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In the boundary condition, ∂u
∂np

denotes the conormal derivative of u correspond-

ing to the p−Laplacian and is interpreted using the nonlinear Green’s identity
(see Papageorgiou-Radulescu-Repovs [13], Corollary 1.5.17, p.35). Specifically, for
u ∈ C1

(
Ω
)
, we have

∂u

∂np
= |Du|p−2 ∂u

∂n
,

where n (.) is the outward unit normal on ∂Ω. Using cut-off techniques together
with variational tools based on the critical point theory and Morse theory (critical
groups), we show that for all λ > 0 big, problem (Pλ) has at least three nontrivial
smooth solutions, all with sign information. More precisely, we prove that there
exist two solutions with fixed sign (one positive and the other negative) and a third
solution which is nodal (that is, sign changing). In the semilinear case (that is,
p = 2), by strengthening the regularity of the functions f (z, ·) and g (z, ·) (we
assume that both are C1 functions), we produce a second nodal solution, for a total
of four nontrivial solutions, all with sign information. Finally, for both the nonlinear
and the semilinear problems, we show that the solutions produced converge to zero
in C1

(
Ω
)
as λ→ ∞.

The first paper dealing with equations which have reaction terms that are only
locally defined is the work of Wang [14]. In that paper, the author deals with a
semilinear Dirichlet equation driven by the Laplacian and with a reaction of the
form x → λ |x|q−2 x + g (z, x) , where 1 < q < 2. So, in the reaction we encounter
a parametric concave term and a perturbation g ∈ C (Ω× R,R) , which is odd in

x ∈ R for |x| small, and limx→0
g(z,x)

|x|q−2x
= 0 uniformly for a.a. z ∈ Ω. No other

conditions are imposed on g. In particular, there are no conditions on g (z, ·) for
|x| big. The symmetry of the reaction near zero permits the use of a symmetric
mountain pass theorem, and so the author shows that for all λ > 0, the problem has
a sequence {un}n≥1 ⊆ H1

0 (Ω) of weak solutions such that ∥un∥∞ → 0 as n→ ∞. No

sign information is given for the solutions produced. Later, Li-Wang [7] extended
the result to Schrödinger equations, and in addition proved that the solutions are
nodal.

More recently, Papageorgiou-Radulescu [9] and Papageorgiou-Radulescu-Repovs
[12] extended the aforementioned works to nonlinear, nonhomogeneous Robin prob-
lems, while very recently Aizicovici-Papageorgiou-Staicu [1] obtained similar results
for anisotropic (p, q)-equations. All these papers impose a local symmetry condition
on the reaction, which permits the use of some version of the symmetric mountain
pass theorem. No such symmetry condition is employed here.

2. Mathematical Background - Hypotheses

In the analysis of problem (Pλ) we will use the the Sobolev space W 1,p(Ω), 1 <
p < ∞, and the Banach space C1(Ω). By ∥.∥ we will denote the norm of W 1,p(Ω)
defined by

∥u∥ =
[
∥u∥pp + ∥Du∥pp

] 1
p

for all u ∈W 1,p(Ω),
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where ∥.∥p stands for the Lp-norm. The space C1(Ω) is an ordered Banach space

with positive (order) cone

C+ =
{
u ∈ C1

(
Ω
)
: u (z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by|

intC+ =
{
u ∈ C+ : u (z) > 0 for all z ∈ Ω

}
,

If u, v ∈W 1,p(Ω and u (z) ≤ v (z) for a.a. z ∈ Ω, then we define

[u, v] =
{
y ∈W 1,p(Ω) : u (z) ≤ y (z) ≤ v (z) for a.a. z ∈ Ω

}
.

Also by intC1(Ω) [u, v] with denote the interior in C1(Ω) of [u, v]
⋂
C1(Ω).

On ∂Ω we consider the (N − 1)−dimensional Hausdorff (surface) measure σ (·) .
Having this measure, we can define in the usual way the boundary Lebesgue spaces
Ls (∂Ω) (1 ≤ s ≤ ∞). We recall that there exists a unique continuous linear linear
map γ0 :W

1,p(Ω → Lp (∂Ω) known as the ”trace map”, such that

γ0 (u) = u |∂Ω for all u ∈W 1,p(Ω)
⋂
C(Ω).

So, the trace map extends to all Sobolev functions the notion of boundary value. We

know that γ0 is compact fromW 1,p(Ω) into Lp (∂Ω) , Im γ0 =W
1
p′ ,p(∂Ω) (1p+

1
p′ = 1)

and kerγ0 =W 1,p
0 (Ω)

In the sequel for the sake of notational simplicity, we drop the use of the trace
map γ0. All restrictions of Sobolev functions to ∂Ω are understood in the sense of
traces.

If x ∈ R, then we set

x± = max {±x, 0} .
For u ∈W 1,p (Ω) , we define u± (z) = u (z)± for a.a. z ∈ Ω. We know that

u± ∈W 1,p (Ω) , u = u+ − u− and |u| = u+ + u−.

Given a Carathéodory function f0 : Ω × R → R, we say that it satisfies the
Ambrosetti-Rabinowitz condition (the AR-condition for short), if there exist M > 0
and q > p such that:

0 < qF0 (z, x) ≤ f0 (z, x)x for a.a. z ∈ Ω, all |x| ≥M,

where F0 (z, x) =
x∫
0

f0 (z, s) ds, and

0 < essinf
Ω

F0 (·,±M) .

This condition is very convenient for the verification of the Palais-Smale condition
(the PS-condition for short).

Recall that if X is a Banach space and φ ∈ C1 (X,R), then we say that φ satisfies
the PS-condition, if every sequence {un}n≥1 ⊆ X such that {φ (un)}n≥1 ⊆ R is
bounded and

φ′ (un) → 0 in X∗ as n→ ∞
admits a strongly convergent subsequence.
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By A :W 1,p (Ω) →W 1,p (Ω)∗ we denote the nonlinear operator defined by

⟨A (u) , h⟩ =
∫
Ω
|Du|p−2 (Du,Dh)RN dz for all u, h ∈W 1,p (Ω) .

