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SURJECTIVITY, ZEROS AND FIXED POINTS OF SOME
SEMILINEAR MAPPINGS IN NORMED SPACES

JEAN MAWHIN

ABSTRACT. We present various sufficient conditions for the surjectivity of weakly
coercive mappings and the existence of zeros of some mappings of the form L+ g
between normed spaces, where L is a linear Fredholm mapping of index zero and
g is L-compact.

1. INTRODUCTION

The topological degree has been one the favorite tools of Louis Nirenberg in
dealing with nonlinear problems in partial differential equations and geometry. He
also delivered a superb series of lectures on nonlinear functional analysis [13] at the
Courant Institute, during the academic year 1973-74. Besides a clear presentation of
Brouwer and Leray-Schauder topological degrees and of several of its extensions like
essential maps and stable homotopy groups, those lecture notes describe striking
applications to bifurcation theory, monotone operators and min-max theorems.

A welcome addition to [13] is the survey paper [14] based on the Hermann Weyl
lectures given by Nirenberg in Princeton in March 1980. The part devoted to
topological methods deals with recent extensions of Leray-Schauder degree theory,
in particular to Fredholm maps with positive or zero index, and to degree theories
associated to closed orbits of ordinary differential equations.

In this paper are stated and proved a number of conditions for the surjectivity and
the existence of zeros of some nonlinear perturbations of linear Fredholm operators L
of index zero between normed and prehilbertian spaces. Some fixed point theorems
are obtained when L is the identity. Some of those results may be new even in the
finite-dimensional case, as shown by an example at the end of the paper.

The used tool in the whole paper is the coincidence degree theory of mappings
of the form f = L — g when g satisfies a suitable compactness condition, which
reduces to the usual one when L is the identity [11,12]. The requested concepts and
results of coincidence degree theory are briefly recalled in Section 2 for the reader’s
convenience.

In Section 3, which deals with weakly coercive mappings, namely such that

|f(x)|]| — oo when ||z| — oo, we show in Theorem 3.1 that a weakly coercive
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mapping f = L — g, with range in a prehilbertian space H with inner product (-, ),
is surjective when L is invertible and the asymptotic condition

lim inf M > —00
|ll|+oo,zeD(L) || L||

is satisfied. The special cases of L-coercive mappings, such that

(Lz, f(x))
[ L]

and of L-monotone mappings, such that
(Lz =), f(x) — f(3)) >0 forall z,y e D(L),

are considered as well.

— 00 when ||z|| — oo in D(L),

A second class of surjectivity results for weakly coercive mappings is based upon
the Theorem 4.2, showing that such a mapping f = L — g between normed spaces
is surjective when the coincidence degree dr[f, Br, 2] is different from zero for some
z € Y and open balls Br of center 0 and sufficiently large radius R. This theorem
extends to the frame of coincidence degree some interesting results contained in
Section 5.4 of Berger’s monograph [1] and attributed to Plastock [15] (although
not contained in this reference). Special cases deal with odd mappings, mappings
with linear growth and locally one-to-one mappings. See also [3] and [4] for the
finite-dimensional case.

In Section 5, we introduce and name Poincaré-Bohl coincidence theorem an ex-
istence result for a zero of f = L — g defined in the closure of some open bounded
neighborhood €2 of the origin, and taking values in a prehilbertian space H, when
L is invertible and, for some (not necessarily continuous) mapping h : X — H, one
has

(h(x), f(x)) >0 and (h(z),L(x)) >0 on ON.

Special cases of this Theorem 5.1 are a fixed point theorem of Krasnosel’skii (see [9]
for a special case and [10], Thm. 21.4) when L = I and

(z,g(z)) < [|z]|* on 99,

whose particular case for () = Bp is named here Hadamard fixed point theorem,
because of the first use by Hadamard of this assumption in his proof of the Brouwer
fixed point theorem given in [7].

When € is the interior of a closed convex neighborhood C' of the origin, some
arguments of convex analysis are used to prove in Theorem 5.6 a new variant of
the fixed point theorem of Krasnosel’skii, namely the existence of a fixed point of g
when

(ve(z),9(2)) < (ve(x),z) on AC,
for some outer normal field v : 9C — dB1 to OC.
The special case of Theorem 5.6 where H = R" contains and unifies the well

known existence theorems of Hadamard and of Poincaré-Miranda, as well as new
existence conditions.
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2. THE SPACES AND THE MAPPINGS

In the whole paper, X and Y always denote real normed spaces, and H a real
prehilbertian (or Hilbert space if explicitly mentioned) with inner product (-,-). To
avoid heavy notations, we use the same symbol || - || for the norms in X and Y.

