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mapping f = L− g, with range in a prehilbertian space H with inner product 〈·, ·〉,
is surjective when L is invertible and the asymptotic condition

lim inf
∥x∥→∞,x∈D(L)

〈Lx, f(x)〉
‖Lx‖

> −∞

is satisfied. The special cases of L-coercive mappings, such that

〈Lx, f(x)〉
‖Lx‖

→ ∞ when ‖x‖ → ∞ in D(L),

and of L-monotone mappings, such that

〈L(x− y), f(x)− f(y)〉 ≥ 0 for all x, y ∈ D(L),

are considered as well.

A second class of surjectivity results for weakly coercive mappings is based upon
the Theorem 4.2, showing that such a mapping f = L − g between normed spaces
is surjective when the coincidence degree dL[f,BR, z] is different from zero for some
z ∈ Y and open balls BR of center 0 and sufficiently large radius R. This theorem
extends to the frame of coincidence degree some interesting results contained in
Section 5.4 of Berger’s monograph [1] and attributed to Plastock [15] (although
not contained in this reference). Special cases deal with odd mappings, mappings
with linear growth and locally one-to-one mappings. See also [3] and [4] for the
finite-dimensional case.

In Section 5, we introduce and name Poincaré-Bohl coincidence theorem an ex-
istence result for a zero of f = L − g defined in the closure of some open bounded
neighborhood Ω of the origin, and taking values in a prehilbertian space H, when
L is invertible and, for some (not necessarily continuous) mapping h : X → H, one
has

〈h(x), f(x)〉 ≥ 0 and 〈h(x), L(x)〉 > 0 on ∂Ω.

Special cases of this Theorem 5.1 are a fixed point theorem of Krasnosel’skii (see [9]
for a special case and [10], Thm. 21.4) when L = I and

〈x, g(x)〉 ≤ ‖x‖2 on ∂Ω,

whose particular case for Ω = BR is named here Hadamard fixed point theorem,
because of the first use by Hadamard of this assumption in his proof of the Brouwer
fixed point theorem given in [7].

When Ω is the interior of a closed convex neighborhood C of the origin, some
arguments of convex analysis are used to prove in Theorem 5.6 a new variant of
the fixed point theorem of Krasnosel’skii, namely the existence of a fixed point of g
when

〈νC(x), g(x)〉 ≤ 〈νC(x), x〉 on ∂C,

for some outer normal field νC : ∂C → ∂B1 to ∂C.

The special case of Theorem 5.6 where H = Rn contains and unifies the well
known existence theorems of Hadamard and of Poincaré-Miranda, as well as new
existence conditions.
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2. The spaces and the mappings

In the whole paper, X and Y always denote real normed spaces, and H a real
prehilbertian (or Hilbert space if explicitly mentioned) with inner product 〈·, ·〉. To
avoid heavy notations, we use the same symbol ‖ · ‖ for the norms in X and Y .

2.1. L-compact and L-completely continuous mappings in normed spaces.
We consider semilinear mappings f = L − g, where L : D(L) ⊆ X → Y is a linear
Fredholm mapping of index zero, and g : Ω ⊆ X → Y is L-compact on Ω for some
open bounded set Ω ⊆ X.

Recall that L : D(L) ⊆ X → Y is Fredholm of index zero if L has a closed
range R(L), and if the dimensions of its kernel N(L) and the codimension of its
range are finite and equal. On the other hand, g is L-compact on Ω if there exists
a linear mapping A : X → Y with finite rank such that L + A is invertible and
(L + A)−1g : Ω → X is compact, i.e. continuous and such that (L + A)−1g(Ω)
is relatively compact. We denote by F(L) the set of such linear mappings A. For
example, if P is a continuous projector inX such that R(P ) = N(L), Q a continuous
projector in Y such that N(Q) = R(L), and J : N(L) → R(Q) an isomorphism,
then L+ JP is invertible.

We denote by CL(Ω, Y ) the set of mappings f = L− g with L : D(L) ⊆ X → Y
Fredholm of index 0 and g : Ω → Y L-compact on Ω. In the case where X = Y and
L = I, we can take A = 0 and the I-compactness of g on Ω reduces to the usual
compactness of g on Ω. So CI(Ω, X) is the set of compact perturbations of identity
on Ω. If X and Y have the same finite dimension, we can always take L = 0 and
define C0(Ω, Y ) as the set of continuous mappings f : Ω ⊆ Rn → Rn.

When f = L−g with g : X → Y L-compact on B for each open bounded B ⊆ X,
g is said to be L-completely continuous on X and we write f ∈ KL(X,Y ).
For X = Y and L = I, the elements of KI(X,X) are the completely continuous
perturbations of identity in X.

See [11,12] for more details.

2.2. Coincidence degree of L-compact perturbations of linear Fredholm
mappings of index zero. Given y 6∈ f(D(L) ∩ ∂Ω), one can associate to f =
L− g ∈ CL(Ω, Y ) an integer dL[f,Ω, y], the coincidence degree of f (or of L and
g) in Ω at y, which has the following fundamental properties:

(1) Normalization : if N(L)= {0}, dL[L,Ω, y]= 1 if y ∈ L(Ω) and dL[L,Ω, y]=
0 if y 6∈ L(Ω).

