, this shows that ‖uk‖q ≥ c > 0. By Corollary 9.1, (9.2)
cannot hold. Hence, there is a B(z, r) such that∫

B(z,r)
|uk|qdx ≥ α > 0,
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showing that u 6= 0 in B(z, r). From this we imply that u 6≡ 0.

To show that G(u) = γ, note that

(10.8) G(uk) = ‖wk‖2D + ‖yk‖2D − ‖vk‖2D − 2

∫
Ω
F (x, uk).

‖wk‖2D = (G′(uk), wk)/2−
∫
Ω
f(x, uk)wk(x) → −

∫
Ω
f(x, u)w(x) = ‖w‖2D,

‖yk‖2D = (G′(uk), yk)/2−
∫
Ω
f(x, uk)yk(x) → −

∫
Ω
f(x, u)y(x) = ‖y‖2D,

and

‖vk‖2D = −(G′(uk), vk)/2 +

∫
Ω
f(x, uk)vk(x) →

∫
Ω
f(x, u)v(x) = ‖v‖2D.

Since

(10.9)

∫
Ω
F (x, uk) →

∫
Ω
F (x, u),

we see that G(uk) → G(u). But G(uk) → γ. Hence, G(u) = γ. Thus, u is a ground
state solution. □

11. The semilinear wave equation

In this section we study periodic solutions of the Dirichlet problem for the semi-
linear wave equation:

(11.1) □u := utt − urr = p(t, r, u), t ∈ R, 0 < r < R,

(11.2) u(t, R) = u(t, 0) = 0, t ∈ R,

(11.3) u(t+ T, r) = u(t, r), t ∈ R, 0 ≤ r ≤ R.

Our basic assumption is that the ratio R/T is rational. Thus, we can write

(11.4) 2R/T = a/b,

where a, b are relatively prime positive integers. We also assume

(11.5) |p(t, r, s)| ≤ C(|s|+ 1), |s| > δ

and

(11.6) |p(r, t, s)| ≤ σ|s|, |s| < δ,

for some σ < α = π2

R2b2
and δ > 0. We have

Theorem 11.1. Under assumptions (11.4) - (11.6), the operator □ has a selfadjoint
extension L having discrete spectrum except for the point 0. Assume that

(11.7) P (t, r, s) ≥ 0,

where

(11.8) P (t, r, s) =

∫ s

0
p(t, r, σ) dσ,
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and

(11.9) P (t, r, s)/s2 → ∞, |s| → ∞.

Then (11.1) - (11.3) has at least one nontrivial solution.

An important aspect of this theorem is that all rational values of R/T are allowed.

12. The spectrum of the linear operator

In considering problem (11.1)–(11.3), we shall need to calculate the spectrum of
the linear operator □.

Theorem 12.1. Consider the operator

(12.1) □u = utt − urr

applied to functions u(t, r) in C∞(Q̄) satisfying

(12.2) u(t+ T, r) = u(t, r), t ∈ R, 0 ≤ r ≤ R

(12.3) u(t, R) = u(t, 0) = 0, t ∈ R,
where Q = [0, T ]×[0, R]. Then □ is symmetric on L2(Q). Assume that 2R/T = a/b,
where a, b are relatively prime integers (i.e., (a, b) = 1). Then □ has a selfadjoint
extension having no essential spectrum other than {0}.

Proof. If

(12.4) ψjk(t, r) = sin(jπr/R)e2πikt/T ,

then

(12.5) □ψjk = [(jπ/R)2 − (2πk/T )2]ψjk.

Thus ψjk(t, r) is an eigenfunction of □ with eigenvalue

(12.6) λjk = (jπ/R)2 − (2πk/T )2.

It is easily checked that the functions ψjk, when normalized, form a complete or-
thonormal sequence in L2(Q). We shall show that the corresponding eigenvalues
(12.6) are not dense in R. It will then follow that □ has a selfadjoint extension L
with spectrum equal to the closure of the set {λjk} (cf., e.g., [24]). Now

(12.7) λjk =
π2

R2b2
(bj − a|k|)(bj + a|k|).

Hence

(12.8) |λjk| ≥
π2

R2b2
|(bj + a|k|)|

when bj 6= ak, and

(12.9) λjk = 0, bj = ak.

Thus

(12.10) lim
j,|k|→∞
bj ̸=ak

|λjk| = ∞
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and

(12.11) lim
j,|k|→∞
bj=ak

|λjk| = 0.

Hence, the point 0 is the only limit point of eigenvalues. Consequently, it is in
σe(L). This completes the proof. □

Proof of Theorem 11.1. We apply Theorem 8.1. Let β be a number greater than
α. Then L = □ has no essential spectrum in the interval (0, β), but it has spectrum
in that interval. By Theorem 8.1 there is a nontrivial solution of

Lu(t, r) = p(t, r, u).