2.1. L-compact and L-completely continuous mappings in normed spaces.
We consider semilinear mappings f = L — g, where L : D(L) C X — Y is a linear
Fredholm mapping of index zero, and g : @ C X — Y is L-compact on  for some
open bounded set Q C X.

Recall that L : D(L) € X — Y is Fredholm of index zero if L has a closed
range R(L), and if the dimensions of its kernel N(L) and the codimension of its
range are finite and equal. On the other hand, g is L-compact on ( if there exists
a linear mapping A : X — Y with finite rank such that L + A is invertible and
(L+ A)"'g : Q@ — X is compact, i.e. continuous and such that (L + A)~1g(Q)
is relatively compact. We denote by F(L) the set of such linear mappings A. For
example, if P is a continuous projector in X such that R(P) = N(L), Q a continuous
projector in Y such that N(Q) = R(L), and J : N(L) — R(Q) an isomorphism,
then L 4+ JP is invertible.

We denote by Cr,(Q,Y) the set of mappings f = L — g with L: D(L) C X - Y
Fredholm of index 0 and ¢ : Q — Y L-compact on €. In the case where X =Y and
L = I, we can take A = 0 and the I-compactness of g on € reduces to the usual
compactness of g on Q. So C;(£2, X) is the set of compact perturbations of identity
on . If X and Y have the same finite dimension, we can always take L = 0 and
define Cy(9,Y) as the set of continuous mappings f : 2 C R® — R™.

When f = L—g with g : X — Y L-compact on B for each open bounded B C X,
g is said to be L-completely continuous on X and we write f € Kp(X,Y).
For X =Y and L = I, the elements of K;(X, X) are the completely continuous
perturbations of identity in X.

See [11,12] for more details.

2.2. Coincidence degree of L-compact perturbations of linear Fredholm
mappings of index zero. Given y ¢ f(D(L) N 0f2), one can associate to f =
L—geCr(Q,Y) an integer dr[f,Q,y], the coincidence degree of f (or of L and
g) in © at y, which has the following fundamental properties:
(1) Normalization: if N(L)= {0}, d.[L,Q,y|=1ify € L(Q) and di[L,Q, y]=
0 if y & L(12).
(2) Additivity : if Q1 C Q and Qo C Q are open and disjoints and y &
FID(L) N (2N (21 UQ)], then di[f,Q,y] = dL[f, @1, y] + di[f, Q2. y].
(3) Homotopy invariance : if F = L — G € C(Q2 x [0,1],Y) is such that
y & F[(D(L)NoQ) x [0,1]], then dp[F (-, N),Q,y] is constant in [0, 1].
By definition,
(2.1) drlf.Qy) = drs[l — (L+ A) " (g + A), 2, (L + A) "y,

where A € F(L), and drg denotes the Leray-Schauder degree [3,13]. The right-
hand member of (2.1) does not depend upon the choice of A when A remains in the
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same equivalence class in F(L) defined by the relation B ~ A if the Leray-Schauder
index izg[I + (L + B)"'(A — B),0] = 1. Clearly, when X =Y and f € C;(, X),
we can take A =0 and

d[[f>Qay] = dLS[I - g,Q,y]

When f € Co(R2,R"), we can take do[f,Q,y) = dg[f,,y], where dg denotes the
Brouwer degree. See [11,12] for more details.

Useful consequences of the fundamental properties of the coincidence degree are
the following ones :

4. Existence : If di[f,Q,y]| #0, then y € f(D(L) N ).
5. Excision : If Q; C Q is open and y & fID(L)N(Q\Q1)], then dp[f,Q,y] =

dL [fa le y] .
6. Generalized Borsuk theorem : If Q2 is a symmetric open bounded neigh-

borhood of 0 and f is odd, then dr[f,,0] =1 (mod. 2).

2.3. The case where (L+A)~! is continuous for some A in F(L). The coinci-
dence degree has further properties when the following supplementary assumption
holds :

(2.2) (L+ A"t s continuous for some A€ F(L).

If condition (2.2) holds for one A € F(L), it holds for all A € F(L), because of the
easily verified formula for B € F(L) (apply L + B to both members)

(L+B)'=[I—-(L+B)""(B-A|(L+A4)~"
Assumption (2.2) holds in particular when X and Y are Banach spaces and L is

closed, namely when (z,) — x and Lz, — y imply that z € D(L) and y = Lz.

Lemma 2.1. If Q C X is open and bounded, f € C(Q,Y), L satisfies condition
(2.2), and y & f(D(L)NON), there exists 6 > 0 such that

(2.3) |f(z) =yl >d forall x € D(L)NON.
Proof. 1f (2.3) does not hold, there is a sequence (z)ren in D(L) N IS such that
Lxp —g(zr) —y — 0 as k — oo,
and hence, using condition (2.2), such that
xp — (L4 A)g(xp) + Azp +y] = 0 as k — oo.