(2) Additivity : if Ω1 ⊆ Ω and Ω2 ⊆ Ω are open and disjoints and y 6∈
f [D(L) ∩ (Ω \ (Ω1 ∪ Ω2)], then dL[f,Ω, y] = dL[f,Ω1, y] + dL[f,Ω2, y].

(3) Homotopy invariance : if F = L − G ∈ C(Ω × [0, 1], Y ) is such that
y 6∈ F [(D(L) ∩ ∂Ω)× [0, 1]], then dL[F (·, λ),Ω, y] is constant in [0, 1].

By definition,

dL[f,Ω, y] := dLS [I − (L+A)−1(g +A),Ω, (L+A)−1y],(2.1)

where A ∈ F(L), and dLS denotes the Leray-Schauder degree [3, 13]. The right-
hand member of (2.1) does not depend upon the choice of A when A remains in the
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same equivalence class in F(L) defined by the relation B ∼ A if the Leray-Schauder
index iLS [I + (L + B)−1(A − B), 0] = 1. Clearly, when X = Y and f ∈ CI(Ω, X),
we can take A = 0 and

dI [f,Ω, y] = dLS [I − g,Ω, y].

When f ∈ C0(Ω,Rn), we can take d0[f,Ω, y) = dB[f,Ω, y], where dB denotes the
Brouwer degree. See [11,12] for more details.

Useful consequences of the fundamental properties of the coincidence degree are
the following ones :

4. Existence : If dL[f,Ω, y] 6= 0, then y ∈ f(D(L) ∩ Ω).
5. Excision : If Ω1 ⊆ Ω is open and y 6∈ f [D(L)∩ (Ω\Ω1)], then dL[f,Ω, y] =

dL[f,Ω1, y].
6. Generalized Borsuk theorem : If Ω is a symmetric open bounded neigh-

borhood of 0 and f is odd, then dL[f,Ω, 0] = 1 (mod. 2).

2.3. The case where (L+A)−1 is continuous for some A in F(L). The coinci-
dence degree has further properties when the following supplementary assumption
holds :

(L+A)−1 is continuous for some A ∈ F(L).(2.2)

If condition (2.2) holds for one A ∈ F(L), it holds for all A ∈ F(L), because of the
easily verified formula for B ∈ F(L) (apply L+B to both members)

(L+B)−1 = [I − (L+B)−1(B −A)](L+A)−1.

Assumption (2.2) holds in particular when X and Y are Banach spaces and L is
closed, namely when (xn) → x and Lxn → y imply that x ∈ D(L) and y = Lx.

Lemma 2.1. If Ω ⊆ X is open and bounded, f ∈ CL(Ω, Y ), L satisfies condition
(2.2), and y 6∈ f(D(L) ∩ ∂Ω), there exists δ > 0 such that

‖f(x)− y‖ ≥ δ for all x ∈ D(L) ∩ ∂Ω.(2.3)

Proof. If (2.3) does not hold, there is a sequence (xk)k∈N in D(L) ∩ ∂Ω such that

Lxk − g(xk)− y → 0 as k → ∞,

and hence, using condition (2.2), such that

xk − (L+A)−1[g(xk) +Axk + y] → 0 as k → ∞.

By the L-compactness of g on Ω, (L+A)−1(g+A)(Ω) is relatively compact, and there
is a subsequence (xkn)n∈N such that the sequence ((L + A)−1[g(xkn) + Axkn ])n∈N
converges to some v ∈ X and hence the sequence (xkn)n∈N converges to −v − (L+
A)−1y := x ∈ ∂Ω when n → ∞. Therefore, by continuity of (L+A)−1(g +A),

x− (L+A)−1[g(x) +Ax+ y] = 0,

so that x ∈ D(L) ∩ ∂Ω, a contradiction to the assumption y 6∈ f(D(L) ∩ ∂Ω). □

A consequence of Lemma 2.1 is the invariance of the coincidence degree for small
perturbations of y and an openness property of f .
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Lemma 2.2. If f ∈ CL(Ω, Y ) for some open bounded set Ω ⊆ X, y 6∈ f(D(L)∩∂Ω),
L satisfies condition (2.2), and

dL[f,Ω, y] 6= 0,

then there exists δ > 0 such that

dL[f,Ω, z] = dL[f,Ω, y] when ‖z − y‖ < δ.

Furthermore, f(Ω) is a neighborhood of y.

Proof. By Lemma 2.1, there exists δ > 0 such that condition (2.3) holds, and the
homotopy F : Ω× [0, 1] → Y defined by

F (x, λ) := Lx− g(x)− (1− λ)y − λz

is such that, for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1],

‖F (x, λ)‖ ≥ ‖f(x)− y‖ − λ‖z − y‖ ≥ δ − ‖z − y‖ > 0

if ‖z − y‖ < δ. If it is the case, 0 6∈ F ((D(L) ∩ ∂Ω)× [0, 1]) and

dL[f,Ω, z] = dL[F (·, 1), 0] = dL[F (·, 0), 0] = dL[f,Ω, y] 6= 0.

