Yokohama Publishers
ISSN 2189-3764 ONLINE JOURNAL
Volume 8, Number 1, 2023, 27-47
(C) Copyright 2023

NONLINEAR ROBIN PROBLEMS WITH LOCALLY DEFINED REACTION

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU*

Abstract

We consider a nonlinear Robin problem driven by a $p-$ Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is $(p-1)$ - superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter $\lambda>0$, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case ($p=$ 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a C^{2} - boundary $\partial \Omega$. In this paper we study the following parametric nonlinear Robin problem
$\left(P_{\lambda}\right) \quad\left\{\begin{array}{l}-\Delta_{p} u(z)+\xi(z)|u(z)|^{p-2} u(z)=\lambda f(z, u(z))+g(z, u(z)) \\ \frac{\partial u}{\partial n_{p}}+\beta(z)|u|^{p-2} u=0 \text { on } \partial \Omega,\end{array}\right.$
with $\lambda>0,1<p<\infty$. By \triangle_{p} we denote the p-Laplace differential operator defined by

$$
\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right), \text { for all } u \in W^{1, p}(\Omega),
$$

where $|\cdot|$ denotes the norm in \mathbb{R}^{N}. The potential function ξ satisfies $\xi \in L^{\infty}(\Omega)$ and $\xi(z) \geq 0$ for a.a. $z \in \Omega$. The reaction of the problem (right-hand side) consists of two terms. One is the parametric term $\lambda f(z, x)$ with $\lambda>0$ being the parameter. The other one is a perturbation $g(z, x)$. Both functions f and g are Carathéodory functions (that is, for all $x \in \mathbb{R}, z \rightarrow f(z, x)$ and $z \rightarrow g(z, x)$ are measurable functions, while for a.a. $z \in \Omega, x \rightarrow f(z, x)$ and $x \rightarrow g(z, x)$ are continuous). The interesting feature of our work here, is that the parametric term $\lambda f(z, \cdot)$ is only locally defined, namely the conditions imposed on $f(z, \cdot)$ concern only its behavior near zero. There are no hypotheses on $f(z, \cdot)$ for large values of $x \in \mathbb{R}$.

[^0]In the boundary condition, $\frac{\partial u}{\partial n_{p}}$ denotes the conormal derivative of u corresponding to the p-Laplacian and is interpreted using the nonlinear Green's identity (see Papageorgiou-Radulescu-Repovs [13], Corollary 1.5.17, p.35). Specifically, for $u \in C^{1}(\bar{\Omega})$, we have

$$
\frac{\partial u}{\partial n_{p}}=|D u|^{p-2} \frac{\partial u}{\partial n},
$$

where $n($.$) is the outward unit normal on \partial \Omega$. Using cut-off techniques together with variational tools based on the critical point theory and Morse theory (critical groups), we show that for all $\lambda>0$ big, problem $\left(P_{\lambda}\right)$ has at least three nontrivial smooth solutions, all with sign information. More precisely, we prove that there exist two solutions with fixed sign (one positive and the other negative) and a third solution which is nodal (that is, sign changing). In the semilinear case (that is, $p=2$), by strengthening the regularity of the functions $f(z, \cdot)$ and $g(z, \cdot)$ (we assume that both are C^{1} functions), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information. Finally, for both the nonlinear and the semilinear problems, we show that the solutions produced converge to zero in $C^{1}(\bar{\Omega})$ as $\lambda \rightarrow \infty$.

The first paper dealing with equations which have reaction terms that are only locally defined is the work of Wang [14]. In that paper, the author deals with a semilinear Dirichlet equation driven by the Laplacian and with a reaction of the form $x \rightarrow \lambda|x|^{q-2} x+g(z, x)$, where $1<q<2$. So, in the reaction we encounter a parametric concave term and a perturbation $g \in C(\Omega \times \mathbb{R}, \mathbb{R})$, which is odd in $x \in \mathbb{R}$ for $|x|$ small, and $\lim _{x \rightarrow 0} \frac{g(z, x)}{|x|^{q-2} x}=0$ uniformly for a.a. $z \in \Omega$. No other conditions are imposed on g. In particular, there are no conditions on $g(z, \cdot)$ for $|x|$ big. The symmetry of the reaction near zero permits the use of a symmetric mountain pass theorem, and so the author shows that for all $\lambda>0$, the problem has a sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(\Omega)$ of weak solutions such that $\left\|u_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. No sign information is given for the solutions produced. Later, Li-Wang [7] extended the result to Schrödinger equations, and in addition proved that the solutions are nodal.

More recently, Papageorgiou-Radulescu [9] and Papageorgiou-Radulescu-Repovs [12] extended the aforementioned works to nonlinear, nonhomogeneous Robin problems, while very recently Aizicovici-Papageorgiou-Staicu [1] obtained similar results for anisotropic (p, q)-equations. All these papers impose a local symmetry condition on the reaction, which permits the use of some version of the symmetric mountain pass theorem. No such symmetry condition is employed here.

2. Mathematical Background - Hypotheses

In the analysis of problem $\left(P_{\lambda}\right)$ we will use the the Sobolev space $W^{1, p}(\Omega), 1<$ $p<\infty$, and the Banach space $C^{1}(\bar{\Omega})$. By $\|$.$\| we will denote the norm of W^{1, p}(\Omega)$ defined by

$$
\|u\|=\left[\|u\|_{p}^{p}+\|D u\|_{p}^{p}\right]^{\frac{1}{p}} \text { for all } u \in W^{1, p}(\Omega),
$$

where $\|\cdot\|_{p}$ stands for the L^{p}-norm. The space $C^{1}(\bar{\Omega})$ is an ordered Banach space with positive (order) cone

$$
C_{+}=\left\{u \in C^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \Omega\right\}
$$

This cone has a nonempty interior given by|

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \bar{\Omega}\right\}
$$

If $u, v \in W^{1, p}(\Omega$ and $u(z) \leq v(z)$ for a.a. $z \in \Omega$, then we define

$$
[u, v]=\left\{y \in W^{1, p}(\Omega): u(z) \leq y(z) \leq v(z) \text { for a.a. } z \in \Omega\right\}
$$

Also by $i n t_{C^{1}(\bar{\Omega})}[u, v]$ with denote the interior in $C^{1}(\bar{\Omega})$ of $[u, v] \bigcap C^{1}(\bar{\Omega})$.
On $\partial \Omega$ we consider the $(N-1)$-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Having this measure, we can define in the usual way the boundary Lebesgue spaces $L^{s}(\partial \Omega)(1 \leq s \leq \infty)$. We recall that there exists a unique continuous linear linear map $\gamma_{0}: W^{1, p}\left(\Omega \rightarrow L^{p}(\partial \Omega)\right.$ known as the "trace map", such that

$$
\gamma_{0}(u)=\left.u\right|_{\partial \Omega} \text { for all } u \in W^{1, p}(\Omega) \bigcap C(\bar{\Omega})
$$

So, the trace map extends to all Sobolev functions the notion of boundary value. We know that γ_{0} is compact from $W^{1, p}(\Omega)$ into $L^{p}(\partial \Omega), \operatorname{Im} \gamma_{0}=W^{\frac{1}{p^{\prime}}, p}(\partial \Omega)\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$ and $\operatorname{ker} \gamma_{0}=W_{0}^{1, p}(\Omega)$

In the sequel for the sake of notational simplicity, we drop the use of the trace map γ_{0}. All restrictions of Sobolev functions to $\partial \Omega$ are understood in the sense of traces.

If $x \in \mathbb{R}$, then we set

$$
x^{ \pm}=\max \{ \pm x, 0\}
$$

For $u \in W^{1, p}(\Omega)$, we define $u^{ \pm}(z)=u(z)^{ \pm}$for a.a. $z \in \Omega$. We know that

$$
u^{ \pm} \in W^{1, p}(\Omega), u=u^{+}-u^{-} \text {and }|u|=u^{+}+u^{-}
$$

Given a Carathéodory function $f_{0}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, we say that it satisfies the Ambrosetti-Rabinowitz condition (the AR-condition for short), if there exist $M>0$ and $q>p$ such that:

$$
0<q F_{0}(z, x) \leq f_{0}(z, x) x \text { for a.a. } z \in \Omega, \text { all }|x| \geq M
$$

where $F_{0}(z, x)=\int_{0}^{x} f_{0}(z, s) d s$, and

$$
0<\underset{\Omega}{\operatorname{essinf}} F_{0}(\cdot, \pm M)
$$

This condition is very convenient for the verification of the Palais-Smale condition (the PS-condition for short).

Recall that if X is a Banach space and $\varphi \in C^{1}(X, \mathbb{R})$, then we say that φ satisfies the PS-condition, if every sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{\varphi\left(u_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } X^{*} \text { as } n \rightarrow \infty
$$

admits a strongly convergent subsequence.

By $A: W^{1, p}(\Omega) \rightarrow W^{1, p}(\Omega)^{*}$ we denote the nonlinear operator defined by

$$
\langle A(u), h\rangle=\int_{\Omega}|D u|^{p-2}(D u, D h)_{\mathbb{R}^{N}} d z \text { for all } u, h \in W^{1, p}(\Omega)
$$

This operator has the following properties (see Gasinski-Papageorgiou [3], Problem 2.192, p.279):

- it is bounded (that is, it maps bounded sets to bounded sets);
- it is continuous and monotone (hence maximal monotone too);
- it is of type $(S)_{+}$, that is, for every sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ such that $u_{n} \xrightarrow{w} u$ in $W^{1, p}(\Omega)$ and

$$
\lim \sup _{n \rightarrow \infty}\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle \leq 0
$$

one has

$$
u_{n} \rightarrow u \text { in } W^{1, p}(\Omega) \text { as } n \rightarrow \infty
$$

Here \xrightarrow{w} designates the weak convergence in $W^{1, p}(\Omega)$ and $\langle\cdot, \cdot\rangle$ denotes the duality brackets for the pair $\left(W^{1, p}(\Omega)^{*}, W^{1, p}(\Omega)\right)$.