By the L-compactness of g on Q, (L+A4)~!(g+A)(Q) is relatively compact, and there
is a subsequence (z, )nen such that the sequence ((L + A)~Y[g(ak, ) + Axk, |)nen
converges to some v € X and hence the sequence (zj, )nen converges to —v — (L +
A)7ly := 2 € 992 when n — oco. Therefore, by continuity of (L + A)~1(g + A),

x— (L+A) Mg(z) + Az +y] = 0,
so that x € D(L) N 0N, a contradiction to the assumption y ¢ f(D(L)N o). O

A consequence of Lemma 2.1 is the invariance of the coincidence degree for small
perturbations of y and an openness property of f.
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Lemma 2.2. If f € C1(Q,Y) for some open bounded set Q C X, y & f(D(L)NOQ),
L satisfies condition (2.2), and

dL[f? ny] 7& 07
then there exists § > 0 such that
dL[fv Qv Z] = dL[fa Qa y] when ||Z - yH < 9.
Furthermore, f() is a neighborhood of y.

Proof. By Lemma 2.1, there exists § > 0 such that condition (2.3) holds, and the
homotopy F : Q2 x [0,1] — Y defined by

F(z,A\):=Lx —g(x) — (1 =Ny — Az
is such that, for all z € D(L) N 9Q and X € [0, 1],
E@ M = [[f (@) —yll = Alz =yl =6 [lz =yl >0
if ||z —y|| < 6. If it is the case, 0 € F'((D(L) N 092) x [0,1]) and
dp[f, 2] = d[F(-,1),0] = dg[F(-,0),0] = dr[f,,y] # 0.
Consequently z € f(D(L)NQ) for all z € y + By. O

3. WEAKLY COERCIVE MAPPINGS : ASYMPTOTIC CONDITIONS FOR SURJECTIVITY

3.1. Weakly coercive mappings. We say that f : D(f) C X — Y is weakly
coercive if

3.1 lim z)|| = +o0.
(3.) Lo dm )]

The following examples of continuous real functions of one variable show that sur-
jectivity and weak coercivity are independent concepts :

(a) f(x) =23 is onto and weakly coercive
(b) f(z) = 22 is not onto and weakly coercive
(c) f(z) = 2®sinx is onto and not weakly coercive.

3.2. An asymptotic condition for surjectivity of some weakly coercive
mappings. In this subsection, we introduce a sufficient condition for a weakly
coercive mapping f € Kr(X, H) to be onto.

Theorem 3.1. Any weakly coercive mapping f = L —g € Kp(X, H), such that

- e (L f(@)
(3:2) N = {0} and | Mminf TR > T

18 onto.

Proof. By assumption (3.2), there exists ¢ € R and r > 0 such that

(3.3) (Lz, f(x)) > c||Lz|| when |z| > r.

Let y € H and let us define the homotopy F' : D(L) x [0,1] — H by
F(z,\) = (1 =X)Lz + \f(z) —y] = Lz — ANg(z) + y].



284 JEAN MAWHIN
Clearly, F'(z,0) = Lz = 0 if and only if x = 0. If A € (0, 1] and F(z, A\) = 0, then

1—

(3.4) 1£) ~ 9l = 5>zl

and, using (3.3), if furthermore ||z| > r,
(1 = N|La[* = =AML, f(z)) + MLz, y) < =Ac|| Lz || + |lyll]| Lz].-
As N(L) = {0}, this implies that, for ||z| > r and X € (0, 1],

1-A
— Iz < el + lyll;

which, combined to (3.4), gives
(3.5) 1 () =yl <lel + llyll if Flz,A) =0, [lz] =7, A € (0,1].

Now, the weak coerciveness of f (and hence of f(-) — y) implies the existence of
R > r such that

(3.6) [zl < R when [[f(x) = yll < e[ + [[y]-

It follows from (3.5), (3.6) and N(L) = {0} that F'(z,\) # 0 when (z,\) € (D(L)N
OBR) x [0,1], and the homotopy invariance of the coincidence degree implies that

dilf, Br,y] = di[F(-,1),Br,y]l =dL[F(-,0), Br,y]
= di[L,Bg,0] =1.

By the existence property of the coincidence degree, y € f(D(L) N BR). O

The special case where X = H and L = I is of interest.

Corollary 3.2. Any weakly coercive mapping f € Kr(H, H) such that

(3.7) liminfM > —00

Iz—o0  [l2]]
158 onto.

When X = H = R" with the usual inner product, this surjectivity result goes as
follows.

Corollary 3.3. Any weakly coercive mapping f € C(R™,R™) satisfying condition
(5.7) is onto.

