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with the integral converging in the space of continuous functions C0(M). The
integral

∫
M (RX(λ)f)g is the Fourier–Laplace transform of the correlation ρf,g(t)

at λ.
Since X is a smooth vector field, differentiation along it defines a first order

differential operator which we also denote by X. This operator acts in particular
on the space of smooth functions C∞(M) and on the space of distributions D′(M).
Now, RX(λ) is an inverse of X + λ in the following sense:

(1.1) RX(λ)(X + λ)f = (X + λ)RX(λ)f = f for all f ∈ C∞(M), Reλ > 0.

A fundamental property of RX(λ) is that it continues meromorphically to the entire
complex plane:

Theorem 1.1. Assume that X is an Anosov flow. Then RX(λ) admits a mero-
morphic extension

RX(λ) : C∞(M) → D′(M), λ ∈ C.

The poles of the extended family RX(λ), called the Pollicott–Ruelle resonances
of φt, are the complex characteristic frequencies governing the decay of correlations.
They also appear as singularities (zeroes and/or poles) of dynamical zeta functions.

A typical proof of Theorem 1.1 is to use (1.1) and construct the meromorphic
continuation of RX(λ) as the inverse of X + λ acting between two Banach spaces
of distributions D → H which are carefully designed so that X + λ : D → H is a
Fredholm operator. This gives the continuation to a half-plane Re λ > −c where
the value of the constant c depends on the choice of the spaces, and it is possible
to choose D,H to make c arbitrarily large.

The present paper establishes a version of Theorem 1.1 in the more general set-
ting of a smooth vector bundle E over M and an arbitrary lift X : C∞(M ; E) →
C∞(M ; E) of X – see §2.3.1 for details and §2.3.2 for examples. It is already known
that such an extension holds, however in this paper we compute the needed reg-
ularity for the spaces on which Fredholm property holds. This can be used in
particular to better understand the regularity assumptions for exponential decay of
correlations as well as regularity of resonant states.

We use an anisotropic Sobolev space Hm(M ; E) associated to a weight function
m ∈ C∞(T ∗M \ 0;R) which is homogeneous of degree 0. This function needs to
satisfy natural dynamical assumptions (see §4.1), in particular to it correspond two
numbers

mu ≤ 0 ≤ ms

such that Hms(M ; E) ⊂ Hm(M ; E) ⊂ Hmu(M ; E). See Adam–Baladi [1, §3.3] for
the threshold regularity computation for the case of trivial one-dimensional bundles,
giving (1.2) in that case (see also Guillarmou–Poyferré–Bonthonneau [16, Appen-
dix A]), Wang [27] for radial estimates giving regularity in the more general Besov
spaces in the scalar case, and Bonthonneau–Lefeuvre [5] for a related result giving
the regularity threshold in the case of general bundles for Hölder–Zygmund spaces.
For an estimate of the regularity threshold in anisotropic Banach spaces in the
related case of Anosov maps, see [7, Theorem 4.1] or [2, Theorem 6.12].

The main result of this paper, Theorem 4.1 in §4.1.1, shows meromorphic continu-
ation of the Pollicott–Ruelle resolvent RX(λ) associated to the lift X to a half-plane
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which is explicitly described in terms of mu,ms and the dynamics of the flow φt.
More precisely, the condition on λ is that there exists ε > 0 and a constant C such
that for all x ∈M and t ≥ 0

(1.2)
| det dφt(x)|

1
2 · ‖T t

X(x)‖ ·
∥∥dφt(x)|Es

∥∥−mu ≤ Ce(Reλ−ε)t,

| det dφt(x)|
1
2 · ‖T t

X(x)‖ ·
∥∥dφt(x)−1|Eu

∥∥ms ≤ Ce(Reλ−ε)t.

Here Eu, Es are the unstable/stable spaces of the flow and T t
X(x) : E(x) → E(φt(x))

is the parallel transport associated to the lift X. See §3.3 and the statement of
Theorem 4.1 for details and §3.3.1 for examples.