This operator has the following properties (see Gasinski-Papageorgiou [3], Problem
2.192, p.279):

• it is bounded (that is, it maps bounded sets to bounded sets);
• it is continuous and monotone (hence maximal monotone too);
• it is of type (S)+ , that is, for every sequence {un}n≥1 ⊆W 1,p (Ω) such that

un
w−→ u in W 1,p (Ω) and

lim sup
n→∞

⟨A (un) , un − u⟩ ≤ 0,

one has

un → u in W 1,p (Ω) as n→ ∞.

Here
w−→ designates the weak convergence in W 1,p (Ω) and ⟨·, ·⟩ denotes the du-

ality brackets for the pair
(
W 1,p (Ω)∗ ,W 1,p (Ω)

)
.

Let S ⊆W 1,p (Ω) . We say that S is downward directed (resp. upward directed),
if for all u1, u2 ∈ S we can find û ∈ S such that û ≤ u1 and û ≤ u2 (resp. for all
v1, v2 ∈ S, we can find v̂ ∈ S such that v1 ≤ v̂ and v2 ≤ v̂ ).

Let X be a Banach space, φ ∈ C1 (X,R) and c ∈ R. We introduce the following
sets:

Kφ =
{
u ∈ X : φ′ (u) = 0

}
(the critical set of φ),

and

φc = {u ∈ X : φ (u) ≤ c} (the sublevel of φ at c).

Let (Y1, Y2) be a topological pair such that Y2 ⊂ Y1 ⊂ X. For every k ∈ N0, by
Hk (Y1, Y2) we denote the k

th- relative singular homology group for the pair (Y1, Y2)
with integer coefficients. Recall that for k ∈ −N we have Hk (Y1, Y2) . Suppose
u ∈ Kφ is isolated and let c = φ (u). Then the critical groups of φ at u are defined
by

Ck (φ, u) = Hk (φ
c ∩ U, (φc ∩ U) \ {u}) for all k ∈ N0,

where U is a neighborhood of u such that Kφ∩φc∩U = {u} . The excision property
of singular homology theory implies that the above definition of critical groups is
independent of the particular choice of the neighborhood U .

Now suppose that φ ∈ C1 (X,R) satisfies the PS−condition and inf φ (Kφ) >
−∞. Let c < inf φ (Kφ) . Then the critical groups of φ at infinity are defined by

Ck (φ,∞) = Hk (X,φ
c) for all k ∈ N0.

By the second deformation theorem (see Papageorgiou-Radulescu-Repovs [13],
Theorem 5.3.12, p.386), this definition is independent of the choice of the level

c < inf φ (Kφ) . Indeed if c′ < c < inf φ (Kφ) , then φc
′
is a strong deformation

retract of φc (see [13], p.386) and so,

Hk (X,φ
c) = Hk

(
X,φc

′
)

for all k ∈ N0

(see [13], Corollary 6.1.24, p.468).
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Suppose that Kφ is finite. We introduce the following quantities:

M (t, u) =
∑
k∈N0

rank Ck (φ, u) t
k for all t ∈ R, all u ∈ Kφ,

P (t,∞) =
∑
k∈N0

rank Ck (φ,∞) tk for all t ∈ R.

Then the ”Morse relation” says that

(2.1)
∑
u∈Kφ

M (t, u) = P (t,∞) + (1 + t)Q (t) ,

where
Q (t) =

∑
k∈N0

βkt
k

is a formal series in t ∈ R with nonnegative integer coefficients.
Now we introduce the hypotheses on the data of problem (Pλ) .

H (ξ) : ξ ∈ L∞ (Ω) , ξ (z) ≥ 0 for a.a. z ∈ Ω;

H (β) : β ∈ C0,α (Ω) with α ∈ (0, 1) , β (z) ≥ 0 for all z ∈ Ω;

H0 : ξ ̸≡ 0 or β ̸≡ 0.

Remark: If β ≡ 0, then we recover the Neumann problem.

H (f) : f : Ω × R →R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ Ω and
(i) there exists r ∈ (p, p∗) such that

lim
x→0

f (z, x)

|x|r−2 x
= 0 uniformly for a.a. z ∈ Ω,

where

p∗ =

{ Np
N−p if p < N

+∞ if N ≤ p;

(ii) if F (z, x) =
∫ x
0 f (z, s) ds, then there exists τ ∈ (r, p∗) such that

lim
x→∞

F (z, x)

xτ
= +∞ uniformly for a.a. z ∈ Ω.

Remarks: We emphasize that this reaction term is only locally defined. No con-
ditions are imposed on f (z, x) for |x| big. We also point out that no sign condition
is imposed on f (z, ·) .

H (g) : g : Ω × R →R is a Carathéodory function such that g (z, 0) = 0 for a.a.
z ∈ Ω and
(i) there exist a ∈ L∞ (Ω) and 1 < p < d < p∗ such that

|g (z, x)| ≤ a (z)
[
1 + |x|d−1

]
for a.a. z ∈ Ω, all x ∈ R;
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(ii) If G (z, x) =
∫ x
0 g (z, s) ds, then there exists q ∈ (p, r) (see hypothesis

H (f) (i)) and M > 0 such that

0 < qG (z, x) ≤ g (z, x)x for a.a. z ∈ Ω, all |x| ≥M,

and

0 ≤ essinf
Ω

G (·,±M) ;

(iii) there exists c0 > 0 such that

0 ≤ g (z, x)x ≤ c0 |x|r for a.a. z ∈ Ω, all x ∈ R.

Remarks: We see that for a.a. z ∈ Ω, g (z, ·) satisfies the AR-condition (see
H (g) (ii)). Moreover, g (z, ·) satisfies a global sign condition (see H (g) (iii)).

In what follows by γ :W 1,p (Ω) → R we denote the C1−functional defined by

γ (u) = ∥Du∥pp +
∫
Ω
ξ (z) |u|p dz +

∫
∂Ω
β (z) |u|p dσ for all u ∈W 1,p (Ω) .