Consequently z ∈ f(D(L) ∩ Ω) for all z ∈ y +Bδ. □

3. Weakly coercive mappings : asymptotic conditions for surjectivity

3.1. Weakly coercive mappings. We say that f : D(f) ⊆ X → Y is weakly
coercive if

lim
∥x∥→∞,x∈D(f)

‖f(x)‖ = +∞.(3.1)

The following examples of continuous real functions of one variable show that sur-
jectivity and weak coercivity are independent concepts :

(a) f(x) = x3 is onto and weakly coercive
(b) f(x) = x2 is not onto and weakly coercive
(c) f(x) = x2 sinx is onto and not weakly coercive.

3.2. An asymptotic condition for surjectivity of some weakly coercive
mappings. In this subsection, we introduce a sufficient condition for a weakly
coercive mapping f ∈ KL(X,H) to be onto.

Theorem 3.1. Any weakly coercive mapping f = L− g ∈ KL(X,H), such that

N(L) = {0} and lim inf
∥x∥→∞,x∈D(L)

〈Lx, f(x)〉
‖Lx‖

> −∞.(3.2)

is onto.

Proof. By assumption (3.2), there exists c ∈ R and r > 0 such that

〈Lx, f(x)〉 ≥ c‖Lx‖ when ‖x‖ ≥ r.(3.3)

Let y ∈ H and let us define the homotopy F : D(L)× [0, 1] → H by

F (x, λ) = (1− λ)Lx+ λ[f(x)− y] = Lx− λ[g(x) + y].



284 JEAN MAWHIN

Clearly, F (x, 0) = Lx = 0 if and only if x = 0. If λ ∈ (0, 1] and F (x, λ) = 0, then

‖f(x)− y‖ =
1− λ

λ
‖Lx‖,(3.4)

and, using (3.3), if furthermore ‖x‖ ≥ r,

(1− λ)‖Lx‖2 = −λ〈Lx, f(x)〉+ λ〈Lx, y〉 ≤ −λc‖Lx‖+ ‖y‖‖Lx‖.

As N(L) = {0}, this implies that, for ‖x‖ ≥ r and λ ∈ (0, 1],

1− λ

λ
‖Lx‖ ≤ |c|+ ‖y‖,

which, combined to (3.4), gives

‖f(x)− y‖ ≤ |c|+ ‖y‖ if F (x, λ) = 0, ‖x‖ ≥ r, λ ∈ (0, 1].(3.5)

Now, the weak coerciveness of f (and hence of f(·) − y) implies the existence of
R > r such that

‖x‖ ≤ R when ‖f(x)− y‖ ≤ |c|+ ‖y‖.(3.6)

It follows from (3.5), (3.6) and N(L) = {0} that F (x, λ) 6= 0 when (x, λ) ∈ (D(L)∩
∂BR)× [0, 1], and the homotopy invariance of the coincidence degree implies that

dL[f,BR, y] = dL[F (·, 1), BR, y] = dL[F (·, 0), BR, y]

= dL[L,BR, 0] = 1.

By the existence property of the coincidence degree, y ∈ f(D(L) ∩BR). □

The special case where X = H and L = I is of interest.

Corollary 3.2. Any weakly coercive mapping f ∈ KI(H,H) such that

lim inf
∥x∥→∞

〈x, f(x)〉
‖x‖

> −∞.(3.7)

is onto.

When X = H = Rn with the usual inner product, this surjectivity result goes as
follows.

Corollary 3.3. Any weakly coercive mapping f ∈ C(Rn,Rn) satisfying condition
(3.7) is onto.

Remark 3.4. In the example (a) of Subsection 3.1, condition (3.7) is satisfied,

although in example (b), lim inf |x|→∞
x3

|x| = −∞. In example (c), neither the weak

coercivity nor the condition (3.7) hold.
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3.3. L-coercive mappings. We can reinforce the coerciveness condition to obtain
surjectivity without assumption (3.2). A mapping f ∈ KL(X,H) is said to be
L-coercive if

N(L) = {0} and
〈Lx, f(x)〉

‖Lx‖
→ ∞ if ‖x‖ → ∞ in D(L).(3.8)

When X = H and L = I, we recover the classical concept of coerciveness of f ,
namely,

〈x, f(x)〉
‖x‖

→ ∞ if ‖x‖ → ∞.

As, for x 6= 0,

〈Lx, f(x)〉
‖Lx‖

≤
∣∣∣∣〈Lx, f(x)〉‖Lx‖

∣∣∣∣ ≤ ‖f(x)‖,

we see that any L-coercive mapping is weakly coercive. On the other hand, condition
(3.8) trivially implies the assumption (3.2) of Theorem 3.1, so that the following
results hold.

Corollary 3.5. Any L-coercive mapping f ∈ KL(X,H) is onto.

Corollary 3.6. Any coercive mapping f ∈ KI(H,H) is onto.

Corollary 3.7. Any coercive mapping f ∈ C(Rn,Rn) is onto.

3.4. L-monotone mappings. A mapping f = L − g : D(L) ⊆ X → H is called
L-monotone if it satisfies the condition

N(L) = {0} and 〈L(x− y), f(x)− f(y)〉 ≥ 0 for all x, y ∈ D(L).(3.9)

When X = H and L = I, the condition (3.9) reduces to the classical definition of
monotonicity

〈x− y, f(x)− f(y)〉 ≥ 0 for all x, y ∈ H.