The use of anisotropic Hölder and Sobolev spaces to prove Theorem 1.1 and an
analogous statement in the related setting of Anosov maps has a long tradition,
see in particular the works of Blank–Keller–Liverani [3], Liverani [22,23], Gouezel–
Liverani [17], Baladi–Tsujii [6], and Butterley–Liverani [4]. We use the microlo-
cal approach originating in the papers of Faure–Roy–Sjöstrand [14] and Faure–
Sjöstrand [15]. See the review of Zworski [29, §4] for a comprehensive introduction
to this microlocal approach. Our proof is similar in structure to the one in the paper
of Dyatlov–Zworski [12] on dynamical zeta functions. (See also the work of Dyatlov–
Guillarmou [9,10] for the more general setting of basic sets of Axiom A flows.) The
main difference between the present paper and [12] is the precise analysis of what
regularity is needed for radial estimates – see §§3.2.3, 3.3, and 4.2.3.

We also address a minor mistake present in [9,12]: when the vector bundle E is not
trivial, it is not possible to extend pseudodifferential operators on C∞(M) canoni-
cally to operators on C∞(M ; E). Thus all the pseudodifferential cutoffs A,B,B1, . . .
used in the propagation estimates in [9,12] should be taken to be principally scalar
operators rather than operators on C∞(M).

For applications of anisotropic spaces to exponential mixing for contact flows,
see the works of Liverani [22], Tsujii [26], and Nonnenmacher–Zworski [24]. We
note that the latter paper [24] uses the microlocal approach and thus could be
potentially combined with the present result to yield exponential mixing for more
general bundles, however in the case when X∗ 6= −X more adjustments would be
needed to the argument there.

2. Anosov flows

2.1. Definition. As in the introduction, we assume that X is a nonvanishing vector
field on a compact manifold M and φt = exp(tX) is the corresponding flow.

Definition 2.1. We say that φt is an Anosov flow if there exists a splitting of
tangent spaces into the flow/unstable/stable spaces

(2.1) TxM = E0(x)⊕ Eu(x)⊕ Es(x), x ∈M

such that:

• E0(x) = RX(x);
• Eu(x), Es(x) depend continuously on x and are invariant under the flow:

dφt(x)Eu(x) = Eu(φ
t(x)), dφt(x)Es(x) = Es(φ

t(x));
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• we have the exponential contraction property under the differential of the
flow,

(2.2) |dφt(x)v| ≤ Ce−θ|t||v| if

{
v ∈ Eu(x), t ≤ 0 or

v ∈ Es(x), t ≥ 0.

Here C, θ > 0 are some constants and we fix an arbitrary Riemannian metric
on M ; C depends on the choice of the metric but θ does not.

Remark 2.2. The dependence of Eu(x), Es(x) on the base point x is Hölder con-
tinuous but typically not C∞, see for example [18].

In this paper we always assume that φt is an Anosov flow. It is sometimes useful
to make additional assumptions, given by

Definition 2.3. Let X be a nonvanishing vector field on a manifold M . We say
that the flow φt = exp(tX) is:

• a volume preserving flow, if there exists a C∞ density µ on M which is
invariant under pullback by φt;

• a contact flow, if d = dimM is odd and there exists a 1-form α ∈ C∞(M ;T ∗M)

such that α ∧ (dα)
d−1
2 is nonvanishing, ιXα = 1, and ιXdα = 0.

Remark 2.4. For contact flows, the form α is called a contact form and X is called
the Reeb vector field associated to α. The manifold M is oriented by requiring that

d volα := α ∧ (dα)
d−1
2 be positive. Moreover, d volα is invariant under the flow φt,

so contact flows are always volume preserving.

2.2. Examples. We now give a few standard examples of Anosov flows.

2.2.1. Geodesic flows. Assume that (Σ, g) is a compact Riemannian manifold. We
let M be the sphere bundle of Σ:

M = SΣ := {(y, w) ∈ TΣ: |w|g = 1}.