Remark 3.4. In the example (a) of Subsection 3.1, condition (3.7) is satisfied,
although in example (b), lim inf |, % = —o0. In example (c), neither the weak
coercivity nor the condition (3.7) hold.
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3.3. L-coercive mappings. We can reinforce the coerciveness condition to obtain
surjectivity without assumption (3.2). A mapping f € Kp(X,H) is said to be
L-coercive if

Lz, f())

(3.8) N(L) = {0} and ol oo if el = oo in D(L).

When X = H and L = I, we recover the classical concept of coerciveness of f,
namely,

(z, f(x))

——" s 00 if || — oo.
]

As, for x # 0,

(La, f(x)) _ ‘(Lw,f(x»
[ Lal] | [ L]
we see that any L-coercive mapping is weakly coercive. On the other hand, condition

(3.8) trivially implies the assumption (3.2) of Theorem 3.1, so that the following
results hold.

‘ < £ @)l

Corollary 3.5. Any L-coercive mapping f € Kr(X, H) is onto.
Corollary 3.6. Any coercive mapping f € K;(H, H) is onto.
Corollary 3.7. Any coercive mapping f € C(R™,R™) is onto.

3.4. L-monotone mappings. A mapping f = L —g¢g: D(L) C X — H is called
L-monotone if it satisfies the condition

(3.9) N(L) = {0} and (L(z —y), f(x) — f(y)) > 0 for all z,y € D(L).

When X = H and L = I, the condition (3.9) reduces to the classical definition of
monotonicity

<':U_y7f($) _f(y)> >0 for all T,y € H.
If we observe that the condition (3.9) for y = 0 implies that
(L, f(x)) = (L, f(0)) = =l FO)[[| Lz for all z € D(L),

we see that assumption (3.2) of Theorem 3.1 is satisfied for all L-monotone map-
pings, so that the following results immediately follow.

Corollary 3.8. Any L-monotone weakly coercive mapping f € Kr(X, H) is onto.
Corollary 3.9. Any monotone weakly coercive mapping f € Ki(H, H) is onto.
Corollary 3.10. Any monotone weakly coercive mapping f € C(R™,R"™) is onto.

Remark 3.11. When H is a Hilbert space, the statements of Corollaries 3.6 and
3.9 remain true for monotone mappings f : H — H which are continuous on finite-
dimensional subspaces of H. See [4,13] for details and proofs.
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4. WEAKLY COERCIVE MAPPINGS : DEGREE CONDITIONS FOR SURJECTIVITY

4.1. A degree condition for the surjectivity of weakly coercive mappings.
Another way for obtaining the surjectivity of weakly coercive mappings f € Kr(X,Y)
is based upon the following considerations.

Lemma 4.1. If the mapping f € Kr(X,Y) is weakly coercive, then, for eachy € Y,
there exists Ry, > 0 such that, for any R > Ry, d[f, Br,y] is defined and constant.

Proof. Tt follows from the definition of weak coerciveness that, given y € Y, there
exists R, > 0 such that

| f(z)|| > |ly|]| forall x € D(L) verifying ||z| > R,.

Consequently, y & f(D(L)NOBg) for all R > R,, so that d,[f, Br,y] is well defined,
and y ¢ f(Br \ Bg,,y]. The excision property of the coincidence degree implies
that

dilf, Br,y| = dp|f, Br,,y] for all R> R,.

We have now the following sufficient condition for surjectivity.

Theorem 4.2. Any mapping weakly coercive f € Kr(X,Y) such thatdy|f, Br., z] #
0 for some z € Y 1is onto.

Proof. Let y € Y and let us consider the homotopy F' : D(L) x [0,1] — Y defined
by

Flx,N)=f(x)—(1—-Nz—Ay=Lx—g(x)— (1 =Nz —\y.
Using the weak coerciveness of f, there exists R, > 0 such that
1f @) > |lyll when z € D(L) and |z| > R,
and there exists R, > 0 such that
| f(x)]| > ||z]] when = € D(L) and ||z| > R..
Thus, for z € D(L) such that ||z|| > R, := max{R,, R.} and X € [0, 1],
IF@)I = @ =NIf @I+ Alf @) > (1 =A)lzl + Ayl
= [[(T=X)z+ Ayl
and hence
[E(z, M = 1f (@) = [[(1 = X)z+ Ayl > 0
for all z € (D(L) N 0BR,) x [0,1]. The homotopy invariance and the excision
property of the coincidence degree imply that
dL[faBRyay] = dL[f’BRwy]:dL[F('a]-)?BR*aO]
= dL[F('7O)7BR*aO] = dL[f’ BRwZ]
= dp[f,Br.,z] #0.

The existence of x € Bg, such that f(z) = y follows from the existence property of
the coincidence degree. 4
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Corollary 4.3. Any weakly coercive mapping f € K1(X, X) such that drs|f, Br., 2] #
0 for some z € X is onto.