This is precisely what we want.

Theorem 12.2. Assume, in addition, that

(12.12) H(r, t, s) = sp(r, t, s)− 2P (r, t, s) ≥ −W (r, t), (r, t) ∈ Q, s ∈ R,

where W (r, t) ∈ L1(Q). Let M be the collection of solutions of (11.1). Then there
is a nontrivial solution that minimizes the energy functional

(12.13) G(u) = (Lu, u)− 2

∫
Q
P (r, t, u), u ∈ D

over M\{0}.

Such solutions are called ground state solutions.

Proof. This follows from Theorem 8.2. □

13. Radially symmetric wave equations

In this section we study radially symmetric periodic solutions of the Dirichlet
problem for the semilinear wave equation

(13.1) □u := utt −∆u = f(t, x, u), t ∈ R, x ∈ BR,

(13.2) u(t, x) = 0, t ∈ R, x ∈ ∂BR,

(13.3) u(t+ T, x) = u(t, x), t ∈ R, x ∈ BR,

where

(13.4) BR = {x ∈ Rn : |x| < R}.

In this case we have

f(t, x, u) = f(t, |x|, u), x ∈ BR.

Our basic assumption is that the ratio R/T is rational. Thus, we can write

(13.5) 8R/T = a/b,

where a, b are relatively prime positive integers. We show that

(13.6) n 6≡ 3 (mod (4, a))
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implies that the linear problem corresponding to (13.1) – (13.3) has no essential
spectrum. If

(13.7) n ≡ 3 (mod (4, a))

then the essential spectrum of the linear operator consists of precisely one point λ0,
where

(13.8) λ0 = −(n− 3)(n− 1)/4R2.

This shows that the spectrum has at most one limit point.

Let q be any number satisfying

2 < q ≤ 2∗ = 2n/(n− 2), n > 2

2 < q <∞, n ≤ 2

and let u(r, t) be a Carathéodory function on R× R. By the Sobolev inequality,

‖u‖q ≤ C‖u‖H , u ∈ H,

where

‖u‖q := (

∫
Rn

|u(|x|)|qdx)1/q = (cn

∫
R
|u(r)|qrn−1dr)1/q, ‖u‖ = ‖u‖2.

We consider the nonlinear case for f(t, r, s) satisfying

(13.9) |f(t, r, s)| ≤ C(|s|q−1 + 1), |s| > δ, r = |x|,

and

(13.10) |f(r, t, s)| ≤ σ|s|, |s| < δ,

for some σ < α = smallest positive eigenvalue and δ > 0. We have

Theorem 13.1. Under assumptions (11.2) - (11.4), the operator □ has a selfadjoint
extension L having discrete spectrum except for the point λ0, where

λ0 = −(n− 3)(n− 1)/4R2

when n ≡ 3(mod (4, a)). Assume that

(13.11) F (t, r, s) ≥ 0,

where

(13.12) F (t, r, s) =

∫ s

0
f(t, r, σ) dσ,

and

(13.13) F (t, r, s)/s2 → ∞, |s| → ∞.

Then the problem (13.1) – (13.3) has at least one nontrivial solution.

An important aspect of this theorem is that all rational values of R/T are allowed.
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Theorem 13.2. Assume, in addition, that

(13.14) H(r, t, s) = sp(r, t, s)− 2P (r, t, s) ≥ −W (r, t), (r, t) ∈ Q, s ∈ R,
where W (r, t) ∈ L1(Q). Let M be the collection of solutions of (13.1) – (13.3) .
Then there is a nontrivial solution that minimizes the energy functional

(13.15) G(u) = (Lu, u)− 2

∫
Q
P (r, t, u), u ∈ D

over M\{0}.

Such solutions are called ground state solutions.

Before proving Theorems 13.1 and 13.2, we shall need to determine the spectrum
of the linear term.

14. The spectrum of the linear operator

In proving Theorem 13.1 we shall need to calculate the spectrum of the linear
operator □ applied to periodic rotationally symmetric functions. Specifically, we
shall need

Theorem 14.1. Let L0 be the operator

(14.1) L0u = utt − urr − r−1(n− 1)ur

applied to functions u(t, r) in C∞(Q̄) satisfying

(14.2) u(T, r) = u(0, r), ut(T, r) = ut(0, r), 0 ≤ r ≤ R

(14.3) u(t, R) = ur(t, 0) = 0, t ∈ R
where Q = [0, T ] × [0, R]. Then L0 is symmetric on L2(Q, ρ), where ρ = rn−1.
Assume that 8R/T = a/b, where a, b are relatively prime integers (i.e., (a, b) = 1).
Then L0 has a selfadjoint extension L having no essential spectrum other than the
point λ0 = −(n − 3)(n − 1)/4R2. If n 6≡ 3 (mod(4, a)), then L has no essential
spectrum. If n ≡ 3 (mod(4, a)), then the essential spectrum of L is precisely the
point λ0.