The geodesic flow φt is the flow on M defined as follows: if (y, w) ∈ SΣ and
γ : R → Σ is the geodesic such that γ(0) = y, γ̇(0) = w, then φt(y, w) = (γ(t), γ̇(t)).
The flow φt is a contact flow, where the contact 1-form α on SΣ is defined as follows:

α(y,w)(ξ) = 〈dπ(y,w)ξ, w〉g
where π : SΣ → Σ is the projection map – see for example [25, §1.3.3].

Proposition 2.5. If (Σ, g) has everywhere negative sectional curvature, then the
geodesic flow φt on M = SΣ is Anosov.

For the proof, see for example [21, Theorem 3.9.1].

2.2.2. Suspensions of Anosov maps. An Anosov map is a discrete time analog of an
Anosov flow:

Definition 2.6. Let M̃ be a compact manifold and T : M̃ → M̃ be a diffeo-

morphism. We say that T is an Anosov map if the tangent spaces to M̃ admit a
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decomposition TxM̃ = Eu(x) ⊕ Es(x) which is invariant under T , depends contin-
uously on x, and satisfies the following exponential contraction property for some

constants C, θ > 0 and a Riemannian metric on M̃ :

|dT k(x)v| ≤ Ce−θ|k||v| if

{
v ∈ Eu(x), k ≤ 0 or

v ∈ Es(x), k ≥ 0.

Basic examples of Anosov maps are the toric automorphisms

T : Td → Td, T (x) = Ax mod Zd

where Td = Rd/Zd is the d-dimensional torus and the matrix A ∈ GL(d,Z),
| detA| = 1, has no eigenvalues on the unit circle.

To make an Anosov map into an Anosov flow, we use suspensions. Let T : M̃ →
M̃ be an Anosov map and τ : M̃ → (0,∞) be a smooth function, called the roof
function of the suspension. Let M be the manifold obtained by taking the cylinder

{(x, s) | x ∈ M̃, 0 ≤ s ≤ τ(x)} and gluing its two ends by identifying (x, τ(x)) with

(T (x), 0). Alternatively, we may define M as the quotient of M̃ × R by the action
of Z generated by the map (x, s+ τ(x)) 7→ (T (x), s). Now, the vector field X := ∂s
is well-defined on M and generates an Anosov flow called the suspension of T with
roof function τ . Here the Anosov property is easy to check when τ is constant and
the general case is obtained by a time change, which does not change the Anosov
property – see for example [20, Proposition 17.4.5].

2.3. Operators and resolvents. Let φt = exp(tX) be an Anosov flow on a mani-
fold M . The vector field X defines a first order differential operator X : C∞(M) →
C∞(M). For t ∈ R, define the operator

e−tX : C∞(M) → C∞(M), e−tXf := f ◦ φ−t.

The notation e−tX is justified as follows: for each f ∈ C∞(M) we have

(2.3) ∂t(e
−tXf) = −e−tXXf = −Xe−tXf.

Now, for a complex number λ such that Reλ > 0 we define the Pollicott–Ruelle
resolvent

(2.4) RX(λ)f :=

∫ ∞

0
e−λte−tXf dt.

Here the integral converges exponentially fast in the sup-norm when f is continuous.
We have the identity (1.1). Indeed, take f ∈ C∞(M) and assume that Reλ > 0.

Then

RX(λ)(X + λ)f = (X + λ)RX(λ)f = −
∫ ∞

0
∂t(e

−λte−tXf) dt = f

where in the second equality we consider X + λ as a differential operator on distri-
butions.
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2.3.1. More general operators. We now extend the definition of Pollicott–Ruelle
resolvent to more general operators. Let E be a (finite dimensional complex) C∞

vector bundle over M . Denote by C∞(M ; E) the space of smooth sections of E .