If we observe that the condition (3.9) for y = 0 implies that

〈Lx, f(x)〉 ≥ 〈Lx, f(0)〉 ≥ −‖f(0)‖‖Lx‖ for all x ∈ D(L),

we see that assumption (3.2) of Theorem 3.1 is satisfied for all L-monotone map-
pings, so that the following results immediately follow.

Corollary 3.8. Any L-monotone weakly coercive mapping f ∈ KL(X,H) is onto.

Corollary 3.9. Any monotone weakly coercive mapping f ∈ KI(H,H) is onto.

Corollary 3.10. Any monotone weakly coercive mapping f ∈ C(Rn,Rn) is onto.

Remark 3.11. When H is a Hilbert space, the statements of Corollaries 3.6 and
3.9 remain true for monotone mappings f : H → H which are continuous on finite-
dimensional subspaces of H. See [4, 13] for details and proofs.
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4. Weakly coercive mappings : degree conditions for surjectivity

4.1. A degree condition for the surjectivity of weakly coercive mappings.
Another way for obtaining the surjectivity of weakly coercive mappings f ∈KL(X,Y )
is based upon the following considerations.

Lemma 4.1. If the mapping f ∈ KL(X,Y ) is weakly coercive, then, for each y ∈ Y ,
there exists Ry > 0 such that, for any R ≥ Ry, dL[f,BR, y] is defined and constant.

Proof. It follows from the definition of weak coerciveness that, given y ∈ Y , there
exists Ry > 0 such that

‖f(x)‖ > ‖y‖ for all x ∈ D(L) verifying ‖x‖ ≥ Ry.

Consequently, y 6∈ f(D(L)∩∂BR) for all R ≥ Ry, so that dL[f,BR, y] is well defined,

and y 6∈ f(BR \ BRy , y]. The excision property of the coincidence degree implies
that

dL[f,BR, y] = dL[f,BRy , y] for all R ≥ Ry.

□

We have now the following sufficient condition for surjectivity.

Theorem 4.2. Any mapping weakly coercive f ∈ KL(X,Y ) such that dL[f,BRz , z] 6=
0 for some z ∈ Y is onto.

Proof. Let y ∈ Y and let us consider the homotopy F : D(L) × [0, 1] → Y defined
by

F (x, λ) = f(x)− (1− λ)z − λy = Lx− g(x)− (1− λ)z − λy.

Using the weak coerciveness of f , there exists Ry > 0 such that

‖f(x)‖ > ‖y‖ when x ∈ D(L) and ‖x‖ ≥ Ry

and there exists Rz > 0 such that

‖f(x)‖ > ‖z‖ when x ∈ D(L) and ‖x‖ ≥ Rz.

Thus, for x ∈ D(L) such that ‖x‖ ≥ R∗ := max{Ry, Rz} and λ ∈ [0, 1],

‖f(x)‖ = (1− λ)‖f(x)‖+ λ‖f(x)‖ > (1− λ)‖z‖+ λ‖y‖
≥ ‖(1− λ)z + λy‖

and hence

‖F (x, λ)‖ ≥ ‖f(x)‖ − ‖(1− λ)z + λy‖ > 0

for all x ∈ (D(L) ∩ ∂BR∗) × [0, 1]. The homotopy invariance and the excision
property of the coincidence degree imply that

dL[f,BRy , y] = dL[f,BR∗ , y] = dL[F (·, 1), BR∗ , 0]

= dL[F (·, 0), BR∗ , 0] = dL[f,BR∗ , z]

= dL[f,BRz , z] 6= 0.

The existence of x ∈ BRy such that f(x) = y follows from the existence property of
the coincidence degree. □
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Corollary 4.3. Any weakly coercive mapping f ∈KI(X,X) such that dLS [f,BRz , z] 6=
0 for some z ∈ X is onto.

Corollary 4.4. Any weakly coercive mapping f ∈C(Rn,Rn) such that dB[f,BRz , z] 6=
0 for some z is onto.

4.2. Odd mappings. A first application of Theorem 4.2 involve the odd mappings.

Corollary 4.5. Any weakly coercive odd mapping f ∈ KL(X,Y ) is onto.

Proof. As f is odd, f(0) = 0 and, by the generalized Borsuk theorem, dL[f,BR0 , 0] =
1 (mod. 2). The result follows from Theorem 4.2. □

Corollary 4.6. Any weakly coercive odd mapping f ∈ KI(X,X) is onto.

Corollary 4.7. Any weakly coercive odd mapping f ∈ C(Rn,Rn) is onto.

4.3. Mappings with linear growth. Let L : D(L) ⊆ X → Y be linear, Fredholm
of index zero, such that N(L) = {0} and L−1 : Y → X is continuous.

From the identity x = L−1Lx for all x ∈ D(L), we deduce that

‖Lx‖ ≥ ‖L−1‖−1‖x‖ for all x ∈ D(L)(4.1)

and hence

‖Lx‖ → ∞ if x ∈ D(L) and ‖x‖ → ∞.(4.2)

We say that the mapping h : X → Y is L-quasibounded if

|h|L := lim sup
∥x∥→∞

‖h(x)‖
‖Lx‖

< +∞.(4.3)

|h|L is called the L-quasinorm of h. For X = Y and L = I the above concepts
reduce to the classical ones of quasiboundedness and quasinorm introduced by
Granas [6].