HypothesesH (ξ) ,H (β) ,H0 together with Lemma 4.11 of Mugnai-Papageorgiou
[8] and Proposition 2.3 of Gasinski-Papageorgiou [4] imply that

(2.2) C1 ∥u∥p ≤ γ (u) for some C1 > 0, all u ∈W 1,p (Ω) .

On account of hypotheses H (f) (i), (ii) , we can find δ0 > 0 such that

(2.3)
|f (z, x)| ≤ |x|r−1 , |F (z, x)| ≤ 1

r |x|
r , F (z, x) ≥ |x|τ

for a.a. z ∈ Ω, all |x| ≤ δ0.

Let θ ∈ (0, δ0) and consider the cut-off function η ∈ C1
c (R) such that

(2.4) supp η ⊆ [−θ, θ] , 0 ≤ η ≤ 1, η |[− θ
2
, θ
2 ]
≡ 1.

Using this cut-off function, we introduce the following modification of the para-
metric, locally defined reaction term

(2.5) f̂λ (z, x) = η (x)λf (z, x) + [1− η (x)] |x|r−2 x.

This is a Carathéodory function. We consider the positive and negative truncations

of f̂λ (z, ·) , namely the Carathéodory functions

f̂±λ (z, x) = f̂λ
(
z,±x±

)
.

We set

F̂±
λ (z, x) =

x∫
0

f̂±λ (z, s) ds.

Also, we introduce the positive and negative truncations of g (z, ·) , namely the
Carathéodory functions

g± (z, x) = g
(
z,±x±

)
.
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We set

G± (z, x) =

x∫
0

g± (z, x) ds.

Finally we define

ζ̂±λ (z, x) = f̂±λ (z, x) + g± (z, x) for (z, x) ∈ Ω× R.

These are Carathéodory functions.

Proposition 2.1. If hypotheses H (f) , H (g) hold, then for every λ > 0, the func-

tions ζ̂±λ (z, ·) satisfy the AR condition.

Proof. On account of hypothesis H (g) (ii) , it suffices to show that f̂+λ (z, ·) satisfies
the AR condition. First we note that (2.3) , (2.4) and (2.5) imply

(2.6)
∣∣∣f̂λ (z, x)∣∣∣ ≤ C2 |x|r−1 for a.a. z ∈ Ω, all x ∈ R,

with C2 = C2 (λ) > 0, hence

(2.7)
∣∣∣F̂λ (z, x)∣∣∣ ≤ C2

r
|x|r for a.a. z ∈ Ω, all x ∈ R.

Let x > θ. We have

(2.8)

F̂+
λ (z, x) =

x∫
0

f̂+λ (z, s) ds =
x∫
0

f̂λ (z, s) ds

=
x∫
0

[
η (s)λf (z, s) + [1− η (s)] sr−1

]
ds (see (2.5) )

=
θ∫
0

[
η (s)λf (z, s) + [1− η (s)] sr−1

]
ds+

x∫
θ

sr−1ds (see (2.4) )

≤ C3λθ
r + 1

rx
r for some C3 > 0.

Since x > θ, from (2.4) and (2.5) it follows that

(2.9) f̂+λ (z, x) = xr−1.

Then with q ∈ (p, r) as in hypothesis H (g) (ii) , we have

(2.10) f̂+λ (z, x)x− qF̂+
λ (z, x) ≥

[
1− q

r

]
xr − qC3λθ

r (see (2.8) , (2.9) ).

Choose M+ > max {M, θ} (see H (g) (ii)) big such that[
1− q

r

]
M r

+ > qC2λθ
r (recall q < r).

So, from (2.10) we have

f̂+λ (z, x)x ≥ qF̂+
λ (z, x) for a.a. z ∈ Ω, all x ≥M+.
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Also note that for x ≥M+, we have

F̂+
λ (z, x) =

θ∫
0

f̂+λ (z, s) ds+

x∫
θ

f̂+λ (z, s) ds

≥ −C2

θ∫
0

sr−1ds+
1

r
[xr − θr] (see (2.6) and (2.9) )

=
1

r
xr − C4

r
θr for some C4 > 0.

Choosing M+ even bigger if necessary, we may assume that

M r
+ > C4θ

r.

Therefore we have

essinf
Ω

F̂+
λ (·,M+) > 0 and F̂+

λ (z, x) > 0 for a.a. z ∈ Ω, all x ≥M+.

This proves that ζ̂+λ (z, ·) satisfies the AR condition. Similarly we show that ζ̂−λ (z, ·)
satisfies the AR condition. □

3. Nonlinear problems

Let by φ̂±
λ :W 1,p (Ω) → R be the C1−functionals defined by

φ̂±
λ (u) =

1

p
γ (u)−

∫
Ω

[
F̂±
λ (z, x) +G± (z, u)

]
dz for all u ∈W 1,p (Ω) .

Proposition 3.1. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold and λ ≥ 1,
then we can find ρλ > 0 and m̂λ > 0 such that

φ̂±
λ (u) ≥ m̂λ > 0 for all u ∈W 1,p (Ω) with ∥u∥ = ρλ.

Proof. Using (2.2) , (2.7) , hypothesis H (g) (ii) and the fact that λ ≥ 1, we obtain

φ̂±
λ (u) ≥ C1 ∥u∥p − λC5 ∥u∥r for some C5 > 0, all u ∈W 1,p (Ω) ,

hence

φ̂±
λ (u) ≥

[
C1 − λC5 ∥u∥r−p

]
∥u∥p .

Therefore if ρλ ∈
(
0,
(
C1
λC5

) 1
r−p

)
, then

φ̂±
λ (u) ≥ m̂λ := ρpλ

[
C1 − λCr−p5 ρr−pλ

]
> 0

for all u ∈W 1,p (Ω) with ∥u∥ = ρλ.

□

Proposition 3.2. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold, then there

exist ũ ∈W 1,p (Ω) , ũ ≥ 0 and λ̃1 ≥ 1 such that for all λ ≥ λ̃1 we have

φ̂±
λ (±ũ) < 0 and ∥ũ∥ > ρλ.