Corollary 4.4. Any weakly coercive mapping f € C(R™,R") such that dg[f, Br., 2] #
0 for some z is onto.

4.2. Odd mappings. A first application of Theorem 4.2 involve the odd mappings.
Corollary 4.5. Any weakly coercive odd mapping f € Kr(X,Y) is onto.

Proof. As fisodd, f(0) = 0 and, by the generalized Borsuk theorem, d,[f, Br,,0] =
1 (mod. 2). The result follows from Theorem 4.2. O

Corollary 4.6. Any weakly coercive odd mapping f € K;(X, X) is onto.
Corollary 4.7. Any weakly coercive odd mapping f € C(R™,R") is onto.

4.3. Mappings with linear growth. Let L : D(L) C X — Y be linear, Fredholm
of index zero, such that N(L) = {0} and L™ : Y — X is continuous.

From the identity z = L~!Lx for all x € D(L), we deduce that

(4.1) |Lz|| > |L7Y 7Y |z| for all € D(L)
and hence
(4.2) |Lz|| — oo if z € D(L) and ||z| — oo.

We say that the mapping h : X — Y is L-quasibounded if

, 1A ()]
(4.3) |h|z := lim sup
lzll—oo 1Ll

< +00

|h|r is called the L-quasinorm of h. For X =Y and L = I the above concepts
reduce to the classical ones of quasiboundedness and quasinorm introduced by
Granas [6].

The mapping h : X — Y is called asymptotically linear if there exists a linear
continuous mapping C' : X — Y such that
h(z) — Cxz

lz—o0 |l

(4.4) = 0.

It is easy to see that at most one C satisfies (4.4). If it exists, it is denoted by
hl and named the derivative at infinity of h. The concept was introduced by
Krasnosel’skii [8].

If h is asymptotically linear with derivative at infinity h’_, and if L~! exists and
is bounded, then, for z € D(L) \ {0}, we obtain, using (4.1),
|h@@)] - [[h(x) = kil | [[hooz ]|
Lzl — [ L] [ L]
1A (z) = M|
]

[
||

IN

I~ L7

9
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and hence
h h —n
timsup PO oyt gy DA = heotll Ly pay g g
L oo
lz—oo L]l ]| =00 k4l ull=1

= [IL7HIIA%,
which shows that h is L-quasibounded and |h|p, < ||[L7Y|[|AL |-

We have a surjectivity theorem for some quasibounded and L-completely contin-
uous perturbations of L.

Theorem 4.8. Any mapping f = L — g € K(X,Y) such that N(L) = {0},
L™' .Y — X is bounded, g : X — Y is L-quasibounded and |g|;, < 1 is weakly
coercive and onto.

Proof. Define the homotopy H : D(L) x [0,1] = Y by
H(z,\) = Lz — \g(x).
Let € > 0 be such that
lglr +e < 1.

By the quasiboundedness of g, there exists Ry > 0 such that

lg(@)|l < (lglz + &)l Lz]| when [[z]| = Ro.
Consequently, for all z € D(L) such that ||z|| > Ry and X € [0, 1],
(4.5) 1H (2, || = [[Lz = Ag()|| = [L = (9] + &)l L] >0,

so that, using (4.2), ||H(z,1)|| = ||f(x)|| = oo when x € D(L) and |z| — oo,
and f is weakly coercive. From (4.5) and the homotopy invariance property of the
coincidence degree, we obtain

dL[f7 BR()’O} = dL[H() 1)7BR070] = dL[H('70)7BR070]
= dy[L,Br,,0] = 1.

The result follows from Theorem 4.2. O

We also have a surjectivity theorem for asymptotically linear mappings.

Theorem 4.9. Any mapping f = L — g € K(X,Y) such that g : X — X s
asymptotically linear and L — g., : D(L) € X — Y has a continuous inverse
(L—g;)™t:Y = X is weakly coercive and onto.

Proof. Let us introduce the homotopy F : D(L) x [0,1] — Y by
F(x,\) = Lz — \g(z) — (1 — N) g,z

Let £ > 0 be such that ¢||(L — ¢’,)~!|| < 1. By assumption, there exists Ry > 0
such that one has

lg(z) = ghorll < ellzl| when [l > Ro.
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Consequently, for all A € [0,1] and = € D(L) such that ||z| > Ry, we have, using
(4.1) applied to L — ¢/,

(2, M

ILz — ghorw — Ag(x) — gh)]

1Lz — glozll = llg(z) — goo)l]

(1L = gl Hlll — el

(1L = g5 lITH ™ 1 = el (L = ga) M I -

By the choice of €, F(z,\) # 0 for all (z,\) € (D(L) N dBg,) x [0,1], and, taking
A = 1, we obtain the weak coercivity of f. From the homotopy invariance of the
coincidence degree, we get

dp[f, Bry,0] = dr[F(-,1),Bg,,0] = di[F(-,0), Br,,0]
= dy|L— g, Bg,,0] = +1.

v v

The result follows from Theorem 4.2. O

4.4. Locally one-to-one mappings. In this whole subsection, we assume that
L satisfies Assumption (2.2). We start with a property of mappings which are
one-to-one on a closed ball centered at the origin.