The mapping h : X → Y is called asymptotically linear if there exists a linear
continuous mapping C : X → Y such that

lim
∥x∥→∞

h(x)− Cx

‖x‖
= 0.(4.4)

It is easy to see that at most one C satisfies (4.4). If it exists, it is denoted by
h′∞ and named the derivative at infinity of h. The concept was introduced by
Krasnosel’skii [8].

If h is asymptotically linear with derivative at infinity h′∞, and if L−1 exists and
is bounded, then, for x ∈ D(L) \ {0}, we obtain, using (4.1),

‖h(x)‖
‖Lx‖

≤ ‖h(x)− h′∞x‖
‖Lx‖

+
‖h′∞x‖
‖Lx‖

≤ ‖L−1‖‖h(x)− h′∞x‖
‖x‖

+ ‖L−1‖‖h
′
∞x‖
‖x‖

,
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and hence

lim sup
∥x∥→∞

‖h(x)‖
‖Lx‖

≤ ‖L−1‖ lim
∥x∥→∞

‖h(x)− h′∞x‖
‖x‖

+ ‖L−1‖ sup
∥u∥=1

‖h′∞u‖

= ‖L−1‖‖h′∞‖,

which shows that h is L-quasibounded and |h|L ≤ ‖L−1‖‖h′∞‖.

We have a surjectivity theorem for some quasibounded and L-completely contin-
uous perturbations of L.

Theorem 4.8. Any mapping f = L − g ∈ KL(X,Y ) such that N(L) = {0},
L−1 : Y → X is bounded, g : X → Y is L-quasibounded and |g|L < 1 is weakly
coercive and onto.

Proof. Define the homotopy H : D(L)× [0, 1] → Y by

H(x, λ) = Lx− λg(x).

Let ε > 0 be such that

|g|L + ε < 1.

By the quasiboundedness of g, there exists R0 > 0 such that

‖g(x)‖ ≤ (|g|L + ε)‖Lx‖ when ‖x‖ ≥ R0.

Consequently, for all x ∈ D(L) such that ‖x‖ ≥ R0 and λ ∈ [0, 1],

‖H(x, λ)‖ = ‖Lx− λg(x)‖ ≥ [1− (|g|L + ε)]‖Lx‖ > 0,(4.5)

so that, using (4.2), ‖H(x, 1)‖ = ‖f(x)‖ → ∞ when x ∈ D(L) and ‖x‖ → ∞,
and f is weakly coercive. From (4.5) and the homotopy invariance property of the
coincidence degree, we obtain

dL[f,BR0 , 0] = dL[H(·, 1), BR0 , 0] = dL[H(·, 0), BR0 , 0]

= dL[L,BR0 , 0] = 1.

The result follows from Theorem 4.2. □

We also have a surjectivity theorem for asymptotically linear mappings.

Theorem 4.9. Any mapping f = L − g ∈ KL(X,Y ) such that g : X → X is
asymptotically linear and L − g′∞ : D(L) ⊆ X → Y has a continuous inverse
(L− g′L)

−1 : Y → X is weakly coercive and onto.

Proof. Let us introduce the homotopy F : D(L)× [0, 1] → Y by

F (x, λ) = Lx− λg(x)− (1− λ)g′∞x.

Let ε > 0 be such that ε‖(L − g′∞)−1‖ < 1. By assumption, there exists R0 > 0
such that one has

‖g(x)− g′∞x‖ ≤ ε‖x‖ when ‖x‖ ≥ R0.
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Consequently, for all λ ∈ [0, 1] and x ∈ D(L) such that ‖x‖ ≥ R0, we have, using
(4.1) applied to L− g′∞,

‖F (x, λ)‖ = ‖Lx− g′∞x− λ(g(x)− g′∞x)‖
≥ ‖Lx− g′∞x‖ − ‖g(x)− g′∞x)‖
≥ (‖L− g′∞‖−1)−1‖x‖ − ε‖x‖
= (‖L− g′∞‖−1)−1

[
1− ε‖(L− g′∞)−1‖

]
‖x‖.

By the choice of ε, F (x, λ) 6= 0 for all (x, λ) ∈ (D(L) ∩ ∂BR0) × [0, 1], and, taking
λ = 1, we obtain the weak coercivity of f . From the homotopy invariance of the
coincidence degree, we get

dL[f,BR0 , 0] = dL[F (·, 1), BR0 , 0] = dL[F (·, 0), BR0 , 0]

= dL[L− g′∞, BR0 , 0] = ±1.

The result follows from Theorem 4.2. □

4.4. Locally one-to-one mappings. In this whole subsection, we assume that
L satisfies Assumption (2.2). We start with a property of mappings which are
one-to-one on a closed ball centered at the origin.

Lemma 4.10. Let U ⊆ X be an open neighborhood of 0 and f = L− g : U → Y be
such that f(0) = 0. If f ∈ CL(BR, Y ) is one-to-one on some closed ball BR ⊆ U ,
then f(D(L) ∩ U) is a neighborhood of f(0) = 0.

Proof. The injectivity of f on BR implies that dL[f,BR, 0] is well defined because
f(x) 6= 0 = f(0) for each x ∈ ∂BR. To show that dL[f,BR, 0] 6= 0, define the
homotopy H : D(L) ∩BR × [0, 1] → Y by

H(x, λ) = f

(
1

1 + λ
x

)
− f

(
−λ

1 + λ
x

)
= Lx− g

(
1

1 + λ
x

)
+ g

(
−λ

1 + λ
x

)
.

