Pure and Applied Functional Analysis

Volume 8, Number 1, 2023, 27–47

NONLINEAR ROBIN PROBLEMS WITH LOCALLY DEFINED REACTION

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU*

ABSTRACT. We consider a nonlinear Robin problem driven by a p- Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p-1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter $\lambda > 0$, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information.

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. In this paper we study the following parametric nonlinear Robin problem

$$(P_{\lambda}) \qquad \begin{cases} -\Delta_p u(z) + \xi(z) |u(z)|^{p-2} u(z) = \lambda f(z, u(z)) + g(z, u(z)) \\ & \text{in } \Omega, \\ \frac{\partial u}{\partial n_p} + \beta(z) |u|^{p-2} u = 0 \text{ on } \partial\Omega, \end{cases}$$

with $\lambda > 0, 1 . By <math>\Delta_p$ we denote the *p*-Laplace differential operator defined by

$$\Delta_p u = div \left(|Du|^{p-2} Du \right), \text{ for all } u \in W^{1,p}(\Omega),$$

where $|\cdot|$ denotes the norm in \mathbb{R}^N . The potential function ξ satisfies $\xi \in L^{\infty}(\Omega)$ and $\xi(z) \geq 0$ for a.a. $z \in \Omega$. The reaction of the problem (right-hand side) consists of two terms. One is the parametric term $\lambda f(z, x)$ with $\lambda > 0$ being the parameter. The other one is a perturbation g(z, x). Both functions f and g are Carathéodory functions (that is, for all $x \in \mathbb{R}, z \to f(z, x)$ and $z \to g(z, x)$ are measurable functions, while for a.a. $z \in \Omega, x \to f(z, x)$ and $x \to g(z, x)$ are continuous). The interesting feature of our work here, is that the parametric term $\lambda f(z, \cdot)$ is only locally defined, namely the conditions imposed on $f(z, \cdot)$ concern only its behavior near zero. There are no hypotheses on $f(z, \cdot)$ for large values of $x \in \mathbb{R}$.

²⁰²⁰ Mathematics Subject Classification. 35J20, 35J60.

Key words and phrases. Cut-off function, AR-condition, extremal constant sign solutions, regularity theory, critical groups.

^{*}The third author acknowledges the partial support by the Portuguese Foundation for Science and Technology (FCT), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2019(CIDMA)..

In the boundary condition, $\frac{\partial u}{\partial n_p}$ denotes the conormal derivative of u corresponding to the p-Laplacian and is interpreted using the nonlinear Green's identity (see Papageorgiou-Radulescu-Repovs [13], Corollary 1.5.17, p.35). Specifically, for $u \in C^1(\overline{\Omega})$, we have

$$\frac{\partial u}{\partial n_p} = |Du|^{p-2} \frac{\partial u}{\partial n},$$

where n(.) is the outward unit normal on $\partial\Omega$. Using cut-off techniques together with variational tools based on the critical point theory and Morse theory (critical groups), we show that for all $\lambda > 0$ big, problem (P_{λ}) has at least three nontrivial smooth solutions, all with sign information. More precisely, we prove that there exist two solutions with fixed sign (one positive and the other negative) and a third solution which is nodal (that is, sign changing). In the semilinear case (that is, p = 2), by strengthening the regularity of the functions $f(z, \cdot)$ and $g(z, \cdot)$ (we assume that both are C^1 functions), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information. Finally, for both the nonlinear and the semilinear problems, we show that the solutions produced converge to zero in $C^1(\overline{\Omega})$ as $\lambda \to \infty$.

The first paper dealing with equations which have reaction terms that are only locally defined is the work of Wang [14]. In that paper, the author deals with a semilinear Dirichlet equation driven by the Laplacian and with a reaction of the form $x \to \lambda |x|^{q-2} x + g(z, x)$, where 1 < q < 2. So, in the reaction we encounter a parametric concave term and a perturbation $g \in C(\Omega \times \mathbb{R}, \mathbb{R})$, which is odd in $x \in \mathbb{R}$ for |x| small, and $\lim_{x\to 0} \frac{g(z,x)}{|x|^{q-2}x} = 0$ uniformly for a.a. $z \in \Omega$. No other conditions are imposed on g. In particular, there are no conditions on $g(z, \cdot)$ for |x| big. The symmetry of the reaction near zero permits the use of a symmetric mountain pass theorem, and so the author shows that for all $\lambda > 0$, the problem has a sequence $\{u_n\}_{n\geq 1} \subseteq H_0^1(\Omega)$ of weak solutions such that $||u_n||_{\infty} \to 0$ as $n \to \infty$. No sign information is given for the solutions produced. Later, Li-Wang [7] extended the result to Schrödinger equations, and in addition proved that the solutions are nodal.

More recently, Papageorgiou-Radulescu [9] and Papageorgiou-Radulescu-Repovs [12] extended the aforementioned works to nonlinear, nonhomogeneous Robin problems, while very recently Aizicovici-Papageorgiou-Staicu [1] obtained similar results for anisotropic (p, q)-equations. All these papers impose a local symmetry condition on the reaction, which permits the use of some version of the symmetric mountain pass theorem. No such symmetry condition is employed here.

2. MATHEMATICAL BACKGROUND - HYPOTHESES

In the analysis of problem (P_{λ}) we will use the the Sobolev space $W^{1,p}(\Omega)$, $1 , and the Banach space <math>C^1(\overline{\Omega})$. By $\|.\|$ we will denote the norm of $W^{1,p}(\Omega)$ defined by

$$||u|| = \left[||u||_p^p + ||Du||_p^p \right]^{\frac{1}{p}}$$
 for all $u \in W^{1,p}(\Omega)$,

where $\|.\|_p$ stands for the L^p -norm. The space $C^1(\overline{\Omega})$ is an ordered Banach space with positive (order) cone

$$C_{+} = \left\{ u \in C^{1}\left(\overline{\Omega}\right) : u\left(z\right) \ge 0 \text{ for all } z \in \Omega \right\}.$$

This cone has a nonempty interior given by

$$int C_{+} = \left\{ u \in C_{+} : u(z) > 0 \text{ for all } z \in \overline{\Omega} \right\},\$$

If $u, v \in W^{1,p}(\Omega \text{ and } u(z) \leq v(z) \text{ for a.a. } z \in \Omega$, then we define

$$[u,v] = \left\{ y \in W^{1,p}(\Omega) : u(z) \le y(z) \le v(z) \text{ for a.a. } z \in \Omega \right\}.$$

Also by $int_{C^1(\overline{\Omega})}[u,v]$ with denote the interior in $C^1(\overline{\Omega})$ of $[u,v] \cap C^1(\overline{\Omega})$.

On $\partial\Omega$ we consider the (N-1) -dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Having this measure, we can define in the usual way the boundary Lebesgue spaces $L^s(\partial\Omega)$ $(1 \leq s \leq \infty)$. We recall that there exists a unique continuous linear linear map $\gamma_0: W^{1,p}(\Omega \to L^p(\partial\Omega)$ known as the "trace map", such that

$$\gamma_0(u) = u \mid_{\partial\Omega} \text{ for all } u \in W^{1,p}(\Omega) \cap C(\overline{\Omega}).$$

So, the trace map extends to all Sobolev functions the notion of boundary value. We know that γ_0 is compact from $W^{1,p}(\Omega)$ into $L^p(\partial\Omega)$, $\operatorname{Im} \gamma_0 = W^{\frac{1}{p'},p}(\partial\Omega)$ $(\frac{1}{p} + \frac{1}{p'} = 1)$ and $\ker \gamma_0 = W^{1,p}_0(\Omega)$

In the sequel for the sake of notational simplicity, we drop the use of the trace map γ_0 . All restrictions of Sobolev functions to $\partial\Omega$ are understood in the sense of traces.

If $x \in \mathbb{R}$, then we set

$$x^{\pm} = \max\left\{\pm x, 0\right\}.$$

For $u \in W^{1,p}(\Omega)$, we define $u^{\pm}(z) = u(z)^{\pm}$ for a.a. $z \in \Omega$. We know that

$$u^{\pm} \in W^{1,p}(\Omega), \ u = u^{+} - u^{-} \text{ and } |u| = u^{+} + u^{-}.$$

Given a Carathéodory function $f_0 : \Omega \times \mathbb{R} \to \mathbb{R}$, we say that it satisfies the Ambrosetti-Rabinowitz condition (the AR-condition for short), if there exist M > 0 and q > p such that:

$$0 < qF_0(z, x) \le f_0(z, x) x$$
 for a.a. $z \in \Omega$, all $|x| \ge M$,

where $F_0(z, x) = \int_0^x f_0(z, s) ds$, and

$$0 < \operatorname{essinf} F_0(\cdot, \pm M)$$

This condition is very convenient for the verification of the Palais-Smale condition (the PS-condition for short).

Recall that if X is a Banach space and $\varphi \in C^1(X, \mathbb{R})$, then we say that φ satisfies the PS-condition, if every sequence $\{u_n\}_{n\geq 1} \subseteq X$ such that $\{\varphi(u_n)\}_{n\geq 1} \subseteq \mathbb{R}$ is bounded and

$$\varphi'(u_n) \to 0 \text{ in } X^* \text{ as } n \to \infty$$

admits a strongly convergent subsequence.