Definition 2.7. An operator X : C∞(M ; E) → C∞(M ; E) is called a lift of the
vector field X to E if

(2.5) X(fu) = (Xf)u+ f(Xu) for all f ∈ C∞(M ;C), u ∈ C∞(M ; E).

If we fix a local frame e1, . . . , en ∈ C∞(U ; E) on E , where U ⊂M is an open set,
then lifts of X have the form

(2.6) X

n∑
j=1

fj(x)ej(x) =

n∑
j=1

(
Xfj(x) +

n∑
k=1

Ajk(x)fk(x)

)
ej(x), x ∈ U

for all f1, . . . , fn ∈ C∞(M ;C) where (Ajk(x)) is an n × n complex matrix with
entries which are smooth functions on U .

We next define parallel transport on E . Let x0 ∈M and define the curve x(t) :=
φt(x0). Assume that v(t) ∈ E(x(t)), t ∈ R, is a smooth section of the pullback of E
to the curve x(t). We define the derivative DXv(t) ∈ E(x(t)) by requiring that

DX(u(x(t))) = Xu(x(t)) for all u ∈ C∞(M ; E).
In a local frame we can write

(2.7) DX

n∑
j=1

fj(t)ej(x(t)) =

n∑
j=1

(
ḟj(t) +

n∑
k=1

Ajk(x(t))fk(t)

)
ej(x(t)).

We say that v(t) is parallel if DXv(t) = 0 for all t. Using the coordinate expres-
sion (2.7) and the existence/uniqueness theorem for linear systems of ODEs, we
see that for each v0 ∈ E(x(0)) there exists a unique parallel field v(t) such that
v(0) = v0. We then define the parallel transport operator

(2.8) T t
X(x) : E(x) → E(φt(x)), t ∈ R

such that for any parallel field v(t) we have T t
X(x(0))v(0) = v(t).

We now define the family of operators

e−tX : C∞(M ; E) → C∞(M ; E), t ∈ R

so that the evolution equation (2.3) holds with X replaced by X. In terms of parallel
transport it can be described as follows: for each u ∈ C∞(M ; E) and x ∈ M we
have

(2.9) e−tXu(x) = T t
X(φ−t(x))u(φ−t(x)).

We now want to define the Pollicott–Ruelle resolvent of X similarly to (2.4). For
that fix an inner product on the fibers of E and take constants CX, C1 such that

‖T t
X(x)‖E(x)→E(φt(x)) ≤ C1e

CXt for all t ≥ 0, x ∈M.

Note that the constant C1 depends on the choice of the inner product but CX does
not. Now we define

(2.10) RX(λ)u :=

∫ ∞

0
e−λte−tXu dt for Reλ > CX, u ∈ C∞(M ; E).
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The integral converges in the space of continuous functions C0(M ; E). We have the
identities similar to (1.1):
(2.11)
RX(λ)(X+ λ)u = (X+ λ)RX(λ)u = u for all u ∈ C∞(M ; E), Reλ > CX.

2.3.2. Examples. We now give several natural examples of lifts X. First of all, if
E =M × C is the trivial line bundle over M , then lifts of X have the form

X = X + V for some potential V ∈ C∞(M ;C).

The operator e−tX is given by

e−tXu(x) = exp

(
−

∫ t

0
V (φ−s(x)) ds

)
u(φ−t(x)).

The next example is given by the bundles of differential forms

Ωk := ∧kT ∗M

and X := LX is the Lie derivative. In this case the operator e−tX is the pullback
of differential forms by φ−t.

One can also consider the smaller bundle of perpendicular forms

Ωk
0 := {u ∈ Ωk | ιXu = 0}

with the same operator X = LX , which is important for the analysis of the Ruelle
zeta function (see for example [12]).

We can consider a more general setting by taking a complex vector bundle V over
M equipped with a flat connection ∇, considering the bundle E := Ωk ⊗ V , and
putting

X := LX,∇ = d∇ιX + ιXd
∇

where d∇ : C∞(Ωk⊗V) → C∞(Ωk+1⊗V) is the twisted exterior derivative associated
to ∇. The resulting Pollicott–Ruelle resonances have important applications to
Fried’s conjecture relating dynamical zeta functions and torsion – see for example
Dang–Guillarmou–Rivière–Shen [11, §3.3].

