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where ν ≥ 0, κ ≥ 0, γ ∈ (0, 2] and Λ :=
√
−∆. Here θ0 is the initial datum and

S = S(x) is a given function that represents the forcing of the system. We assume
that 2

(1.2)

∫
Td

θ0(x)dx =

∫
Td

S(x) = 0

which immediately implies that θ obeys

(1.3)

∫
Td

θ(x, t)dx = 0, ∀t ≥ 0.

{T νij}ν≥0 is a sequence of operators which satisfy:

(A1) For all ν ≥ 0, ∂i∂jT
ν
ijf = 0 for any smooth functions f .

(A2) There exists a constant C > 0 independent of ν, such that for all i, j ∈
{1, . . . , d},

sup
ν∈(0,1]

sup
{k∈Z3}

|T̂ νij(k)| ≤ C; sup
{k∈Z3}

|T̂ 0
ij(k)| ≤ C, where T 0

ij = T νij

∣∣∣
ν=0

.

(A3) For each ν > 0, there exists a constant Cν > 0 such that for all 1 ≤ i, j ≤ d,

|T̂ νij(k)| ≤ Cν |k|−3, ∀k ∈ Zd.
(A4) T νij : L

∞ → BMO are bounded operators for all ν ≥ 0.

(A5) For each 1 ≤ j ≤ d and g ∈ L2, lim
ν→0

∑
k∈Z3

|T̂ νij(k)− T̂ 0
ij(k)|

2|ĝ(k)|2 = 0.

Our motivation for addressing such a class of active scalar equations mainly
comes from several different physical systems, all of them take the form (1.1) under
particular parameter regimes:

1. The first example comes from a model proposed by Moffatt and Loper [49],
Moffatt [47] for magenetostrophic turbulence in the Earth’s fluid core. Un-
der the postulates in [49], the governing equation becomes a 3D active scalar
equation for a temperature field θ{

∂tθ + u · ∇θ = κ∆θ + S,
u =Mν [θ], θ(x, 0) = θ0(x).

(1.4)

The expressions for the Fourier multiplier symbol M̂ν are explicitly given
by 

M̂ν
1 (k) = [k2k3|k|2 − k1k3(k

2
2 + ν|k|4)]D(k)−1,

M̂ν
2 (k) = [−k1k3|k|2 − k2k3(k

2
2 + ν|k|4)]D(k)−1,

M̂ν
3 (k) = [(k21 + k22)(k

2
2 + ν|k|4)]D(k)−1,

(1.5)

where k = (k1, k2, k3) ∈ Z3 is the Fourier variable and D(k) = |k|2k23+(k22+
ν|k|4)2. The nonlinear equation (1.4) with u related to θ via the operator
Mν is known as the magnetogeostrophic (MGν) equation (or simply MG
equation) and its mathematical properties have been addressed in a series of
papers which include [28], [29], [30], [31], [32], [33], [35], [36]. The behaviour

2Such mean zero assumption is common in many physical models which include SQG equation
and MG equation; see [16] and [29] for example.
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of the MGν equation is strikingly different when the parameters ν and κ are
present (i.e. positive) or absent (i.e. zero). As the Fourier multiplier symbols

M̂0 given by (1.5) with ν = 0 are not bounded in all regions of Fourier
space [32], when ν = 0 the relation between u and θ is given by a singular
operator of order 1. The implications of such fact for the inviscid MG0

equation are summarized in the survey article by Friedlander, Rusin and
Vicol [35]. In particular, when κ > 0 the inviscid but thermally dissipative
MG0 equation is globally well-possed [32]; on the other hand when ν = 0
and κ = 0, the singular inviscid MG0 equation is ill-possed in the sense of
Hadamard in any Sobolev space [33]. In [28], Friedlander and Suen first
addressed the system (1.4)-(1.5) for ν > 0 and obtained well-posedness
results in Sobolev space. In a series of papers [29]- [30] the authors further
examined the limit of vanishing viscosity as ν → 0 in the case when κ > 0
and κ = 0 and the long-time behaviour of solutions. They proved global
existence of classical solutions to the forced MGν equations and obtained
convergences of solutions as ν vanishes. Moreover, it was shown in [31] that
the equations (1.4)-(1.5) possess global attractors with various interesting
properties.

2. The second example of a physical system comes from incompressible flow in
a porous medium. It can be modeled by an active scalar equation where a
small smoothing parameter enters into the constitutive law. Different from
the usual incompressible porous media (IPM) equation, the incompressible
porous media Brinkman (IPMBν) equation with an “effective viscosity” ν
is derived via a modified Darcy’s Law as suggested by Brinkman [2]. The
IPM equation becomes the limiting case for IPMBν equation when ν = 0.
The 2D equation relating the velocity u, the density θ and the pressure P
is given in non-dimensional form by

u = −∇P − e2θ + ν∆u(1.6)

∇ · u = 0(1.7)

which produces the constitutive law

u = (1− ν∆)−1[−∇ · (−∆)−1e2 · ∇θ − e2θ]

= (1− ν∆)−1R⊥R1θ =Mν [θ](1.8)

where R = (R1, R2) is the vector of Riesz transforms and e2 = (0, 1). The
corresponding active scalar equation is thus given by{

∂tθ
ν + (uν · ∇)θν = 0,

uν =Mν [θν ], θν(x, 0) = θ0(x),
(1.9)

where the 2D components of the Fourier multiplier symbol corresponding

to M̂ν as in (1.9) are

(1.10)
1

1 + ν(k21 + k22)

(
k1k2
k21 + k22

,
−k21

(k21 + k22)

)
Similar to the case of MGκ,ν equation, there is a noticeable difference in
the operator Mν between the two cases ν > 0 and ν = 0: the operator is
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smoothing of order 2 when ν > 0, while for ν = 0 the operator is singular
of order zero.

The well known IPM equations, i.e. (1.8)-(1.10) without the effective
viscosity ν, have been studied in a number of papers (see [24], [25] and the
reference therein). As we pointed out before, when ν = 0 the operator in
(1.8) becomes a singular integral operator of order zero, which is similar to
the case for the SQG equations. Yet there is a crucial difference between
the two operators: the SQG operator is odd while the IPM operator is even.
Implications for well/ill posedness due to the odd/even structure of the
operator in an active scalar equation are further explored in [26], [36], [42].
In a recent work, Friedlander and Suen [30] studied the system (1.8)-(1.10)
in the limit of vanishing viscosity as ν → 0 and obtained convergence results
in Sobolev spaces, which are not available for the case of MG equation when
κ = 0. The foremost difference is that the MG0 operator is singular of
order 1 where as the IPM operator is singular of order zero. In view of such
difference, for the“ smoother” IPM case the convergence results are valid
in Sobolev spaces rather than the analytic convergence results for the MG
equation.

3. The third physical example comes from themodified surface quasi-geostrophic
(SQGκ,ν) equation. It relates the potential temperature θκ,ν and the flow
velocity uκ,ν as follows:{

∂tθ
κ,ν + uκ,ν · ∇θκ,ν = −κ(−∆)γθκ,ν + S,

uκ,ν =Mν [θκ,ν ], θκ,ν(x, 0) = θ0(x),
(1.11)

where the Fourier multiplier symbol for M̂ν is given by

1

1 + ν(k21 + k22)

(
k2√
k21 + k22

,
−k1√
k21 + k22

)
.(1.12)

When ν = 0, the system (1.11)-(1.12) reduces to the well-known SQG equa-
tion which has been investigated by many researchers [5], [7], [8], [10], [14],
[17], [22], [55]. For κ > 0 and γ = 1

2 , it can be used as a model for studying
the temperature distribution θ on the 2D boundary of a rapidly rotating
fluid with small Rossby and Ekman numbers [19], while for κ = 0, the in-
viscid model can be applied for studying frontogenesis in meteorology [43].
It is also worth mentioning that the 3D analog of (1.11)-(1.12) is widely
used as a testing model for the vorticity evolution of the 3D Navier-Stokes
equations [8].

We point out that, in view of the physical models as mentioned above, conditions
(A1)–(A5) are both mathematically and physically important for studying the active
scalar equations (1.1)-(1.3), which can be explained as follows:

• Condition (A1) implies the drift velocity u in (1.1) is divergence-free, which
is compatible with the incompressibility of the fluid described by those phys-
ical models. On the other hand, condition (A2) requires a uniform bound

(independent of ν) on the Fourier multiplier symbol T̂ ν . This conditions
implies that the operator ∂xiT

ν
ij is at most singular of order 1 for ν ≥ 0,
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which is consistent with the cases for M̂ν given in the MGκ,ν equation. We
remark here that, however, for the cases of IPMBν and SQGκ,ν equation,
one can replace the condition (A2) by the following condition:

(A2∗) There exists a constant C0 > 0 independent of ν, such that for all
i, j ∈ {1, . . . , d},

sup
ν∈(0,1]

sup
{k∈Z3}

|∂̂xiT νij(k)| ≤ C0; sup
{k∈Z3}

|∂̂xiT 0
ij(k)| ≤ C0, where T

0
ij = T νij

∣∣∣
ν=0

.