By $A: W^{1,p}(\Omega) \to W^{1,p}(\Omega)^*$ we denote the nonlinear operator defined by

$$\langle A(u),h\rangle = \int_{\Omega} |Du|^{p-2} (Du,Dh)_{\mathbb{R}^N} dz \text{ for all } u,h \in W^{1,p}(\Omega)$$

This operator has the following properties (see Gasinski-Papageorgiou [3], Problem 2.192, p.279):

- it is bounded (that is, it maps bounded sets to bounded sets);
- it is continuous and monotone (hence maximal monotone too);
- it is of type $(S)_+$, that is, for every sequence $\{u_n\}_{n\geq 1} \subseteq W^{1,p}(\Omega)$ such that $u_n \xrightarrow{w} u$ in $W^{1,p}(\Omega)$ and

$$\lim \sup_{n \to \infty} \left\langle A\left(u_n\right), u_n - u \right\rangle \le 0,$$

one has

$$u_n \to u$$
 in $W^{1,p}(\Omega)$ as $n \to \infty$.

Here \xrightarrow{w} designates the weak convergence in $W^{1,p}(\Omega)$ and $\langle \cdot, \cdot \rangle$ denotes the duality brackets for the pair $(W^{1,p}(\Omega)^*, W^{1,p}(\Omega))$.

Let $S \subseteq W^{1,p}(\Omega)$. We say that S is downward directed (resp. upward directed), if for all $u_1, u_2 \in S$ we can find $\hat{u} \in S$ such that $\hat{u} \leq u_1$ and $\hat{u} \leq u_2$ (resp. for all $v_1, v_2 \in S$, we can find $\hat{v} \in S$ such that $v_1 \leq \hat{v}$ and $v_2 \leq \hat{v}$).

Let X be a Banach space, $\varphi \in C^1(X, \mathbb{R})$ and $c \in \mathbb{R}$. We introduce the following sets:

$$K_{\varphi} = \left\{ u \in X : \varphi'(u) = 0 \right\} \text{ (the critical set of } \varphi),$$

and

$$\varphi^{c} = \{ u \in X : \varphi(u) \leq c \}$$
 (the sublevel of φ at c).

Let (Y_1, Y_2) be a topological pair such that $Y_2 \subset Y_1 \subset X$. For every $k \in \mathbb{N}_0$, by $H_k(Y_1, Y_2)$ we denote the k^{th} - relative singular homology group for the pair (Y_1, Y_2) with integer coefficients. Recall that for $k \in -\mathbb{N}$ we have $H_k(Y_1, Y_2)$. Suppose $u \in K_{\varphi}$ is isolated and let $c = \varphi(u)$. Then the *critical groups of* φ at u are defined by

$$C_{k}\left(\varphi,u\right)=H_{k}\left(\varphi^{c}\cap U,\left(\varphi^{c}\cap U\right)\setminus\left\{u\right\}\right) \text{ for all } k\in\mathbb{N}_{0},$$

where U is a neighborhood of u such that $K_{\varphi} \cap \varphi^c \cap U = \{u\}$. The excision property of singular homology theory implies that the above definition of critical groups is independent of the particular choice of the neighborhood U.

Now suppose that $\varphi \in C^1(X, \mathbb{R})$ satisfies the *PS*-condition and $\inf \varphi(K_{\varphi}) > -\infty$. Let $c < \inf \varphi(K_{\varphi})$. Then the *critical groups of* φ *at infinity* are defined by

$$C_k(\varphi, \infty) = H_k(X, \varphi^c)$$
 for all $k \in \mathbb{N}_0$.

By the second deformation theorem (see Papageorgiou-Radulescu-Repovs [13], Theorem 5.3.12, p.386), this definition is independent of the choice of the level $c < \inf \varphi(K_{\varphi})$. Indeed if $c' < c < \inf \varphi(K_{\varphi})$, then $\varphi^{c'}$ is a strong deformation retract of φ^c (see [13], p.386) and so,

$$H_k(X, \varphi^c) = H_k(X, \varphi^{c'})$$
 for all $k \in \mathbb{N}_0$

(see [13], Corollary 6.1.24, p.468).

Suppose that K_{φ} is finite. We introduce the following quantities:

$$M(t,u) = \sum_{k \in \mathbb{N}_0} \operatorname{rank} C_k(\varphi, u) t^k \text{ for all } t \in \mathbb{R}, \text{ all } u \in K_{\varphi},$$
$$P(t,\infty) = \sum_{k \in \mathbb{N}_0} \operatorname{rank} C_k(\varphi, \infty) t^k \text{ for all } t \in \mathbb{R}.$$

Then the "Morse relation" says that

(2.1)
$$\sum_{u \in K_{\varphi}} M(t, u) = P(t, \infty) + (1+t) Q(t),$$

where

$$Q\left(t\right) = \sum_{k \in \mathbb{N}_{0}} \beta_{k} t^{k}$$

is a formal series in $t \in \mathbb{R}$ with nonnegative integer coefficients.

Now we introduce the hypotheses on the data of problem (P_{λ}) .

- $\mathbf{H}(\xi): \xi \in L^{\infty}(\Omega), \xi(z) \ge 0$ for a.a. $z \in \Omega$;
- $\mathbf{H}(\beta): \beta \in C^{0,\alpha}(\Omega) \text{ with } \alpha \in (0,1), \beta(z) \ge 0 \text{ for all } z \in \Omega;$
- $\mathbf{H}_0 \quad : \, \xi \not\equiv 0 \text{ or } \beta \not\equiv 0.$

Remark: If $\beta \equiv 0$, then we recover the Neumann problem.

 $\mathbf{H}(f) \colon f \, : \, \Omega \times \mathbb{R} \to \mathbb{R} \text{ is a Carathéodory function such that } f(z,0) = 0 \text{ for a.a.} \\ z \in \Omega \text{ and}$

(i) there exists $r \in (p, p^*)$ such that

$$\lim_{x \to 0} \frac{f(z, x)}{|x|^{r-2} x} = 0 \text{ uniformly for a.a. } z \in \Omega,$$

where

$$p^* = \begin{cases} \frac{Np}{N-p} & \text{if } p < N \\ +\infty & \text{if } N \le p; \end{cases}$$

(*ii*) if
$$F(z, x) = \int_0^x f(z, s) \, ds$$
, then there exists $\tau \in (r, p^*)$ such that
$$\lim_{x \to \infty} \frac{F(z, x)}{x^{\tau}} = +\infty \text{ uniformly for a.a. } z \in \Omega.$$

Remarks: We emphasize that this reaction term is only locally defined. No conditions are imposed on f(z, x) for |x| big. We also point out that no sign condition is imposed on $f(z, \cdot)$.

$$\begin{split} \mathbf{H}\left(g\right): \ g \,:\, \Omega \times \mathbb{R} \to \mathbb{R} \text{ is a Carathéodory function such that } g\left(z,0\right) \,=\, 0 \text{ for a.a.} \\ z \,\in\, \Omega \text{ and} \\ (i) \text{ there exist } a \,\in\, L^{\infty}\left(\Omega\right) \text{ and } 1$$

(ii) If $G(z,x) = \int_0^x g(z,s) \, ds$, then there exists $q \in (p,r)$ (see hypothesis $\mathbf{H}(f)(i)$) and M > 0 such that

$$0 < qG(z,x) \leq g(z,x) x$$
 for a.a. $z \in \Omega$, all $|x| \geq M$,

and

$$0 \leq \operatorname{essinf} G(\cdot, \pm M);$$

(*iii*) there exists $c_0 > 0$ such that

$$0 \leq g(z, x) x \leq c_0 |x|^r$$
 for a.a. $z \in \Omega$, all $x \in \mathbb{R}$.

Remarks: We see that for a.a. $z \in \Omega$, $g(z, \cdot)$ satisfies the AR-condition (see $\mathbf{H}(g)(ii)$). Moreover, $g(z, \cdot)$ satisfies a global sign condition (see $\mathbf{H}(g)(iii)$).

In what follows by $\gamma: W^{1,p}(\Omega) \to \mathbb{R}$ we denote the C^1 -functional defined by

$$\gamma(u) = \|Du\|_p^p + \int_{\Omega} \xi(z) |u|^p dz + \int_{\partial \Omega} \beta(z) |u|^p d\sigma \text{ for all } u \in W^{1,p}(\Omega).$$

Hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 together with Lemma 4.11 of Mugnai-Papageorgiou [8] and Proposition 2.3 of Gasinski-Papageorgiou [4] imply that

(2.2)
$$C_1 \|u\|^p \le \gamma(u) \text{ for some } C_1 > 0, \text{ all } u \in W^{1,p}(\Omega).$$

On account of hypotheses $\mathbf{H}(f)(i)$, (ii), we can find $\delta_0 > 0$ such that

(2.3)
$$|f(z,x)| \le |x|^{r-1}, \ |F(z,x)| \le \frac{1}{r} |x|^r, \ F(z,x) \ge |x|^r$$
 for a.a. $z \in \Omega$, all $|x| < \delta_0$.