NONLINEAR ROBIN PROBLEMS WITH LOCALLY DEFINED REACTION 35

Proof. Let ũ = θ
2 ∈W 1,p (Ω) . Then from (2.3) , (2.5) and hypothesis H (g) (iii) , we

have

φ̂±
λ (ũ) ≤ ũp

p

[
∥ξ∥∞ |Ω|N + ∥β∥L∞(∂Ω) σ (∂Ω)

]
−
∫
Ω
λF (z, ũ) dz

≤ C6ũ
p − λũτ for some C6 > 0 (see (2.3) ).

Here by |·|N we denote the Lebesgue measure in RN .
We choose λ̃0 ≥ 1 such that

(3.1) φ̂±
λ (ũ) < 0 for all λ ≥ λ̃0.

From the proof of Proposition 3.1, we know that

ρλ → 0 + as λ→ ∞.

So, we can find λ̃1 ≥ λ̃0 ≥ 1 such that

∥ũ∥ > ρλ for all λ ≥ λ̃1.

We conclude that for ũ = θ
2 ∈ int C+ and for λ ≥ λ̃1 we have

φ̂±
λ (±ũ) < 0 and ∥ũ∥ > ρλ.

□

From Proposition 2.1, we know that the integrands ζ̂±λ (·, ·) satisfy the AR-
condition. So, we have the following result (see Ambrosetti-Rabinowitz [2]):

Proposition 3.3. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold, then for every
λ > 0, the functionals φ̂±

λ satisfy the PS-condition.

We consider the following nonlinear parametric Robin problem

(Qλ)


−∆pu (z) + ξ (z) |u (z)|p−2 u (z) = f̂λ (z, u (z)) + g (z, u (z))

in Ω,
∂u
∂np

+ β (z) |u|p−2 u = 0 on ∂Ω, λ > 0, 1 < p <∞.

Using variational tools, we can show the existence of constant sign solutions of (Qλ)
when λ ≥ 1 is big.

Proposition 3.4. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold, and λ ≥ λ̃1
(see Proposition 3.2), then problem (Qλ) has at least two constant sign solutions
uλ ∈ int C+ and vλ ∈ −int C+.

Proof. Propositions 3.1, 3.2 and 3.3 permit the use of the mountain pass theorem [2].
So, we can find uλ ∈W 1,p (Ω) such that

(3.2) uλ ∈ Kφ̂+
λ
and φ̂+

λ (0) = 0 < m̂λ ≤ Cλ = φ̂+
λ (uλ) .

From (3.2) we have that uλ ̸= 0 and(
φ̂+
λ

)′
(uλ) = 0.
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Hence

(3.3)

⟨A (uλ) , h⟩+
∫
Ω
ξ (z) |uλ (z)|p−2 uλ (z)hdz

+

∫
∂Ω
β (z) |uλ (z)|p−2 uλ (z)hdσ

=

∫
Ω

[
f̂+λ (z, uλ) + g+ (z, uλ)

]
hdz for all h ∈W 1,p (Ω) .

In (3.3) we choose h = −u−λ ∈W 1,p (Ω) . We obtain

C1

∥∥u−λ ∥∥p ≤ 0 (see (3.2) ),

therefore
uλ ≥ 0, uλ ̸= 0.

Then from (3.2) we have

(3.4)


−∆puλ (z) + ξ (z)uλ (z)

p−1 = f̂λ (z, uλ (z)) + g (z, uλ (z))
for a.a. z ∈ Ω,

∂uλ
∂np

+ β (z)up−1
λ = 0 on ∂Ω.

From (3.4) and Proposition 2.10 of Papageorgiou-Radulescu [10], we infer that uλ ∈
L∞ (Ω) . Then we apply Theorem 2 of Lieberman [6] and obtain that

uλ ∈ C+\ {0} .
From (3.4) it follows

∆puλ (z) ≤
[
∥ξ∥∞ + 2 ∥uλ∥r−p∞

]
uλ (z)

p−1 for a.a. z ∈ Ω

(see (2.3) , (2.5) and hypothesis H (g) (iii)) and by the nonlinear maximum principle
we get

uλ ∈ int C+.

Similarly, working this time with φ̂−
λ , we produce a negative solution

vλ ∈ −int C+.

□
Next we determine the behavior of uλ and vλ as λ→ ∞.

Proposition 3.5. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold, then

uλ → 0 and vλ → 0 in C1
(
Ω
)
as λ→ +∞.

Proof. Let λn → +∞ and consider un = uλn ∈ int C+ be positive solutions of
problem (Qλn) , n ∈ N. From the proof of Proposition 3.4, we know that

(3.5) m̂λn ≤ Cλn = φ̂+
λn

(un) = inf
γ∈Γ

max
0≤s≤1

φ̂+
λn

(γ̃ (s)) ,

where
Γ =

{
γ̃ ∈ C

(
[0, 1] ,W 1,p (Ω)

)
: γ̃ (0) = 0, γ̃ (1) = ũ

}
From (3.5) we have

(3.6) φ̂+
λn

(un) ≤ max
0≤s≤1

φ̂+
λn

(sũ) .
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Also (2.3) , (2.4) , (2.5) and hypothesis H (g) (iii) imply that

φ̂λn (sũ) ≤ C7s
p − λnC8s

τ for some C7 > 0, C8 > 0.

We consider the function

µλn (s) = C7s
p − C8s

τ for all s ≥ 0, with n ∈ N.
Evidently since p < τ, we can find s0 > 0 such that

0 < µλn (s0) = max
s≥0

µλn (s) ,

hence
µ′λn (s0) = 0,

therefore

(3.7) s0 = s0 (λn) =

[
pC7

λnτC8

] 1
τ−p

.

Using (3.7) we obtain

(3.8) µλn (s0) ≤ C7

[
pC7

λnτC8

] p
τ−p

= C9λ
− p

τ−p for some C9 > 0, all n ∈ N.