Condition (A2∗) requires that the operators ∂xiT
ν
ij are less singular than

those given by condition (A2), which allows us to obtain better regularity
results on IPMBν and SQGκ,ν equation.

• Condition (A4) imposes a minimal regularity requirement on the operators
T νij , while condition (A3) describes the smoothing effect given by the pa-

rameter ν. Condition (A3) implies that the operators ∂xiT
ν
ij are smoothing

of degree two for ν > 0, which is crucial for proving well-posedness for the
system (1.1) especially when κ = 0 (refer to [29] and [32] for the striking
differences between the cases ν > 0 and ν = 0).

• For condition (A5), we notice that the Fourier multiplier symbols M̂ν given
in either (1.5), (1.10) or (1.12) do satisfy condition (A5), which implies that
the drift velocity u converges to uκ,0 strongly in L2. Such behaviour of T νij
allows strong convergence of solutions of (1.1) (refer to Theorem 7.4 in [29]),
despite the fact that T νij are all matrices of zero-order pseudo-differential

operators as required by condition (A4).

In section 2, we state the results proved in [29] for the diffusive active scalar
equations, which are the equations (1.1)-(1.3) for κ > 0, ν ≥ 0 and γ = 2. In this
case, the system (1.1)-(1.3) is globally well-posed. To prove this fact, we control the
term ∥θ(t)∥L∞ which can be done by using De Giorgi techniques. Having established
the global well-posedness of (1.1)-(1.3), we proceed to address the convergence of
solutions as ν → 0 which is based on some uniform estimates on θ which are
independent of ν. Moreover, we define a weak solution to the MG0 equation which
we call a “vanishing viscosity”solution and prove the existence of a compact global
attractor in L2(T3) for the MGν equations (1.4)-(1.5). We further obtain the upper
semicontinuity of the global attractor as ν vanishes.

In section 3, we examine the non-diffusive active scalar equations (1.1)-(1.3) by
considering κ = 0 and ν ≥ 0 (cf [30]). For the case of ν > 0, the operators ∂xT

ν are
smoothing order 2 which give rise to well-posedness for (1.1)-(1.3) with κ = 0, ν > 0
and θ0 ∈W s,d for s ≥ 0 and smooth forcing term S, and the results will be discussed
in subsection 3.1. On the other hand, for the case when κ = 0 and ν = 0, in general
the system (1.1)-(1.3) fails to be well-posed in Sobolev spaces. In [33], It was proved
that the singular inviscid MG0 equation is ill-possed in the sense of Hadamard in
any Sobolev space. Yet it is possible to obtain the local existence and uniqueness of
solutions to (1.1)-(1.3) with κ = ν = 0 in spaces of real-analytic functions, owing to
the fact that the derivative loss in the nonlinearity u·∇θ is of order at most one. We
thus prove the local-in-time existence of analytic solutions which are summarised in
subsection 3.2. We further address the convergence of solutions as ν → 0 and apply
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the claimed results to inviscid MGν equation (1.4)-(1.5) with κ = 0 and IPMBν

equation (1.8)-(1.10).
In section 4, we discuss the result obtained in [31] by investigating the properties

of (1.1)-(1.3) in the full range γ ∈ [0, 2]. More precisely we prove the existence and
convergence of solutions in various space for the cases ν > 0 and ν = 0, which are
applicable for the critical SQG equation (1.11)-(1.12) with ν = 0. We then address
the long-time behaviour for solutions when κ, ν > 0 and obtain global attractors
in H1. We further prove some additional properties of the attractors which will be
given in subsection 4.3. The results on the global attractors can be applied to MGν

equation (1.4)-(1.5) which are related to those discussed in section 2.

2. Diffusive active scalar equations

In this section, we discuss the global existence of classical solutions to (1.1)-(1.3)
for κ > 0, ν ≥ 0 and γ = 2, and study the convergence of solutions as ν vanishes.
Specifically, we consider the following abstract system:{

∂tθ + u · ∇θ = κ∆θ + S,
uj [θ] = ∂xiT

ν
ij [θ], θ(x, 0) = θ0(x)

(2.1)

with ν ≥ 0, and S, θ0 satisfy the zero mean assumptions (1.2)-(1.3). The results
can then be applied to MGν equations, which allows us to obtain the existence of a
compact global attractor {Aν}ν≥0 in L2(T3) including the critical equation where
ν = 0.

2.1. Existence of smooth solutions and convergence as ν → 0. Friedlander
and Vicol [32] analyzed the unforced S = 0 system (2.1) with the viscosity parameter
ν set to zero, i.e. the unforced MG0 equation. In this situation the drift diffusion
equation (2.1) is critical in the sense of the derivative balance between the advection
and the diffusion term. They used De Giorgi techniques to obtain global well-
posedness results for the unforced critical MG0 equation in a similar manner to the
proof of global well-possedness given by Caffarelli and Vaseur [20] for the critical
SQG equation. Following this work, we verify that the technical details of the De
Giorgi techniques are, in fact, valid for drift diffusion equations with a smooth force.
More precisely, the result is given by

Theorem 2.1 (Friedlander and Suen [29]). Let θ0 ∈ L2, S ∈ C∞ and κ > 0 be
given, and assume that {T νij}ν≥0 satisfy conditions (A1)–(A5). For γ = 2, there

exists a classical solution θν(t, x) ∈ C∞((0,∞)× Td) of (2.1), evolving from θ0 for
all ν ≥ 0.

Furthermore, for any ν ≥ 0, we prove that the smooth solutions θν obtained in
Theorem 2.1 satisfy a uniform bound which is independent of ν:

Theorem 2.2 (Friedlander and Suen [29]). Assume that the hypotheses and nota-
tions of Theorem 2.1 are in force. Then given 0 < t1 < t2 and s ≥ 0, there exists a
positive constant C which depends on C0, t1, t2, s, d, κ, S, ∥θ0∥L2 but independent
of ν such that

sup
t∈[t1,t2]

∥θν(t, ·)∥Hs +

∫ t2

t1

∥θν(t, ·)∥2Hs+1dt ≤ C(C0, t1, t2, s, d, κ, S, ∥θ0∥L2),(2.2)
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where C0 > 0 is the constant as stated in condition (A5).

Using Theorem 2.2, we obtain the convergence of θν as ν → 0:

Theorem 2.3 (Friedlander and Suen [29]). Assume that the hypotheses and no-
tations of Theorem 2.1 are in force. For γ = 2, if θν , θ are C∞ smooth classical
solutions of the system (2.1) for ν > 0 and ν = 0 respectively with initial data θ0,
then given τ > 0, for all s ≥ 0, we have

lim
ν→0

∥(θν − θ)(t, ·)∥Hs = 0,(2.15)

whenever t ≥ τ .

2.2. The MG equations and existence of compact global attractor. We
apply the results obtained in subsection 2.1 to the case for MG equations given by
(1.4)-(1.5). We write

uνj =Mν
j [θ

ν ] := ∂iT
ν
ij ,

where we have denoted

T νij := −∂i(−∆)−1Mν
j for ν ≥ 0

andMν is defined by the inverse Fourier transform of (1.5). Using [29, Lemma 5.1],
one can verify that there are constants C1, C2 > 0 independent of ν such that, for
all 1 ≤ i, j ≤ 3,

sup
ν∈(0,1]

sup
{k∈Z3:k ̸=0}

|T̂ νij(k)| ≤ sup
ν∈(0,1]

sup
{k∈Z3:k ̸=0}

|M̂ν(k)|
|k|

≤ C1,

sup
{k∈Z3:k ̸=0}

|T̂ 0
ij(k)| ≤ sup

{k∈Z3:k ̸=0}

|M̂0(k)|
|k|

≤ C2.

Hence conditions (A1)–(A5) are satisfied. Theorem 2.1 and Theorem 2.2 can there-
fore be applied to the MG equations in order to obtain the global-in-time existence
and convergence of smooth solutions:

Theorem 2.4 (Friedlander and Suen [29]). Let θ0 ∈ L2, S ∈ C∞ and κ > 0 be
given. There exists a classical solution θν(t, x) ∈ C∞((0,∞) × T3) of (1.4)-(1.5),
evolving from θ0 for all ν ≥ 0.