Let $\theta \in (0, \delta_0)$ and consider the cut-off function $\eta \in C_c^1(\mathbb{R})$ such that

(2.4)
$$\operatorname{supp} \eta \subseteq \left[-\theta, \theta\right], \ 0 \le \eta \le 1, \ \eta \mid_{\left[-\frac{\theta}{2}, \frac{\theta}{2}\right]} \equiv 1$$

Using this cut-off function, we introduce the following modification of the parametric, locally defined reaction term

(2.5)
$$\widehat{f}_{\lambda}(z,x) = \eta(x)\,\lambda f(z,x) + [1-\eta(x)]\,|x|^{r-2}\,x.$$

This is a Carathéodory function. We consider the positive and negative truncations of $\hat{f}_{\lambda}(z, \cdot)$, namely the Carathéodory functions

$$\widehat{f}_{\lambda}^{\pm}(z,x) = \widehat{f}_{\lambda}(z,\pm x^{\pm}).$$

We set

$$\widehat{F}_{\lambda}^{\pm}\left(z,x\right) = \int_{0}^{x} \widehat{f}_{\lambda}^{\pm}\left(z,s\right) ds.$$

Also, we introduce the positive and negative truncations of $g(z, \cdot)$, namely the Carathéodory functions

$$g_{\pm}\left(z,x\right) = g\left(z,\pm x^{\pm}\right).$$

32

We set

$$G_{\pm}(z,x) = \int_{0}^{x} g_{\pm}(z,x) \, ds$$

Finally we define

$$\widehat{\zeta}_{\lambda}^{\pm}(z,x) = \widehat{f}_{\lambda}^{\pm}(z,x) + g_{\pm}(z,x) \text{ for } (z,x) \in \Omega \times \mathbb{R}.$$

These are Carathéodory functions.

Proposition 2.1. If hypotheses $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, then for every $\lambda > 0$, the functions $\hat{\zeta}^{\pm}_{\lambda}(z, \cdot)$ satisfy the AR condition.

Proof. On account of hypothesis $\mathbf{H}(g)(ii)$, it suffices to show that $\hat{f}^+_{\lambda}(z, \cdot)$ satisfies the AR condition. First we note that (2.3), (2.4) and (2.5) imply

(2.6)
$$\left| \widehat{f}_{\lambda}(z,x) \right| \leq C_2 \left| x \right|^{r-1} \text{ for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R},$$

with $C_2 = C_2(\lambda) > 0$, hence

(2.7)
$$\left|\widehat{F}_{\lambda}(z,x)\right| \leq \frac{C_2}{r} |x|^r \text{ for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R}.$$

Let $x > \theta$. We have

(2.8)

$$\widehat{F}_{\lambda}^{+}(z,x) = \int_{0}^{x} \widehat{f}_{\lambda}^{+}(z,s) \, ds = \int_{0}^{x} \widehat{f}_{\lambda}(z,s) \, ds$$

$$= \int_{0}^{x} \left[\eta(s) \, \lambda f(z,s) + \left[1 - \eta(s)\right] s^{r-1} \right] \, ds \, (\text{see } (2.5))$$

$$= \int_{0}^{\theta} \left[\eta(s) \, \lambda f(z,s) + \left[1 - \eta(s)\right] s^{r-1} \right] \, ds + \int_{\theta}^{x} s^{r-1} \, ds \, (\text{see } (2.4))$$

$$\leq C_{3} \lambda \theta^{r} + \frac{1}{r} x^{r} \text{ for some } C_{3} > 0.$$

Since $x > \theta$, from (2.4) and (2.5) it follows that

(2.9)
$$\widehat{f}_{\lambda}^{+}(z,x) = x^{r-1}.$$

Then with $q \in (p, r)$ as in hypothesis $\mathbf{H}(g)(ii)$, we have

(2.10)
$$\widehat{f}_{\lambda}^{+}(z,x) x - q \widehat{F}_{\lambda}^{+}(z,x) \ge \left[1 - \frac{q}{r}\right] x^{r} - q C_{3} \lambda \theta^{r} \text{ (see (2.8), (2.9))}.$$

Choose $M_{+} > \max\{M, \theta\}$ (see $\mathbf{H}(g)(ii)$) big such that

$$\left[1 - \frac{q}{r}\right] M_+^r > qC_2 \lambda \theta^r \text{ (recall } q < r\text{)}.$$

So, from (2.10) we have

$$\widehat{f}_{\lambda}^{+}(z,x) x \ge q \widehat{F}_{\lambda}^{+}(z,x)$$
 for a.a. $z \in \Omega$, all $x \ge M_{+}$.

33

Also note that for $x \ge M_+$, we have

$$\widehat{F}_{\lambda}^{+}(z,x) = \int_{0}^{\theta} \widehat{f}_{\lambda}^{+}(z,s) \, ds + \int_{\theta}^{x} \widehat{f}_{\lambda}^{+}(z,s) \, ds$$
$$\geq -C_{2} \int_{0}^{\theta} s^{r-1} ds + \frac{1}{r} \left[x^{r} - \theta^{r} \right] \text{ (see (2.6) and (2.9))}$$
$$= \frac{1}{r} x^{r} - \frac{C_{4}}{r} \theta^{r} \text{ for some } C_{4} > 0.$$

Choosing M_+ even bigger if necessary, we may assume that

$$M^r_+ > C_4 \theta^r.$$

Therefore we have

essinf
$$\widehat{F}_{\lambda}^{+}(\cdot, M_{+}) > 0$$
 and $\widehat{F}_{\lambda}^{+}(z, x) > 0$ for a.a. $z \in \Omega$, all $x \ge M_{+}$.

This proves that $\hat{\zeta}^+_{\lambda}(z, \cdot)$ satisfies the AR condition. Similarly we show that $\hat{\zeta}^-_{\lambda}(z, \cdot)$ satisfies the AR condition.

3. Nonlinear problems

Let by $\widehat{\varphi}_{\lambda}^{\pm}: W^{1,p}(\Omega) \to \mathbb{R}$ be the C^1 -functionals defined by

$$\widehat{\varphi}_{\lambda}^{\pm}\left(u\right) = \frac{1}{p}\gamma\left(u\right) - \int_{\Omega} \left[\widehat{F}_{\lambda}^{\pm}\left(z,x\right) + G^{\pm}\left(z,u\right)\right] dz \text{ for all } u \in W^{1,p}\left(\Omega\right).$$

Proposition 3.1. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold and $\lambda \geq 1$, then we can find $\rho_{\lambda} > 0$ and $\widehat{m}_{\lambda} > 0$ such that

$$\widehat{\varphi}_{\lambda}^{\pm}\left(u\right) \geq \widehat{m}_{\lambda} > 0 \text{ for all } u \in W^{1,p}\left(\Omega\right) \text{ with } \|u\| = \rho_{\lambda}.$$

Proof. Using (2.2), (2.7), hypothesis $\mathbf{H}(g)(ii)$ and the fact that $\lambda \geq 1$, we obtain

$$\widehat{\varphi}_{\lambda}^{\pm}(u) \ge C_1 \|u\|^p - \lambda C_5 \|u\|^r$$
 for some $C_5 > 0$, all $u \in W^{1,p}(\Omega)$

hence

$$\widehat{\varphi}_{\lambda}^{\pm}(u) \ge \left[C_1 - \lambda C_5 \, \|u\|^{r-p}\right] \|u\|^p \,.$$

Therefore if
$$\rho_{\lambda} \in \left(0, \left(\frac{C_{1}}{\lambda C_{5}}\right)^{\frac{1}{r-p}}\right)$$
, then
 $\widehat{\varphi}_{\lambda}^{\pm}(u) \geq \widehat{m}_{\lambda} := \rho_{\lambda}^{p} \left[C_{1} - \lambda C_{5}^{r-p} \rho_{\lambda}^{r-p}\right] > 0$
for all $u \in W^{1,p}(\Omega)$ with $||u|| = \rho_{\lambda}$.

Proposition 3.2. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, then there exist $\tilde{u} \in W^{1,p}(\Omega)$, $\tilde{u} \ge 0$ and $\tilde{\lambda}_1 \ge 1$ such that for all $\lambda \ge \tilde{\lambda}_1$ we have

$$\widehat{\varphi}_{\lambda}^{\pm}(\pm \widetilde{u}) < 0 \text{ and } \|\widetilde{u}\| > \rho_{\lambda}$$

Proof. Let $\widetilde{u} = \frac{\theta}{2} \in W^{1,p}(\Omega)$. Then from (2.3), (2.5) and hypothesis $\mathbf{H}(g)(iii)$, we have

$$\begin{aligned} \widehat{\varphi}_{\lambda}^{\pm}\left(\widetilde{u}\right) &\leq \frac{\widetilde{u}^{p}}{p} \left[\left\| \xi \right\|_{\infty} \left| \Omega \right|_{N} + \left\| \beta \right\|_{L^{\infty}(\partial\Omega)} \sigma\left(\partial\Omega\right) \right] - \int_{\Omega} \lambda F\left(z,\widetilde{u}\right) dz \\ &\leq C_{6} \widetilde{u}^{p} - \lambda \widetilde{u}^{\tau} \text{ for some } C_{6} > 0 \text{ (see } (2.3) \text{).} \end{aligned}$$

Here by $|\cdot|_N$ we denote the Lebesgue measure in \mathbb{R}^N .