Let $\mathcal{S} \subseteq W^{1, p}(\Omega)$. We say that S is downward directed (resp. upward directed), if for all $u_{1}, u_{2} \in \mathcal{S}$ we can find $\widehat{u} \in \mathcal{S}$ such that $\widehat{u} \leq u_{1}$ and $\widehat{u} \leq u_{2}$ (resp. for all $v_{1}, v_{2} \in \mathcal{S}$, we can find $\widehat{v} \in \mathcal{S}$ such that $v_{1} \leq \widehat{v}$ and $\left.v_{2} \leq \widehat{v}\right)$.

Let X be a Banach space, $\varphi \in C^{1}(X, \mathbb{R})$ and $c \in \mathbb{R}$. We introduce the following sets:

$$
K_{\varphi}=\left\{u \in X: \varphi^{\prime}(u)=0\right\} \quad(\text { the critical set of } \varphi),
$$

and

$$
\left.\varphi^{c}=\{u \in X: \varphi(u) \leq c\} \quad \text { (the sublevel of } \varphi \text { at } c\right) .
$$

Let $\left(Y_{1}, Y_{2}\right)$ be a topological pair such that $Y_{2} \subset Y_{1} \subset X$. For every $k \in \mathbb{N}_{0}$, by $H_{k}\left(Y_{1}, Y_{2}\right)$ we denote the $k^{t h}$ - relative singular homology group for the pair $\left(Y_{1}, Y_{2}\right)$ with integer coefficients. Recall that for $k \in-\mathbb{N}$ we have $H_{k}\left(Y_{1}, Y_{2}\right)$. Suppose $u \in K_{\varphi}$ is isolated and let $c=\varphi(u)$. Then the critical groups of φ at u are defined by

$$
C_{k}(\varphi, u)=H_{k}\left(\varphi^{c} \cap U,\left(\varphi^{c} \cap U\right) \backslash\{u\}\right) \text { for all } k \in \mathbb{N}_{0}
$$

where U is a neighborhood of u such that $K_{\varphi} \cap \varphi^{c} \cap U=\{u\}$. The excision property of singular homology theory implies that the above definition of critical groups is independent of the particular choice of the neighborhood U.

Now suppose that $\varphi \in C^{1}(X, \mathbb{R})$ satisfies the $P S$-condition and $\inf \varphi\left(K_{\varphi}\right)>$ $-\infty$. Let $c<\inf \varphi\left(K_{\varphi}\right)$. Then the critical groups of φ at infinity are defined by

$$
C_{k}(\varphi, \infty)=H_{k}\left(X, \varphi^{c}\right) \text { for all } k \in \mathbb{N}_{0}
$$

By the second deformation theorem (see Papageorgiou-Radulescu-Repovs [13], Theorem 5.3.12, p.386), this definition is independent of the choice of the level $c<\inf \varphi\left(K_{\varphi}\right)$. Indeed if $c^{\prime}<c<\inf \varphi\left(K_{\varphi}\right)$, then $\varphi^{c^{\prime}}$ is a strong deformation retract of φ^{c} (see [13], p.386) and so,

$$
H_{k}\left(X, \varphi^{c}\right)=H_{k}\left(X, \varphi^{c^{\prime}}\right) \text { for all } k \in \mathbb{N}_{0}
$$

(see [13], Corollary 6.1.24, p.468).

Suppose that K_{φ} is finite. We introduce the following quantities:

$$
\begin{gathered}
M(t, u)=\sum_{k \in \mathbb{N}_{0}} \operatorname{rank} C_{k}(\varphi, u) t^{k} \text { for all } t \in \mathbb{R}, \text { all } u \in K_{\varphi}, \\
P(t, \infty)=\sum_{k \in \mathbb{N}_{0}} \operatorname{rank} C_{k}(\varphi, \infty) t^{k} \text { for all } t \in \mathbb{R}
\end{gathered}
$$

Then the "Morse relation" says that

$$
\begin{equation*}
\sum_{u \in K_{\varphi}} M(t, u)=P(t, \infty)+(1+t) Q(t) \tag{2.1}
\end{equation*}
$$

where

$$
Q(t)=\sum_{k \in \mathbb{N}_{0}} \beta_{k} t^{k}
$$

is a formal series in $t \in \mathbb{R}$ with nonnegative integer coefficients.
Now we introduce the hypotheses on the data of problem $\left(P_{\lambda}\right)$.
$\mathbf{H}(\xi): \xi \in L^{\infty}(\Omega), \xi(z) \geq 0$ for a.a. $z \in \Omega ;$
$\mathbf{H}(\beta): \beta \in C^{0, \alpha}(\Omega)$ with $\alpha \in(0,1), \beta(z) \geq 0$ for all $z \in \Omega$;
$\mathbf{H}_{0}: \xi \not \equiv 0$ or $\beta \not \equiv 0$.
Remark: If $\beta \equiv 0$, then we recover the Neumann problem.
$\mathbf{H}(f): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) there exists $r \in\left(p, p^{*}\right)$ such that

$$
\lim _{x \rightarrow 0} \frac{f(z, x)}{|x|^{r-2} x}=0 \text { uniformly for a.a. } z \in \Omega,
$$

where

$$
p^{*}=\left\{\begin{array}{lll}
\frac{N p}{N-p} & \text { if } & p<N \\
+\infty & \text { if } & N \leq p ;
\end{array}\right.
$$

(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then there exists $\tau \in\left(r, p^{*}\right)$ such that

$$
\lim _{x \rightarrow \infty} \frac{F(z, x)}{x^{\tau}}=+\infty \text { uniformly for a.a. } z \in \Omega .
$$

Remarks: We emphasize that this reaction term is only locally defined. No conditions are imposed on $f(z, x)$ for $|x|$ big. We also point out that no sign condition is imposed on $f(z, \cdot)$.
$\mathbf{H}(g): g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that $g(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) there exist $a \in L^{\infty}(\Omega)$ and $1<p<d<p^{*}$ such that

$$
|g(z, x)| \leq a(z)\left[1+|x|^{d-1}\right] \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R}
$$

(ii) If $G(z, x)=\int_{0}^{x} g(z, s) d s$, then there exists $q \in(p, r)$ (see hypothesis $\mathbf{H}(f)(i))$ and $M>0$ such that

$$
0<q G(z, x) \leq g(z, x) x \text { for a.a. } z \in \Omega, \text { all }|x| \geq M
$$

and

$$
0 \leq \underset{\Omega}{\operatorname{essinf}} G(\cdot, \pm M)
$$

(iii) there exists $c_{0}>0$ such that

$$
0 \leq g(z, x) x \leq c_{0}|x|^{r} \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R}
$$

Remarks: We see that for a.a. $z \in \Omega, g(z, \cdot)$ satisfies the AR-condition (see $\mathbf{H}(g)(i i))$. Moreover, $g(z, \cdot)$ satisfies a global sign condition (see $\mathbf{H}(g)(i i i))$.

In what follows by $\gamma: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ we denote the C^{1}-functional defined by

$$
\gamma(u)=\|D u\|_{p}^{p}+\int_{\Omega} \xi(z)|u|^{p} d z+\int_{\partial \Omega} \beta(z)|u|^{p} d \sigma \text { for all } u \in W^{1, p}(\Omega) .
$$

Hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}$ together with Lemma 4.11 of Mugnai-Papageorgiou [8] and Proposition 2.3 of Gasinski-Papageorgiou [4] imply that

$$
\begin{equation*}
C_{1}\|u\|^{p} \leq \gamma(u) \text { for some } C_{1}>0, \text { all } u \in W^{1, p}(\Omega) \tag{2.2}
\end{equation*}
$$

On account of hypotheses $\mathbf{H}(f)(i)$, (ii), we can find $\delta_{0}>0$ such that

$$
\begin{array}{r}
|f(z, x)| \leq|x|^{r-1}, \quad|F(z, x)| \leq \frac{1}{r}|x|^{r}, F(z, x) \geq|x|^{\tau} \\
\text { for a.a. } z \in \Omega, \text { all }|x| \leq \delta_{0} \tag{2.3}
\end{array}
$$

Let $\theta \in\left(0, \delta_{0}\right)$ and consider the cut-off function $\eta \in C_{c}^{1}(\mathbb{R})$ such that

$$
\begin{equation*}
\operatorname{supp} \eta \subseteq[-\theta, \theta], 0 \leq \eta \leq 1,\left.\quad \eta\right|_{\left[-\frac{\theta}{2}, \frac{\theta}{2}\right]} \equiv 1 \tag{2.4}
\end{equation*}
$$

Using this cut-off function, we introduce the following modification of the parametric, locally defined reaction term

$$
\begin{equation*}
\widehat{f}_{\lambda}(z, x)=\eta(x) \lambda f(z, x)+[1-\eta(x)]|x|^{r-2} x \tag{2.5}
\end{equation*}
$$

This is a Carathéodory function. We consider the positive and negative truncations of $\widehat{f}_{\lambda}(z, \cdot)$, namely the Carathéodory functions

$$
\widehat{f}_{\lambda}^{ \pm}(z, x)=\widehat{f}_{\lambda}\left(z, \pm x^{ \pm}\right)
$$

We set

$$
\widehat{F}_{\lambda}^{ \pm}(z, x)=\int_{0}^{x} \widehat{f}_{\lambda}^{ \pm}(z, s) d s
$$

Also, we introduce the positive and negative truncations of $g(z, \cdot)$, namely the Carathéodory functions

$$
g_{ \pm}(z, x)=g\left(z, \pm x^{ \pm}\right)
$$

We set

$$
G_{ \pm}(z, x)=\int_{0}^{x} g_{ \pm}(z, x) d s
$$

Finally we define

$$
\widehat{\zeta}_{\lambda}^{ \pm}(z, x)=\widehat{f}_{\lambda}^{ \pm}(z, x)+g_{ \pm}(z, x) \text { for }(z, x) \in \Omega \times \mathbb{R} .
$$

These are Carathéodory functions.