Theorem 2.5 (Friedlander and Suen [29]). Let θ0 ∈ L2, S ∈ C∞ and κ > 0 be
given. Then if θν , θ are C∞ smooth classical solutions of (1.4)-(1.5) for ν > 0 and
ν = 0 respectively with initial data θ0, then given τ > 0, for all s ≥ 0, we have

lim
ν→0

∥(θν − θ)(t, ·)∥Hs = 0,

whenever t ≥ τ .

With the results of Theorems 2.4 and Theorem 2.5 in place, we define a weak
solution to the MG0 equation which we call a “vanishing viscosity”solution. We
use this concept to prove the existence of a compact global attractor in L2(T3) for
the MGν equations (1.4)-(1.5) including the critical equation where ν = 0, and we
further obtain the upper semicontinuity of the global attractor as ν vanishes.
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Definition 2.6. A weak solution to (1.4)-(1.5) with ν = 0 is a function θ ∈
Cw([0, T ];L

2(T3)) with zero spatial mean that satisfies (1.4) in a distributional
sense. That is, for any ϕ ∈ C∞

0 ((0, T )× T3),

−
∫ T

0
⟨θ, ϕt⟩dt−

∫ T

0
⟨uθ,∇ϕ⟩dt+ κ

∫ T

0
⟨∇θ,∇ϕ⟩dt

= ⟨θ0, ϕ(0, x)⟩+
∫ T

0
⟨S, ϕ⟩dt,

where u = u
∣∣∣
ν=0

. A weak solution θ(t) to (1.4)-(1.5) on [0, T ] with ν = 0 is called

a “vanishing viscosity”solution if there exist sequences νn → 0 and {θνn} such that
{θνn} are smooth solutions to (1.4)-(1.5) as given by Theorem 2.4 and θνn → θ in
Cw([0, T ];L

2) as νn → 0.

We prove that the system (1.4)-(1.5) driven by a force S possesses a compact
global attractor in L2(T3) which is upper semicontinuous at ν = 0. More precisely,
we have

Theorem 2.7 (Friedlander and Suen [29]). Assume S ∈ C∞. Then the system
(1.4)-(1.5) with ν = 0 possesses a compact global attractor A in L2(T3), namely

A = {θ0 : θ0 = θ(0) for some bounded

complete “vanishing viscosity” solution θ(t)}.

For any bounded set B ⊂ L2(T3), and for any ε, T > 0, there exists t0 such that for
any t1 > t0, every “vanishing viscosity” solution θ(t) with θ(0) ∈ B satisfies

∥θ(t)− x(t)∥L2 < ε, ∀t ∈ [t1, t1 + T ],

for some complete trajectory x(t) on the global attractor (x(t) ∈ A, ∀t ∈ (−∞,∞)).
Furthermore, for ν ∈ [0, 1], there exists a compact global attractor Aν ⊂ L2 for
(1.4)-(1.5) such that A0 = A and Aν is upper semicontinuous at ν = 0, which
means that

supϕ∈Aν infψ∈A ∥ϕ− ψ∥L2 → 0 as ν → 0.(2.16)

We give a brief discussion of the proof of Theorem 2.7, and we refer the interested
reader to [29] for full details. Roughly speaking, Theorem 2.7 can be divided into
two parts, namely:

1. existence of global attractors Aν for (1.4)-(1.5) with ν ≥ 0; and
2. upper semicontinuity of Aν at ν = 0.

For the existence of global attractors Aν , it can be proved in the following several
steps:

I. First let θ(t) be a “vanishing viscosity” solution of (1.4)-(1.5) on [0,∞) with
θ(0) ∈ L2. Then θ(t) satisfies the following energy equality:

1

2
∥θ(t)∥2L2 + κ

∫ t

t0

∥∇θ(s, ·)∥2L2ds =
1

2
∥θ(t0)∥2L2 +

∫ t

t0

∫
T3

Sθdxds,(2.17)

for all 0 ≤ t0 ≤ t. The energy equality implies that:
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– Every “vanishing viscosity” solution to (1.4)-(1.5) is strongly continu-
ous in time t.

– There exists an absorbing ball Y for (1.4)-(1.5) given by

Y = {θ ∈ L2 : ∥θ∥L2 ≤ R},(2.18)

where R is any number larger than κ−1∥S∥H−1(T3).

II. Next we define πν : L2 → L2 as the map πνθ0 = θν , where θν is the solution
to (1.4)-(1.5) given by Theorem 2.4. Then using [29, Lemma 6.7], for t > 0,
πν(t)θ0 is continuous in ν, uniformly for θ0 in compact subsets of L2.

III. We denote the weak distance on L2(T3) by

dw(ϕ, ψ) =
∑
k∈Z3

1

2|k|
|ϕ̂k − ψ̂k|

1 + |ϕ̂k − ψ̂k|
,

where ϕ̂k and ψ̂k are the Fourier coefficients of ϕ and ψ. If

E [T,∞) = {θ(·) : θ(·) is a “vanishing viscosity” solution of (1.4)-(1.5)

on [T,∞) and θ ∈ Y for all t ∈ [T,∞)},

E(−∞,∞) = {θ(·) : θ(·) is a “vanishing viscosity” solution of (1.4)-(1.5)

on (−∞,∞) and θ ∈ Y for all t ∈ (−∞,∞)},

then E is an evolutionary system (see [6] and [11] for the definition), so
by [11, Theorem 4.5], there exists a weak global attractor Aw to E with

Aw = {θ0 : θ0 = θ(0) for some θ ∈ E((−∞,∞))}.

Applying the arguments given in [11], E satisfies all the following properties:
– E([0,∞)) is a compact set in C([0,∞);Yw), here Yw refers to the metric

space (Y, dw);
– for any ε > 0, there exists δ > 0 such that for every θ ∈ E([0,∞)) and
t > 0,

∥θ(t)∥L2 ≤ ∥θ(t)∥L2 + ε,

for t0 a.e. in (t− δ, t) ∩ [0,∞);
– if θn ∈ E([0,∞)) and θn → θ ∈ E([0,∞)) in C([0,∞);Yw) for some
T > 0, then θn(t) → θ(t) strongly a.e. in [0, T ].

Together with [11, Theorem 4.5], it implies that the strong global attractor
As for (1.4)-(1.5) with ν = 0 exists, it is strongly compact and A0 := As =
Aw. The case for (1.4)-(1.5) with ν > 0 is just similar.

On the other hand, to prove the upper semicontinuity of Aν at ν = 0, we note
that the absorbing ball Y as given by (2.18) has radius which is independent of ν.
Hence for all ν ≥ 0, Aν satisfies

• π0(t)Aν = Aν for all t ∈ R;
• for any bounded set B, supϕ∈π0(t)B infψ∈A dw(ϕ, ψ) → 0 as t→ 0.
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We also have that E([0,∞)) is a compact set in C([0,∞);Yw) such that Aν ⊂ K for
every ν ∈ [0, 1]. Together with the continuity of πν(t)θ0 in ν, the result from [38]
implies the weak upper semicontinuity, namely

supϕ∈Aν infψ∈A dw(ϕ, ψ) → 0 as ν → 0.(2.19)

Moreover, for any ϕνj ∈ Aνj and ψj ∈ A, if

lim
j→∞

dw(ϕ
νj , ψj) = 0,

for some sequence νj → 0, then

lim
j→0

∥ϕνj − ψj∥L2 = 0.

In other words, the weak upper semicontinuity implies the strong upper semicon-
tinuity, and hence (2.19) further implies the strong upper semicontinuity of Aν at
ν = 0.

3. Non-diffusive active scalar equations

We switch our attention to the non-diffusive active scalar equations (1.1)-(1.3)
for κ = 0 and ν ≥ 0, namely{

∂tθ + u · ∇θ = S,
uj [θ] = ∂xiT

ν
ij [θ], θ(x, 0) = θ0(x)

(3.1)

with ν ≥ 0, and S, θ0 satisfy the zero mean assumptions (1.2)-(1.3). We address the
well-posedness of (3.1) and convergence of solutions as ν → 0. The results can then
be applied to the thermally non diffusive MGν equation (1.4)-(1.5) (with κ = 0) as
well as the IPMBν equation (1.8)-(1.10).

3.1. Well-posedness in various spaces for ν > 0. In [33], Friedlander and
Vicol showed that the singular inviscid MG0 equation is ill-possed in the sense of
Hadamard in any Sobolev space. One of the main reasons for the ill-posedness is

that, the Fourier multiplier symbols M̂0 given by (1.5) is an even function in k.
When we perform energy estimates on (1.4), we may have trouble on controlling
the following term

R :=

∫
(−∆)

s
2u · ∇θ(−∆)

s
2 θ.