Notice that H(x, 0) = f(x) and H(x, 1) = f
(
x
2

)
−f

(
−x

2

)
is odd. Now, H(x, λ) 6= 0

for any (x, λ) ∈ ∂BR × [0, 1], because, if H(x, λ) = 0, then

f

(
1

1 + λ
x

)
= f

(
−λ

1 + λ
x

)
,

and, f being one-to-one on BR, this gives

1

1 + λ
x =

−λ

1 + λ
x

that is x = 0. Using the homotopy invariance property and the generalized Borsuk
theorem [11], we get

dL[f,BR, 0] = dL[H(·, 0), BR, 0] = dL[H(·, 1), BR, 0] = 1 (mod 2).

Thus, by Lemma 2.2, f(D(L) ∩ U) ⊃ f(BR) is a neighborhood of 0.
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We say that f : U → Y is locally one-to-one or locally injective if, for each
x ∈ U there is a neighborhood V ⊆ U of x such that f is one-to-one on V . Any one-
to-one mapping on U is of course locally one-to-one on U , but the converse is not
true, as shown by the classical example of f : R2 → R2, (x, y) 7→ (ex cos y, ex sin y).

We extend to the frame of coincidence degree the theorem of invariance of
domain.

Theorem 4.11. Let U ⊆ X be open, L satisfies condition (2.2), and let f = L−g :
U → Y be locally one-to-one and such that f ∈ CL(Ω, Y ) for each open bounded set
Ω ⊆ U . Then f is an open mapping. In particular, f(D(L) ∩ U) is open in Y .

Proof. Let V ⊆ U be open. We show that f(D(L) ∩ V ) is a neighborhood of each
of its points. Let y0 ∈ f(D(L) ∩ V ) and x0 ∈ D(L) ∩ V be such that f(x0) = y0.
Since f is locally one-to-one, there exists a closed ball x0 + BR ⊆ V on which f is

one-to-one. Define Ṽ = V − x0 = {x̃ = x− x0 : x ∈ V } and f̃ : D(L) ∩ Ṽ → Y by

f̃(x̃) = f(x)− f(x0) = f(x0 + x̃)− f(x0).

Clearly BR ⊆ Ṽ , f̃ ∈ CL(BR, Y ) is one-to-one on BR and f̃(0) = 0. According to
Lemma 4.10,

f̃(D(L) ∩ Ṽ ) = f(D(L) ∩ V )− f(x0) = f(D(L) ∩ V )− y0

is a neighborhood of 0, thus f(D(L) ∩ V ) is a neighborhood of y0. □

Now we can state and prove another surjectivity theorem for f .

Theorem 4.12. If L satisfies condition (2.2), any weakly coercive, locally one-to-
one mapping f ∈ KL(X,Y ) is onto.

Proof. Theorem 4.11 implies that f(D(L)) is open. To show that f(D(L)) is closed,
let (yn)n∈N be a sequence in f(D(L)) which converges to y, and let us show that
y = f(x) for some x ∈ D(L). We have yn = f(xn) (n ∈ N) for some sequence
(xn)n∈N inD(L), and (xn)n∈N is bounded because, if it is not the case, a subsequence
(xnk

)k∈N tends to infinity and, by weak coercivity, ‖f(xnk
)‖ → ∞, a contradiction

with ‖f(xnk
)‖ = ‖ynk

‖ → ‖y‖ when k → ∞. On the other hand, as (L + A)−1 is
continuous,

(L+A)−1f(xn) = xn − (L+A)−1[g(xn) +Axn] → (L+A)−1y as n → ∞,

and, as (xn)n∈N is bounded, a subsequence ((L+A)−1[g(xnk
)+Axnk

])k∈N converges
to some z, so that (xnk

)k∈N converges to x := z − (L + A)−1y as k → ∞. By
continuity of (L+A)−1(g +A),

x− (L+A)−1[g(x) +Ax] = (L+A)−1y,

that is x ∈ D(L) and f(x) = y. So, f(D(L)), open and closed, is equal to Y . □
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5. Boundary conditions for the existence of a zero

5.1. Some coincidence and fixed point theorems. The main result of this
subsection is an existence condition that we name the Poincaré-Bohl coincidence
theorem.

Theorem 5.1. If Ω ⊆ X is an open, bounded neighborhood of 0, any mapping
f ∈ CL(Ω,H) such that

〈h(x), f(x)〉 ≥ 0 and 〈h(x), Lx〉 > 0 on D(L) ∩ ∂Ω(5.1)

for some (not necessarily continuous) mapping h : ∂Ω → H, has a zero in Ω.

Proof. If f has a zero in D(L) ∩ ∂Ω, the result is proved. If not, let us define the
homotopy H : (D(L) ∩ Ω)× [0, 1] → H by

H(x, λ) = (1− λ)Lx+ λf(x) = Lx− λg(x).

H(·, 1) has no zero on D(L) ∩ ∂Ω, and, for (x, λ) ∈ (D(L) ∩ ∂Ω)× [0, 1), we have

〈h(x),H(x, λ)〉 = (1− λ)〈h(x), Lx〉+ λ〈h(x), f(x)〉 > 0.