A special case of the flat connection example above is when E is the orientation
bundle of the bundle Es. This bundle can be used to generalize known results on
meromorphic continuation of dynamical zeta functions to the case of nonorientable
Es – see Borns-Weil–Shen [8].

3. Microlocal framework and the lifted flow

In this and the next section we assume that φt = etX is an Anosov flow on a
compact manifoldM , E is a vector bundle overM , and X : C∞(M ; E) → C∞(M ; E)
is a lift of X in the sense of Definition 2.7. (In particular, this includes the special
scalar case when E =M × C and X = X.)

We henceforth fix a density ρ0 on M and an Hermitian inner product 〈•, •〉E on
the fibers of E , which together fix the inner product on the space L2(M ; E).

We use the semiclassically rescaled version of X,

P := −ihX.
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Here h ∈ (0, 1] is a small number called the semiclassical parameter. In the present
paper the semiclassical rescaling is a technical tool useful in the proof of the mero-
morphic continuation of the Pollicott–Ruelle resolvent, and h will be ultimately
fixed small enough (so that the O(h∞) remainders in semiclassical estimates can be
removed and Lemma 4.3 holds). In applications to spectral gaps (such as the work
of Nonnenmacher–Zworski [24]) one has h ≈ |Reλ|−1 and studies the limit h→ 0.

3.1. Semiclassical analysis. We discuss the behavior of P from the point of view
of microlocal analysis, more precisely its semiclassical version. We refer the reader
to the book of Zworski [28] for an introduction to semiclassical analysis and to the
book of Dyatlov–Zworski [13, Appendix E] (which builds on [28]) for some of the
more advanced tools used here.

For m ∈ R, denote by Sm
h (T ∗M) the class of h-dependent Kohn–Nirenberg sym-

bols of order m on the cotangent bundle T ∗M , consisting of h-dependent functions
a(x, ξ;h) ∈ C∞(T ∗M) satisfying the derivative bounds for all multiindices α, β

|∂αx ∂
β
ξ a(x, ξ;h)| ≤ Cαβ〈ξ〉m−|β| for all (x, ξ) ∈ T ∗M, 0 < h ≤ 1.

Here 〈ξ〉 :=
√

1 + |ξ|2. This is the class used in [28, §14.2.2]. The estimates from
the book [13], on which this paper relies, use instead the smaller class of polyhomo-
geneous symbols with expansions in powers of ξ and h, see [13, Definition E.3]. We

will apply these estimates to the conjugated operator P̃ (see §4.1.2) which is not
polyhomogeneous and we explain below why the results of [13] still hold.

Denote by Ψm
h (M) the class of semiclassical pseudodifferential operators with

symbols in Sm
h (T ∗M). These are h-dependent families of operators on C∞(M) and

on the space of distributions D′(M). We refer to [28, §14.2.2] and [13, §E.1.7] for
details. We use the semiclassical principal symbol isomorphism

(3.1) σh :
Ψm

h (M)

hΨm−1
h (M)

→
Sm
h (T ∗M)

hSm−1
h (T ∗M)

.

The space T ∗M is not compact because ξ is allowed to go to infinity. We will use the
fiber-radial compactification T ∗M obtained by adding to T ∗M a sphere at infinity.
See for example [13, §E.1.3] for details.