Without the diffusive term κ∆θ, we loss control on the term R and the only hope

to treat it would be to discover a commutator structure. If the operator ∂̂xiT
ν
ij(k)

is odd, then there is an extra cancellation which allows us to close the estimates (at
the level of Sobolev spaces) by the Coifman-Meyer type commutator estimate. On

the other hand, for the case when the operator ∂̂xiT
ν
ij(k) is even, such argument fails

and one has to seek for some other type of estimates. In the case of ν > 0, however,
the operators ∂xT

ν are smoothing order 2 which give rise to well-posedness for (1.1)
with θ0 ∈ W s,d for s ≥ 0 and smooth forcing term S. The results are summarised
as follows:

Theorem 3.1 (Friedlander and Suen [30]). Let θ0 ∈ W s,d for s ≥ 0 and S be a
C∞-smooth source term. Then for each ν > 0, we have:
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• if s = 0, there exists unique global weak solution to (3.1) such that

θν ∈ BC((0,∞);Ld),

uν ∈ C((0,∞);W 2,d).

In particular, θν(·, t) → θ0 weakly in Ld as t → 0+. Here BC stands for
bounded continuous functions.

• if s > 0, there exists a unique global-in-time solution θν to (3.1) such that
θν(·, t) ∈ W s,d for all t ≥ 0. Furthermore, for s = 1, we have the following
single exponential growth in time on ∥∇θν(·, t)∥Ld:

∥∇θν(·, t)∥Ld ≤ C∥∇θ0∥Ld exp
(
C
(
t∥θ0∥W 1,d + t2∥S∥L∞ + t∥S∥W 1,d

))
,

where C > 0 is a constant which depend only on ν and the spatial dimension
d.

The proof of Theorem 3.1 for the case of s = 0 relies on the existence and
uniqueness of the flow map, which is essential for Euler system as well [4]. We
briefly sketch here and the full details can be found in [30].

In view of condition (A3), by applying Fourier multiplier theorem (see Stein [53]),
given p > 1, there exists some constant C = C(ν, p, d) > 0 such that

∥uν(·, t)∥W 2,p ≤ C∥θν(·, t)∥Lp .(3.2)

Together with (3.2) and embedding theorems, one can show that the Log-Lipschitzian
norm of uν given by ∥uν(·, t)∥L.L. is bounded in terms of θ0 and S:

∥uν(·, t)∥L.L. ≤ C (∥θ0∥Ld + t∥S∥L∞) .(3.3)

Next, we consider the standard mollifier ρ ∈ C∞
0 , and we set θ(n),0 = ρn ∗ θ0 for

n ∈ N and ρn(x) = ndρ(nx). By a standard argument, given ν > 0, we can obtain
a sequence of global smooth solution (θν(n), u

ν
(n)) to (3.1) with θν(n)(x, 0) = θ(n),0 and

uν(n) = ∂xiT
ν
ij [θ

ν
(n)]. We define ψn(x, t) to be the flow map given by

∂tψn(x, t) = uν(n)(ψn(x, t), t),

then ψn satisfies

∥ψn(·, t)∥∗ ≤ C exp

(∫ t

0
∥uν(n)(·, t̃)∥L.L.dt̃

)
,(3.4)

where the norm ∥ · ∥∗ is given by

∥ψ∥∗ = sup
x ̸=y

Φ(|ψ(x)− ψ(y)|, |x− y|)

with

Φ(r, s) =

{
max{1+| log(s)|

1+| log(r)| ,
1+| log(r)|
1+| log(s)|}, if (1− s)(1− r) ≥ 0,

(1 + | log(s)|)(1 + | log(r)|), if (1− s)(1− r) ≤ 0.

Using (3.3) and (3.4) (with uν replaced by uν(n)), we obtain

|ψn(x1, t)− ψn(x2, t)| ≤ α(t)|x1 − x2|β(t)(3.5)
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for all (x1, t), (x2, t) ∈ Rd×R+, where α(t), β(t) are some continuous functions which
depend on θ0 and S. Furthermore, for t1, t2 ≥ 0, using (3.2) (with uν replaced by
uν(n)),

|ψn(x, t1)− ψn(x, t2)| ≤ C|t2 − t1|(∥θ0∥Lp +max{t1, t2}∥S∥L∞).(3.6)

The estimates (3.5) and (3.6) imply that the family {ψn}n∈N is bounded and
equicontinuous on every compact set in Rd × R+. By the Arzela-Ascoli theorem,
there exists a limiting trajectory ψ(x, t) as n → ∞. Performing the same analy-
sis for {ψ−1

n }, where ψ−1
n is the inverse of ψn, we see that ψ(x, t) is a Lebesgue

measure preserving homeomorphism as well. Define θν(x, t) = θ0(ψ
−1(x, t)) and

uν = ∂xiT
ν
ij [θ

ν ]. Then one can show that (θν , uν) is a weak solution to (1.1). To

show that (θν , uν) is unique, let T > 0 and ν > 0, and suppose that (θν,1, uν,1)
and (θν,2, uν,2) solve (1.1) on Td × [0, T ] with θν,1(·, 0) = θν,2(·, 0) = θ0. Then there
exists a constant C > 0 such that for all δ ∈ (0, 1) and k ∈ {−1} ∪ N, we have, for
all t ∈ [0, T ] that,

∥∆k(θ
ν,1 − θν,2)(·, t)∥L∞

≤ 2kδ(k + 1)C(∥uν,1(·, t)∥L.L. + ∥uν,2(·, t)∥L.L.)∥(θ
ν,1 − θν,2)(·, t)∥B−δ

∞,∞
,

where ∥ · ∥L.L. = ∥ · ∥L∞ + ∥ · ∥L.L. and ∆k’s are the dyadic blocks for k ∈ {−1} ∪N.
We define

t̄ = sup

{
t ∈ [0, T ] : C

∫ t

0
(∥uν,1(·, t̃)∥L.L. + ∥uν,2(·, t̃)∥L.L.)dt̃ ≤

1

2

}
,

then by the bounds (3.2) and (3.3), t̄ is well-defined. We let

δt̄ = C

∫ t̄

0
(∥uν,1(·, t̃)∥L.L. + ∥uν,2(·, t̃)∥L.L.)dt̃.

Using [3, Theorem 3.28], for all k ≥ −1 and t ∈ [0, t̄],

2−kδt̄∥∆k(θ
ν,1 − θν,2)(·, t)∥L∞ ≤ 1

2
sup
t∈[0,t̄]

∥(θν,1 − θν,2)(·, t)∥
B

−δt̄∞,∞
.

Summing over k and taking supremum over [0, t̄], we conclude that θν,1 = θν,2 on
[0, t̄]. By repeating the argument a finite number of times, we obtain the uniqueness
on the whole interval [0, T ]. This concludes our sketch of the proof of Theorem 3.1.

Next we study the Gevrey-class s solutions to (3.1) for ν > 0 when the initial
datum θ0 and forcing term S are in the same Gevrey-class. We prove that there
exists a unique global-in-time Gevrey-class s solution θν with radius of convergence
bounded below by some positive function τ(t) for all t ∈ [0,∞). More precisely, we
have:

Theorem 3.2 (Friedlander and Suen [30]). Fix s ≥ 1. Let θ0 and S be of Gevrey-
class s with radius of convergence τ0 > 0. Then there exists a unique Gevrey-class
s solution θν to (3.1) on Td× [0,∞) with radius of convergence at least τ = τ(t) for
all t ∈ [0,∞), where τ is a decreasing function satisfying

τ(t) ≥ τ0e
−C

(
∥eτ0Λ

1
s θ0∥L2+2∥eτ0Λ

1
s S∥L2

)
t
.(3.7)
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Here C > 0 is a constant which depends on ν but independent of t.

The Gevrey-class s is given by ⋃
τ>0

D(ΛreτΛ
1
s ),

for any r ≥ 0, where

∥ΛreτΛ
1
s f∥2L2 =

∑
k∈Zd

∗

|k|2re2τ |k|
1
s |f̂(k)|2,

where τ = τ(t) > 0 denotes the radius of convergence and Λ = (−∆)
1
2 . We point

out that for the case when s = 1, it gives the space of analytic functions.

By taking L2-inner product of (3.1)1 with e
2τΛ

1
s θν and applying Hölder’s inequal-

ity, we obtain

1

2

d

dt
∥eτΛ

1
s θν∥2L2 − τ̇∥Λ

1
2s eτΛ

1
s θν∥2L2

≤
∣∣∣− ⟨uν · ∇θν , e2τΛ

1
s θν⟩

∣∣∣+ ∥eτΛ
1
s S∥L2∥eτΛ

1
s θν∥L2 .