Proposition 2.1. If hypotheses $\mathbf{H}(f), \mathbf{H}(g)$ hold, then for every $\lambda>0$, the functions $\widehat{\zeta}_{\lambda}^{ \pm}(z, \cdot)$ satisfy the $A R$ condition.

Proof. On account of hypothesis $\mathbf{H}(g)(i i)$, it suffices to show that $\widehat{f}_{\lambda}^{+}(z, \cdot)$ satisfies the AR condition. First we note that (2.3), (2.4) and (2.5) imply

$$
\begin{equation*}
\left|\widehat{f}_{\lambda}(z, x)\right| \leq C_{2}|x|^{r-1} \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R}, \tag{2.6}
\end{equation*}
$$

with $C_{2}=C_{2}(\lambda)>0$, hence

$$
\begin{equation*}
\left|\widehat{F}_{\lambda}(z, x)\right| \leq \frac{C_{2}}{r}|x|^{r} \text { for a.a. } z \in \Omega \text {, all } x \in \mathbb{R} \text {. } \tag{2.7}
\end{equation*}
$$

Let $x>\theta$. We have

$$
\begin{align*}
& \widehat{F}_{\lambda}^{+}(z, x)=\int_{0}^{x} \widehat{f}_{\lambda}^{+}(z, s) d s=\int_{0}^{x} \widehat{f}_{\lambda}(z, s) d s \\
& =\int_{0}^{x}\left[\eta(s) \lambda f(z, s)+[1-\eta(s)] s^{r-1}\right] d s(\text { see }(2.5)) \tag{2.8}\\
& =\int_{0}^{\theta}\left[\eta(s) \lambda f(z, s)+[1-\eta(s)] s^{r-1}\right] d s+\int_{\theta}^{x} s^{r-1} d s(\text { see }(2.4)) \\
& \leq C_{3} \lambda \theta^{r}+\frac{1}{r} x^{r} \text { for some } C_{3}>0 .
\end{align*}
$$

Since $x>\theta$, from (2.4) and (2.5) it follows that

$$
\begin{equation*}
\widehat{f}_{\lambda}^{+}(z, x)=x^{r-1} . \tag{2.9}
\end{equation*}
$$

Then with $q \in(p, r)$ as in hypothesis $\mathbf{H}(g)(i i)$, we have

$$
\begin{equation*}
\widehat{f}_{\lambda}^{+}(z, x) x-q \widehat{F}_{\lambda}^{+}(z, x) \geq\left[1-\frac{q}{r}\right] x^{r}-q C_{3} \lambda \theta^{r}(\text { see }(2.8),(2.9)) . \tag{2.10}
\end{equation*}
$$

Choose $M_{+}>\max \{M, \theta\}(\operatorname{see} \mathbf{H}(g)(i i))$ big such that

$$
\left[1-\frac{q}{r}\right] M_{+}^{r}>q C_{2} \lambda \theta^{r}(\text { recall } q<r) .
$$

So, from (2.10) we have

$$
\widehat{f}_{\lambda}^{+}(z, x) x \geq q \widehat{F}_{\lambda}^{+}(z, x) \text { for a.a. } z \in \Omega \text {, all } x \geq M_{+} .
$$

Also note that for $x \geq M_{+}$, we have

$$
\begin{aligned}
\widehat{F}_{\lambda}^{+}(z, x) & =\int_{0}^{\theta} \widehat{f}_{\lambda}^{+}(z, s) d s+\int_{\theta}^{x} \widehat{f}_{\lambda}^{+}(z, s) d s \\
& \geq-C_{2} \int_{0}^{\theta} s^{r-1} d s+\frac{1}{r}\left[x^{r}-\theta^{r}\right] \text { (see (2.6) and (2.9)) } \\
& =\frac{1}{r} x^{r}-\frac{C_{4}}{r} \theta^{r} \text { for some } C_{4}>0 .
\end{aligned}
$$

Choosing M_{+}even bigger if necessary, we may assume that

$$
M_{+}^{r}>C_{4} \theta^{r} .
$$

Therefore we have

$$
\underset{\Omega}{\operatorname{essinf}} \widehat{F}_{\lambda}^{+}\left(\cdot, M_{+}\right)>0 \text { and } \widehat{F}_{\lambda}^{+}(z, x)>0 \text { for a.a. } z \in \Omega \text {, all } x \geq M_{+} .
$$

This proves that $\widehat{\zeta}_{\lambda}^{+}(z, \cdot)$ satisfies the AR condition. Similarly we show that $\widehat{\zeta}_{\lambda}^{-}(z, \cdot)$ satisfies the AR condition.

3. Nonlinear problems

Let by $\hat{\varphi}_{\lambda}^{ \pm}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the C^{1}-functionals defined by

$$
\widehat{\varphi}_{\lambda}^{ \pm}(u)=\frac{1}{p} \gamma(u)-\int_{\Omega}\left[\widehat{F}_{\lambda}^{ \pm}(z, x)+G^{ \pm}(z, u)\right] d z \text { for all } u \in W^{1, p}(\Omega) .
$$

Proposition 3.1. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold and $\lambda \geq 1$, then we can find $\rho_{\lambda}>0$ and $\widehat{m}_{\lambda}>0$ such that

$$
\widehat{\varphi}_{\lambda}^{ \pm}(u) \geq \widehat{m}_{\lambda}>0 \text { for all } u \in W^{1, p}(\Omega) \text { with }\|u\|=\rho_{\lambda} \text {. }
$$

Proof. Using (2.2), (2.7), hypothesis $\mathbf{H}(g)(i i)$ and the fact that $\lambda \geq 1$, we obtain

$$
\widehat{\varphi}_{\lambda}^{ \pm}(u) \geq C_{1}\|u\|^{p}-\lambda C_{5}\|u\|^{r} \text { for some } C_{5}>0, \text { all } u \in W^{1, p}(\Omega),
$$

hence

$$
\widehat{\varphi}_{\lambda}^{ \pm}(u) \geq\left[C_{1}-\lambda C_{5}\|u\|^{r-p}\right]\|u\|^{p} .
$$

Therefore if $\rho_{\lambda} \in\left(0,\left(\frac{C_{1}}{\lambda C_{5}}\right)^{\frac{1}{r-p}}\right)$, then

$$
\begin{array}{r}
\widehat{\varphi}_{\lambda}^{ \pm}(u) \geq \widehat{m}_{\lambda}:=\rho_{\lambda}^{p}\left[C_{1}-\lambda C_{5}^{r-p} \rho_{\lambda}^{r-p}\right]>0 \\
\text { for all } u \in W^{1, p}(\Omega) \text { with }\|u\|=\rho_{\lambda} .
\end{array}
$$

Proposition 3.2. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold, then there exist $\widetilde{u} \in W^{1, p}(\Omega), \widetilde{u} \geq 0$ and $\widetilde{\lambda}_{1} \geq 1$ such that for all $\lambda \geq \widetilde{\lambda}_{1}$ we have

$$
\widehat{\varphi}_{\lambda}^{ \pm}(\pm \widetilde{u})<0 \text { and }\|\widetilde{u}\|>\rho_{\lambda} .
$$

Proof. Let $\widetilde{u}=\frac{\theta}{2} \in W^{1, p}(\Omega)$. Then from (2.3), (2.5) and hypothesis $\mathbf{H}(g)(i i i)$, we have

$$
\begin{aligned}
\widehat{\varphi}_{\lambda}^{ \pm}(\widetilde{u}) & \leq \frac{\widetilde{u}^{p}}{p}\left[\|\xi\|_{\infty}|\Omega|_{N}+\|\beta\|_{L^{\infty}(\partial \Omega)} \sigma(\partial \Omega)\right]-\int_{\Omega} \lambda F(z, \widetilde{u}) d z \\
& \leq C_{6} \widetilde{u}^{p}-\lambda \widetilde{u}^{\tau} \text { for some } C_{6}>0(\text { see }(2.3))
\end{aligned}
$$

Here by $|\cdot|_{N}$ we denote the Lebesgue measure in \mathbb{R}^{N}.
We choose $\widetilde{\lambda}_{0} \geq 1$ such that

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}^{ \pm}(\widetilde{u})<0 \text { for all } \lambda \geq \widetilde{\lambda}_{0} \tag{3.1}
\end{equation*}
$$

From the proof of Proposition 3.1, we know that

$$
\rho_{\lambda} \rightarrow 0+\text { as } \lambda \rightarrow \infty
$$

So, we can find $\widetilde{\lambda}_{1} \geq \widetilde{\lambda}_{0} \geq 1$ such that

$$
\|\widetilde{u}\|>\rho_{\lambda} \text { for all } \lambda \geq \widetilde{\lambda}_{1}
$$

We conclude that for $\widetilde{u}=\frac{\theta}{2} \in$ int C_{+}and for $\lambda \geq \widetilde{\lambda}_{1}$ we have

$$
\widehat{\varphi}_{\lambda}^{ \pm}(\pm \widetilde{u})<0 \text { and }\|\widetilde{u}\|>\rho_{\lambda} .
$$

From Proposition 2.1, we know that the integrands $\widehat{\zeta}_{\lambda}^{ \pm}(\cdot, \cdot)$ satisfy the ARcondition. So, we have the following result (see Ambrosetti-Rabinowitz [2]):

Proposition 3.3. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold, then for every $\lambda>0$, the functionals $\widehat{\varphi}_{\lambda}^{ \pm}$satisfy the PS-condition.