Lemma 4.10. Let U C X be an open neighborhood of 0 and f =L —g:U —Y be
such that f(0) = 0. If f € CL(BR,Y) is one-to-one on some closed ball Br C U,
then f(D(L)NU) is a neighborhood of f(0) =

Proof. The injectivity of f on Bg implies that dp[f, Bg,0] is well defined because
f(z) # 0 = f(0) for each z € OBg. To show that di[f, Bg,0] # 0, define the
homotopy H : D(L) N Bg x [0,1] = Y by

H(zx,\) = f (1_11_>\x> —f (1__:\>\x>
. 1 i\
- x_g<1+Ax)+g<1+Ax)'

Notice that H(z,0) = f(z) and H(z,1) (%) f(—%) is odd. Now, H(z,\) # 0
for any (z,\) € 0Bg x [0, 1], because, 1f H(:r, =0, then

() =/ (50):

and, f being one-to-one on Bp, this gives
1 =A
T+ T 1+A7

that is ¢ = 0. Using the homotopy invariance property and the generalized Borsuk
theorem [11], we get

dL[f; Bg, 0] = dL[H(7O)7 Bg, 0] - dL[ ( ) Bp, 0] =1 (I’IlOd 2)
Thus, by Lemma 2.2, f(D(L)NU) D f(Bgr) is a neighborhood of 0.
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We say that f: U — Y is locally one-to-one or locally injective if, for each
x € U there is a neighborhood V' C U of z such that f is one-to-one on V. Any one-
to-one mapping on U is of course locally one-to-one on U, but the converse is not
true, as shown by the classical example of f : R? — R2, (z,y) > (€% cosy, ¥ siny).

We extend to the frame of coincidence degree the theorem of invariance of
domain.

Theorem 4.11. Let U C X be open, L satisfies condition (2.2), and let f = L—g:
U —Y be locally one-to-one and such that f € Cr(2,Y) for each open bounded set
Q CU. Then f is an open mapping. In particular, f(D(L)NU) is open in Y.

Proof. Let V. C U be open. We show that f(D(L)NV) is a neighborhood of each
of its points. Let yo € f(D(L)NV) and 9 € D(L) NV be such that f(xg) = yo.
Since f is locally one-to-one, there exists a closed ball zog + B Br C V on which f is
one-to-one. Define V=V —zg={f=x—z¢:x€V}and f: D(L)NV =Y by

f(@) = f(z) = f(zo) = f(xo+T) — f(0)
Clearly Br C V, f € CL(Br,Y) is one-to-one on By and f(0) = 0. According to
Lemma 4.10,
F(D(L)NV) = f(D(L)NV) = f(z0) = f(DL)NV) —
is a neighborhood of 0, thus f(D(L)NV) is a neighborhood of yp. O

Now we can state and prove another surjectivity theorem for f.

Theorem 4.12. If L satisfies condition (2.2), any weakly coercive, locally one-to-
one mapping f € Kr(X,Y) is onto.

Proof. Theorem 4.11 implies that f(D(L)) is open. To show that f(D(L)) is closed,
let (yn)nen be a sequence in f(D(L)) which converges to y, and let us show that
y = f(x) for some xz € D(L). We have y, = f(z,) (n € N) for some sequence
(Zn)nen in D(L), and (2, )nen is bounded because, if it is not the case, a subsequence
(2, )ken tends to infinity and, by weak coercivity, || f(zp,)|| = oo, a contradiction
with || f(zn,)|l = [[Yn, |l = lly|l when k& — oco. On the other hand, as (L + A)~!
continuous,

(L+A) " f(x,) =xp — (L+ A) 7 Hg(zn) + Azy] = (L+ A) 7Ly as n — oo,

and, as (n)nen is bounded, a subsequence ((L+A)~g(zy, ) + ATn, |)ken converges
to some z, so that (wp, )ren converges to z := z — (L + A)"ly as k — oo. By
continuity of (L + A)~ (g + A),

z— (L+A) Yg(z) + Az] = (L+ A~ Yy

that is z € D(L) and f(z) =y. So, f(D(L)), open and closed, is equal to Y. O
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5. BOUNDARY CONDITIONS FOR THE EXISTENCE OF A ZERO

5.1. Some coincidence and fixed point theorems. The main result of this
subsection is an existence condition that we name the Poincaré-Bohl coincidence
theorem.