The key step for proving Theorem 3.2 is to estimate the term∣∣∣ − ⟨uν · ∇θν , e2τΛ
1
s θν⟩

∣∣∣. Using a Cauchy-Kowalewski-type argument and together

with condition (A3), it can be showed in [30, Lemma 4.1] that∣∣∣∣−⟨eτΛ
1
s (uν · ∇θν), eτΛ

1
s θν⟩

∣∣∣∣ ≤ Cτ∥eτΛ
1
s θν∥L2∥Λ

1
2s eτΛ

1
s θν∥2L2 ,

and we obtain that
1

2

d

dt
∥eτΛ

1
s θν∥2L2 − τ̇∥Λ

1
2s eτΛ

1
s θν∥2L2 + κ∥eτΛ

1
s θν∥2L2

≤ Cτ∥eτΛ
1
s θν∥L2∥Λ

1
2s eτΛ

1
s θν∥2L2 .

By choosing τ > 0 such that

τ̇ + Cτ∥eτΛ
1
s θν∥L2 = 0,

we have

∥eτ(t)Λ
1
s θν(t)∥L2 ≤ ∥eτ0Λ

1
s θ0∥L2 + 2∥eτ0Λ

1
s S∥L2 .

and τ satisfies the lower bound (3.7). We remark that, for the diffusive case given
by the system (2.1), one can obtain global-in-time existence of solution Gevrey
class s ≥ 1 with lower bound on τ(t) that does not vanish as t → ∞, refer to [30,
Remark 4.3] for more details.

3.2. Well-posedness in various spaces for ν = 0. In this subsection we study
the non-diffusive equations (3.1) for ν = 0:{

∂tθ
0 + u0 · ∇θ0 = S,

u0j = ∂xiT
0
ij [θ

0], θ0(x, 0) = θ0(x).
(3.8)

When ν = 0 and condition (A2) is imposed, as it was proved in [33], the equation
(3.8) is ill-posed in the sense of Hadamard, which means that the solution map
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associated to the Cauchy problem for (3.8) is not Lipschitz continuous with respect
to perturbations in the initial datum around a specific steady profile θ0, in the
topology of a certain Sobolev space X. Nevertheless, as pointed out in [33], it is
possible to obtain the local existence and uniqueness of solutions to (3.8) in spaces of
real-analytic functions, owing to the fact that the derivative loss in the nonlinearity
u0 · ∇θ0 is of order at most one (both in u0 and in ∇θ0). In [30], we extended the
results of [33] which are summarised as follows:

Theorem 3.3 (Friedlander and Suen [30]). Fix r > d
2 + 3

2 and K0 > 0. Let

θ0(·, 0) = θ0 and S be analytic with radius of convergence τ0 > 0 and satisfy

∥Λreτ0Λθ0(·, 0)∥L2 ≤ K0, ∥Λreτ0ΛS∥L2 ≤ K0.(3.9)

For ν = 0, under the condition (A2), there exists T̄ , τ̄ > 0 and a unique analytic
solution θ0 to (3.8) defined on Td × [0, T̄ ] with radius of convergence at least τ̄ . In
particular, there exists a constant C = C(K0) > 0 such that for all t ∈ [0, T̄ ],

∥Λreτ̄Λθ0(·, t)∥L2 ≤ C.(3.10)

The bound (3.10) also applies on θν for ν > 0.

In contrast, when ν = 0 and condition (A2∗) is in force, the operator ∂xT
0

becomes a zero order operator with ∂xT
0 : L2 → L2 being bounded. Following the

idea given in [35], we show that the equation (3.8) is locally well-posed in Sobolev
space Hs for s > d

2 + 1:

Theorem 3.4 (Friedlander and Suen [30]). For d ≥ 2, we fix s > d
2 + 1. Assume

that θ0, S ∈ Hs(Td) have zero-mean on Td. Then for ν = 0, under the condition
(A2∗), there exists a T > 0 and a unique smooth solution θ0 to (3.8) such that

θ0 ∈ L∞(0, T ;Hs(Td)).

The proof of Theorem 3.4 consists of three steps, which can be briefly outline as
follows (details can be found in [30]):

I. We first construct a sequence of approximations {θn}n≥1 given by the solu-
tions of

∂tθ1 = S

θ1(·, 0) = θ0.

and for n > 1,

∂tθn + un−1 · ∇θn = S

θn−1 = ∂xT
0[θn−1](3.11)

θn(·, 0) = θ0.

Then by applying [35, Theorem A1], one can show that θn ∈ L∞(0, T ;Hs)
for all n ∈ N.

II. Next, by induction on n, we prove that ∥Λsθn(·, t)∥L2 is bounded on [0, T ]
for some T > 0. Assume that

∥Λsθj∥L∞(0,T ;L2) ≤ C∥Λsθ0∥L2 ,
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for 1 ≤ j ≤ n− 1. We apply Λs on (3.11) and take inner product with Λsθn
to obtain

1

2

d

dt

∫
Td

|Λsθn|2 +
∫
Td

Λsθn · Λs(un−1 · ∇θn) =
∫
Td

Λsθn · ΛsS.(3.12)

Using commutator estimates (see [35] for example), the term involving un−1

can be bounded in terms of θn and θn−1:∣∣∣∣∫
Td

Λsθn · Λs(un−1 · ∇θn)
∣∣∣∣ ≤ C∥Λsθn∥L2(∥Λsθn−1∥L2∥Λsθn∥L2).

Hence by integrating the identity (3.12) over t, choosing T small enough
and applying the induction hypothesis, ∥Λsθn(·, t)∥L2 is bounded on [0, T ]
as well.

III. Finally, we show that {θn}n≥0 is a Cauchy sequence. This can be done by

considering the difference θ̃n = θn − θn−1 and one can prove that

d

dt
∥Λs−1θ̃n∥L2 ≤ C(∥Λsθ0∥L2∥Λs−1θ̃n∥L2 + ∥Λs−1θ̃n−1∥L2∥Λsθ0∥L2).

Integrating the above over t and choosing T small enough, we obtain

sup
t∈[0,T ]

∥Λs−1θ̃n(·, t)∥L2 ≤ 1

2
sup
t∈[0,T ]

∥Λs−1θ̃n−1(·, t)∥L2 .

Thus θn is Cauchy in L∞(0, T ;Hs−1) with θn converges strongly to θ0 in
L∞(0, T,Hs−1). Since we assume that s > d

2 + 1, this also implies that the
strong convergence occurs in a Hölder space relative to x as n → ∞, hence
the limiting function θ0 is a solution of (3.8). Uniqueness of θ0 follows by
the same argument given in [35] and we omit the details.

3.3. Convergence of solutions as ν → 0. In this subsection, we address the
convergence of solutions to (3.1) as ν → 0. Depending on the conditions (A2) and
(A2∗), we can address the convergence of solutions in two cases respectively:

3.3.1. Analytic solutions: We focus on the case for analytic solutions θν to (3.1)
when (A2) is in force. By Theorem 3.2 and Theorem 3.3, given analytic initial
datum θ0 and forcing S, there exists T̄ , τ̄ > 0 and a unique analytic solution θν

to (3.1) defined on [0, T̄ ] with radius of convergence at least τ̄ for all ν ≥ 0. In
particular, the analytic solutions θν converges to θ0 as ν → 0 and the results are
summarised in the following theorem:

Theorem 3.5 (Friedlander and Suen [30]). Under the condition (A2), if θν and θ0

are analytic solutions to (3.1) for ν > 0 and ν = 0 respectively with initial datum
θ0 on Td × [0, T̄ ] with radius of convergence at least τ̄ as described in Theorem 3.3,
then there exists T < T̄ and τ = τ(t) < τ̄ such that, for t ∈ [0, T ], we have

lim
ν→0

∥(ΛreτΛθν − ΛreτΛθ0)(·, t)∥L2 = 0.(3.13)

The proof of Theorem 3.5 relies on the estimates of the difference ϕν := θν − θ0,
and it can be shown that ϕν satisfies

1

2

d

dt
∥ϕν∥2τ,r = τ̇∥Λ

1
2ϕν∥2τ,r +R1 +R2,
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where the terms R1 and R2 can be bounded as follows:

R1 ≤ C∥Λ
1
2 θ0∥τ,r∥Λ

1
2ϕν∥τ,r∥ϕν∥τ,r

+ C∥Λ
1
2 θ0∥τ,r∥Λ

1
2ϕν∥τ,r

∑
j∈Zd

∗

|j|d+3|θ̂0(j)|2e2τ |j||(T̂ ν − T̂ 0)(j)|2
 1

2

,

R2 ≤ C∥Λ
1
2ϕν∥2τ,r∥θν∥τ,r.

By choosing τ = τ(t) ≤ τ̄ such that{
τ̇ + C∥θν∥τ,r + C∥Λ

1
2 θ0∥2τ,r < 0,

τ < τ̄ ,

and applying the bound (3.10) to conclude that

d

dt
∥ϕν∥2τ,r ≤ C∥ϕν∥2τ,r + C

∑
j∈Zd

∗

|j|d+3|θ̂0(j)|2e2τ |j||(T̂ ν − T̂ 0)(j)|2.