We consider the following nonlinear parametric Robin problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u(z)+\xi(z)|u(z)|^{p-2} u(z)=\widehat{f}_{\lambda}(z, u(z))+g(z, u(z)) \\
\frac{\partial u}{\partial n_{p}}+\beta(z)|u|^{p-2} u=0 \text { on } \partial \Omega, \lambda>0,1<p<\infty
\end{array}\right.
$$

Using variational tools, we can show the existence of constant sign solutions of $\left(Q_{\lambda}\right)$ when $\lambda \geq 1$ is big.

Proposition 3.4. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold, and $\lambda \geq \widetilde{\lambda}_{1}$ (see Proposition 3.2), then problem $\left(Q_{\lambda}\right)$ has at least two constant sign solutions $u_{\lambda} \in$ int C_{+}and $v_{\lambda} \in-$ int C_{+}.

Proof. Propositions 3.1, 3.2 and 3.3 permit the use of the mountain pass theorem [2]. So, we can find $u_{\lambda} \in W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
u_{\lambda} \in K_{\widehat{\varphi}_{\lambda}^{+}} \text {and } \widehat{\varphi}_{\lambda}^{+}(0)=0<\widehat{m}_{\lambda} \leq C_{\lambda}=\widehat{\varphi}_{\lambda}^{+}\left(u_{\lambda}\right) \tag{3.2}
\end{equation*}
$$

From (3.2) we have that $u_{\lambda} \neq 0$ and

$$
\left(\widehat{\varphi}_{\lambda}^{+}\right)^{\prime}\left(u_{\lambda}\right)=0
$$

Hence

$$
\begin{gather*}
\left\langle A\left(u_{\lambda}\right), h\right\rangle+\int_{\Omega} \xi(z)\left|u_{\lambda}(z)\right|^{p-2} u_{\lambda}(z) h d z \\
+\int_{\partial \Omega} \beta(z)\left|u_{\lambda}(z)\right|^{p-2} u_{\lambda}(z) h d \sigma \tag{3.3}\\
=\int_{\Omega}\left[\widehat{f}_{\lambda}^{+}\left(z, u_{\lambda}\right)+g_{+}\left(z, u_{\lambda}\right)\right] h d z \text { for all } h \in W^{1, p}(\Omega) .
\end{gather*}
$$

In (3.3) we choose $h=-u_{\lambda}^{-} \in W^{1, p}(\Omega)$. We obtain

$$
C_{1}\left\|u_{\lambda}^{-}\right\|^{p} \leq 0(\text { see }(3.2)),
$$

therefore

$$
u_{\lambda} \geq 0, u_{\lambda} \neq 0
$$

Then from (3.2) we have

$$
\begin{cases}-\Delta_{p} u_{\lambda}(z)+\xi(z) u_{\lambda}(z)^{p-1}=\widehat{f}_{\lambda}\left(z, u_{\lambda}(z)\right)+g\left(z, u_{\lambda}(z)\right) \tag{3.4}\\ \frac{\partial u_{\lambda}}{\partial n_{p}}+\beta(z) u_{\lambda}^{p-1}=0 \text { on } \partial \Omega . & \text { for a.a. } z \in \Omega, \\ \end{cases}
$$

From (3.4) and Proposition 2.10 of Papageorgiou-Radulescu [10], we infer that $u_{\lambda} \in$ $L^{\infty}(\Omega)$. Then we apply Theorem 2 of Lieberman [6] and obtain that

$$
u_{\lambda} \in C_{+} \backslash\{0\} .
$$

From (3.4) it follows

$$
\Delta_{p} u_{\lambda}(z) \leq\left[\|\xi\|_{\infty}+2\left\|u_{\lambda}\right\|_{\infty}^{r-p}\right] u_{\lambda}(z)^{p-1} \text { for a.a. } z \in \Omega
$$

(see (2.3), (2.5) and hypothesis $\mathbf{H}(g)(i i i))$ and by the nonlinear maximum principle we get

$$
u_{\lambda} \in \operatorname{int} C_{+} .
$$

Similarly, working this time with $\widehat{\varphi}_{\lambda}^{-}$, we produce a negative solution

$$
v_{\lambda} \in-\text { int } C_{+} .
$$

Next we determine the behavior of u_{λ} and v_{λ} as $\lambda \rightarrow \infty$.
Proposition 3.5. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold, then

$$
u_{\lambda} \rightarrow 0 \text { and } v_{\lambda} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } \lambda \rightarrow+\infty .
$$

Proof. Let $\lambda_{n} \rightarrow+\infty$ and consider $u_{n}=u_{\lambda_{n}} \in$ int C_{+}be positive solutions of problem $\left(Q_{\lambda_{n}}\right), n \in \mathbb{N}$. From the proof of Proposition 3.4, we know that

$$
\begin{equation*}
\widehat{m}_{\lambda_{n}} \leq C_{\lambda_{n}}=\widehat{\varphi}_{\lambda_{n}}^{+}\left(u_{n}\right)=\inf _{\gamma \in \Gamma} \max _{0 \leq s \leq 1} \widehat{\varphi}_{\lambda_{n}}^{+}(\widetilde{\gamma}(s)), \tag{3.5}
\end{equation*}
$$

where

$$
\Gamma=\left\{\widetilde{\gamma} \in C\left([0,1], W^{1, p}(\Omega)\right): \widetilde{\gamma}(0)=0, \widetilde{\gamma}(1)=\widetilde{u}\right\}
$$

From (3.5) we have

$$
\begin{equation*}
\hat{\varphi}_{\lambda_{n}}^{+}\left(u_{n}\right) \leq \max _{0 \leq s \leq 1} \widehat{\varphi}_{\lambda_{n}}^{+}(s \widetilde{u}) . \tag{3.6}
\end{equation*}
$$

Also (2.3), (2.4), (2.5) and hypothesis $\mathbf{H}(g)(i i i)$ imply that

$$
\widehat{\varphi}_{\lambda_{n}}(s \widetilde{u}) \leq C_{7} s^{p}-\lambda_{n} C_{8} s^{\tau} \text { for some } C_{7}>0, C_{8}>0 .
$$

We consider the function

$$
\mu_{\lambda_{n}}(s)=C_{7} s^{p}-C_{8} s^{\tau} \text { for all } s \geq 0, \text { with } n \in \mathbb{N} .
$$

Evidently since $p<\tau$, we can find $s_{0}>0$ such that

$$
0<\mu_{\lambda_{n}}\left(s_{0}\right)=\max _{s \geq 0} \mu_{\lambda_{n}}(s)
$$

hence

$$
\mu_{\lambda_{n}}^{\prime}\left(s_{0}\right)=0
$$

therefore

$$
\begin{equation*}
s_{0}=s_{0}\left(\lambda_{n}\right)=\left[\frac{p C_{7}}{\lambda_{n} \tau C_{8}}\right]^{\frac{1}{\tau-p}} . \tag{3.7}
\end{equation*}
$$

Using (3.7) we obtain

$$
\begin{equation*}
\mu_{\lambda_{n}}\left(s_{0}\right) \leq C_{7}\left[\frac{p C_{7}}{\lambda_{n} \tau C_{8}}\right]^{\frac{p}{\tau-p}}=C_{9} \lambda^{-\frac{p}{\tau-p}} \text { for some } C_{9}>0, \text { all } n \in \mathbb{N} . \tag{3.8}
\end{equation*}
$$

From (3.6) we have

$$
\widehat{\varphi}_{\lambda_{n}}^{+}\left(u_{n}\right) \leq \mu_{\lambda_{n}}\left(s_{0}\right) \leq C_{9} \lambda^{-\frac{p}{\tau-p}} \text { for all } n \in \mathbb{N}(\text { see }(3.8))
$$

hence

$$
q \widehat{\varphi}_{\lambda_{n}}^{+}\left(u_{n}\right)+\left\langle\left(\widehat{\varphi}_{\lambda_{n}}^{+}\right)^{\prime}\left(u_{n}\right), u_{n}\right\rangle \leq q C_{9} \lambda^{-\frac{p}{\tau-p}} \text { for all } n \in \mathbb{N},
$$

therefore

$$
\begin{aligned}
& {\left[\frac{q}{p}-1\right] \gamma\left(u_{n}\right)} \\
& +\int_{\Omega}\left[\left(\widehat{f}_{\lambda_{n}}^{+}\left(z, u_{n}\right)+g_{+}\left(z, u_{n}\right)\right) u_{n}-q \widehat{F}_{\lambda_{n}}^{+}\left(z, u_{n}\right)+G_{+}\left(z, u_{n}\right)\right] d z \\
& \leq q C_{9} \lambda^{-\frac{p}{\tau-p}}
\end{aligned}
$$

and in view of Proposition 2.1 and hypothesis $\mathbf{H}(g)(i i)$ we conclude that

$$
\left\|u_{n}\right\|^{p} \leq C_{10} \text { for some } C_{10}>0, \text { all } n \in \mathbb{N} \text {. }
$$

Therefore $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ is bounded. Then Proposition 2.10 of PapageorgiouRadulescu [10] implies that we can find $C_{11}>0$ such that

$$
\left\|u_{n}\right\|_{\infty} \leq C_{11} \text { for all } n \in \mathbb{N}
$$

Invoking Theorem 2 of Lieberman [6], we can find $\alpha \in(0,1)$ and $C_{12}>0$ such that

$$
u_{n} \in C^{1, \alpha}(\bar{\Omega}) \text { and }\left\|u_{n}\right\|_{C^{1, \alpha}(\bar{\Omega})} \leq C_{12} \text { for all } n \in \mathbb{N} .
$$