Therefore, H(x, λ) 6= 0 for all (x, λ) ∈ (D(L) ∩ ∂Ω) × [0, 1]. On the other hand,
N(L) = {0}. Indeed, assume by contradiction that a certain nonzero ν ∈ N(L)
exists. Since 0 ∈ Ω and Ω is open, there is an open ball Bρ ⊂ Ω and, for 0 < λ <
ρ‖ν‖−1, u = λν ∈ Bρ ∩N(L) ⊂ Ω and u 6= 0. Since Ω is bounded, ru ∈ Ω for r > 1
sufficiently large. By connexity, the segment [u, ru] intersects ∂Ω, that is, the exists
r∗ ∈ (1, r) such that r∗u ∈ ∂Ω. In that case, we would have 〈h(r∗u), L(r∗u)〉 = 0, a
contradiction with the second condition in (5.1). Then, by the homotopy invariance
and the normalization property of the coincidence degree,

dL[f,Ω, 0] = dL[H(·, 1),Ω, 0] = dL[H(·, 0),Ω, 0] = dL[L,Ω, 0] = 1.

The result follows from the existence property of the coincidence degree. □

The special case of Theorem 5.1 where X = H and L = I is of interest.

Corollary 5.2. If Ω ⊆ H is an open, bounded neighborhood of 0, any mapping
f ∈ CI(Ω,H) such that

〈h(x), f(x)〉 ≥ 0 and 〈h(x), x〉 > 0 when x ∈ D(L) ∩ ∂Ω.(5.2)

for some (not necessarily continuous) mapping h : ∂Ω → H, has a zero in Ω.

When h = I, Corollary 5.2 gives theKrasnosel’skii fixed point theorem [9,10]
in a prehilbertian space.

Corollary 5.3. If Ω ⊆ H is an open, bounded neighborhood of 0, any mapping
f = I − g ∈ CI(Ω,H) such that

〈x, g(x)〉 ≤ ‖x‖2 when x ∈ ∂Ω,(5.3)

has a fixed point in Ω.

Proof. The first condition in (5.2) with L = h = I is equivalent to (5.3), and the
second one is trivially satisfied. □
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Corollary 5.3 with Ω = BR gives the Hadamard fixed point theorem [7] in a
prehilbertian space. If g satisfies the Rothe condition g(∂BR) ⊆ BR, then

〈x, g(x)〉 ≤ ‖x‖‖g(x)‖ ≤ ‖x‖2 for all x ∈ ∂BR,

and the existence of a fixed point for g follows from the Hadamard theorem. This
is a fortiori the case if g satisfies the Schauder condition g(BR) ⊆ BR.

5.2. The case of a convex neighborhood of the origin in a Hilbert space.
The following result is an easy consequence of the projection theorem on a closed
convex set C in a Hilbert space H (see e.g. [2, 5]).

Proposition 5.4. Let H be a Hilbert space and C ⊆ H be a non empty closed
convex neighborhood of the origin. Then, for each x ∈ ∂C, there exists νC(x) ∈ ∂B1

such that

〈νC(x), y − x〉 ≤ 0 for all y ∈ C.(5.4)

The mapping νC is called an outer normal field to ∂C. Notice that νC needs
not to be continuous and is the usual outer normal field to ∂C when ∂C is smooth.
The condition (5.4) can be written

C ⊆ {y ∈ H : 〈νC(x), y − x〉 ≤ 0}
which means that C is contained in one of the half-spaces bounded by the hyperplane
containing x

Hx = {u ∈ H : 〈νC(x), u− x〉 = 0},
a supporting hyperplane to C at x.

A useful property of the outer normal field is the following one.

Proposition 5.5. Let H be a Hilbert space and C ⊆ H be a non empty closed
convex neighborhood of the origin. Then, for each x ∈ ∂C, one has

〈νC(x), x〉 ≥ dist(0, ∂C) > 0.(5.5)

Proof. As 0 ∈ int C, there exists u ∈ ∂C such that

dist(0, ∂C) = ‖u‖ = min
v∈∂C

‖v‖,

so that ‖v‖ ≥ ‖u‖ for all v ∈ ∂C. Then B∥u∥ ⊆ C because if there is z ∈ B∥u∥ such
that z ∈ H \ C (open), then there is some w ∈ ∂C such that ‖w‖ < ‖z‖ ≤ ‖u‖,
a contradiction. Consequently, ‖u‖νC(x) ∈ C and we obtain (5.5) by taking y =
‖u‖νC(x) in (5.4). □

We can use Theorem 5.1 to obtain the following fixed point result for compact
mappings in a Hilbert space.

Theorem 5.6. If H is a Hilbert space and C ⊆ H a closed, bounded convex neigh-
borhood of the origin, any mapping f = I − g ∈ CI(C,H) such that

〈νC(x), g(x)〉 ≤ 〈νC(x), x〉 when x ∈ ∂C(5.6)

for some outer normal vector field νC to ∂C, has a fixed point in C.
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Proof. It follows from Proposition 5.5 that h = νC verifies the assumptions of The-
orem 5.1 with X = H and L = I. □

Remark 5.7. Except for the case where C = BR, condition (5.6) is distinct from
Krasnosel’skii’s condition (5.3), because, for Ω a bounded closed convex neighbor-
hood of the origin, the mapping x

∥x∥ needs not to be an outer normal field to ∂Ω.