Theorem 5.1. If Q C X is an open, bounded neighborhood of 0, any mapping
fe€CL(Q,H) such that

(5.1) (h(z), f(x)) >0 and (h(x),Lx) >0 on D(L)NON
for some (not necessarily continuous) mapping h : 0Q — H, has a zero in ).

Proof. If f has a zero in D(L) N 02, the result is proved. If not, let us define the
homotopy H : (D(L)N Q) x [0,1] - H by

H(z,\) = (1 =X)Lz + Af(x) = Lz — Ag(x).
H(-,1) has no zero on D(L) NN, and, for (z,A) € (D(L)NIN) x [0,1), we have
(h(z),H(z,\)) = (1 = N)(h(z), Lx) + X(h(x), f(z)) > 0.

Therefore, H(z,\) # 0 for all (z,\) € (D(L) N0N) x [0,1]. On the other hand,
N(L) = {0}. Indeed, assume by contradiction that a certain nonzero v € N(L)
exists. Since 0 € €2 and € is open, there is an open ball B, C € and, for 0 < A <
pllv||t u=Av € B,NN(L) C Q and u # 0. Since (2 is bounded, ru €  for r > 1
sufficiently large. By connexity, the segment [u, ru] intersects 082, that is, the exists
r* € (1,7) such that r*u € 09Q. In that case, we would have (h(r*u), L(r*u)) =0, a
contradiction with the second condition in (5.1). Then, by the homotopy invariance
and the normalization property of the coincidence degree,

dof,€,0] = di[H(-,1),9Q,0] = di[H(-,0),9,0] = dp[L,Q,0] = 1.

The result follows from the existence property of the coincidence degree. O

The special case of Theorem 5.1 where X = H and L = I is of interest.

Corollary 5.2. If Q@ C H is an open, bounded neighborhood of 0, any mapping
feCr(, H) such that

(5.2) (h(z), f(x)) >0 and (h(x),x) >0 when x € D(L) N ON.

for some (not necessarily continuous) mapping h : 0Q — H, has a zero in Q.
When h = I, Corollary 5.2 gives the Krasnosel’skii fixed point theorem [9,10]

in a prehilbertian space.

Corollary 5.3. If Q@ C H is an open, bounded neighborhood of 0, any mapping
f=1—g€Cr(2 H) such that

(5.3) (z,g(x)) < ||z||* when z € 09Q,
has a fized point in Q.

Proof. The first condition in (5.2) with L = h = I is equivalent to (5.3), and the
second one is trivially satisfied. O
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Corollary 5.3 with 2 = Bg gives the Hadamard fixed point theorem [7] in a
prehilbertian space. If g satisfies the Rothe condition g(0Br) C Bg, then
(x,9(x)) < [lz[llg(@)ll < |z]? for all x € OB,

and the existence of a fixed point for g follows from the Hadamard theorem. This
is a fortiori the case if g satisfies the Schauder condition g(Br) C Bp.

5.2. The case of a convex neighborhood of the origin in a Hilbert space.
The following result is an easy consequence of the projection theorem on a closed
convex set C' in a Hilbert space H (see e.g. [2,5]).

Proposition 5.4. Let H be a Hilbert space and C C H be a non empty closed
convex neighborhood of the origin. Then, for each x € OC, there exists vo(x) € 0B
such that

(5.4) (vo(x),y —x) <0 forall yeC.

The mapping v¢ is called an outer normal field to dC. Notice that vo needs
not to be continuous and is the usual outer normal field to C when 9C' is smooth.
The condition (5.4) can be written

CClyeH: (vo(x),y—x) <0}

which means that C' is contained in one of the half-spaces bounded by the hyperplane
containing x

H,={ue H: (vo(z),u—x) =0},
a supporting hyperplane to C at x.
A useful property of the outer normal field is the following one.

Proposition 5.5. Let H be a Hilbert space and C C H be a non empty closed
convex neighborhood of the origin. Then, for each x € OC, one has

(5.5) (ve(z),z) > dist(0,0C) > 0.
Proof. As 0 € int C, there exists u € 0C such that
dist(0,0C) = = mi
ist(0,0C) = |lul| = min v,
so that [[v]| > [Ju|| for all v € C. Then B, C C because if there is z € By, such
that z € H \ C (open), then there is some w € 9C such that [|w| < ||z| < ||ul,

a contradiction. Consequently, ||ul|vg(z) € C and we obtain (5.5) by taking y =
|ul|lve(z) in (5.4). O

We can use Theorem 5.1 to obtain the following fixed point result for compact
mappings in a Hilbert space.