We choose $\lambda_0 \geq 1$ such that

(3.1)
$$\widehat{\varphi}_{\lambda}^{\pm}(\widetilde{u}) < 0 \text{ for all } \lambda \ge \widetilde{\lambda}_0.$$

From the proof of Proposition 3.1, we know that

$$\rho_{\lambda} \to 0 + \text{ as } \lambda \to \infty$$

So, we can find $\widetilde{\lambda}_1 \geq \widetilde{\lambda}_0 \geq 1$ such that

 $\|\widetilde{u}\| > \rho_{\lambda} \text{ for all } \lambda \ge \widetilde{\lambda}_1.$

We conclude that for $\widetilde{u} = \frac{\theta}{2} \in int \ C_+$ and for $\lambda \geq \widetilde{\lambda}_1$ we have

$$\widehat{\varphi}_{\lambda}^{\pm}(\pm \widetilde{u}) < 0 \text{ and } \|\widetilde{u}\| > \rho_{\lambda}$$

L		
L		
L		

From Proposition 2.1, we know that the integrands $\hat{\zeta}^{\pm}_{\lambda}(\cdot, \cdot)$ satisfy the ARcondition. So, we have the following result (see Ambrosetti-Rabinowitz [2]):

Proposition 3.3. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, then for every $\lambda > 0$, the functionals $\hat{\varphi}^{\pm}_{\lambda}$ satisfy the PS-condition.

We consider the following nonlinear parametric Robin problem

$$(Q_{\lambda}) \begin{cases} -\Delta_{p}u(z) + \xi(z) |u(z)|^{p-2} u(z) = \widehat{f}_{\lambda}(z, u(z)) + g(z, u(z)) \\ & \text{in } \Omega, \\ \frac{\partial u}{\partial n_{p}} + \beta(z) |u|^{p-2} u = 0 \text{ on } \partial\Omega, \ \lambda > 0, \ 1$$

Using variational tools, we can show the existence of constant sign solutions of (Q_{λ}) when $\lambda \geq 1$ is big.

Proposition 3.4. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, and $\lambda \geq \lambda_1$ (see Proposition 3.2), then problem (Q_{λ}) has at least two constant sign solutions $u_{\lambda} \in int C_+$ and $v_{\lambda} \in -int C_+$.

Proof. Propositions 3.1, 3.2 and 3.3 permit the use of the mountain pass theorem [2]. So, we can find $u_{\lambda} \in W^{1,p}(\Omega)$ such that

(3.2)
$$u_{\lambda} \in K_{\widehat{\varphi}_{\lambda}^{+}} \text{ and } \widehat{\varphi}_{\lambda}^{+}(0) = 0 < \widehat{m}_{\lambda} \leq C_{\lambda} = \widehat{\varphi}_{\lambda}^{+}(u_{\lambda}).$$

From (3.2) we have that $u_{\lambda} \neq 0$ and

$$\left(\widehat{\varphi}_{\lambda}^{+}\right)'\left(u_{\lambda}\right) = 0.$$

Hence

(3.3)

$$\langle A(u_{\lambda}), h \rangle + \int_{\Omega} \xi(z) |u_{\lambda}(z)|^{p-2} u_{\lambda}(z) h dz + \int_{\partial \Omega} \beta(z) |u_{\lambda}(z)|^{p-2} u_{\lambda}(z) h d\sigma$$

$$= \int_{\Omega} \left[\widehat{f}^{+}_{\lambda}(z, u_{\lambda}) + g_{+}(z, u_{\lambda}) \right] h dz \text{ for all } h \in W^{1,p}(\Omega) .$$

In (3.3) we choose $h = -u_{\lambda}^{-} \in W^{1,p}(\Omega)$. We obtain $C_1 ||u_{\lambda}^{-}||^p \leq 0$ (see (3.2)),

therefore

$$u_{\lambda} \ge 0, \ u_{\lambda} \ne 0.$$

Then from (3.2) we have

(3.4)
$$\begin{cases} -\Delta_p u_{\lambda}(z) + \xi(z) u_{\lambda}(z)^{p-1} = \widehat{f}_{\lambda}(z, u_{\lambda}(z)) + g(z, u_{\lambda}(z)) \\ \text{for a.a. } z \in \Omega, \\ \frac{\partial u_{\lambda}}{\partial n_p} + \beta(z) u_{\lambda}^{p-1} = 0 \text{ on } \partial\Omega. \end{cases}$$

From (3.4) and Proposition 2.10 of Papageorgiou-Radulescu [10], we infer that $u_{\lambda} \in L^{\infty}(\Omega)$. Then we apply Theorem 2 of Lieberman [6] and obtain that

$$u_{\lambda} \in C_+ \setminus \{0\}$$
.

From (3.4) it follows

$$\Delta_{p} u_{\lambda}(z) \leq \left[\left\| \xi \right\|_{\infty} + 2 \left\| u_{\lambda} \right\|_{\infty}^{r-p} \right] u_{\lambda}(z)^{p-1} \text{ for a.a. } z \in \Omega$$

(see $\left(2.3\right),$ $\left(2.5\right)$ and hypothesis $\mathbf{H}\left(g\right)\left(iii\right)$ and by the nonlinear maximum principle we get

$$u_{\lambda} \in int \ C_+.$$

Similarly, working this time with $\widehat{\varphi}_{\lambda}^{-}$, we produce a negative solution

 v_{λ}

$$\in -int C_+.$$

Next we determine the behavior of u_{λ} and v_{λ} as $\lambda \to \infty$.

Proposition 3.5. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, then $u_{\lambda} \to 0 \text{ and } v_{\lambda} \to 0 \text{ in } C^1(\overline{\Omega}) \text{ as } \lambda \to +\infty.$

Proof. Let $\lambda_n \to +\infty$ and consider $u_n = u_{\lambda_n} \in int \ C_+$ be positive solutions of problem $(Q_{\lambda_n}), n \in \mathbb{N}$. From the proof of Proposition 3.4, we know that

(3.5)
$$\widehat{m}_{\lambda_n} \leq C_{\lambda_n} = \widehat{\varphi}^+_{\lambda_n} \left(u_n \right) = \inf_{\gamma \in \Gamma} \max_{0 \leq s \leq 1} \widehat{\varphi}^+_{\lambda_n} \left(\widetilde{\gamma} \left(s \right) \right),$$

where

$$\Gamma = \left\{ \widetilde{\gamma} \in C\left(\left[0, 1 \right], W^{1, p}\left(\Omega \right) \right) : \widetilde{\gamma} \left(0 \right) = 0, \widetilde{\gamma} \left(1 \right) = \widetilde{u} \right\}$$

From (3.5) we have

(3.6) $\widehat{\varphi}_{\lambda_n}^+(u_n) \le \max_{0 \le s \le 1} \widehat{\varphi}_{\lambda_n}^+(s\widetilde{u}).$

Also (2.3), (2.4), (2.5) and hypothesis $\mathbf{H}(g)(iii)$ imply that

$$\widehat{\varphi}_{\lambda_n}(s\widetilde{u}) \leq C_7 s^p - \lambda_n C_8 s^{\tau}$$
 for some $C_7 > 0, \ C_8 > 0.$

We consider the function

$$\mu_{\lambda_n}(s) = C_7 s^p - C_8 s^{\tau}$$
 for all $s \ge 0$, with $n \in \mathbb{N}$.

Evidently since $p < \tau$, we can find $s_0 > 0$ such that

$$0 < \mu_{\lambda_n} \left(s_0 \right) = \max_{s \ge 0} \mu_{\lambda_n} \left(s \right),$$

hence

$$\mu_{\lambda_n}'\left(s_0\right) = 0,$$

therefore

(3.7)
$$s_0 = s_0 \left(\lambda_n\right) = \left[\frac{pC_7}{\lambda_n \tau C_8}\right]^{\frac{1}{\tau - p}}$$

Using (3.7) we obtain

(3.8)
$$\mu_{\lambda_n}(s_0) \le C_7 \left[\frac{pC_7}{\lambda_n \tau C_8} \right]^{\frac{p}{\tau-p}} = C_9 \lambda^{-\frac{p}{\tau-p}} \text{ for some } C_9 > 0, \text{ all } n \in \mathbb{N}.$$

From (3.6) we have

$$\widehat{\varphi}_{\lambda_n}^+(u_n) \le \mu_{\lambda_n}(s_0) \le C_9 \lambda^{-\frac{p}{\tau-p}} \text{ for all } n \in \mathbb{N} \text{ (see (3.8))},$$

hence

$$q\widehat{\varphi}_{\lambda_n}^+(u_n) + \left\langle \left(\widehat{\varphi}_{\lambda_n}^+\right)'(u_n), u_n \right\rangle \leq qC_9 \lambda^{-\frac{p}{\tau-p}} \text{ for all } n \in \mathbb{N},$$

therefore

$$\left[\frac{q}{p} - 1\right] \gamma\left(u_{n}\right)$$

$$+ \int_{\Omega} \left[\left(\widehat{f}_{\lambda_{n}}^{+}\left(z, u_{n}\right) + g_{+}\left(z, u_{n}\right)\right) u_{n} - q\widehat{F}_{\lambda_{n}}^{+}\left(z, u_{n}\right) + G_{+}\left(z, u_{n}\right) \right] dz$$

$$\leq qC_{9}\lambda^{-\frac{p}{\tau-p}},$$

and in view of Proposition 2.1 and hypothesis $\mathbf{H}(g)(ii)$ we conclude that

 $||u_n||^p \le C_{10}$ for some $C_{10} > 0$, all $n \in \mathbb{N}$.