3.1.1. Operators on sections of vector bundles. We now discuss the class of semi-
classical pseudodifferential operators Ψm

h (M ; End(E)) acting on the space of sections
C∞(M ; E) of the vector bundle E . If E is trivial and n = dim E , then operators on
C∞(M ; E) are identified with n× n matrices of operators on C∞(M). We say such
a matrix is in Ψm

h (M ; End(E)) if all of its entries are in Ψm
h (M). This class does

not depend on the choice of a (smooth) trivialization of E since composition with
multiplication operators maps Ψm

h (M) into itself. Since pseudodifferential opera-
tors are smoothing and rapidly decaying in h away from the diagonal, one can use
the above definition locally to make sense of Ψm

h (M ; End(E)) for a general bun-
dle E . See [19, Definition 18.1.32] for more details (in the related nonsemiclassical
setting). Any element of Ψm

h (M ; End(E)) is bounded uniformly in h in operator

norm Hs
h(M ; E) → Hs−m

h (M ; E) where Hs
h(M ; E) denotes the semiclassical Sobolev

space defined similarly to [13, Definition E.20].
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For A ∈ Ψm
h (M ; End(E)), we use the above procedure and the map (3.1) to define

the semiclassical principal symbol

σh(A) ∈
Sm
h (T ∗M ; End(π∗E))

hSm−1
h (T ∗M ; End(π∗E))

.

Here π : T ∗M → M is the projection map, π∗E is the pullback of E to a vector
bundle over T ∗M , and End(π∗E) is the bundle of homomorphisms from π∗E to itself.
Note that σh is surjective and σh(A) = 0 if and only if A ∈ hΨm−1

h (M ; End(E)).
We sayA is principally scalar if σh(A) is scalar, that is there exists a ∈ Sm

h (T ∗M)

such that σh(A) = aIπ∗E modulo hSm−1
h (T ∗M ; End(π∗E)). In this case we treat

σh(A) as a scalar function on T ∗M by identifying it with (the equivalence class of)
a.

Using the standard algebraic properties of the scalar calculus Ψm
h (M) (see for

instance [28, Theorem 14.1] and [13, Proposition E.17]) we obtain the following
properties of the calculus Ψm

h (M ; End(E)):
• Product Rule: if A ∈ Ψm

h (M ; End(E)) and B ∈ Ψℓ
h(M ; End(E)), then

(3.2) AB ∈ Ψm+ℓ
h (M ; End(E)), σh(AB) = σh(A)σh(B)

where the right-hand side is understood as composition of sections of
End(π∗E).

• Commutator Rule: if A ∈ Ψm
h (M ; End(E)), B ∈ Ψℓ

h(M ; End(E)) are both
principally scalar, then, with {•, •} denoting the Poisson bracket on T ∗M ,

(3.3) [A,B] ∈ hΨm+ℓ−1
h (M ; End(E)), σh(h

−1[A,B]) = −i{σh(A), σh(B)}.

• Adjoint Rule: if A ∈ Ψm
h (M ; End(E)), then its formal adjoint A∗ satisfies

A∗ ∈ Ψm
h (M ; End(E)), σh(A

∗) = σh(A)∗

where the right-hand side is defined using the adjoint operation on End(π∗E)
induced by the inner product 〈•, •〉E .

We next discuss the wavefront set and the elliptic set of an operator A ∈ Ψm
h (M ; E).

The wavefront set WFh(A) is a compact subset of T ∗M giving the essential support
of the full symbol of A. In terms of the wavefront set of scalar pseudodifferential
operators (see for example [13, Definition E.27]), we define WFh(A) as the union of
the wavefront sets of the entries of A as an n× n matrix of operators, with respect
to any trivialization of E .

The elliptic set ellh(A) is the open subset of T ∗M on which the principal symbol
σh(A) is essentially invertible (as an endomorphism of π∗E). More precisely, a
point (x0, ξ0) ∈ T ∗M lies in ellh(A) if there exists a constant C such that we

have
∥∥(σh(A)(x, ξ)