We know that $C^{1, \alpha}(\bar{\Omega})$ is compactly embedded in $C^{1}(\bar{\Omega})$, so for at least a subsequence we have

$$
u_{n} \rightarrow \bar{u} \text { in } C^{1}(\bar{\Omega}) \text { as } n \rightarrow \infty .
$$

By (3.5) and (3.8) we infer

$$
\begin{equation*}
\hat{\varphi}_{\lambda_{n}}^{+}\left(u_{n}\right) \rightarrow 0^{+} \text {as } n \rightarrow \infty . \tag{3.9}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\left\langle\left(\widehat{\varphi}_{\lambda_{n}}^{+}\right)^{\prime}\left(u_{n}\right), h\right\rangle=0 \text { for all } h \in W^{1, p}(\Omega), \text { all } n \in \mathbb{N} . \tag{3.10}
\end{equation*}
$$

Since $\lambda_{n} \rightarrow+\infty$, from (3.9) and (3.10) it follows that $\bar{u}=0$. Therefore we conclude that

$$
u_{n} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } n \rightarrow \infty
$$

Similarly, working this time with $\widehat{\varphi}_{\lambda_{n}}^{-}(\cdot)$ we show that

$$
v_{\lambda_{n}} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } n \rightarrow \infty
$$

Now we will produce extremal constant sign solutions for problem $\left(Q_{\lambda}\right)$, that is, we will show that for $\lambda>0 \mathrm{big}$, problem $\left(Q_{\lambda}\right)$ has a smallest positive solution and a biggest negative solution

So, we consider the following two solution sets

$$
\begin{aligned}
& \widehat{\mathcal{S}}_{\lambda}^{+}=\left\{u: u \text { is a positive solution of }\left(Q_{\lambda}\right)\right\} \\
& \widehat{\mathcal{S}}_{\lambda}^{-}=\left\{u: u \text { is a negative solution of }\left(Q_{\lambda}\right)\right\}
\end{aligned}
$$

From Proposition 3.4 it follows that for $\lambda \geq \widetilde{\lambda}_{1}$

$$
\varnothing \neq \widehat{\mathcal{S}}_{\lambda}^{+} \subseteq \text { int } C_{+} \text {and } \varnothing \neq \widehat{\mathcal{S}}_{\lambda}^{-} \subseteq-i n t C_{+}
$$

Moreover, from Papageorgiou-Radulescu-Repovs [11] (see the proof of Proposition 7), we know that

$$
\widehat{\mathcal{S}}_{\lambda}^{+} \text {is downward directed }
$$

and

$$
\widehat{\mathcal{S}}_{\lambda}^{-} \text {is upward directed. }
$$

Proposition 3.6. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$, hold and $\lambda \geq$ $\widetilde{\lambda}_{1}$, then problem $\left(Q_{\lambda}\right)$ has a smallest positive solution $u_{\lambda}^{*} \in$ int C_{+}and a biggest negative solution $v_{\lambda}^{*} \in-$ int C_{+}.
Proof. By Lemma 3.10, p. 178 of Hu-Papageorgiou [5], we can find a decreasing sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq \widehat{\mathcal{S}}_{\lambda}^{+}$such that

$$
\inf _{n \geq 1} u_{n}=\inf \widehat{\mathcal{S}}_{\lambda}^{+}
$$

We have

$$
\begin{align*}
&\left\langle A\left(u_{n}\right), h\right\rangle+ \int_{\Omega} \xi(z) u_{n}(z)^{p-1} h d z+\int_{\partial \Omega} \beta(z) u_{n}(z)^{p-1} h d \sigma \\
&=\int_{\Omega}\left[\widehat{f}_{\lambda}\left(z, u_{n}\right)+g_{+}\left(z, u_{n}\right)\right] h d z \tag{3.11}\\
& \quad \text { for all } n \in \mathbb{N}, \text { all } h \in W^{1, p}(\Omega) \\
& 0 \leq u_{n} \leq u_{1} \text { for all } n \in \mathbb{N} \tag{3.12}
\end{align*}
$$

In (3.11) we chose $h=u_{n} \in W^{1, p}(\Omega)$ and using (3.12) and (2.2), we infer that $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ is bounded. So, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u_{\lambda}^{*} \text { in } W^{1, p}(\Omega) \text { and } u_{n} \rightarrow u_{\lambda}^{*} \text { in } L^{p}(\Omega) \text { and } L^{p}(\partial \Omega) \tag{3.13}
\end{equation*}
$$

In (3.11) we choose $h=u_{n}-u_{\lambda}^{*} \in W^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (3.13). We obtain

$$
\lim _{n \rightarrow \infty}\left\langle A\left(u_{n}\right), u_{n}-u_{\lambda}^{*}\right\rangle=0
$$

hence

$$
\begin{equation*}
u_{n} \rightarrow u_{\lambda}^{*} \text { in } W^{1, p}(\Omega) \tag{3.14}
\end{equation*}
$$

(see Section 2). We pass to the limit as $n \rightarrow \infty$ in (3.11) and use (3.14). Then

$$
\begin{aligned}
& \left\langle A\left(u_{\lambda}^{*}\right), h\right\rangle+\int_{\Omega} \xi(z)\left(u_{\lambda}^{*}\right)^{p-1} h d z+\int_{\partial \Omega} \beta(z)\left(u_{\lambda}^{*}\right)^{p-1} h d \sigma \\
& =\int_{\Omega}\left[\widehat{f}_{\lambda}\left(z, u_{\lambda}^{*}\right)+g\left(z, u_{\lambda}^{*}\right)\right] h d z \text { for all } h \in W^{1, p}(\Omega)
\end{aligned}
$$

hence $u_{\lambda}^{*} \in \widehat{\mathcal{S}}_{\lambda}^{+} \cup\{0\}$. If we show that $u_{\lambda}^{*} \neq\{0\}$, then u_{λ}^{*} is the desired minimal positive solution of $\left(Q_{\lambda}\right)$.

We argue indirectly. So, suppose that $u_{\lambda}^{*}=0$. Then $u_{n} \rightarrow 0$ in $W^{1, p}(\Omega)$ (see (3.14)). We set

$$
y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, n \in \mathbb{N}
$$

Then

$$
\left\|y_{n}\right\|=1, y_{n}>0 \text { for all } n \in \mathbb{N}
$$

We may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W^{1, p}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{r}(\Omega) \text { and } L^{p}(\partial \Omega) . \tag{3.15}
\end{equation*}
$$

From (3.11) we have

$$
\begin{align*}
& \left\langle A\left(y_{n}\right), h\right\rangle+\int_{\Omega} \xi(z) y_{n}^{p-1} h d z+\int_{\partial \Omega} \beta(z) y_{n}^{p-1} h d \sigma \\
& =\int_{\Omega}\left[\frac{\widehat{f}_{\lambda}\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p-1}}+\frac{g\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p-1}}\right] h d z \text { for all } h \in W^{1, p}(\Omega) \tag{3.16}
\end{align*}
$$

By (2.3) and (2.5) we see that

$$
\begin{equation*}
\left\{\frac{\widehat{f_{\lambda}}\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{r^{\prime}}(\Omega) \text { is bounded, where } \frac{1}{r}+\frac{1}{r^{\prime}}=1 \tag{3.17}
\end{equation*}
$$

Similarly from hypothesis $\mathbf{H}(g)(i)$ it follows that

$$
\begin{equation*}
\left\{\frac{g\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{r^{\prime}}(\Omega) \text { is bounded } \tag{3.18}
\end{equation*}
$$

If in (3.16) we choose $h=y_{n}-y \in W^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use $(3.15),(3.17)$ and (3.18), we obtain

$$
\lim _{n \rightarrow \infty}\left\langle A\left(y_{n}\right), y_{n}-y\right\rangle=0
$$

hence

$$
\begin{equation*}
y_{n} \rightarrow y \text { in } W^{1, p}(\Omega)(\text { see Section } 2), \text { with }\|y\|=1 . \tag{3.19}
\end{equation*}
$$

On account of (3.17), (3.18), (2.3), (2.5) and hypothesis $\mathbf{H}(g)(i i i)$, we have

$$
\begin{equation*}
\frac{\widehat{f}_{\lambda}\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p-1}} \xrightarrow{w} 0 \text { and } \frac{g\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p-1}} \xrightarrow{w} 0 \text { in } L^{r^{\prime}}(\Omega) . \tag{3.20}
\end{equation*}
$$

So, if in (3.16)we pass to the limit as $n \rightarrow \infty$ and use (3.19) and (3.20), then

$$
\langle A(y), h\rangle+\int_{\Omega} \xi(z) y^{p-1} h d z+\int_{\partial \Omega} \beta(z) y^{p-1} h d \sigma=0 \text { for all } h \in W^{1, p}(\Omega) .
$$

Let $h=y \in W^{1, p}(\Omega)$. Then

$$
C_{1}\|y\|^{p} \leq 0(\text { see }(2.2))
$$

hence $y=0$, which contradicts (3.19). Therefore $u_{\lambda}^{*} \neq 0$ and so

$$
u_{\lambda}^{*} \in \widehat{\mathcal{S}}_{\lambda}^{+} \text {and } u_{\lambda}^{*}=\inf \widehat{\mathcal{S}}_{\lambda}^{+} .
$$