Therefore $\{u_n\}_{n\geq 1} \subseteq W^{1,p}(\Omega)$ is bounded. Then Proposition 2.10 of Papageorgiou-Radulescu [10] implies that we can find $C_{11} > 0$ such that

$$|u_n||_{\infty} \leq C_{11}$$
 for all $n \in \mathbb{N}$

Invoking Theorem 2 of Lieberman [6], we can find $\alpha \in (0,1)$ and $C_{12} > 0$ such that $C_{12} = C_{12} C_{12} (\overline{\Omega})$ and $\|u_{11}\|_{12} = C_{12} C_{12}$ for all $n \in \mathbb{N}$

$$u_n \in C^{1,\alpha}(\Omega)$$
 and $||u_n||_{C^{1,\alpha}(\overline{\Omega})} \leq C_{12}$ for all $n \in \mathbb{N}$.

We know that $C^{1,\alpha}(\overline{\Omega})$ is compactly embedded in $C^1(\overline{\Omega})$, so for at least a subsequence we have

$$u_n \to \overline{u} \text{ in } C^1(\overline{\Omega}) \text{ as } n \to \infty.$$

By (3.5) and (3.8) we infer

(3.9)
$$\widehat{\varphi}_{\lambda_n}^+(u_n) \to 0^+ \text{ as } n \to \infty.$$

Moreover, we have

(3.10)
$$\left\langle \left(\widehat{\varphi}_{\lambda_n}^+\right)'(u_n),h\right\rangle = 0 \text{ for all } h \in W^{1,p}(\Omega), \text{ all } n \in \mathbb{N}.$$

Since $\lambda_n \to +\infty$, from (3.9) and (3.10) it follows that $\overline{u} = 0$. Therefore we conclude that

$$u_n \to 0$$
 in $C^1(\overline{\Omega})$ as $n \to \infty$.

Similarly, working this time with $\widehat{\varphi}_{\lambda_n}^{-}(\cdot)$ we show that

$$v_{\lambda_n} \to 0 \text{ in } C^1\left(\overline{\Omega}\right) \text{ as } n \to \infty.$$

Now we will produce extremal constant sign solutions for problem (Q_{λ}) , that is, we will show that for $\lambda > 0$ big, problem (Q_{λ}) has a smallest positive solution and a biggest negative solution

So, we consider the following two solution sets

$$\widehat{\mathcal{S}}_{\lambda}^{+} = \{ u : u \text{ is a positive solution of } (Q_{\lambda}) \},$$
$$\widehat{\mathcal{S}}_{\lambda}^{-} = \{ u : u \text{ is a negative solution of } (Q_{\lambda}) \}.$$

From Proposition 3.4 it follows that for $\lambda \geq \widetilde{\lambda}_1$

$$\varnothing \neq \widehat{S}_{\lambda}^+ \subseteq int \ C_+ \text{ and } \varnothing \neq \widehat{S}_{\lambda}^- \subseteq -int \ C_+ \ .$$

Moreover, from Papageorgiou-Radulescu-Reports [11] (see the proof of Proposition 7), we know that

$$\widehat{\mathcal{S}}^+_{\lambda}$$
 is downward directed

and

 $\widehat{\mathcal{S}}_{\lambda}^{-}$ is upward directed.

Proposition 3.6. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$, hold and $\lambda \geq \tilde{\lambda}_1$, then problem (Q_{λ}) has a smallest positive solution $u_{\lambda}^* \in int \ C_+$ and a biggest negative solution $v_{\lambda}^* \in -int \ C_+$.

Proof. By Lemma 3.10, p.178 of Hu-Papageorgiou [5], we can find a decreasing sequence $\{u_n\}_{n\geq 1} \subseteq \widehat{S}^+_{\lambda}$ such that

$$\inf_{n\geq 1} u_n = \inf \widehat{\mathcal{S}}^+_{\lambda}.$$

We have

(3.11)

$$\langle A(u_n), h \rangle + \int_{\Omega} \xi(z) u_n(z)^{p-1} h dz + \int_{\partial \Omega} \beta(z) u_n(z)^{p-1} h d\sigma$$

$$= \int_{\Omega} \left[\widehat{f}_{\lambda}(z, u_n) + g_+(z, u_n) \right] h dz$$
for all $n \in \mathbb{N}$, all $h \in W^{1,p}(\Omega)$,

 $(3.12) 0 \le u_n \le u_1 \text{ for all } n \in \mathbb{N}.$

In (3.11) we chose $h = u_n \in W^{1,p}(\Omega)$ and using (3.12) and (2.2), we infer that $\{u_n\}_{n\geq 1} \subseteq W^{1,p}(\Omega)$ is bounded. So, we may assume that

(3.13)
$$u_n \xrightarrow{w} u_\lambda^* \text{ in } W^{1,p}(\Omega) \text{ and } u_n \to u_\lambda^* \text{ in } L^p(\Omega) \text{ and } L^p(\partial\Omega).$$

In (3.11) we choose $h = u_n - u_{\lambda}^* \in W^{1,p}(\Omega)$, pass to the limit as $n \to \infty$ and use (3.13). We obtain

$$\lim_{n \to \infty} \left\langle A\left(u_n\right), u_n - u_{\lambda}^* \right\rangle = 0,$$

hence

(3.14)
$$u_n \to u_\lambda^* \text{ in } W^{1,p}(\Omega)$$

(see Section 2). We pass to the limit as $n \to \infty$ in (3.11) and use (3.14). Then

$$\langle A\left(u_{\lambda}^{*}\right),h\rangle + \int_{\Omega} \xi\left(z\right)\left(u_{\lambda}^{*}\right)^{p-1}hdz + \int_{\partial\Omega} \beta\left(z\right)\left(u_{\lambda}^{*}\right)^{p-1}hd\sigma = \int_{\Omega} \left[\widehat{f}_{\lambda}\left(z,u_{\lambda}^{*}\right) + g\left(z,u_{\lambda}^{*}\right)\right]hdz \text{ for all } h \in W^{1,p}\left(\Omega\right),$$

hence $u_{\lambda}^* \in \widehat{S}_{\lambda}^+ \cup \{0\}$. If we show that $u_{\lambda}^* \neq \{0\}$, then u_{λ}^* is the desired minimal positive solution of (Q_{λ}) .

We argue indirectly. So, suppose that $u_{\lambda}^{*} = 0$. Then $u_{n} \to 0$ in $W^{1,p}(\Omega)$ (see (3.14)). We set

$$y_n = \frac{u_n}{\|u_n\|}, \ n \in \mathbb{N}.$$

Then

$$||y_n|| = 1, y_n > 0$$
 for all $n \in \mathbb{N}$.

We may assume that

(3.15)
$$y_n \xrightarrow{w} y$$
 in $W^{1,p}(\Omega)$ and $y_n \to y$ in $L^r(\Omega)$ and $L^p(\partial\Omega)$.

From (3.11) we have

(3.16)
$$\langle A(y_n), h \rangle + \int_{\Omega} \xi(z) y_n^{p-1} h dz + \int_{\partial \Omega} \beta(z) y_n^{p-1} h d\sigma$$
$$= \int_{\Omega} \left[\frac{\widehat{f}_{\lambda}(z, u_n)}{\|u_n\|^{p-1}} + \frac{g(z, u_n)}{\|u_n\|^{p-1}} \right] h dz \text{ for all } h \in W^{1, p}(\Omega) .$$

By (2.3) and (2.5) we see that

(3.17)
$$\left\{\frac{\widehat{f}_{\lambda}\left(\cdot,u_{n}\left(\cdot\right)\right)}{\left\|u_{n}\right\|^{p-1}}\right\}_{n\geq1}\subseteq L^{r'}\left(\Omega\right) \text{ is bounded, where } \frac{1}{r}+\frac{1}{r'}=1.$$

Similarly from hypothesis $\mathbf{H}(g)(i)$ it follows that

(3.18)
$$\left\{\frac{g\left(\cdot, u_{n}\left(\cdot\right)\right)}{\|u_{n}\|^{p-1}}\right\}_{n \ge 1} \subseteq L^{r'}\left(\Omega\right) \text{ is bounded.}$$

If in (3.16) we choose $h = y_n - y \in W^{1,p}(\Omega)$, pass to the limit as $n \to \infty$ and use (3.15), (3.17) and (3.18), we obtain

$$\lim_{n \to \infty} \left\langle A\left(y_n\right), y_n - y \right\rangle = 0,$$

hence

(3.19)
$$y_n \to y \text{ in } W^{1,p}(\Omega) \text{ (see Section 2), with } ||y|| = 1.$$

On account of (3.17), (3.18), (2.3), (2.5) and hypothesis $\mathbf{H}(g)(iii)$, we have

(3.20)
$$\frac{\widehat{f}_{\lambda}(\cdot, u_{n}(\cdot))}{\|u_{n}\|^{p-1}} \xrightarrow{w} 0 \text{ and } \frac{g(\cdot, u_{n}(\cdot))}{\|u_{n}\|^{p-1}} \xrightarrow{w} 0 \text{ in } L^{r'}(\Omega)$$

So, if in (3.16)we pass to the limit as $n \to \infty$ and use (3.19) and (3.20), then

$$\langle A(y),h\rangle + \int_{\Omega} \xi(z) y^{p-1}hdz + \int_{\partial\Omega} \beta(z) y^{p-1}hd\sigma = 0 \text{ for all } h \in W^{1,p}(\Omega).$$

Let $h = y \in W^{1,p}(\Omega)$. Then

$$C_1 \|y\|^p \le 0$$
 (see (2.2)).

hence y=0, which contradicts (3.19). Therefore $u_{\lambda}^{*}\neq 0$ and so

$$u_{\lambda}^* \in \widehat{\mathcal{S}}_{\lambda}^+$$
 and $u_{\lambda}^* = \inf \widehat{\mathcal{S}}_{\lambda}^+$

Similarly, working with $\widehat{\mathcal{S}}_{\lambda}^{-}$, we produce $v_{\lambda}^{*} \in \widehat{\mathcal{S}}_{\lambda}^{-}$ with $v_{\lambda}^{*} = \sup \widehat{\mathcal{S}}_{\lambda}^{-}$. In this case, since $\widehat{\mathcal{S}}_{\lambda}^{-}$ is upward directed, we can find $\{v_n\}_{n\geq 1} \subseteq \widehat{\mathcal{S}}_{\lambda}^{-}$ increasing, such that

$$\sup_{n\geq 1} v_n = \sup \widehat{\mathcal{S}}_{\lambda}^-.$$

We will use these two extremal constant sign solutions in order to produce a nodal solution for problem (Q_{λ}) when λ is big enough.