From (3.6) we have

φ̂+
λn

(un) ≤ µλn (s0) ≤ C9λ
− p

τ−p for all n ∈ N (see (3.8) ),

hence
qφ̂+

λn
(un) +

〈(
φ̂+
λn

)′
(un) , un

〉
≤ qC9λ

− p
τ−p for all n ∈ N,

therefore[
q

p
− 1

]
γ (un)

+

∫
Ω

[(
f̂+λn (z, un) + g+ (z, un)

)
un − qF̂+

λn
(z, un) +G+ (z, un)

]
dz

≤ qC9λ
− p

τ−p ,

and in view of Proposition 2.1 and hypothesis H (g) (ii) we conclude that

∥un∥p ≤ C10 for some C10 > 0, all n ∈ N.
Therefore {un}n≥1 ⊆W 1,p (Ω) is bounded. Then Proposition 2.10 of Papageorgiou-

Radulescu [10] implies that we can find C11 > 0 such that

∥un∥∞ ≤ C11 for all n ∈ N
Invoking Theorem 2 of Lieberman [6], we can find α ∈ (0, 1) and C12 > 0 such that

un ∈ C1,α
(
Ω
)
and ∥un∥C1,α(Ω) ≤ C12 for all n ∈ N.

We know that C1,α
(
Ω
)
is compactly embedded in C1

(
Ω
)
, so for at least a subse-

quence we have
un → u in C1

(
Ω
)
as n→ ∞.

By (3.5) and (3.8) we infer

(3.9) φ̂+
λn

(un) → 0+ as n→ ∞.
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Moreover, we have

(3.10)
〈(
φ̂+
λn

)′
(un) , h

〉
= 0 for all h ∈W 1,p (Ω) , all n ∈ N.

Since λn → +∞, from (3.9) and (3.10) it follows that u = 0. Therefore we conclude
that

un → 0 in C1
(
Ω
)
as n→ ∞.

Similarly, working this time with φ̂−
λn

(·) we show that

vλn → 0 in C1
(
Ω
)
as n→ ∞.

□

Now we will produce extremal constant sign solutions for problem (Qλ) , that is,
we will show that for λ > 0 big, problem (Qλ) has a smallest positive solution and
a biggest negative solution

So, we consider the following two solution sets

Ŝ+
λ = {u : u is a positive solution of (Qλ)} ,

Ŝ−
λ = {u : u is a negative solution of (Qλ)} .

From Proposition 3.4 it follows that for λ ≥ λ̃1

∅ ̸= Ŝ+
λ ⊆ int C+ and ∅ ̸= Ŝ−

λ ⊆ −int C+ .

Moreover, from Papageorgiou-Radulescu-Repovs [11] (see the proof of Proposition
7), we know that

Ŝ+
λ is downward directed

and

Ŝ−
λ is upward directed.

Proposition 3.6. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) , hold and λ ≥
λ̃1, then problem (Qλ) has a smallest positive solution u∗λ ∈ int C+ and a biggest
negative solution v∗λ ∈ −int C+.

Proof. By Lemma 3.10, p.178 of Hu-Papageorgiou [5], we can find a decreasing

sequence {un}n≥1 ⊆ Ŝ+
λ such that

inf
n≥1

un = inf Ŝ+
λ .

We have

(3.11)

⟨A (un) , h⟩+
∫
Ω
ξ (z)un (z)

p−1 hdz +

∫
∂Ω
β (z)un (z)

p−1 hdσ

=

∫
Ω

[
f̂λ (z, un) + g+ (z, un)

]
hdz

for all n ∈ N , all h ∈W 1,p (Ω) ,

(3.12) 0 ≤ un ≤ u1 for all n ∈ N.



NONLINEAR ROBIN PROBLEMS WITH LOCALLY DEFINED REACTION 39

In (3.11) we chose h = un ∈ W 1,p (Ω) and using (3.12) and (2.2) , we infer that
{un}n≥1 ⊆W 1,p (Ω) is bounded. So, we may assume that

(3.13) un
w→ u∗λ in W 1,p (Ω) and un → u∗λ in Lp (Ω) and Lp (∂Ω) .

In (3.11) we choose h = un − u∗λ ∈ W 1,p (Ω), pass to the limit as n → ∞ and use
(3.13) . We obtain

lim
n→∞

⟨A (un) , un − u∗λ⟩ = 0,

hence

(3.14) un → u∗λ in W 1,p (Ω)

(see Section 2). We pass to the limit as n→ ∞ in (3.11) and use (3.14) . Then

⟨A (u∗λ) , h⟩+
∫
Ω
ξ (z) (u∗λ)

p−1 hdz +

∫
∂Ω
β (z) (u∗λ)

p−1 hdσ

=

∫
Ω

[
f̂λ (z, u

∗
λ) + g (z, u∗λ)

]
hdz for all h ∈W 1,p (Ω) ,

hence u∗λ ∈ Ŝ+
λ ∪ {0} . If we show that u∗λ ̸= {0} , then u∗λ is the desired minimal

positive solution 0f (Qλ) .
We argue indirectly. So, suppose that u∗λ = 0. Then un → 0 in W 1,p (Ω) (see

(3.14)). We set

yn =
un

∥un∥
, n ∈ N.

Then

∥yn∥ = 1, yn > 0 for all n ∈ N.
We may assume that

(3.15) yn
w→ y in W 1,p (Ω) and yn → y in Lr (Ω) and Lp (∂Ω) .

From (3.11) we have

(3.16)

⟨A (yn) , h⟩+
∫
Ω
ξ (z) yn

p−1hdz +

∫
∂Ω
β (z) yn

p−1hdσ

=

∫
Ω

[
f̂λ(z,un)

∥un∥p−1 + g(z,un)

∥un∥p−1

]
hdz for all h ∈W 1,p (Ω) .

By (2.3) and (2.5) we see that

(3.17)

{
f̂λ (·, un (·))
∥un∥p−1

}
n≥1

⊆ Lr
′
(Ω) is bounded, where

1

r
+

1

r′
= 1.

Similarly from hypothesis H (g) (i) it follows that

(3.18)

{
g (·, un (·))
∥un∥p−1

}
n≥1

⊆ Lr
′
(Ω) is bounded.