Theorem 5.6. If H is a Hilbert space and C' C H a closed, bounded convex neigh-
borhood of the origin, any mapping f =1 — g € C;(C, H) such that

(5.6) (ve(z),9(x)) < (vo(x),z) when x € OC

for some outer normal vector field vo to OC, has a fixzed point in C.
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Proof. 1t follows from Proposition 5.5 that h = v¢ verifies the assumptions of The-
orem 5.1 with X = H and L = I. O

Remark 5.7. Except for the case where C' = Bp, condition (5.6) is distinct from
Krasnosel’skii’s condition (5.3), because, for 2 a bounded closed convex neighbor-
hood of the origin, the mapping H%II needs not to be an outer normal field to 0f2.

5.3. The case of a convex neighborhood of the origin in R". If H = R",
Theorem 5.6 takes the following form, that we name the Poincaré-Hadamard
existence theorem.

Corollary 5.8. If C C R" is a compact convex neighborhood of 0, any mapping
f e C(C,R™) such that

(ve(u), f(uw)) > 0 whenu € OC

for some outer normal field vo : 0C — 0B(1), has a zero in C.

For example, for p > 1, let us take C' = B’;%, the closed ball centered at the origin
and of radius R in the norm |z[, = (327, |z;[P)}/P. Tts boundary 9BY = {z €
R™: 370 [#;[P = RP} is smooth enough so that the outer normal field to OBY, is
uniquely defined by

1

Ve ) = S ey

|$1‘P—2x17 e |$n|p_2$n) (l‘ S 832)

The application of Corollary 5.8 provides the following result.
Corollary 5.9. For p > 1, any mapping f € C(B%,R") such that

Z |z;[P~2x; f(x) > 0 for all u € OB,
j=1

has a zero in BY,.
In particular, for p = 2, we recover the Hadamard existence theorem.
Corollary 5.10. Any mapping f € C(B%,R") such that
(u, f(u)) >0 for all u € OB%,
has a zero in BJQ%.

The case where C' = [—R, R]" is the closed ball centered at the origin in norm
||oo = maxi<j<n{|z;|} provides the n-dimensional version of the Bolzano interme-
diate value theorem known as the Poincaré-Miranda existence theorem on an
hypercube.

Corollary 5.11. Any mapping f € C([—R, R]",R") such that
(5.7) (sgn w;)fi(u) >0 if we [-R,R]", luy/ =R (i=1,...,n)

has a zero in [—R, R]™.
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The condition (5.7) tells that, for each j = 1,...,n, the component f; takes
opposite signs on the opposite j** hyperfaces of the hypercube [—R, R]™. Tt comes

from the fact that, for each j = 1,...,n, the unit vector ¢’ is a constant outer
normal field to O[—R, R]" on the face {x € [-R, R]" : x; = R} and —e’ a constant
outer normal field to [—R, R]" on the hyperface {z € [-R,R|" : z; = —R}.

Historical and bibliographical informations about the Poincaré-Miranda theorem
and its extensions can be found in [4].

The special case of Corollary 5.8 when C' = B}%, the closed ball of radius R
centered at 0 in the norm 2|1 = }°7_, |2;], does not seem to be known. As,

n n

OB}, = xER":Z]a:j\:R = xGR":Z(sgnmj)a:j:R ,
j=1 j=1
ife=(e1,...,en) €{-1,1}" (j =1,...,n), and if we denote by E,, the set of those
2" ¢, then
0Bp = |JU{zeR:(,2)=R}noBy = | J Fg,
eekE, ec€by
where the
Ff:={zeR":(e,2) = R}NOBL (c € E,)

are the 2" hyperfaces of B}%. Notice that B}% and 8B11Lz are symmetrical with respect
to the origin and that

—F5 = {—z€R":(e,z) = R}yN OB
{r €eR": (—e,2) = R} N OBy = Fp°
so that F'; and F'5° are opposite hyperfaces of 0Bp,. L. The constant field f can be

taken as outer normal field to B}, on the face F§, and Corollary 5.8 provides the
following result.

Corollary 5.12. Any mapping f € C(BE,R"™) such that
(5.8) (e,f(u) >0 if ue IFp (s € E,)
has a zero in B}%.

The condition (5.8) tells that, for each couple of opposite hyperfaces F'y and Fj©
of the hyperoctaedron B}, the corresponding linear combinations (e, f(u)) takes
opposite signs.

As an illustration, we explicit the conditions (5.8) when n = 2 (losange).

fi(u) + fa(u) > if  up >0, us >0, u; +us =R,

fi(u) + fa(u) < if wu; <0, u <0, u; +us =—R,
fo(u) = fi(u) 20 if  wy <0, uz >0, ug —u; = R,
fa(u) = fi(u )SO if  up >0,u2 <0, u; —ug=—R.
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