Proposition 3.7. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, then there exists $\widetilde{\lambda}_2 \geq \widetilde{\lambda}_1$ such that for all $\lambda \geq \widetilde{\lambda}_2$, problem (Q_{λ}) has a nodal solution $y_{\lambda} \in [v_{\lambda}^*, u_{\lambda}^*] \cap C^1(\overline{\Omega})$.

Proof. Let $u_{\lambda}^* \in int \ C_+$ and $v_{\lambda}^* \in -int \ C_+$ be the two extremal constant sign solutions of problem (Q_{λ}) produced in Proposition 3.6. We introduce the following Carathéodory function

$$(3.21) \qquad \widehat{k}_{\lambda}\left(z,x\right) = \begin{cases} \widehat{f}_{\lambda}\left(z,v_{\lambda}^{*}\left(z\right)\right) + g\left(z,v_{\lambda}^{*}\left(z\right)\right) & \text{if } x < v_{\lambda}^{*}\left(z\right) \\ \widehat{f}_{\lambda}\left(z,x\right) + g\left(z,x\right) & \text{if } v_{\lambda}^{*}\left(z\right) \le x \le u_{\lambda}^{*}\left(z\right) \\ \widehat{f}_{\lambda}\left(z,u_{\lambda}^{*}\left(z\right)\right) + g\left(z,u_{\lambda}^{*}\left(z\right)\right) & \text{if } u_{\lambda}^{*}\left(z\right) < x. \end{cases}$$

We consider the positive and negative truncations of $\widehat{k}_{\lambda}\left(z,\cdot\right)$, namely the Carathéodory functions

(3.22)
$$\widehat{k}_{\lambda}^{\pm}(z,x) = \widehat{k}_{\lambda}\left(z,\pm x^{\pm}\right).$$

We set

$$\widehat{K}_{\lambda}(z,x) = \int_{0}^{x} \widehat{k}_{\lambda}(z,s) \, ds \text{ and } \widehat{K}_{\lambda}^{\pm}(z,x) = \int_{0}^{x} \widehat{k}_{\lambda}^{\pm}(z,s) \, ds$$

and introduce the C^1 -functionals $\widehat{\psi}_{\lambda}, \ \widehat{\psi}_{\lambda}^{\pm} : W^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\widehat{\psi}_{\lambda}(u) = \frac{1}{p}\gamma(u) - \int_{\Omega}\widehat{K}_{\lambda}(z,u)\,dz \text{ for all } u \in W^{1,p}(\Omega)$$

and

$$\widehat{\psi}_{\lambda}^{\pm}(u) = \frac{1}{p}\gamma(u) - \int_{\Omega} \widehat{K}_{\lambda}^{\pm}(z, u) \, dz \text{ for all } u \in W^{1, p}(\Omega)$$

Using (3.21), (3.22) and the nonlinear regularity theory, we show easily that

$$K_{\widehat{\psi}_{\lambda}} \subseteq [v_{\lambda}^*, u_{\lambda}^*] \cap C^1\left(\overline{\Omega}\right), \ K_{\widehat{\psi}_{\lambda}^+} \subseteq [0, u_{\lambda}^*] \cap C_+, K_{\widehat{\psi}_{\lambda}^-} \subseteq [v_{\lambda}^*, 0] \cap (-C_+).$$

The extremality of u_{λ}^* , v_{λ}^* implies that

$$(3.23) K_{\widehat{\psi}_{\lambda}} \subseteq [v_{\lambda}^*, u_{\lambda}^*] \cap C^1(\overline{\Omega}), \ K_{\widehat{\psi}_{\lambda}^+} = \{0, u_{\lambda}^*\}, \ K_{\widehat{\psi}_{\lambda}^-} = \{0, v_{\lambda}^*\}.$$

Note that $\widehat{\psi}_{\lambda}^{+}$ is coercive (see (3.21), (3.22)). Also it is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $\widetilde{u}_{\lambda}^{*} \in W^{1,p}(\Omega)$ such that

(3.24)
$$\widehat{\psi}_{\lambda}^{+}(\widetilde{u}_{\lambda}^{*}) = \inf\left\{\widehat{\psi}_{\lambda}^{+}(u) : u \in W^{1,p}(\Omega)\right\}.$$

Let

$$u_* = \min\left\{\frac{\theta}{2}, \min_{\overline{\Omega}} u_{\lambda}^*\right\} > 0$$

(recall that $u_{\lambda}^* \in int C_+$). Then

$$\widehat{\psi}_{\lambda}^{+}(u_{*}) \leq C_{13}u_{*}^{p} - \lambda C_{14}u_{*}^{\tau}$$
 for some $C_{13}, \ C_{14} > 0$

(see (2.3), (2.5) and hypothesis $\mathbf{H}(g)(iii)$). So, we can find $\widetilde{\lambda}_{2}^{+} \geq \widetilde{\lambda}_{1}$ such that

$$\widehat{\psi}_{\lambda}^{+}(u_{*}) < 0 \text{ for all } \lambda \geq \widetilde{\lambda}_{2}^{+},$$

hence

$$\widehat{\psi}_{\lambda}^{+}(u_{\lambda}^{*}) < 0 = \widehat{\psi}_{\lambda}^{+}(0) \text{ for all } \lambda \ge \widetilde{\lambda}_{2}^{+} \text{ (see (3.24))},$$

therefore

(3.25)

 $\widetilde{u}_{\lambda}^{*} \neq 0$ for all $\lambda \geq \widetilde{\lambda}_{2}^{+}$.

From (3.24) we have

$$\widetilde{u}_{\lambda}^* \in K_{\widehat{\psi}_{\lambda}^+}$$

hence

$$\widetilde{u}_{\lambda}^* = u_{\lambda}^* \in int \ C_+ \ (see \ (3.24), \ (3.25)).$$

It is clear from (3.22) that

$$\widehat{\psi}_{\lambda}^{+}\mid_{C_{+}}=\widehat{\psi}_{\lambda}\mid_{C_{+}},$$

hence u_{λ}^* is a local $C^1(\overline{\Omega})$ –minimizer of $\widehat{\psi}_{\lambda}$, therefore

(3.26)
$$u_{\lambda}^{*}$$
 is a local $W^{1,p}(\Omega)$ -minimizer of ψ_{λ} for all $\lambda \geq \lambda_{2}^{+}$

(see Papageorgiou-Radulescu [10], Proposition 2.12).

Similarly, working this time with $\widehat{\psi}_{\lambda}^{-}$, we produce $\widetilde{\lambda}_{2}^{-} \geq \widetilde{\lambda}_{1}$ such that

(3.27) v_{λ}^* is a local $W^{1,p}(\Omega)$ -minimizer of $\widehat{\psi}_{\lambda}$ for all $\lambda \ge \widetilde{\lambda}_2^-$.

Let

$$\widetilde{\lambda}_2 = \max\left\{\widetilde{\lambda}_2^+, \widetilde{\lambda}_2^-\right\}$$

and let $\lambda \geq \tilde{\lambda}_2$. We may assume that

$$\widehat{\psi}_{\lambda}\left(v^{*}\right) \leq \widehat{\psi}_{\lambda}\left(u^{*}\right).$$

The reasoning is similar if the opposite inequality holds, using (3.27) instead of (3.26). Also, we may assume that

(3.28)
$$K_{\hat{\psi}_{\lambda}}$$
 is finite.

Otherwise, we already have an infinity of smooth nodal solutions.

Using (3.26), (3.28) and Theorem 5.7.6, p. 448, of Papageorgiou-Radulescu-Repove [13], we can find $\rho \in (0, 1)$ small, such that

(3.29)
$$\widehat{\psi}_{\lambda} \left(v_{\lambda}^{*} \right) \leq \widehat{\psi}_{\lambda} \left(u_{\lambda}^{*} \right) < \inf \left\{ \widehat{\psi}_{\lambda} \left(u \right) : \left\| u - u_{\lambda}^{*} \right\| = \rho \right\} =: \widehat{m}_{\lambda}, \\ \left\| u_{\lambda}^{*} - v_{\lambda}^{*} \right\| > \rho.$$

Evidently, $\widehat{\psi}_{\lambda}\left(\cdot\right)$ is coercive (see (3.21)). Therefore

(3.30)
$$\psi_{\lambda}$$
 satisfies the PS-condition

(see Papageorgiou-Radulescu-Repovs [13], Proposition 5.1.15, p.369).