If in (3.16) we choose h = yn − y ∈ W 1,p (Ω), pass to the limit as n → ∞ and use
(3.15) , (3.17) and (3.18) , we obtain

lim
n→∞

⟨A (yn) , yn − y⟩ = 0,
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hence

(3.19) yn → y in W 1,p (Ω) (see Section 2), with ∥y∥ = 1.

On account of (3.17) , (3.18) , (2.3) , (2.5) and hypothesis H (g) (iii) , we have

(3.20)
f̂λ (·, un (·))
∥un∥p−1

w→ 0 and
g (·, un (·))
∥un∥p−1

w→ 0 in Lr
′
(Ω) .

So, if in (3.16)we pass to the limit as n→ ∞ and use (3.19) and (3.20) , then

⟨A (y) , h⟩+
∫
Ω
ξ (z) yp−1hdz +

∫
∂Ω
β (z) yp−1hdσ = 0 for all h ∈W 1,p (Ω) .

Let h = y ∈W 1,p (Ω). Then

C1 ∥y∥p ≤ 0 (see (2.2) ),

hence y = 0, which contradicts (3.19) . Therefore u∗λ ̸= 0 and so

u∗λ ∈ Ŝ+
λ and u∗λ = inf Ŝ+

λ .

Similarly, working with Ŝ−
λ , we produce v∗λ ∈ Ŝ−

λ with v∗λ = sup Ŝ−
λ . In this case,

since Ŝ−
λ is upward directed, we can find {vn}n≥1 ⊆ Ŝ−

λ increasing, such that

sup
n≥1

vn = sup Ŝ−
λ .

□

We will use these two extremal constant sign solutions in order to produce a
nodal solution for problem (Qλ) when λ is big enough.

Proposition 3.7. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold, then there

exists λ̃2 ≥ λ̃1 such that for all λ ≥ λ̃2, problem (Qλ) has a nodal solution yλ ∈
[v∗λ, u

∗
λ] ∩ C1

(
Ω
)
.

Proof. Let u∗λ ∈ int C+ and v∗λ ∈ −int C+ be the two extremal constant sign
solutions of problem (Qλ) produced in Proposition 3.6. We introduce the following
Carathéodory function

(3.21) k̂λ (z, x) =


f̂λ (z, v

∗
λ (z)) + g (z, v∗λ (z)) if x < v∗λ (z)

f̂λ (z, x) + g (z, x) if v∗λ (z) ≤ x ≤ u∗λ (z)

f̂λ (z, u
∗
λ (z)) + g (z, u∗λ (z)) if u∗λ (z) < x.

We consider the positive and negative truncations of k̂λ (z, ·) , namely the Carathéodory
functions

(3.22) k̂±λ (z, x) = k̂λ
(
z,±x±

)
.

We set

K̂λ (z, x) =

x∫
0

k̂λ (z, s) ds and K̂±
λ (z, x) =

x∫
0

k̂±λ (z, s) ds
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and introduce the C1−functionals ψ̂λ, ψ̂
±
λ :W 1,p (Ω) → R defined by

ψ̂λ (u) =
1

p
γ (u)−

∫
Ω
K̂λ (z, u) dz for all u ∈W 1,p (Ω)

and

ψ̂±
λ (u) =

1

p
γ (u)−

∫
Ω
K̂±
λ (z, u) dz for all u ∈W 1,p (Ω) .

Using (3.21) , (3.22) and the nonlinear regularity theory, we show easily that

K
ψ̂λ

⊆ [v∗λ, u
∗
λ] ∩ C1

(
Ω
)
, K

ψ̂+
λ
⊆ [0, u∗λ] ∩ C+,Kψ̂−

λ
⊆ [v∗λ, 0] ∩ (−C+) .

The extremality of u∗λ, v
∗
λ implies that

(3.23) K
ψ̂λ

⊆ [v∗λ, u
∗
λ] ∩ C1

(
Ω
)
, K

ψ̂+
λ
= {0, u∗λ} , Kψ̂−

λ
= {0, v∗λ} .

Note that ψ̂+
λ is coercive (see (3.21) , (3.22)). Also it is sequentially weakly lower

semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find ũ∗λ ∈W 1,p (Ω)
such that

(3.24) ψ̂+
λ (ũ∗λ) = inf

{
ψ̂+
λ (u) : u ∈W 1,p (Ω)

}
.

Let

u∗ = min

{
θ

2
,min

Ω
u∗λ

}
> 0

(recall that u∗λ ∈ int C+). Then

ψ̂+
λ (u∗) ≤ C13u

p
∗ − λC14u

τ
∗ for some C13, C14 > 0

(see (2.3) , (2.5) and hypothesis H (g) (iii)). So, we can find λ̃+2 ≥ λ̃1 such that

ψ̂+
λ (u∗) < 0 for all λ ≥ λ̃+2 ,

hence
ψ̂+
λ (u∗λ) < 0 = ψ̂+

λ (0) for all λ ≥ λ̃+2 (see (3.24)),

therefore

(3.25) ũ∗λ ̸= 0 for all λ ≥ λ̃+2 .

From (3.24) we have
ũ∗λ ∈ K

ψ̂+
λ
,

hence
ũ∗λ = u∗λ ∈ int C+ (see (3.24) , (3.25) ).

It is clear from (3.22) that

ψ̂+
λ |C+= ψ̂λ |C+ ,

hence u∗λ is a local C1
(
Ω
)
−minimizer of ψ̂λ, therefore

(3.26) u∗λ is a local W 1,p (Ω) -minimizer of ψ̂λ for all λ ≥ λ̃+2

(see Papageorgiou-Radulescu [10], Proposition 2.12).

Similarly, working this time with ψ̂−
λ , we produce λ̃−2 ≥ λ̃1 such that

(3.27) v∗λ is a local W 1,p (Ω) -minimizer of ψ̂λ for all λ ≥ λ̃−2 .
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Let

λ̃2 = max
{
λ̃+2 , λ̃

−
2

}
and let λ ≥ λ̃2. We may assume that

ψ̂λ (v
∗) ≤ ψ̂λ (u

∗) .