5.3. The case of a convex neighborhood of the origin in Rn. If H = Rn,
Theorem 5.6 takes the following form, that we name the Poincaré-Hadamard
existence theorem.

Corollary 5.8. If C ⊆ Rn is a compact convex neighborhood of 0, any mapping
f ∈ C(C,Rn) such that

〈νC(u), f(u)〉 ≥ 0 when u ∈ ∂C

for some outer normal field νC : ∂C → ∂B(1), has a zero in C.

For example, for p > 1, let us take C = Bp
R, the closed ball centered at the origin

and of radius R in the norm |x|p = (
∑n

j=1 |xj |p)1/p. Its boundary ∂Bp
R = {x ∈

Rn :
∑n

j=1 |xj |p = Rp} is smooth enough so that the outer normal field to ∂Bp
R is

uniquely defined by

νBp
R
(x) =

1

(
∑n

j=1 |xj |2p−2)1/2
(|x1|p−2x1, . . . , |xn|p−2xn) (x ∈ ∂Bp

R).

The application of Corollary 5.8 provides the following result.

Corollary 5.9. For p > 1, any mapping f ∈ C(Bp
R,R

n) such that

n∑
j=1

|xj |p−2xjfj(x) ≥ 0 for all u ∈ ∂Bp
R

has a zero in Bp
R.

In particular, for p = 2, we recover the Hadamard existence theorem.

Corollary 5.10. Any mapping f ∈ C(B2
R,Rn) such that

〈u, f(u)〉 ≥ 0 for all u ∈ ∂B2
R,

has a zero in B2
R.

The case where C = [−R,R]n is the closed ball centered at the origin in norm
|x|∞ = max1≤j≤n{|xj |} provides the n-dimensional version of the Bolzano interme-
diate value theorem known as the Poincaré-Miranda existence theorem on an
hypercube.

Corollary 5.11. Any mapping f ∈ C([−R,R]n,Rn) such that

(sgn ui)fi(u) ≥ 0 if u ∈ [−R,R]n, |ui| = R (i = 1, . . . , n)(5.7)

has a zero in [−R,R]n.



294 JEAN MAWHIN

The condition (5.7) tells that, for each j = 1, . . . , n, the component fj takes

opposite signs on the opposite jth hyperfaces of the hypercube [−R,R]n. It comes
from the fact that, for each j = 1, . . . , n, the unit vector ej is a constant outer
normal field to ∂[−R,R]n on the face {x ∈ [−R,R]n : xj = R} and −ej a constant
outer normal field to ∂[−R,R]n on the hyperface {x ∈ [−R,R]n : xj = −R}.
Historical and bibliographical informations about the Poincaré-Miranda theorem
and its extensions can be found in [4].

The special case of Corollary 5.8 when C = B1
R, the closed ball of radius R

centered at 0 in the norm |x|1 =
∑n

j=1 |xj |, does not seem to be known. As,

∂B1
R =

x ∈ Rn :
n∑

j=1

|xj | = R

 =

x ∈ Rn :
n∑

j=1

(sgn xj)xj = R

 ,

if ε = (ε1, . . . , εn) ∈ {−1, 1}n (j = 1, . . . , n), and if we denote by En the set of those
2n ε, then

∂B1
R =

⋃
ε∈En

[{x ∈ Rn : 〈ε, x〉 = R} ∩ ∂B1
R] =

⋃
ε∈En

F ε
R,

where the

F ε
R := {x ∈ Rn : 〈ε, x〉 = R} ∩ ∂B1

R (ε ∈ En)

are the 2n hyperfaces of B1
R. Notice that B

1
R and ∂B1

R are symmetrical with respect
to the origin and that

−F ε
R = {−x ∈ Rn : 〈ε, x〉 = R} ∩ ∂B1

R

= {x ∈ Rn : 〈−ε, x〉 = R} ∩ ∂B1
R = F−ε

R

so that F ε
R and F−ε

R are opposite hyperfaces of ∂B1
R. The constant field ε√

n
can be

taken as outer normal field to ∂B1
R on the face F ε

R, and Corollary 5.8 provides the
following result.

Corollary 5.12. Any mapping f ∈ C(B1
R,Rn) such that

〈ε, f(u) ≥ 0 if u ∈ ∂F ε
R (ε ∈ En)(5.8)

has a zero in B1
R.

The condition (5.8) tells that, for each couple of opposite hyperfaces F ε
R and F−ε

R

of the hyperoctaedron B1
R, the corresponding linear combinations 〈ε, f(u)〉 takes

opposite signs.

As an illustration, we explicit the conditions (5.8) when n = 2 (losange).

f1(u) + f2(u) ≥ 0 if u1 ≥ 0, u2 ≥ 0, u1 + u2 = R,

f1(u) + f2(u) ≤ 0 if u1 ≤ 0, u2 ≤ 0, u1 + u2 = −R,

f2(u)− f1(u) ≥ 0 if u1 ≤ 0, u2 ≥ 0, u2 − u1 = R,

f2(u)− f1(u) ≤ 0 if u1 ≥ 0, u2 ≤ 0, u1 − u2 = −R.
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the manuscript.
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