)−1∥∥ ≤ C〈ξ〉−m for all sufficiently small h and all (x, ξ) in some

neighborhood of (x0, ξ0) in T ∗M .
Finally, we give the following version of sharp G̊arding inequality for pseudodif-

ferential operators on vector bundles. It is an analog of [13, Proposition E.34] but
we restrict a simpler case, putting B := 0 and considering a special subclass of
nonnegative symbols in C∞(T ∗M ; End(π∗E)).
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Lemma 3.1. Assume that A ∈ Ψ2m
h (M ; End(E)) and B1 ∈ Ψ0

h(M ; End(E)) satisfy
WFh(A) ⊂ ellh(B1). Assume moreover that the principal symbol σh(A) has the
form

(3.4) σh(A) = χa, χ ∈ C∞(T ∗M), χ ≥ 0, a ∈ S2m(T ∗M ; End(π∗E))

where χ, a are h-independent and Rea is uniformly positive definite on some neigh-
borhood V ⊂ T ∗M of suppχ, that is there exists a constant c > 0 such that

Re〈a(x, ξ)v,v〉E(x) ≥ c〈ξ〉2m‖v‖2E(x) for all (x, ξ) ∈ V, v ∈ E(x).

Then there exists a constant C such that for each N , all small h, and all u ∈
Hm(M ; E)

(3.5) Re〈Au,u〉L2(M ;E) ≥ −Ch‖B1u‖2
H

m− 1
2

h

−O(h∞)‖u‖2
H−N

h

.

Remark 3.2. In fact (3.4) can be replaced by the weaker and more natural assump-
tion that Re σh(A) is nonnegative everywhere, see [19, Remark 2 on p.79] for the
nonsemiclassical case. Instead of establishing a semiclassical version of this result
here, we choose to make the stronger assumption (3.4) which allows us to use the
scalar sharp G̊arding inequality as a black box.

Proof. If σh(A) = 0, then A ∈ hΨ2m−1
h (M ; End(E)) so (3.5) holds by the elliptic

estimate (see §4.2.1 below) since WFh(A) ⊂ ellh(B1). Therefore, we may replace A
with any other operator with the same principal symbol and wavefront set contained
in ellh(B1). Moreover, from the Adjoint Rule above we see that one may replace
a by Re a := 1

2(a + a∗). We thus henceforth assume that a is self-adjoint. Since
WFh(A) ⊂ ellh(B1), we may also assume that suppχ ⊂ ellh(B1).

Since a is positive definite on V ⋑ suppχ, we may write

a = f∗f near suppχ for some f ∈ Sm(T ∗M ; End(π∗E)), supp f ⊂ ellh(B1).

For example, we may take χ′ ∈ C∞(T ∗M) such that χ′ = 1 near suppχ and
suppχ′ ⊂ V ∩ ellh(B1), and put f := χ′√a.

Using a partition of unity on χ, we reduce to a case when χ is supported in
some open set over which E is trivialized by some orthonormal frame. Using that
frame, we may consider the pseudodifferential operator Oph(χ) ∈ Ψ0

h(M) as an
operator on sections of E . Take F ∈ Ψm

h (T ∗M ; End(E)) with principal symbol f
and WFh(F) ⊂ ellh(B1), then σh(A) = σh(F

∗Oph(χ)F), so we may assume that
A = F∗Oph(χ)F. Now

〈Au,u〉L2(M ;E) = 〈Oph(χ)Fu,Fu〉L2(M ;E) ≥ −Ch‖Fu‖2
H

− 1
2

h

≥ −Ch‖B1u‖2
H

m− 1
2

h

−O(h∞)‖u‖H−N
h

Here in the first inequality we use that χ ≥ 0 and apply the scalar sharp G̊arding
inequality [13, Proposition E.23] for the operator Oph(χ). In the last inequality we
use the elliptic estimate. □
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3.2. Semiclassical properties of P. The operator P = −ihX is a semiclassi-
cal differential operator in the class Ψ1

h(M ; End(E)), as follows from (2.6). It is
principally scalar with the principal symbol given by

p(x, ξ) := 〈ξ,X(x)〉, x ∈M, ξ ∈ T ∗
xM.

Note that p is real valued and homogeneous of degree 1 in ξ.