The reasoning is similar if the opposite inequality holds, using (3.27) instead of
(3.26) . Also, we may assume that

(3.28) K
ψ̂λ

is finite.

Otherwise, we already have an infinity of smooth nodal solutions.
Using (3.26) , (3.28) and Theorem 5.7.6, p. 448, of Papageorgiou-Radulescu-

Repovs [13], we can find ρ ∈ (0, 1) small, such that

(3.29)
ψ̂λ (v

∗
λ) ≤ ψ̂λ (u

∗
λ) < inf

{
ψ̂λ (u) : ∥u− u∗λ∥ = ρ

}
=: m̂λ,

∥u∗λ − v∗λ∥ > ρ.

Evidently, ψ̂λ (·) is coercive (see (3.21)). Therefore

(3.30) ψ̂λ satisfies the PS-condition

(see Papageorgiou-Radulescu-Repovs [13], Proposition 5.1.15, p.369).
Then (3.29) , (3.30) permit the use of the mountain pass theorem. So, we can

find yλ ∈W 1,p (Ω) such that

(3.31) yλ ∈ K
ψ̂λ

⊆ [v∗λ, u
∗
λ] ∩ C1

(
Ω
)
, m̂λ ≤ ψ̂λ (yλ)

(see (3.23) and (3.29)). From (3.29) and (3.31) it follows that

(3.32) yλ /∈ {u∗λ, v∗λ} .

Since yλ is a critical point of ψ̂λ (·) of mountain pass type, we have

(3.33) C1

(
ψ̂λ, yλ

)
̸= 0.

(see Papageorgiou-Radulescu-Repovs [13], Theorem 6.5.8, p.527).
On the other hand, if u ∈ C1

(
Ω
)
and

∥u∥C1(Ω) ≤ ρ0 ≤ min

{
θ

2
,min

{
min
Ω
u∗λ,min

Ω
(−v∗λ)

}}
(recall that u∗λ ∈ int C+, v

∗
λ ∈ −int C+, see Proposition 3.6), then

ψ̂λ (u) =
1

p
γ (u)−

∫
Ω
[λF (z, u) +G (z, u)] dz (see (2.3) , (2.5) , (3.21) )

≥ 1

p
γ (u)− 1

r
[λ+ C0] ∥u∥rr (see (2.3) , and H (g) (iii)

≥ C1

p
∥u∥p − 1

r
[λ+ C0] ∥u∥r (see (2.2) ).

Since r > p, for ρ0 ∈ (0, 1) small, we have

ψ̂λ (u) > 0 for all 0 < ∥u∥C1(Ω) ≤ ρ0,
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hence u = 0 is a local C1
(
Ω
)
−minimizer of ψ̂λ (·) , therefore u = 0 is a local

W 1,p (Ω)-minimizer of ψ̂λ (·) (see [10]), and we conclude that

(3.34) Ck

(
ψ̂λ, 0

)
= δk,0Z for all k ∈ N0

(where δk,l denotes the Kronecker symbol defined by δk,l = 1 if k = l and δk,l = 0
if k ̸= l ). Comparing (3.33) and (3.34) , we infer that yλ ̸= 0 and so, yλ ∈
[v∗λ, u

∗
λ] ∩ C1

(
Ω
)
is a nodal solution of the problem (Qλ) , for λ ≥ λ̃2. □

In view of Proposition 3.5, we arrive at:

Proposition 3.8. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold, then

u∗λ, v
∗
λ, yλ → 0 in C1

(
Ω
)
as λ→ +∞.

Then Proposition 3.8 and (2.5) lead to the following multiplicity theorem for
(Pλ) .

Theorem 3.9. If hypotheses H (ξ) ,H (β) , H0, H (f) , H (g) hold, then there exists

λ̃3 ≥ λ̃2 such that for λ ≥ λ̃3, problem (Pλ) has at least three nontrivial solutions

uλ ∈ int C+, vλ ∈ −int C+ and yλ ∈ [vλ, uλ] ∩ C1
(
Ω
)
, nodal.

Moreover,
uλ, vλ, yλ → 0 in C1

(
Ω
)
as λ→ +∞.

4. Semilinear problems

In the semilinear case (p = 2), under stronger regularity hypotheses on f (z, ·)
and g (z, ·) , we can improve Theorem 3.9 by producing a second nodal solution of
(Pλ) for a total of four nontrivial solutions, all with sign information.

So, now the problem under consideration is the following

(SPλ)

{ −∆u (z) + ξ (z)u (z) = λf (z, u (z)) + g (z, u (z)) in Ω,
∂u
∂np

+ β (z)u = 0 on ∂Ω, λ > 0.

The conditions on the two nonlinearities f (z, x) and g (z, x) are the following.

H (f)′ : f : Ω×R →R is a measurable function such that f (z, 0) = 0 for a.a. z ∈ Ω,
f (z, ·) ∈ C1 (R) and
(i) there exists r ∈ (2, 2∗) such that

lim
x→0

f (z, x)

|x|r−2 x
= 0 uniformly for a.a. z ∈ Ω;

(ii) if F (z, x) =
∫ x
0 f (z, s) ds, then there exists τ ∈ (r, 2∗) such that

lim
x→∞

F (z, x)

xτ
= +∞ uniformly for a.a. z ∈ Ω.

Remark: Hypothesis H (f)′ (i) implies that

0 = f ′x (z, 0) = lim
x→0

f (z, x)

x
uniformly for a.a. z ∈ Ω.
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H (g) : g : Ω×R →R is a measurable function such that g (z, 0) = 0 for a.a. z ∈ Ω,
g (z, ·) ∈ C1 (R) and
(i) there exist a ∈ L∞ (Ω) and 2 < d < 2∗ such that∣∣g′x (z, x)∣∣ ≤ a (z)

[
1 + |x|d−2

]
for a.a. z ∈ Ω, all x ∈ R;

(ii) If G (z, x) =
∫ x
0 g (z, s) ds, then there exist q ∈ (2, r) and M > 0 such

that

0 < qG (z, x) ≤ g (z, x)x for a.a. z ∈ Ω, all |x| ≥M,

and

0 ≤ essinf
Ω

G (·,±M) ;

(iii) there exists c0 > 0 such that

0 ≤ g (z, x)x ≤ c0 |x|r for a.a. z ∈ Ω, all x ∈ R.