Then (3.29), (3.30) permit the use of the mountain pass theorem. So, we can find $y_{\lambda} \in W^{1,p}(\Omega)$ such that

(3.31)
$$y_{\lambda} \in K_{\widehat{\psi}_{\lambda}} \subseteq [v_{\lambda}^*, u_{\lambda}^*] \cap C^1\left(\overline{\Omega}\right), \ \widehat{m}_{\lambda} \le \widehat{\psi}_{\lambda}\left(y_{\lambda}\right)$$

(see (3.23) and (3.29)). From (3.29) and (3.31) it follows that

$$(3.32) y_{\lambda} \notin \{u_{\lambda}^*, v_{\lambda}^*\}.$$

Since y_{λ} is a critical point of $\widehat{\psi}_{\lambda}(\cdot)$ of mountain pass type, we have

$$(3.33) C_1\left(\widehat{\psi}_{\lambda}, y_{\lambda}\right) \neq 0.$$

(see Papageorgiou-Radulescu-Reports [13], Theorem 6.5.8, p.527).

On the other hand, if $u \in C^1(\overline{\Omega})$ and

$$\|u\|_{C^{1}(\overline{\Omega})} \leq \rho_{0} \leq \min\left\{\frac{\theta}{2}, \min\left\{\min_{\overline{\Omega}} u_{\lambda}^{*}, \min_{\overline{\Omega}}\left(-v_{\lambda}^{*}\right)\right\}\right\}$$

(recall that $u_{\lambda}^* \in int \ C_+, v_{\lambda}^* \in -int \ C_+$, see Proposition 3.6), then

$$\begin{aligned} \widehat{\psi}_{\lambda}\left(u\right) &= \frac{1}{p}\gamma\left(u\right) - \int_{\Omega} \left[\lambda F\left(z,u\right) + G\left(z,u\right)\right] dz \text{ (see } (2.3), (2.5), (3.21)) \\ &\geq \frac{1}{p}\gamma\left(u\right) - \frac{1}{r} \left[\lambda + C_{0}\right] \|u\|_{r}^{r} \text{ (see } (2.3), \text{ and } \mathbf{H}\left(g\right)\left(iii\right) \\ &\geq \frac{C_{1}}{p} \|u\|^{p} - \frac{1}{r} \left[\lambda + C_{0}\right] \|u\|^{r} \text{ (see } (2.2)). \end{aligned}$$

Since r > p, for $\rho_0 \in (0, 1)$ small, we have

$$\psi_{\lambda}(u) > 0 \text{ for all } 0 < \|u\|_{C^{1}(\overline{\Omega})} \le \rho_{0},$$

42

hence u = 0 is a local $C^1(\overline{\Omega})$ –minimizer of $\widehat{\psi}_{\lambda}(\cdot)$, therefore u = 0 is a local $W^{1,p}(\Omega)$ -minimizer of $\widehat{\psi}_{\lambda}(\cdot)$ (see [10]), and we conclude that

(3.34)
$$C_k\left(\widehat{\psi}_{\lambda},0\right) = \delta_{k,0}\mathbb{Z} \text{ for all } k \in \mathbb{N}_0$$

(where $\delta_{k,l}$ denotes the Kronecker symbol defined by $\delta_{k,l} = 1$ if k = l and $\delta_{k,l} = 0$ if $k \neq l$). Comparing (3.33) and (3.34), we infer that $y_{\lambda} \neq 0$ and so, $y_{\lambda} \in [v_{\lambda}^*, u_{\lambda}^*] \cap C^1(\overline{\Omega})$ is a nodal solution of the problem (Q_{λ}) , for $\lambda \geq \widetilde{\lambda}_2$.

In view of Proposition 3.5, we arrive at:

Proposition 3.8. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, then

 $u_{\lambda}^*, v_{\lambda}^*, y_{\lambda} \to 0 \text{ in } C^1(\overline{\Omega}) \text{ as } \lambda \to +\infty.$

Then Proposition 3.8 and (2.5) lead to the following multiplicity theorem for (P_{λ}) .

Theorem 3.9. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)$, $\mathbf{H}(g)$ hold, then there exists $\widetilde{\lambda}_3 \geq \widetilde{\lambda}_2$ such that for $\lambda \geq \widetilde{\lambda}_3$, problem (P_{λ}) has at least three nontrivial solutions

$$u_{\lambda} \in int \ C_{+}, \ v_{\lambda} \in -int \ C_{+} \ and \ y_{\lambda} \in [v_{\lambda}, u_{\lambda}] \cap C^{1}(\overline{\Omega}), \ nodal$$

Moreover,

$$u_{\lambda}, v_{\lambda}, y_{\lambda} \to 0 \text{ in } C^1(\overline{\Omega}) \text{ as } \lambda \to +\infty.$$

4. Semilinear problems

In the semilinear case (p = 2), under stronger regularity hypotheses on $f(z, \cdot)$ and $g(z, \cdot)$, we can improve Theorem 3.9 by producing a second nodal solution of (P_{λ}) for a total of four nontrivial solutions, all with sign information.

So, now the problem under consideration is the following

$$(SP_{\lambda}) \qquad \left\{ \begin{array}{l} -\Delta u\left(z\right) + \xi\left(z\right)u\left(z\right) = \lambda f\left(z,u\left(z\right)\right) + g\left(z,u\left(z\right)\right) \text{ in } \Omega, \\ \frac{\partial u}{\partial n_{p}} + \beta\left(z\right)u = 0 \text{ on } \partial\Omega, \ \lambda > 0. \end{array} \right.$$

The conditions on the two nonlinearities f(z, x) and g(z, x) are the following. $\mathbf{H}(f)': f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a measurable function such that f(z, 0) = 0 for a.a. $z \in \Omega$, $f(z, \cdot) \in C^1(\mathbb{R})$ and

(i) there exists $r \in (2, 2^*)$ such that

$$\lim_{x \to 0} \frac{f(z, x)}{|x|^{r-2} x} = 0 \text{ uniformly for a.a. } z \in \Omega;$$

(*ii*) if $F(z, x) = \int_0^x f(z, s) \, ds$, then there exists $\tau \in (r, 2^*)$ such that $\lim_{x \to \infty} \frac{F(z, x)}{x^{\tau}} = +\infty \text{ uniformly for a.a. } z \in \Omega.$

Remark: Hypothesis $\mathbf{H}(f)'(i)$ implies that

$$0 = f'_{x}(z,0) = \lim_{x \to 0} \frac{f(z,x)}{x}$$
 uniformly for a.a. $z \in \Omega$.

- $\mathbf{H}(g): g: \Omega \times \mathbb{R} \to \mathbb{R} \text{ is a measurable function such that } g(z,0) = 0 \text{ for a.a. } z \in \Omega, \\ g(z,\cdot) \in C^1(\mathbb{R}) \text{ and}$
 - (i) there exist $a \in L^{\infty}(\Omega)$ and $2 < d < 2^*$ such that

$$\left|g'_{x}(z,x)\right| \leq a\left(z\right)\left[1+|x|^{d-2}\right]$$
 for a.a. $z \in \Omega$, all $x \in \mathbb{R}$;

(ii) If $G(z,x) = \int_0^x g(z,s) \, ds$, then there exist $q \in (2,r)$ and M > 0 such that

$$0 < qG(z, x) \le g(z, x) x$$
 for a.a. $z \in \Omega$, all $|x| \ge M$,

and

$$0 \leq \operatorname{essinf}_{\Omega} G\left(\cdot, \pm M\right);$$

(*iii*) there exists $c_0 > 0$ such that

$$0 \leq g(z, x) x \leq c_0 |x|^r$$
 for a.a. $z \in \Omega$, all $x \in \mathbb{R}$.

Remark: Hypothesis $\mathbf{H}(g)'(iii)$ implies that

$$0 = g'(z, x) = \lim_{x \to 0} \frac{g(z, x)}{x}$$
 uniformly for a.a. $z \in \Omega$.

$$\begin{split} \mathbf{H}_{1} \colon \text{For every } \lambda > 0 \text{ and } \rho > 0, \text{ there exists } \xi_{\rho}^{\lambda} > 0 \text{ such that for a.a. } z \in \Omega, \text{ the function } x \to \lambda f\left(z,x\right) + g\left(z,x\right) + \xi_{\rho}^{\lambda}x \text{ is nondecreasing on } \left[-\rho,\rho\right]. \end{split}$$

Remark: This is a lower Lipschitz condition. It is satisfied if for every $\lambda > 0$ and $\rho > 0$, there exists $\hat{\xi}^{\lambda}_{\rho} > 0$ such that

$$\lambda f'_{x}(z,x) + g'_{x}(z,x) \ge -\widehat{\xi}^{\lambda}_{\rho}$$
 for a.a. $z \in \Omega$., all $|x| \le \rho$.