Proof. Let ν = (n− 2)/2 and let γ be a positive root of Jν(x) = 0, where Jν is the
Bessel function of the first kind. Set

(14.4) φ(r) = Jν(γr/R)/r
ν .

Then

(14.5) φ′′ + (n− 1)φ′/r = (x2J
′′
ν + xJ

′
ν − ν2Jν)/r

ν+2 = −γ2Jν/R2rν ,

where x = γr/R. If

(14.6) ψ(t, r) = φ(r)e2πikt/T ,

then

(14.7) L0ψ = [(γ/R)2 − (2πk/T )2]ψ.
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Let γj be the j-th positive root of Jν(x) = 0, and set

(14.8) ψjk(t, r) = r−νJν(γjr/R)e
2πikt/T .

Then ψjk(t, r) is an eigenfunction of L0 with eigenvalue

(14.9) λjk = (γj/R)
2 − (2πk/T )2.

It is easily checked that the functions ψjk, when normalized, form a complete or-
thonormal sequence in L2(Q, ρ). We shall show that the corresponding eigenvalues
(14.9) are not dense in R. It will then follow that L0 has a selfadjoint extension L
with spectrum equal to the closure of the set {λjk} (cf., e.g., [24]). Now

(14.10) γj = βj − (µ− 1)/8βj +O(β−3
j ) as βj → ∞

where

(14.11) βj = π(j +
1

2
ν − 1

4
), µ = 4ν2

(cf., e.g., [33]). Thus

λjkR
2 = [βj − τk − (µ− 1)/8βj +O(β−3

j )]

· [βj + τk − (µ− 1)/8βj +O(β−3
j )]

= β2j − τ2k − (µ− 1)/4 +O(β−2
j )

where τk = 2kπR/T . (We may assume k ≥ 0.) Now

(14.12) βj − τk = π(j +
1

2
ν − 1

4
− ak/4b) = π[(4j + n− 3)b− ak]/4b.

Since the expression in the brackets is an integer, we see that either βj = τk or

(14.13) |βj − τk| ≥ π/4b.

Thus

(14.14) lim
j,|k|→∞
βj=τk

λjk = −(µ− 1)/4R2 = λ0

and

(14.15) lim
j,|k|→∞
βj ̸=τk

|λjk| = ∞.

If n− 3 is not a multiple of (4, a), then

(14.16) βj − τk = π[(4j + n− 3)− ak/b]/4

can never vanish. To see this, note that if (b, k) 6= b, then ak/b is not an integer.
Hence βj 6= τk. If b = (b, k), then

(14.17) (n− 3) 6= ak′ − 4j ∀j, k′ = k/b.

Thus in this case we always have βj 6= τk and |λjk| → ∞ as j, k → ∞. On the other
hand, if n ≡ 3 (mod(4, a)), then there is an infinite number of positive integers j, k′

such that

(14.18) n− 3 = ak′ − 4j.
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Hence, the point λ0 is a limit point of eigenvalues. Consequently, it is in σe(L).
This completes the proof. □

15. Proof of Theorems 13.1 and 13.2.

Proof of Theorem 13.1. In all cases L has no essential spectrum in an interval [α, β)

with 0 < α < β. We let M be the subspace of E = D(|L|1/2) on which L ≥ β, N
the subspace on which L ≤ 0, and Y the subspace on which α ≤ L ≤ β.

By Theorem 8.1 there is a nontrivial solution of

Lu(t, r) = f(t, r, u).

This is precisely what we want. □

Proof of Theorem 13.2. This follows from Theorem 8.2. □

16. Schrödinger operators

In [28,30] we proved

Theorem 16.1. Let A = −∆+ V(x) on H1(Rn). Assume

(1) V is continuous, 1-periodic in x1, · · · , xk and (a, b) ⊂ ρ(A), a < 0 < b,
(2) f(x, t) is continuous, 1-periodic in x1, · · · , xk and

|f(x, t)| ≤ C(|t|p−1 + 1)

for some p ∈ (2, 2∗), 2∗ := 2n/(n− 2), n > 2, 2∗ := ∞, n ≤ 2.
(3)

|f(x, t)| ≤ σ|t|, |t| < δ, x ∈ Rn, t ∈ R,

for some σ < min[−a, b], δ > 0.
(4)

F (x, t) ≥ 0, x ∈ Rn, t ∈ R.