Similarly, working with $\widehat{\mathcal{S}}_{\lambda}^{-}$, we produce $v_{\lambda}^{*} \in \widehat{\mathcal{S}}_{\lambda}^{-}$with $v_{\lambda}^{*}=\sup \widehat{\mathcal{S}}_{\lambda}^{-}$. In this case, since $\widehat{\mathcal{S}}_{\lambda}^{-}$is upward directed, we can find $\left\{v_{n}\right\}_{n \geq 1} \subseteq \widehat{\mathcal{S}}_{\lambda}^{-}$increasing, such that

$$
\sup _{n \geq 1} v_{n}=\sup \widehat{\mathcal{S}}_{\lambda}^{-}
$$

We will use these two extremal constant sign solutions in order to produce a nodal solution for problem $\left(Q_{\lambda}\right)$ when λ is big enough.
Proposition 3.7. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold, then there exists $\widetilde{\lambda}_{2} \geq \widetilde{\lambda}_{1}$ such that for all $\lambda \geq \widetilde{\lambda}_{2}$, problem $\left(Q_{\lambda}\right)$ has a nodal solution $y_{\lambda} \in$ $\left[v_{\lambda}^{*}, u_{\lambda}^{*}\right] \cap C^{1}(\bar{\Omega})$.
Proof. Let $u_{\lambda}^{*} \in \operatorname{int} C_{+}$and $v_{\lambda}^{*} \in-$ int C_{+}be the two extremal constant sign solutions of problem $\left(Q_{\lambda}\right)$ produced in Proposition 3.6. We introduce the following Carathéodory function

$$
\widehat{k}_{\lambda}(z, x)=\left\{\begin{array}{lll}
\widehat{f}_{\lambda}\left(z, v_{\lambda}^{*}(z)\right)+g\left(z, v_{\lambda}^{*}(z)\right) & \text { if } \quad x<v_{\lambda}^{*}(z) \tag{3.21}\\
\widehat{f}_{\lambda}(z, x)+g(z, x) & \text { if } \quad v_{\lambda}^{*}(z) \leq x \leq u_{\lambda}^{*}(z) \\
\widehat{f}_{\lambda}\left(z, u_{\lambda}^{*}(z)\right)+g\left(z, u_{\lambda}^{*}(z)\right) & \text { if } & u_{\lambda}^{*}(z)<x
\end{array}\right.
$$

We consider the positive and negative truncations of $\widehat{k}_{\lambda}(z, \cdot)$, namely the Carathéodory functions

$$
\begin{equation*}
\widehat{k}_{\lambda}^{ \pm}(z, x)=\widehat{k}_{\lambda}\left(z, \pm x^{ \pm}\right) . \tag{3.22}
\end{equation*}
$$

We set

$$
\widehat{K}_{\lambda}(z, x)=\int_{0}^{x} \widehat{k}_{\lambda}(z, s) d s \text { and } \widehat{K}_{\lambda}^{ \pm}(z, x)=\int_{0}^{x} \widehat{k}_{\lambda}^{ \pm}(z, s) d s
$$

and introduce the C^{1}-functionals $\widehat{\psi}_{\lambda}, \widehat{\psi}_{\lambda}^{ \pm}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\widehat{\psi}_{\lambda}(u)=\frac{1}{p} \gamma(u)-\int_{\Omega} \widehat{K}_{\lambda}(z, u) d z \text { for all } u \in W^{1, p}(\Omega)
$$

and

$$
\widehat{\psi}_{\lambda}^{ \pm}(u)=\frac{1}{p} \gamma(u)-\int_{\Omega} \widehat{K}_{\lambda}^{ \pm}(z, u) d z \text { for all } u \in W^{1, p}(\Omega)
$$

Using (3.21), (3.22) and the nonlinear regularity theory, we show easily that

$$
K_{\widehat{\psi}_{\lambda}} \subseteq\left[v_{\lambda}^{*}, u_{\lambda}^{*}\right] \cap C^{1}(\bar{\Omega}), K_{\widehat{\psi}_{\lambda}^{+}} \subseteq\left[0, u_{\lambda}^{*}\right] \cap C_{+}, K_{\widehat{\psi}_{\lambda}^{-}} \subseteq\left[v_{\lambda}^{*}, 0\right] \cap\left(-C_{+}\right)
$$

The extremality of $u_{\lambda}^{*}, v_{\lambda}^{*}$ implies that

$$
\begin{equation*}
K_{\widehat{\psi}_{\lambda}} \subseteq\left[v_{\lambda}^{*}, u_{\lambda}^{*}\right] \cap C^{1}(\bar{\Omega}), K_{\widehat{\psi}_{\lambda}^{+}}=\left\{0, u_{\lambda}^{*}\right\}, K_{\widehat{\psi}_{\lambda}^{-}}=\left\{0, v_{\lambda}^{*}\right\} \tag{3.23}
\end{equation*}
$$

Note that $\widehat{\psi}_{\lambda}^{+}$is coercive (see $\left.(3.21),(3.22)\right)$. Also it is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $\widetilde{u}_{\lambda}^{*} \in W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\psi}_{\lambda}^{+}\left(\widetilde{u}_{\lambda}^{*}\right)=\inf \left\{\widehat{\psi}_{\lambda}^{+}(u): u \in W^{1, p}(\Omega)\right\} . \tag{3.24}
\end{equation*}
$$

Let

$$
u_{*}=\min \left\{\frac{\theta}{2}, \min _{\bar{\Omega}} u_{\lambda}^{*}\right\}>0
$$

(recall that $u_{\lambda}^{*} \in \operatorname{int} C_{+}$). Then

$$
\widehat{\psi}_{\lambda}^{+}\left(u_{*}\right) \leq C_{13} u_{*}^{p}-\lambda C_{14} u_{*}^{\tau} \text { for some } C_{13}, C_{14}>0
$$

(see $(2.3),(2.5)$ and hypothesis $\mathbf{H}(g)(i i i))$. So, we can find $\widetilde{\lambda}_{2}^{+} \geq \widetilde{\lambda}_{1}$ such that

$$
\widehat{\psi}_{\lambda}^{+}\left(u_{*}\right)<0 \text { for all } \lambda \geq \widetilde{\lambda}_{2}^{+}
$$

hence

$$
\widehat{\psi}_{\lambda}^{+}\left(u_{\lambda}^{*}\right)<0=\widehat{\psi}_{\lambda}^{+}(0) \text { for all } \lambda \geq \widetilde{\lambda}_{2}^{+}(\text {see }(3.24))
$$

therefore

$$
\begin{equation*}
\widetilde{u}_{\lambda}^{*} \neq 0 \text { for all } \lambda \geq \widetilde{\lambda}_{2}^{+} \tag{3.25}
\end{equation*}
$$

From (3.24) we have

$$
\widetilde{u}_{\lambda}^{*} \in K_{\widehat{\psi}_{\lambda}^{+}}
$$

hence

$$
\widetilde{u}_{\lambda}^{*}=u_{\lambda}^{*} \in \operatorname{int} C_{+}(\operatorname{see}(3.24), \quad(3.25))
$$

It is clear from (3.22) that

$$
\left.\widehat{\psi}_{\lambda}^{+}\right|_{C_{+}}=\left.\widehat{\psi}_{\lambda}\right|_{C_{+}}
$$

hence u_{λ}^{*} is a local $C^{1}(\bar{\Omega})$-minimizer of $\widehat{\psi}_{\lambda}$, therefore

$$
\begin{equation*}
u_{\lambda}^{*} \text { is a local } W^{1, p}(\Omega) \text {-minimizer of } \widehat{\psi}_{\lambda} \text { for all } \lambda \geq \tilde{\lambda}_{2}^{+} \tag{3.26}
\end{equation*}
$$

(see Papageorgiou-Radulescu [10], Proposition 2.12).
Similarly, working this time with $\widehat{\psi}_{\lambda}^{-}$, we produce $\widetilde{\lambda}_{2}^{-} \geq \widetilde{\lambda}_{1}$ such that

$$
\begin{equation*}
v_{\lambda}^{*} \text { is a local } W^{1, p}(\Omega) \text {-minimizer of } \widehat{\psi}_{\lambda} \text { for all } \lambda \geq \tilde{\lambda}_{2}^{-} \tag{3.27}
\end{equation*}
$$

Let

$$
\widetilde{\lambda}_{2}=\max \left\{\widetilde{\lambda}_{2}^{+}, \widetilde{\lambda}_{2}^{-}\right\}
$$

and let $\lambda \geq \widetilde{\lambda}_{2}$. We may assume that

$$
\widehat{\psi}_{\lambda}\left(v^{*}\right) \leq \widehat{\psi}_{\lambda}\left(u^{*}\right)
$$

The reasoning is similar if the opposite inequality holds, using (3.27) instead of (3.26) . Also, we may assume that

$$
\begin{equation*}
K_{\widehat{\psi}_{\lambda}} \text { is finite. } \tag{3.28}
\end{equation*}
$$

Otherwise, we already have an infinity of smooth nodal solutions.
Using (3.26), (3.28) and Theorem 5.7.6, p. 448, of Papageorgiou-RadulescuRepovs [13], we can find $\rho \in(0,1)$ small, such that

$$
\begin{align*}
& \widehat{\psi}_{\lambda}\left(v_{\lambda}^{*}\right) \leq \widehat{\psi}_{\lambda}\left(u_{\lambda}^{*}\right)<\inf \left\{\widehat{\psi}_{\lambda}(u):\left\|u-u_{\lambda}^{*}\right\|=\rho\right\}=: \widehat{m}_{\lambda}, \tag{3.29}\\
& \left\|u_{\lambda}^{*}-v_{\lambda}^{*}\right\|>\rho
\end{align*}
$$

Evidently, $\widehat{\psi}_{\lambda}(\cdot)$ is coercive (see (3.21)). Therefore

$$
\begin{equation*}
\widehat{\psi}_{\lambda} \text { satisfies the PS-condition } \tag{3.30}
\end{equation*}
$$

(see Papageorgiou-Radulescu-Repovs [13], Proposition 5.1.15, p.369).
Then (3.29), (3.30) permit the use of the mountain pass theorem. So, we can find $y_{\lambda} \in W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
y_{\lambda} \in K_{\widehat{\psi}_{\lambda}} \subseteq\left[v_{\lambda}^{*}, u_{\lambda}^{*}\right] \cap C^{1}(\bar{\Omega}), \widehat{m}_{\lambda} \leq \widehat{\psi}_{\lambda}\left(y_{\lambda}\right) \tag{3.31}
\end{equation*}
$$