In what follows we set

$$\zeta_{\lambda}(z,x) = \widehat{f}_{\lambda}(z,x) + g(z,x), \ \widehat{F}_{\lambda}(z,x) = \int_{0}^{x} \widehat{f}_{\lambda}(z,s) \, ds$$

and we consider the C^{1} -functional $\widehat{\varphi}_{\lambda}: W^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\widehat{\varphi}_{\lambda}\left(u\right) = \frac{1}{p}\gamma\left(u\right) - \int_{\Omega} \left[\widehat{F}_{\lambda}\left(z,x\right) + G\left(z,u\right)\right] dz \text{ for all } u \in W^{1,p}\left(\Omega\right).$$

Theorem 4.1. If hypotheses $\mathbf{H}(\xi)$, $\mathbf{H}(\beta)$, \mathbf{H}_0 , $\mathbf{H}(f)'$, $\mathbf{H}(g)'$, \mathbf{H}_1 hold, then there exists $\widetilde{\lambda}_3 \geq 1$ such that for all $\lambda \geq \widetilde{\lambda}_3$, problem (P_{λ}) has at least four nontrivial solutions

$$u_{\lambda} \in int \ C_+, \ v_{\lambda} \in -int \ C_+, \ and \ y_{\lambda}, \ \widehat{y}_{\lambda} \in int_{C^1(\overline{\Omega})} [v_{\lambda}, u_{\lambda}], \ nodal.$$

Proof. From Theorem 3.9, we know that there exists $\lambda_3 \geq 1$ such that for all $\lambda \geq \lambda_3$ problem (P_{λ}) has at least three nontrivial solutions

(4.1) $u_{\lambda} \in int \ C_{+}, \ v_{\lambda} \in -int \ C_{+} \text{ and } y_{\lambda} \in [v_{\lambda}, u_{\lambda}] \cap C^{1}(\overline{\Omega}) \text{ nodal.}$

Let $\rho = \max \{ \|u_{\lambda}\|_{\infty}, \|v_{\lambda}\|_{\infty} \}$ and let $\widehat{\xi}_{\rho}^{\lambda} > 0$ be as postulated by hypothesis \mathbf{H}_{1} . We have

$$-\Delta y_{\lambda} + \left[\xi\left(z\right) + \widehat{\xi}_{\rho}^{\lambda}\right] y_{\lambda} = \lambda f\left(z, y_{\lambda}\right) + g\left(z, y_{\lambda}\right) + \widehat{\xi}_{\rho}^{\lambda} y_{\lambda}$$

$$\leq \lambda f\left(z, u_{\lambda}\right) + g\left(z, u_{\lambda}\right) + \widehat{\xi}_{\rho}^{\lambda} u_{\lambda} \text{ (see (4.1) and } \mathbf{H}_{1}\text{)}$$

$$= -\Delta u_{\lambda} + \left[\xi\left(z\right) + \widehat{\xi}_{\rho}^{\lambda}\right] u_{\lambda}$$

hence

$$\Delta \left(u_{\lambda} - y_{\lambda} \right) \leq \left[\left\| \xi \right\|_{\infty} + \widehat{\xi}_{\rho}^{\lambda} \right] \left(u_{\lambda} - y_{\lambda} \right),$$

therefore $u_{\lambda} - y_{\lambda} \in int \ C_+$ (by the Hopf boundary point theorem). Similarly we show that

$$y_{\lambda} - v_{\lambda} \in int \ C_+.$$

It follows that

(4.2)
$$y_{\lambda} \in int_{C^{1}(\overline{\Omega})} [v_{\lambda}, u_{\lambda}]$$

Consider the homotopy

$$h_t(u) = h(t, u) = (1 - t)\psi_{\lambda}(u) + t\widehat{\varphi}_{\lambda}(u) \text{ for all } (t, u) \in [0, 1] \times H^1(\Omega)$$

Suppose that we could find $\{t_n\}_{n\geq 1} \subseteq [0,1]$ and $\{y_n\}_{n\geq 1} \subseteq H^1(\Omega)$ such that

$$t_n \to t \text{ in } [0,1], y_n \to y \text{ in } H^1(\Omega), h'_t(y_n) = 0 \text{ for all } n \in \mathbb{N}.$$

We have

(4.3)

$$\langle A(y_n),h\rangle + \int_{\Omega} \xi(z) y_n h dz + \int_{\partial\Omega} \beta(z) y_n h d\sigma$$

$$= (1 - t_n) \int_{\Omega} k_\lambda(z, y_n) h dz + t_n \int_{\Omega} \zeta_\lambda(z, y_n) h dz \text{ for all } h \in H^1(\Omega)$$

By (4.3), using standard regularity theory, we show that in fact we have

 $y_n \to y \text{ in } C^1\left(\overline{\Omega}\right)$

hence

$$y_n \in [v_\lambda, u_\lambda]$$
 for all $n \ge n_0$ (see (4.2)).

This contradicts (3.28). Then, the homotopy invariance property of critical groups (see Papageorgiou-Radulescu-Reports [13], Theorem 6.3.8, p.505) implies that

(4.4)
$$C_k\left(\widehat{\psi}_{\lambda}, y_{\lambda}\right) = C_k\left(\widehat{\varphi}_{\lambda}, y_{\lambda}\right) \text{ for all } k \in \mathbb{N}_0,$$

hence

(4.5)
$$C_1(\widehat{\varphi}_{\lambda}, y_{\lambda}) \neq 0 \text{ (see } (3.33) \text{)}.$$

But $\widehat{\varphi}_{\lambda} \in C^2(H^1(\Omega), \mathbb{R})$. So, by (4.5) and Theorem 6.5.11, p.530 of Papageorgiou-Radulescu-Repoves [13], we have

$$C_k(\widehat{\varphi}_{\lambda}, y_{\lambda}) = \delta_{k,1}\mathbb{Z} \text{ for all } k \in \mathbb{N}_0,$$

hence

(4.6)
$$C_k\left(\widehat{\psi}_{\lambda}, y_{\lambda}\right) = \delta_{k,1}\mathbb{Z} \text{ for all } k \in \mathbb{N}_0, \text{ (see (4.4))}.$$

Recall that u_{λ} , v_{λ} are local minimizers of $\widehat{\psi}_{\lambda}(\cdot)$ (see the proof of Proposition 3.7). Hence

(4.7)
$$C_k\left(\widehat{\psi}_{\lambda}, u_{\lambda}\right) = C_k\left(\widehat{\psi}_{\lambda}, v_{\lambda}\right) = \delta_{k,0}\mathbb{Z} \text{ for all } k \in \mathbb{N}_0.$$

Also from (3.34) we have

(4.8)
$$C_k\left(\widehat{\psi}_{\lambda}, 0\right) = \delta_{k,0}\mathbb{Z} \text{ for all } k \in \mathbb{N}_0.$$

The functional $\widehat{\psi}_{\lambda}(\cdot)$ is coercive (see (3.21)). Hence we obtain

(4.9)
$$C_k\left(\widehat{\psi}_{\lambda},\infty\right) = \delta_{k,0}\mathbb{Z} \text{ for all } k \in \mathbb{N}_0.$$

Suppose that $K_{\widehat{\psi}_{\lambda}} = \{0, u_{\lambda}, v_{\lambda}, y_{\lambda}\}$. Then from (4.6), (4.7), (4.8), (4.9) and the Morse relation with t = -1 (see (2.1)) it follows

$$3(-1)^{0} + (-1)^{1} = (-1)^{0}$$
,

therefore $(-1)^0 = 0$, a contradiction.

So, there exists $\hat{y}_{\lambda} \in K_{\hat{\psi}_{\lambda}}$, $\hat{y}_{\lambda} \notin \{0, u_{\lambda}, v_{\lambda}, y_{\lambda}\}$, and since $\lambda \geq \tilde{\lambda}_{3}$, this is the second nodal solution for problem (P_{λ}) . Finally, using the Hopf boundary point theorem, we conclude that

$$\widehat{y}_{\lambda} \in int_{C^{1}(\overline{\Omega})}[v_{\lambda}, u_{\lambda}].$$

References

- S. Aizicovici, N. S. Papageorgiou and V. Staicu, Infinitely many nodal solutions for anisotropic (p,q)-equations, Pure Appl. Funct. Anal. 7 (2022), 473–487.
- [2] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
- [3] L. Gasinski and N. S. Papageorgiou, Exercises in Analysis. Part. 2: Nonlinear Analysis. Springer, Switzerland, 2016.
- [4] L. Gasinski and N. S. Papageorgiou, Positive solutions for the Robin p-Laplacian problem with competing nonlinearities, Adv. Calc. Var. 12 (2019), 31–56.
- [5] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis Part I: Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
- [6] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12(1988), 1203–1219.
- [7] Z. Li and Z. Q. Wang, Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 56 (2005), 609–629.
- [8] D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 729–788.
- [9] N. S. Papageorgiou and V. D. Radulescu, Infinitely many nodal solutions for nonlinear nonhomogeneous Robin problems, Adv. Nonlinear Stud. 16 (2016), 287–300.
- [10] N. S. Papageorgiou and V. D. Radulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction, Adv. Nonlinear Stud. 16 (2016), 737–764.
- [11] N. S. Papageorgiou, V. D. Radulescu and D. Repovs, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst. 37 (2017), 2589–2618.
- [12] N. S. Papageorgiou, V. D. Radulescu and D. Repovs, Nodal solutions for nonlinear nonhomogeneous Robin problems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 29 (2018), 721–738.

- [13] N. S. Papageorgiou, V. D. Radulescu and D. Repovs, Nonlinear Analysis Theory and Methods. Springer, Switzerland, 2019.
- [14] Z. Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA, Nonlinear Differential Equations Appl. 8 (2001), 15–33.

Manuscript received August 10 2020 revised August 24 2020

S. AIZICOVICI

Department of Mathematics, Ohio University, Athens, OH 45701, USA *E-mail address*: aizicovs@ohio.edu

N. S. PAPAGEORGIOU

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

E-mail address: npapg@math.ntua.gr

V. STAICU

CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

E-mail address: vasile@ua.pt