Integrating the above with respect to t and using the condition (A2), we have
lim
ν→0

∥ϕν∥τ,r = 0 and (3.13) follows.

3.3.2. Hs solutions: When condition (A2∗) is in force, by Theorem 3.4, the equation
(3.1) for ν = 0 is locally well-posed in Sobolev space Hs for s > d

2+1. For sufficiently

smooth initial data θ0 and forcing term S, one can show that ∥(θν−θ0)(·, t)∥Hs → 0
as ν → 0 for s > d

2 + 1 and t ∈ [0, T ]. Such result is parallel to the one proved

in [29], in which the authors proved that if θν , θ0 are C∞ smooth classical solutions
of the diffusive system (2.1) for ν > 0 and ν = 0 respectively with initial datum
θ0 ∈ L2 and forcing term S ∈ C∞, then ∥(θν − θ0)(·, t)∥Hs → 0 as ν → 0 for s ≥ 0
and t > 0. The convergence results are summarised below:

Theorem 3.6 (Friedlander and Suen [30]). Under the condition (A2∗), we have

lim
ν→0

∥(θν − θ0)(·, t)∥Hs−1 = 0,(3.14)

and for d ≥ 2 and s > d
2 + 1 and t ∈ [0, T ], we have

lim
ν→0

∥(θν − θ0)(·, t)∥Hs−1 = 0.(3.15)

It suffices to consider the case for the convergence in L2 given by (3.14), since the
case for (3.15) follows by Gagliardo-Nirenberg interpolation inequality [37] and [50].
The key step of the proof is to estimate ∥(uν − u0)(·, t)∥L2 , which can be bounded
by ∥ϕν(·, t)∥2L2 + I(ν, t) with I(ν, t) becoming zero as ν vanishes, see [30] for further
details.

3.4. Applications to physical models. We now apply our results discussed pre-
vious subsections to some physical models, namely the thermally non diffusive mag-
netogeostrophic (MGν) equations (1.4)-(1.5) with κ = 0 and the incompressible
porous media Brinkman equations (IPMBν) (1.8)-(1.10). The results are sum-
marised in the following theorems (also refer to [30] for details):
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Theorem 3.7 (Well-posedness in Sobolev space for the MGν equations). Let θ0 ∈
W s,3 for s ≥ 0 and S be a C∞-smooth source term. Then for each ν > 0, we have:

• if s = 0, there exists unique global weak solution to (1.4)-(1.5) with κ = 0
such that

θν ∈ BC((0,∞);L3),

uν ∈ C((0,∞);W 2,3).

In particular, θν(·, t) → θ0 weakly in L3 as t→ 0+.
• if s > 0, there exists a unique global-in-time solution θν to (1.4)-(1.5) with
κ = 0 such that θν(·, t) ∈ W s,3 for all t ≥ 0. Furthermore, for s = 1, we
have the following single exponential growth in time on ∥∇θν(·, t)∥L3:

∥∇θν(·, t)∥L3 ≤ C∥∇θ0∥L3 exp
(
C
(
t∥θ0∥W 1,3 + t2∥S∥L∞ + t∥S∥W 1,3

))
,

where C > 0 is a constant which depends only on some dimensional con-
stants.

Theorem 3.8 (Analytic and Gevrey-class well-posedness for the MGν equations).
Fix s ≥ 1. Let θ0 and S be of Gevrey-class s with radius of convergence τ0 > 0.
Then for each ν > 0, there exists a unique Gevrey-class s solution θν to (1.4)-(1.5)
with κ = 0 on T3 × [0,∞) with radius of convergence at least τ = τ(t) for all
t ∈ [0,∞), where τ is a decreasing function satisfying

τ(t) ≥ τ0e
−C

(
∥eτ0Λ

1
s θ0∥L2+2∥eτ0Λ

1
s S∥L2

)
t
.

Here C > 0 is a constant which depends on ν but independent of t. For the singular
case when ν = 0, if θ0 and S are analytic with radius of convergence τ0 > 0, then
there exists τ̄ ∈ (0, τ0], T̄ > 0 and a unique analytic solution θ0 to (1.4)-(1.5) for
κ = 0 defined on T3 × [0, T̄ ] with radius of convergence at least τ̄ .

Theorem 3.9 (Convergence of solutions as ν → 0 for the MGν equations). Fix
s ≥ 1, r > 3 and K0 > 0. Let θ0 and S be analytic with radius of convergence
τ0 > 0 and satisfy the assumptions given in Theorem 3.8. If θν and θ0 are analytic
solutions to (1.4)-(1.5) with κ = 0 for ν > 0 and ν = 0 respectively with initial datum
θ0 on T3 × [0, T̄ ] with radius of convergence at least τ̄ as described in Theorem 3.8,
then there exists T < T̄ and τ = τ(t) < τ̄ such that, for t ∈ [0, T ], we have

lim
ν→0

∥(ΛreτΛθν − ΛreτΛθ0)(·, t)∥L2 = 0.

Theorem 3.10 (Well-posedness in Sobolev space for the IPMBν equations). Let
θ0 ∈W s,2 for s ≥ 0. Then for each ν > 0, we have:

• if s = 0, there exists unique global weak solution to (1.8)-(1.10) such that

θν ∈ BC((0,∞);L2),

uν ∈ C((0,∞);W 2,2).

In particular, θν(·, t) → θ0 weakly in L2 as t→ 0+.
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• if s > 0, there exists a unique global-in-time solution θν to (1.8)-(1.10) such
that θν(·, t) ∈ W s,2 for all t ≥ 0. Furthermore, for s = 1, we have the
following single exponential growth in time on ∥∇θν(·, t)∥L2:

∥∇θν(·, t)∥L2 ≤ C∥∇θ0∥L2 exp (Ct∥θ0∥W 1,2) ,

where C > 0 is a constant which depends only on some dimensional con-
stants.

Theorem 3.11 (Gevrey-class global well-posedness for the IPMBν equations). Fix
s ≥ 1. Let θ0 be of Gevrey-class s with radius of convergence τ0 > 0. Then for each
ν > 0, there exists a unique Gevrey-class s solution θν to (1.8)-(1.10) on T2× [0,∞)
with radius of convergence at least τ = τ(t) for all t ∈ [0,∞), where τ is a decreasing
function satisfying

τ(t) ≥ τ0e
−Ct∥eτ0Λ

1
s θ0∥L2 .

Here C > 0 is a constant which depends on ν but independent of t.

Theorem 3.12 (Local well-posedness and convergence of solutions in Sobolev space
for the IPMBν equations). Fix s > 2 and assume that θ0 ∈ Hs(T2) has zero-mean
on T2. Then there exists a positive time T and a unique smooth solution θ0 to
(1.8)-(1.10) with ν = 0 such that

θ0 ∈ L∞(0, T ;Hs(T2)).

Moreover, for t ∈ [0, T ], we have

lim
ν→0

∥(θν − θ0)(·, t)∥Hs−1 = 0.

4. Fractionally diffusive active scalar equations

In this section, we investigate the properties of the family of active scalar equa-
tions (1.1)-(1.3) in the context of the fractional Laplacian. The results can be
applied to the modified surface quasi-geostrophic (SQGκ,ν) equation (1.11)-(1.12)
and MGν equation (1.4)-(1.5).

4.1. Existence and convergence of Hs-solutions when ν > 0. When the pa-
rameter ν is taken to be positive, the ensuing smoothing properties of T νij permits
existence and convergence in Sobolev space Hs as κ goes to zero. The global-in-time
existence theorem is given as follows:

Theorem 4.1 (Friedlander and Suen [31]). Fix ν > 0, s ≥ 0 and γ ∈ (0, 2], and let
θ0 ∈ Hs and S ∈ Hs ∩ L∞ be given.

• For any κ > 0, there exists a global-in-time solution to (1.1) such that

θκ ∈ C([0,∞);Hs) ∩ L2([0,∞);Hs+ γ
2 ).