(see (3.23) and (3.29)). From (3.29) and (3.31) it follows that

$$
\begin{equation*}
y_{\lambda} \notin\left\{u_{\lambda}^{*}, v_{\lambda}^{*}\right\} . \tag{3.32}
\end{equation*}
$$

Since y_{λ} is a critical point of $\widehat{\psi}_{\lambda}(\cdot)$ of mountain pass type, we have

$$
\begin{equation*}
C_{1}\left(\widehat{\psi}_{\lambda}, y_{\lambda}\right) \neq 0 \tag{3.33}
\end{equation*}
$$

(see Papageorgiou-Radulescu-Repovs [13], Theorem 6.5.8, p.527).
On the other hand, if $u \in C^{1}(\bar{\Omega})$ and

$$
\|u\|_{C^{1}(\bar{\Omega})} \leq \rho_{0} \leq \min \left\{\frac{\theta}{2}, \min \left\{\min _{\bar{\Omega}} u_{\lambda}^{*}, \min _{\bar{\Omega}}\left(-v_{\lambda}^{*}\right)\right\}\right\}
$$

(recall that $u_{\lambda}^{*} \in \operatorname{int} C_{+}, v_{\lambda}^{*} \in-$ int C_{+}, see Proposition 3.6), then

$$
\begin{aligned}
\widehat{\psi}_{\lambda}(u) & =\frac{1}{p} \gamma(u)-\int_{\Omega}[\lambda F(z, u)+G(z, u)] d z(\text { see }(2.3),(2.5),(3.21)) \\
& \geq \frac{1}{p} \gamma(u)-\frac{1}{r}\left[\lambda+C_{0}\right]\|u\|_{r}^{r}(\text { see }(2.3), \text { and } \mathbf{H}(g)(i i i) \\
& \geq \frac{C_{1}}{p}\|u\|^{p}-\frac{1}{r}\left[\lambda+C_{0}\right]\|u\|^{r}(\text { see }(2.2))
\end{aligned}
$$

Since $r>p$, for $\rho_{0} \in(0,1)$ small, we have

$$
\widehat{\psi}_{\lambda}(u)>0 \text { for all } 0<\|u\|_{C^{1}(\bar{\Omega})} \leq \rho_{0}
$$

hence $u=0$ is a local $C^{1}(\bar{\Omega})$-minimizer of $\widehat{\psi}_{\lambda}(\cdot)$, therefore $u=0$ is a local $W^{1, p}(\Omega)$-minimizer of $\widehat{\psi}_{\lambda}(\cdot)$ (see [10]), and we conclude that

$$
\begin{equation*}
C_{k}\left(\widehat{\psi}_{\lambda}, 0\right)=\delta_{k, 0} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0} \tag{3.34}
\end{equation*}
$$

(where $\delta_{k, l}$ denotes the Kronecker symbol defined by $\delta_{k, l}=1$ if $k=l$ and $\delta_{k, l}=0$ if $k \neq l$). Comparing (3.33) and (3.34), we infer that $y_{\lambda} \neq 0$ and so, $y_{\lambda} \in$ $\left[v_{\lambda}^{*}, u_{\lambda}^{*}\right] \cap C^{1}(\bar{\Omega})$ is a nodal solution of the problem $\left(Q_{\lambda}\right)$, for $\lambda \geq \widetilde{\lambda}_{2}$.

In view of Proposition 3.5, we arrive at:
Proposition 3.8. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold, then

$$
u_{\lambda}^{*}, v_{\lambda}^{*}, y_{\lambda} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } \lambda \rightarrow+\infty
$$

Then Proposition 3.8 and (2.5) lead to the following multiplicity theorem for $\left(P_{\lambda}\right)$.
Theorem 3.9. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f), \mathbf{H}(g)$ hold, then there exists $\widetilde{\lambda}_{3} \geq \widetilde{\lambda}_{2}$ such that for $\lambda \geq \widetilde{\lambda}_{3}$, problem $\left(P_{\lambda}\right)$ has at least three nontrivial solutions

$$
u_{\lambda} \in \operatorname{int} C_{+}, v_{\lambda} \in-\text { int } C_{+} \text {and } y_{\lambda} \in\left[v_{\lambda}, u_{\lambda}\right] \cap C^{1}(\bar{\Omega}), \text { nodal. }
$$

Moreover,

$$
u_{\lambda}, v_{\lambda}, y_{\lambda} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } \lambda \rightarrow+\infty .
$$

4. SEmilinear problems

In the semilinear case $(p=2)$, under stronger regularity hypotheses on $f(z, \cdot)$ and $g(z, \cdot)$, we can improve Theorem 3.9 by producing a second nodal solution of $\left(P_{\lambda}\right)$ for a total of four nontrivial solutions, all with sign information.

So, now the problem under consideration is the following
$\left(S P_{\lambda}\right) \quad\left\{\begin{array}{l}-\Delta u(z)+\xi(z) u(z)=\lambda f(z, u(z))+g(z, u(z)) \text { in } \Omega, \\ \frac{\partial u}{\partial n_{p}}+\beta(z) u=0 \text { on } \partial \Omega, \lambda>0 .\end{array}\right.$
The conditions on the two nonlinearities $f(z, x)$ and $g(z, x)$ are the following.
$\mathbf{H}(f)^{\prime}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function such that $f(z, 0)=0$ for a.a. $z \in \Omega$, $f(z, \cdot) \in C^{1}(\mathbb{R})$ and
(i) there exists $r \in\left(2,2^{*}\right)$ such that

$$
\lim _{x \rightarrow 0} \frac{f(z, x)}{|x|^{r-2} x}=0 \text { uniformly for a.a. } z \in \Omega
$$

(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then there exists $\tau \in\left(r, 2^{*}\right)$ such that

$$
\lim _{x \rightarrow \infty} \frac{F(z, x)}{x^{\tau}}=+\infty \text { uniformly for a.a. } z \in \Omega
$$

Remark: Hypothesis $\mathbf{H}(f)^{\prime}(i)$ implies that

$$
0=f_{x}^{\prime}(z, 0)=\lim _{x \rightarrow 0} \frac{f(z, x)}{x} \text { uniformly for a.a. } z \in \Omega
$$

$\mathbf{H}(g): g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function such that $g(z, 0)=0$ for a.a. $z \in \Omega$, $g(z, \cdot) \in C^{1}(\mathbb{R})$ and
(i) there exist $a \in L^{\infty}(\Omega)$ and $2<d<2^{*}$ such that

$$
\left|g_{x}^{\prime}(z, x)\right| \leq a(z)\left[1+|x|^{d-2}\right] \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R}
$$

(ii) If $G(z, x)=\int_{0}^{x} g(z, s) d s$, then there exist $q \in(2, r)$ and $M>0$ such that

$$
0<q G(z, x) \leq g(z, x) x \text { for a.a. } z \in \Omega, \text { all }|x| \geq M
$$

and

$$
0 \leq \underset{\Omega}{\operatorname{essinf}} G(\cdot, \pm M)
$$

(iii) there exists $c_{0}>0$ such that

$$
0 \leq g(z, x) x \leq c_{0}|x|^{r} \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} .
$$

Remark: Hypothesis $\mathbf{H}(g)^{\prime}($ iii $)$ implies that

$$
0=g^{\prime}(z, x)=\lim _{x \rightarrow 0} \frac{g(z, x)}{x} \text { uniformly for a.a. } z \in \Omega
$$

\mathbf{H}_{1} : For every $\lambda>0$ and $\rho>0$, there exists $\xi_{\rho}^{\lambda}>0$ such that for a.a. $z \in \Omega$, the function $x \rightarrow \lambda f(z, x)+g(z, x)+\xi_{\rho}^{\lambda} x$ is nondecreasing on $[-\rho, \rho]$.

Remark: This is a lower Lipschitz condition. It is satisfied if for every $\lambda>0$ and $\rho>0$, there exists $\widehat{\xi}_{\rho}^{\lambda}>0$ such that

$$
\lambda f_{x}^{\prime}(z, x)+g_{x}^{\prime}(z, x) \geq-\widehat{\xi}_{\rho}^{\lambda} \text { for a.a. } z \in \Omega ., \text { all }|x| \leq \rho
$$

In what follows we set

$$
\zeta_{\lambda}(z, x)=\widehat{f}_{\lambda}(z, x)+g(z, x), \widehat{F}_{\lambda}(z, x)=\int_{0}^{x} \widehat{f}_{\lambda}(z, s) d s
$$

and we consider the C^{1}-functional $\widehat{\varphi}_{\lambda}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\widehat{\varphi}_{\lambda}(u)=\frac{1}{p} \gamma(u)-\int_{\Omega}\left[\widehat{F}_{\lambda}(z, x)+G(z, u)\right] d z \text { for all } u \in W^{1, p}(\Omega)
$$

Theorem 4.1. If hypotheses $\mathbf{H}(\xi), \mathbf{H}(\beta), \mathbf{H}_{0}, \mathbf{H}(f)^{\prime}, \mathbf{H}(g)^{\prime}, \mathbf{H}_{1}$ hold, then there exists $\widetilde{\lambda}_{3} \geq 1$ such that for all $\lambda \geq \widetilde{\lambda}_{3}$, problem $\left(P_{\lambda}\right)$ has at least four nontrivial solutions

$$
u_{\lambda} \in \operatorname{int} C_{+}, v_{\lambda} \in-\operatorname{int} C_{+}, \text {and } y_{\lambda}, \widehat{y}_{\lambda} \in i n t_{C^{1}(\bar{\Omega})}\left[v_{\lambda}, u_{\lambda}\right], \text { nodal. }
$$