(5)

F (x, t)/t2 → ∞ as t2 → ∞

uniformly in x.
(6)

2F (x, t+ s)− 2F (x, t)− (2rs− (r − 1)2t)f(x, t)

≥−W (x), x ∈ Rn, s, t ∈ R, r ∈ [0, 1],

where W (x) ∈ L1(Rn).

Then

(16.1) Au = f(x, u), u ∈ D.

has a nontrivial ground state solution.
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Theorems 8.1 and 8.2 allow us to dispense with periodicity.

In proving a non-periodic counterpart of Theorem 16.1 we shall use special norms.
Let α ≥ 0, δ > 0, r, t ≥ 1 be parameters with t allowed to be ∞. For α > 0 we
define

Mα,r,t,δ(V) =

∫ (∫
|x−y|<δ

|V(x)|rωα(x− y)dx

)t/r

dy

1/t

,

1 ≤ t <∞

= sup
y

(∫
|x−y|<δ

|V(x)|rωα(x− y)dx

)1/r

,

t = ∞
where ωα(x) is given by

ωs(x) = |x|s−n, 0 < s < n,

= 1− log |x|2, s = n,

= 1, s > n.

For α = 0 we put

(16.2) M0,r,t,δ(V) = ‖V‖t.
If we define

Vα,r,δ(y) =

(∫
|x−y|<δ

|V(x)|rωα(x− y)dx

)1/r

, α > 0,

= |V(y)|, α = 0,(16.3)

then we have

(16.4) Mα,r,t,δ(V) = ‖Vα,r,δ||t.
We also put

(16.5) Mα,r,t(V) =Mα,r,t,1(V), Vα,r(y) = Vα,r,1(y).

If we define

(16.6) Mα,p(V) = sup
y

∫
|x|<1

|V(x− y)|p|x|α−ndx,

then

(16.7) Mα,r(V) =Mα,r,∞(V), 0 < α < n.

The following was proved in [15,29].

Theorem 16.2. Let P (D) be an elliptic operator of order m, and let V(x) be a
function in Mα,r,t, where 1 < p <∞, 1 ≤ r <∞, 1 ≤ t ≤ ∞, α ≥ 0 (α 6= 0 if t < r)
and

(16.8) α/nr ≤ m/n− 1/t.

Assume that one of the following holds:
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(a) r 6= 1,
(b) inequality (16.8) is strict,
(c) p = 2, r = 1, t = ∞.

If t = ∞, assume in addition that

(16.9) Mα,r,t,δ(V) → 0 as δ → 0

and

(16.10) Vα,r(y) → 0 as |y| → ∞

hold. If {P (ξ), ξ ∈ En} 6= R, then P (D) + V has an s-extension B such that

(16.11) σe(B) = σ(P0) = {P (ξ), ξ ∈ En}

holds.

Using these norms we can prove:

Theorem 16.3. Let A be a selfadjoint extension of −∆+V(x) on H1(Rn) satisfying
the hypotheses of Theorem 16.2 for m=2. Assume

(1) There is an interval [0, b] satisfying [0, b]∩ σe(A) = ϕ, but [a, b]∩ σ(A) 6= ϕ,
where 0 < a < b.

(2) f(x, t) is a Caratheódory function on Rn × R satisfying

(16.12) |f(x, t)| ≤ V (x)2(|t|+ 1), x ∈ Rn, |t| ≥ δ,

and

(16.13) |f(x, t)| ≤ σ|t|, |t| < δ, x ∈ Rn, t ∈ R,

for some σ < a, δ > 0, where V (x) > 0 is a function in L2(Rn) such that

‖V u‖ ≤ C‖u‖D, u ∈ D

and multiplication by V (x) is a compact operator from D to L2(Rn).
(3)

F (x, t) ≥ 0, x ∈ Rn, t ∈ R.
(4)

F (x, t)/t2 → ∞ as t2 → ∞
uniformly in x.

(5)

H(x, t) := tf(x, t)− 2F (x, t) ≥ −W (x), x ∈ Rn, t ∈ R,
where W (x) ∈ L1(Rn).

Then

(16.14) Au = f(x, u), u ∈ D.

has a nontrivial ground state solution.

Proof. If V satisfies the hypotheses of Theorem 16.2 with m = 2, then −∆+ V(x)
will satisfy the hypotheses of Theorem 16.3. Apply Theorems 8.1 and 8.2. □
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Remark 16.4. Note that

2F (x, t+ s)− 2F (x, t)− (2rs− (r − 1)2t)f(x, t)

≥−W (x), x ∈ Rn, s, t ∈ R, r ∈ [0, 1],

implies

(16.15) H(x, t) := tf(x, t)− 2F (x, t) ≥ −W (x), x ∈ Ω, t ∈ R
(just take s = −t and r = 0).
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