• For κ = 0, if we further assume that θ0 ∈ L∞, then exists a global-in-time
solution to (1.1)-(1.3) such that θ0(·, t) ∈ Hs for all t ≥ 0.
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In view of the case when κ > 0, the most subtle part for proving Theorem 4.1 is
to estimate the L∞-norm of θκ(·, t) when θ0 is not necessarily in L∞. In achieving
our goal, we apply De Giorgi iteration method (see [31, Lemma 4.5]) and obtain

∥θ(t)∥L∞ ≤ C
[(2
t
+ 1
) d+1−γ

2γ
(
∥θ0∥L2 +

∥S∥L2

c
1
2
0 κ

1
2

)
+ ∥S∥L∞

]
,

for some constant C = C(d) > 0 which only depends on the dimension d. Once
Theorem 4.1 is proved, we can show the convergence of Hs solutions which are
summarised as follows:

Theorem 4.2 (Friedlander and Suen [31]). Let ν > 0 and γ ∈ (0, 2] be given in
(1.1), and let θ0, S ∈ C∞ be the initial datum and forcing term respectively which
satisfy (1.2). If θκ and θ0 are smooth solutions to (1.1)-(1.3) for κ > 0 and κ = 0
respectively, then

lim
κ→0

∥(θκ − θ0)(·, t)∥Hs = 0,

for all s ≥ 0 and t ≥ 0.

4.2. Existence and convergence of analytic solutions when ν = 0. In con-
trast to the case for ν > 0, when the parameter ν is set to zero, condition (A2)
implies that ∂xiT

ν
ij is a singular operator. In this case the existence and convergence

results for (1.1)-(1.3) are restricted to analytic solutions which are summarised in
the following theorem:

Theorem 4.3 (Friedlander and Suen [31]). Let κ ≥ 0 and γ ∈ (0, 2] be fixed, and
let θ0 and S be the initial datum and forcing term respectively. Fix K0 > 0. Suppose
θ0 and S are both analytic with radius of convergence τ0 > 0 and

∥Λreτ0Λθκ(·, 0)∥L2 ≤ K0, ∥Λreτ0ΛS∥L2 ≤ K0,

where r > d
2 + 3

2 . Then there exists T∗ = T∗(τ0,K0) > 0 and a unique analytic
solution on [0, T∗) to the initial value problem associated to (1.1)-(1.3) with ν = 0.
Furthermore, if θκ, θ0 are analytic solutions to (1.1)-(1.3) with ν = 0 for κ > 0 and
κ = 0 respectively with initial datum θ0 on Td× [0, T̄ ] with radius of convergence at
least τ̄ , then there exists T ≤ T̄ and τ = τ(t) < τ̄ such that, for t ∈ [0, T ], we have:

lim
κ→0

∥(ΛreτΛθκ − ΛreτΛθ0)(·, t)∥L2 = 0.

For κ > 0 and γ ∈ [1, 2], under a smallness assumption on the initial data, it can
be proved that the analytic solutions obtained in Theorem 4.3 exist for all time:

Theorem 4.4 (Friedlander and Suen [31]). Let κ > 0 and γ ∈ [1, 2], and suppose
that θ0 and S are both analytic functions. There exists ε > 0 depending on κ such
that, if θ0 and S satisfy

(4.1) ∥θ0∥βL2∥θ0∥1−βHα + ∥θ0∥βL2∥S∥1−β
Hα− γ

2
≤ ε,

and

∥Λαθ0∥2L2 +
2

κ2
∥S∥2

Hα− γ
2
≤ ε,
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where α > 1
2(d+2)+(1−γ) and β = 1− 1

α

[
1
2(d+2)+(1−γ)

]
, then the local-in-time

analytic solution θκ as claimed by Theorem 4.3 can be extended to all time.

As a by-product of Theorem 4.4, for the case when S ∈ Hs− γ
2 (Td) and θ0 ∈

Hα(Td) with γ ∈ [1, 2] and α > 1
2(d+ 2)+ (1− γ), under the smallness assumption

(4.1), the system (1.1)-(1.3) possesses a global-in-time Hα solution:

Theorem 4.5 (Friedlander and Suen [31]). Let κ > 0, γ ∈ [1, 2] and S ∈ Hs− γ
2 (Td),

and let θ0 ∈ Hα(Td) have zero mean on Td, where α > d+2
2 +(1−γ). There exists a

small enough constant ε > 0 depending on κ, such that if θ0 satisfies (4.1), then there
exists a unique global-in-time Hα-solution to (1.1)-(1.3) with ν = 0. In particular,
for all t > 0, we have the following bound on θκ:

∥Λαθκ(·, t)∥2L2 ≤ ∥Λαθ0∥2L2 +
2

κ2
∥S∥2

Hα− γ
2
.

The proofs of Theorem 4.3-4.5 can be found in [31]. We point out that all the
abstract results obtained in Theorem 4.3-4.5 can be applied to the critical SQG
equation, which is a special example of (1.1)-(1.3) with ν = 0 and γ = 1.

4.3. Long time behaviour for solutions when ν > 0 and κ > 0. In this
subsection, we study the long time behaviour for solutions to the active scalar
equations (1.1) when ν > 0 and κ > 0. Based on the global-in-time existence
results established in Theorem 4.1, for fixed ν > 0 and κ > 0, we can define a
solution operator πν(t) for the initial value problem (1.1) via

πν(t) : H1 → H1, πν(t)θ0 = θ(·, t), t ≥ 0.(4.2)

We study the long-time dynamics of πν(t) on the phase space H1. Specifically,
we establish the existence of global attractors for πν(t) in H1 and address some
properties for the attractors. The following theorem first gives the existence of
global attractors:

Theorem 4.6 (Friedlander and Suen [31]). Let S ∈ L∞ ∩ H1. For ν, κ > 0 and
γ ∈ (0, 2], the solution map πν(t) : H1 → H1 associated to (1.1) possesses a unique
global attractor Gν . Moreover, there exists MGν which depends only on ν, κ, γ,
∥S∥L∞∩H1 and universal constants, such that if θ0 ∈ Gν , we have that

∥θ(·, t)∥
H1+

γ
2
≤MGν , ∀t ≥ 0,(4.3)

and

1

T

∫ t+T

t
∥θ(·, τ)∥H1+γdτ ≤MGν , ∀t ≥ 0 and T > 0,(4.4)

where θ(·, t) = πν(t)θ0.

Details of the proof of Theorem 4.6 can be found in [31, Subsection 6.1], we also
refer to [18] for the case of SQG equations. The steps of proof can be outlined as
follows:
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I. By standard energy method (see for example [16] for the case γ = 1), one
can show that for all t ≥ 0, θκ satisfies

∥θκ(·, t)∥2L2 + κ

∫ t

0
∥Λ

γ
2 θκ(·, τ)∥2L2dτ ≤ ∥θ0∥2L2 +

t

c0κ
∥S∥2L2 ,(4.5)

where c0 > 0 is a universal constant which depends only on the dimension
d. Moreover, by [31, Lemma 6.2], the set

B∞ =

{
ϕ ∈ L∞ ∩H1 : ∥ϕ∥L∞ ≤ 2

c0κ
∥S∥L∞

}
is an absorbing set for πν(t) and

sup
t≥0

sup
θ0∈B∞

∥πν(t)θ0∥L∞ ≤ 3

c0κ
∥S∥L∞ .(4.6)

II. Next by [31, Lemma 6.3], we obtain the necessary a priori estimate in Cα-
space with some appropriate exponent α ∈ (0, 1). Furthermore, as pointed
out in [16], we can see that the solutions to (1.1) emerging from data in a
bounded subset of H1 are absorbed in finite time by B∞. Hence if θ0 ∈
H1 ∩ L∞ and fix ν, κ > 0, then there exists α ∈ (0, γ

3+γ ] which depends on

∥θ0∥L∞ , ∥S∥L∞ , ν, κ, γ such that

∥θ(·, t)∥Cα ≤ C(K∞ + K̄∞), ∀t ≥ tα :=
3

2γ(1− α)
,(4.7)

where C > 0 is a positive constant, K∞ and K̄∞ are given respectively by

K∞ := ∥θ0∥L∞ +
1

c0κ
∥S∥L∞ ,

K̄∞ := κ
− 1

γK∞ + ∥S∥
2+γ

2(1+γ)

L∞ κ
− 1

2(1+γ)K
γ

2(1+γ)
∞ + κ

− 1
γK

6+γ
4∞ .

With the help of (4.7), we obtain the following result which can be regarded
as an improvement of the regularity of the absorbing set B∞, namely there
exists α ∈ (0, γ

3+γ ] and a constant Cα = Cα(∥S∥L∞ , α, ν, κ, γ,K∞, K̄∞) ≥ 1

such that the set

Bα =
{
ϕ ∈ Cα ∩H1 : ∥ϕ∥Cα ≤ Cα

}
is an absorbing set for πν(t).