Proof. From Theorem 3.9, we know that there exists $\widetilde{\lambda}_{3} \geq 1$ such that for all $\lambda \geq \widetilde{\lambda}_{3}$ problem $\left(P_{\lambda}\right)$.has at least three nontrivial solutions

$$
\begin{equation*}
u_{\lambda} \in \operatorname{int} C_{+}, v_{\lambda} \in-\operatorname{int} C_{+} \text {and } y_{\lambda} \in\left[v_{\lambda}, u_{\lambda}\right] \cap C^{1}(\bar{\Omega}) \text { nodal. } \tag{4.1}
\end{equation*}
$$

Let $\rho=\max \left\{\left\|u_{\lambda}\right\|_{\infty},\left\|v_{\lambda}\right\|_{\infty}\right\}$ and let $\widehat{\xi}_{\rho}^{\lambda}>0$ be as postulated by hypothesis \mathbf{H}_{1}. We have

$$
\begin{aligned}
& -\Delta y_{\lambda}+\left[\xi(z)+\widehat{\xi}_{\rho}^{\lambda}\right] y_{\lambda}=\lambda f\left(z, y_{\lambda}\right)+g\left(z, y_{\lambda}\right)+\widehat{\xi}_{\rho}^{\lambda} y_{\lambda} \\
& \leq \lambda f\left(z, u_{\lambda}\right)+g\left(z, u_{\lambda}\right)+\widehat{\xi}_{\rho}^{\lambda} u_{\lambda}\left(\text { see }(4.1) \text { and } \mathbf{H}_{1}\right) \\
& =-\Delta u_{\lambda}+\left[\xi(z)+\widehat{\xi}_{\rho}^{\lambda}\right] u_{\lambda}
\end{aligned}
$$

hence

$$
\Delta\left(u_{\lambda}-y_{\lambda}\right) \leq\left[\|\xi\|_{\infty}+\widehat{\xi}_{\rho}^{\lambda}\right]\left(u_{\lambda}-y_{\lambda}\right)
$$

therefore $u_{\lambda}-y_{\lambda} \in$ int C_{+}(by the Hopf boundary point theorem). Similarly we show that

$$
y_{\lambda}-v_{\lambda} \in \operatorname{int} C_{+}
$$

It follows that

$$
\begin{equation*}
y_{\lambda} \in i n t_{C^{1}(\bar{\Omega})}\left[v_{\lambda}, u_{\lambda}\right] \tag{4.2}
\end{equation*}
$$

Consider the homotopy

$$
h_{t}(u)=h(t, u)=(1-t) \widehat{\psi}_{\lambda}(u)+t \widehat{\varphi}_{\lambda}(u) \text { for all }(t, u) \in[0,1] \times H^{1}(\Omega)
$$

Suppose that we could find $\left\{t_{n}\right\}_{n \geq 1} \subseteq[0,1]$ and $\left\{y_{n}\right\}_{n \geq 1} \subseteq H^{1}(\Omega)$ such that

$$
t_{n} \rightarrow t \text { in }[0,1], y_{n} \rightarrow y \text { in } H^{1}(\Omega), h_{t}^{\prime}\left(y_{n}\right)=0 \text { for all } n \in \mathbb{N}
$$

We have

$$
\begin{gather*}
\left\langle A\left(y_{n}\right), h\right\rangle+\int_{\Omega} \xi(z) y_{n} h d z+\int_{\partial \Omega} \beta(z) y_{n} h d \sigma \\
=\left(1-t_{n}\right) \int_{\Omega} k_{\lambda}\left(z, y_{n}\right) h d z+t_{n} \int_{\Omega} \zeta_{\lambda}\left(z, y_{n}\right) h d z \text { for all } h \in H^{1}(\Omega) . \tag{4.3}
\end{gather*}
$$

By (4.3), using standard regularity theory, we show that in fact we have

$$
y_{n} \rightarrow y \text { in } C^{1}(\bar{\Omega})
$$

hence

$$
y_{n} \in\left[v_{\lambda}, u_{\lambda}\right] \text { for all } n \geq n_{0}(\text { see }(4.2))
$$

This contradicts (3.28). Then, the homotopy invariance property of critical groups (see Papageorgiou-Radulescu-Repovs [13], Theorem 6.3.8, p.505) implies that

$$
\begin{equation*}
C_{k}\left(\widehat{\psi}_{\lambda}, y_{\lambda}\right)=C_{k}\left(\widehat{\varphi}_{\lambda}, y_{\lambda}\right) \text { for all } k \in \mathbb{N}_{0} \tag{4.4}
\end{equation*}
$$

hence

$$
\begin{equation*}
C_{1}\left(\widehat{\varphi}_{\lambda}, y_{\lambda}\right) \neq 0(\text { see }(3.33)) \tag{4.5}
\end{equation*}
$$

But $\widehat{\varphi}_{\lambda} \in C^{2}\left(H^{1}(\Omega), \mathbb{R}\right)$. So, by (4.5) and Theorem 6.5.11, p. 530 of Papageorgiou-Radulescu-Repovs [13], we have

$$
C_{k}\left(\widehat{\varphi}_{\lambda}, y_{\lambda}\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0}
$$

hence

$$
\begin{equation*}
C_{k}\left(\widehat{\psi}_{\lambda}, y_{\lambda}\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0},(\text { see }(4.4)) \tag{4.6}
\end{equation*}
$$

Recall that u_{λ}, v_{λ} are local minimizers of $\widehat{\psi}_{\lambda}(\cdot)$ (see the proof of Proposition 3.7). Hence

$$
\begin{equation*}
C_{k}\left(\widehat{\psi}_{\lambda}, u_{\lambda}\right)=C_{k}\left(\widehat{\psi}_{\lambda}, v_{\lambda}\right)=\delta_{k, 0} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0} \tag{4.7}
\end{equation*}
$$

Also from (3.34) we have

$$
\begin{equation*}
C_{k}\left(\widehat{\psi}_{\lambda}, 0\right)=\delta_{k, 0} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0} \tag{4.8}
\end{equation*}
$$

The functional $\widehat{\psi}_{\lambda}(\cdot)$ is coercive (see (3.21)). Hence we obtain

$$
\begin{equation*}
C_{k}\left(\widehat{\psi}_{\lambda}, \infty\right)=\delta_{k, 0} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0} \tag{4.9}
\end{equation*}
$$

Suppose that $K_{\widehat{\psi}_{\lambda}}=\left\{0, u_{\lambda}, v_{\lambda}, y_{\lambda}\right\}$. Then from (4.6), (4.7), (4.8), (4.9) and the Morse relation with $t=-1$ (see (2.1)) it follows

$$
3(-1)^{0}+(-1)^{1}=(-1)^{0}
$$

therefore $(-1)^{0}=0$, a contradiction.
So, there exists $\widehat{y}_{\lambda} \in K_{\widehat{\psi}_{\lambda}}, \widehat{y}_{\lambda} \notin\left\{0, u_{\lambda}, v_{\lambda}, y_{\lambda}\right\}$, and since $\lambda \geq \widetilde{\lambda}_{3}$, this is the second nodal solution for problem $\left(P_{\lambda}\right)$. Finally, using the Hopf boundary point theorem, we conclude that

$$
\widehat{y}_{\lambda} \in i n t_{C^{1}(\bar{\Omega})}\left[v_{\lambda}, u_{\lambda}\right] .
$$

References

[1] S. Aizicovici, N. S. Papageorgiou and V. Staicu, Infinitely many nodal solutions for anisotropic (p, q)-equations, Pure Appl. Funct. Anal. 7 (2022), 473-487.
[2] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[3] L. Gasinski and N. S. Papageorgiou, Exercises in Analysis. Part. 2: Nonlinear Analysis. Springer, Switzerland, 2016.
[4] L. Gasinski and N. S. Papageorgiou, Positive solutions for the Robin p-Laplacian problem with competing nonlinearities, Adv. Calc. Var. 12 (2019), 31-56.
[5] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis - Part I:Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
[6] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12(1988), 1203-1219.
[7] Z. Li and Z. Q. Wang, Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 56 (2005), 609-629.
[8] D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 729-788.
[9] N. S. Papageorgiou and V. D. Radulescu, Infinitely many nodal solutions for nonlinear nonhomogeneous Robin problems, Adv. Nonlinear Stud. 16 (2016), 287-300.
[10] N. S. Papageorgiou and V. D. Radulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction, Adv. Nonlinear Stud. 16 (2016), 737-764.
[11] N. S. Papageorgiou, V. D. Radulescu and D. Repovs, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst. 37 (2017), 2589-2618.
[12] N. S. Papageorgiou, V. D. Radulescu and D. Repovs, Nodal solutions for nonlinear nonhomogeneous Robin problems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 29 (2018), 721-738.
[13] N. S. Papageorgiou, V. D. Radulescu and D. Repovs, Nonlinear Analysis - Theory and Methods. Springer, Switzerland, 2019.
[14] Z. Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA, Nonlinear Differential Equations Appl. 8 (2001), 15-33.

Manuscript received August 102020
revised August 242020
S. Aizicovici

Department of Mathematics, Ohio University, Athens, OH 45701, USA
E-mail address: aizicovs@ohio.edu
N. S. Papageorgiou

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

E-mail address: npapg@math.ntua.gr
V. Staicu

CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

E-mail address: vasile@ua.pt

[^0]: 2020 Mathematics Subject Classification. 35J20, 35J60.
 Key words and phrases. Cut-off function, AR-condition, extremal constant sign solutions, regularity theory, critical groups.
 ${ }^{*}$ The third author acknowledges the partial support by the Portuguese Foundation for Science and Technology (FCT), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2019(CIDMA)..