Remark: Hypothesis H (g)′ (iii) implies that

0 = g′ (z, x) = lim
x→0

g (z, x)

x
uniformly for a.a. z ∈ Ω.

H1: For every λ > 0 and ρ > 0, there exists ξλρ > 0 such that for a.a. z ∈ Ω, the

function x→ λf (z, x) + g (z, x) + ξλρx is nondecreasing on [−ρ, ρ] .

Remark: This is a lower Lipschitz condition. It is satisfied if for every λ > 0 and

ρ > 0, there exists ξ̂λρ > 0 such that

λf ′x (z, x) + g′x (z, x) ≥ −ξ̂λρ for a.a. z ∈ Ω., all |x| ≤ ρ.

In what follows we set

ζλ (z, x) = f̂λ (z, x) + g (z, x) , F̂λ (z, x) =

x∫
0

f̂λ (z, s) ds

and we consider the C1−functional φ̂λ :W 1,p (Ω) → R defined by

φ̂λ (u) =
1

p
γ (u)−

∫
Ω

[
F̂λ (z, x) +G (z, u)

]
dz for all u ∈W 1,p (Ω) .

Theorem 4.1. If hypotheses H (ξ) ,H (β) , H0, H (f)′ , H (g)′ , H1 hold, then there

exists λ̃3 ≥ 1 such that for all λ ≥ λ̃3, problem (Pλ) has at least four nontrivial
solutions

uλ ∈ int C+, vλ ∈ −int C+, and yλ, ŷλ ∈ intC1(Ω) [vλ, uλ] , nodal.

Proof. From Theorem 3.9, we know that there exists λ̃3 ≥ 1 such that for all λ ≥ λ̃3
problem (Pλ).has at least three nontrivial solutions

(4.1) uλ ∈ int C+, vλ ∈ −int C+ and yλ ∈ [vλ, uλ] ∩ C1
(
Ω
)
nodal.
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Let ρ = max {∥uλ∥∞ , ∥vλ∥∞} and let ξ̂λρ > 0 be as postulated by hypothesis H1.
We have

−∆yλ +
[
ξ (z) + ξ̂λρ

]
yλ = λf (z, yλ) + g (z, yλ) + ξ̂λρ yλ

≤ λf (z, uλ) + g (z, uλ) + ξ̂λρuλ (see (4.1) and H1)

= −∆uλ +
[
ξ (z) + ξ̂λρ

]
uλ

hence

∆ (uλ − yλ) ≤
[
∥ξ∥∞ + ξ̂λρ

]
(uλ − yλ) ,

therefore uλ − yλ ∈ int C+ (by the Hopf boundary point theorem). Similarly we
show that

yλ − vλ ∈ int C+.

It follows that

(4.2) yλ ∈ intC1(Ω) [vλ, uλ] .

Consider the homotopy

ht (u) = h (t, u) = (1− t) ψ̂λ (u) + tφ̂λ (u) for all (t, u) ∈ [0, 1]×H1 (Ω) .

Suppose that we could find {tn}n≥1 ⊆ [0, 1] and {yn}n≥1 ⊆ H1 (Ω) such that

tn → t in [0, 1] , yn → y in H1 (Ω) , h′t (yn) = 0 for all n ∈ N.
We have

(4.3)

⟨A (yn) , h⟩+
∫
Ω
ξ (z) ynhdz +

∫
∂Ω
β (z) ynhdσ

= (1− tn)

∫
Ω
kλ (z, yn)hdz + tn

∫
Ω
ζλ (z, yn)hdz for all h ∈ H1 (Ω) .

By (4.3) , using standard regularity theory, we show that in fact we have

yn → y in C1
(
Ω
)

hence
yn ∈ [vλ, uλ] for all n ≥ n0 (see (4.2)).

This contradicts (3.28) . Then, the homotopy invariance property of critical groups
(see Papageorgiou-Radulescu-Repovs [13], Theorem 6.3.8, p.505) implies that

(4.4) Ck

(
ψ̂λ, yλ

)
= Ck (φ̂λ, yλ) for all k ∈ N0,

hence

(4.5) C1 (φ̂λ, yλ) ̸= 0 (see (3.33) ).

But φ̂λ ∈ C2
(
H1 (Ω) ,R

)
. So, by (4.5) and Theorem 6.5.11, p.530 of Papageorgiou-

Radulescu-Repovs [13], we have

Ck (φ̂λ, yλ) = δk,1Z for all k ∈ N0,

hence

(4.6) Ck

(
ψ̂λ, yλ

)
= δk,1Z for all k ∈ N0, (see (4.4) ).
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Recall that uλ, vλ are local minimizers of ψ̂λ (·) (see the proof of Proposition 3.7).
Hence

(4.7) Ck

(
ψ̂λ, uλ

)
= Ck

(
ψ̂λ, vλ

)
= δk,0Z for all k ∈ N0.

Also from (3.34) we have

(4.8) Ck

(
ψ̂λ, 0

)
= δk,0Z for all k ∈ N0.

The functional ψ̂λ (·) is coercive (see (3.21)). Hence we obtain

(4.9) Ck

(
ψ̂λ,∞

)
= δk,0Z for all k ∈ N0.

Suppose that K
ψ̂λ

= {0, uλ, vλ, yλ} . Then from (4.6) , (4.7) , (4.8) , (4.9) and the

Morse relation with t = −1 (see (2.1)) it follows

3 (−1)0 + (−1)1 = (−1)0 ,

therefore (−1)0 = 0, a contradiction.

So, there exists ŷλ ∈ K
ψ̂λ
, ŷλ /∈ {0, uλ, vλ, yλ} , and since λ ≥ λ̃3, this is the

second nodal solution for problem (Pλ) . Finally, using the Hopf boundary point
theorem, we conclude that

ŷλ ∈ intC1(Ω) [vλ, uλ] .

□
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