III. As in [31, Lemma 6.7], by establishing an a priori estimate for initial data
in H1 ∩ Cα, we can show that there exists a bounded absorbing set for
πν(t) in H1. More precisely, there exists α ∈ (0, γ

3+γ ] and a constant R1 =

R1(∥S∥L∞∩H1 , α, ν, κ, γ) ≥ 1 such that the set

B1 = {ϕ ∈ Cα ∩H1 : ∥ϕ∥2H1 + ∥ϕ∥2Cα ≤ R2
1}

is an absorbing set for πν(t). Moreover, we have

sup
t≥0

sup
θ0∈B1

[
∥πν(t)θ0∥2H1 + ∥πν(t)θ0∥2Cα +

∫ t+1

t
∥πν(τ)θ0∥2

H1+
γ
2
dτ

]
≤ 2R2

1.(4.8)
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The bound (4.8) turns out to be crucial for improving the regularity of the

absorbing set B1 to H1+ γ
2 , which allows us to obtain an absorbing set B1+ γ

2

for πν(t) given by

B1+ γ
2
=
{
ϕ ∈ H1+ γ

2 : ∥ϕ∥
H1+

γ
2
≤ R1+ γ

2

}
for some constant R1+ γ

2
≥ 1 which depends on ∥S∥L∞∩H1 , ν, κ, γ. The

existence and regularity of the global attractor claimed by Theorem 4.6 now
follows by applying the argument given in [9, Proposition 8] and the bound
(4.8).

After we have obtained the global attractors as described in Theorem 4.6, we
prove some additional properties on the attractors under the assumption that γ ∈
[1, 2] (also refer to [31, Subsection 6.2] for details):

Theorem 4.7 (Friedlander and Suen [31]). Let S ∈ L∞∩H1. For ν, κ > 0, assume
that the exponent γ ∈ [1, 2]. Then the global attractor Gν of πν(t) further enjoys the
following properties:

• Gν is fully invariant, namely

πν(t)Gν = Gν , ∀t ≥ 0.

• Gν is maximal in the class of H1-bounded invariant sets.
• Gν has finite fractal dimension.

To prove the invariance and the maximality of the attractor Gν , we observe that
the solution map πν(t) is indeed continuous in the H1-topology, in other words for
every t > 0, the solution map πν(t) : B1+ γ

2
→ H1 is continuous in the topology of

H1. The key ingredient for the proof of continuity is the bound

∥u∥L∞ ≤ Cν∥Λθ∥L2 ,

where Cν > 0 is a constant depending on ν > 0, and such bound comes from the
condition (A3) and the assumption that d = 2 or 3. Following the argument given
in [16, Proposition 5.5] and using the log-convexity method introduced by [1], we can
also prove that the solution map πν is injective on the absorbing set B1+ γ

2
. Hence

by applying [18, Proposition 6.4], we can obtain the invariance and the maximality
of the attractor Gν stated in Theorem 4.7.

It remains to address the fractal dimensions for the global attractors Gν . In
order to prove that dimf (Gν) is finite, we need to show that the solution map πν

is uniform differentiable (refer to [31, Definition 6.18] for the definition for being
uniform differentiable). And by [31, Lemma 6.21], the large-dimensional volume
elements which are carried by the flow of πν(t)θ0, with θ0 ∈ Gν , actually have
exponential decay in time. The argument in [13, pp. 115–130, and Chapter 14] can
then be applied which shows that dimf (Gν) is finite.

4.4. Applications to magneto-geostrophic equations. We now apply our re-
sults claimed in subsections 4.1-4.3 to MGν equation (1.4)-(1.5), which can be sum-
marised in the following theorems (see also [31, Subsection 7.1]. We point out that,
Theorem 4.8 strengthens and generalises the results obtained in [28] in which the
authors showed weak convergence as κ→ 0.
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Theorem 4.8 (Hs-convergence as κ → 0 for MGν equations). Let ν > 0 be given
as in (1.4), and let θ0, S ∈ C∞ be the initial datum and forcing term respectively.
If θκ and θ0 are smooth solutions to (1.4)-(1.5) for κ > 0 and κ = 0 respectively,
then

lim
κ→0

∥(θκ − θ0)(·, t)∥Hs = 0,

for all s ≥ 0 and t ≥ 0.

Theorem 4.9 (Analytic convergence as κ → 0 for MG equations). Let ν = 0
be given as in (1.4), and let θ0, S the initial datum and forcing term respectively.
Suppose that θ0 and S are both analytic functions with zero mean. Then if θκ, θ0

are analytic solutions to (1.4)-(1.5) for κ > 0 and κ = 0 respectively with initial
datum θ0 and with radius of convergence at least τ̄ , then there exists T ≤ T̄ and
τ = τ(t) < τ̄ such that, for t ∈ [0, T ], we have:

lim
κ→0

∥(ΛreτΛθκ − ΛreτΛθ0)(·, t)∥L2 = 0.

Theorem 4.10 (Existence of global attractors for MGν equations). Let S ∈ L∞ ∩
H1. For ν, κ > 0, let πν(t) be solution operator for the initial value problem (1.4) via
(4.2). Then the solution map πν(t) : H1 → H1 associated to (1.4)-(1.5) possesses
a unique global attractor Gν for all ν > 0. In particular, for each ν > 0, the global
attractor Gν of πν(t) enjoys the following properties:

• Gν is fully invariant, namely

πν(t)Gν = Gν , ∀t ≥ 0.

• Gν is maximal in the class of H1-bounded invariant sets.
• Gν has finite fractal dimension.

We recall from subsection 2.2 that there exists a compact global attractor A in
L2(T3) for the MG0 equations, namely the equations (1.4)-(1.5) when κ > 0, ν = 0
and S ∈ L∞ ∩ H1. When ν is varying, we relate the global attractors Gν with A
and further obtain the following theorem:

Theorem 4.11 (Friedlander and Suen [31]). Let κ > 0 be fixed in (1.4). Then we
have:

(1) If Gν are the global attractors for the MGν equations (1.4)-(1.5) as obtained
by Theorem 4.10, then Gν and A satisfy

sup
ϕ∈Gν

inf
ψ∈A

∥ϕ− ψ∥L2 → 0 as ν → 0.(4.9)

(2) Let ν∗ > ν∗ > 0 be arbitrary. For each ν0 ∈ [ν∗, ν
∗], the collection {Gν}ν∈[ν∗,ν∗]

is upper semicontinuous at ν0 in the following sense:

sup
ϕ∈Gν

inf
ψ∈Gν0

∥ϕ− ψ∥H1 → 0 as ν → ν0.(4.10)

To prove the convergence (4.9), we recall from Theorem 2.7 that for κ > 0,
ν ∈ [0, 1] and S ∈ L∞ ∩H2, there exists global attractor Aν in L2 generated by the
solution map π̃ν via

π̃ν(t) : L2 → L2, π̃ν(t)θ0 = θ(·, t), t ≥ 0,
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and Aν is upper semicontinuous at ν = 0. Since π̃ν
∣∣∣
H1

= πν and Gν ⊂ Aν for

all ν ∈ (0, 1], the convergence (4.9) follows immediately from (2.16). On the other
hand, to prove the convergence (4.10), we write I∗ = [ν∗, ν

∗] and show that

I. there is a compact subset U of H1 such that Gν ⊂ U for every ν ∈ I∗; and
II. for t > 0, πνθ0 is continuous in I∗, uniformly for θ0 in compact subsets of

H1.

The key for showing Step I. and Step II. is the following bound, namely for any
ν ∈ I∗, s ∈ [0, 2] and f ∈ Lp with p > 1, we have

∥Λsuν [f ]∥Lp ≤ C∗∥f∥Lp ,(4.11)

where C∗ is a positive constant which depends only on p, ν∗ and ν∗. The bound
can be used for obtaining a bounded set B2 in H2 given by

B2 =
{
ϕ ∈ H2 : ∥ϕ∥H2 ≤ R2

}
where R2 ≥ 1 is a constant which depends only on ν∗, ν

∗, κ, ∥S∥L∞∩H1 , and B2

enjoys the following properties:

• B2 is a compact set in H1 which depends only on ν∗, ν
∗, κ, ∥S∥L∞∩H1 ;

• Gν ⊂ B2 for all ν ∈ I∗.

For the uniform continuity stated in Step II., with the help of the bound (4.11), we
can obtain the necessary H1-estimates [31, Lemma 7.11]: Define U = {ϕ ∈ H1 :
∥ϕ∥2H1 ≤ RU} where RU > 0, then for any θ0 ∈ U and ν ∈ I∗, if θν(t) = πν(t)θ0,
then θν(t) satisfies

sup
0≤τ≤t

∥θν(·, τ)∥2H1 +

∫ t

0
∥θν(·, τ)∥2H2dτ ≤M∗(t), ∀t > 0,(4.12)

where M∗(t) is a positive function in t which depends only on t, κ, ν∗, ν
∗, ∥S∥H1

and RU . The uniform continuity stated in Step II. then follows by energy-type
estimates on the difference θν1 − θν2 with ν1, ν2 ∈ I∗, which completes the proof of
Theorem 4.11.
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