3.2.1. The lifted flow. For semiclassical estimates, it is important to understand
the characteristic surface {p = 0} ⊂ T ∗M and the Hamiltonian flow etHp on this
surface. For that we introduce the dual flow/unstable/stable decomposition of the
fibers of the cotangent bundle T ∗M :

(3.6) T ∗
xM = E∗

0(x)⊕ E∗
u(x)⊕ E∗

s (x), x ∈M

which is defined in terms of the original flow/unstable/stable decomposition (2.1)
as follows:

E∗
0 := (Eu ⊕ Es)

⊥, E∗
u := (E0 ⊕ Eu)

⊥, E∗
s := (E0 ⊕ Es)

⊥.

Any continuous subbundle of T ∗M can be considered as a closed subset of T ∗M ,
and the characteristic surface of p is

{p = 0} = {(x, ξ) ∈ T ∗M | 〈ξ,X(x)〉 = 0} = E∗
u ⊕ E∗

s .

Next, the Hamiltonian flow of p has the form

etHp(x, ξ) = (φt(x), dφt(x)−T ξ)

and extends to a smooth flow on T ∗M . Here dφt(x)−T : T ∗
xM → T ∗

φt(x)M is the

inverse of the transpose of dφt(x) : TxM → Tφt(x)M .
Following [13, (E.1.11)], denote by

κ : T ∗M \ 0 → ∂T ∗M

the canonical projection to fiber infinity ∂T ∗M . Then κ(E∗
u), κ(E

∗
s ) are compact

subsets of ∂T ∗M invariant under the flow etHp .
The Anosov property (2.2) carries over to the decomposition (3.6) as follows: if

| • | denotes some smooth norm on the fibers of T ∗M , then

|etHp(x, ξ)| ≤ Ce−θ|t||ξ| if

{
ξ ∈ E∗

u(x), t ≤ 0 or

ξ ∈ E∗
s (x), t ≥ 0.

Moreover, if ξ ∈ E∗
0(x), then |etHp(x, ξ)| ≤ C|ξ| for all t. This implies the following

global dynamical properties of the flow etHp on T ∗M :

• if (x, ξ) ∈ T ∗M \ (E∗
0 ⊕ E∗

s ), then as t → ∞, etHp(x, ξ) converges to κ(E∗
u)

(in the topology of T ∗M) and |etHp(x, ξ)| → ∞ exponentially fast;
• if (x, ξ) ∈ T ∗M \ (E∗

0 ⊕E∗
u), then as t→ −∞, etHp(x, ξ) converges to κ(E∗

s )
and |etHp(x, ξ)| → ∞ exponentially fast.

Indeed, to show for example the first statement we may write ξ = ξ0+ξu+ξs where
ξ0 ∈ E∗

0(x), ξu ∈ E∗
u(x), ξs ∈ E∗

s (x) and ξu 6= 0. Then as t → ∞, etHp(x, ξ0 +
ξs) stays bounded while etHp(x, ξu) grows exponentially and thus is the dominant
component of etHp(x, ξ).
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The above statements are locally uniform in (x, ξ). They imply in particular that
κ(E∗

u) is a radial sink and κ(E∗
s ) is a radial source for the flow etHp in the sense

of [13, Definition E.50]. They also give the following statement about the flow on
the characteristic set:

Lemma 3.3. Fix arbitrary neighborhoods Vu, Vs, V0 of κ(E∗
u), κ(E

∗
s ), and the zero

section in T ∗M . Let (x, ξ) ∈ {p = 0} ⊂ T ∗M . Then:

• if (x, ξ) 6∈ κ(E∗
s ), then there exists t ≥ 0 such that etHp(x, ξ) ∈ Vu ∪ V0;

• if (x, ξ) 6∈ κ(E∗
u), then there exists t ≤ 0 such that etHp(x, ξ) ∈ Vs ∪ V0.

Proof. We only show the first statement. If (x, ξ) 6∈ E∗
s then, since (x, ξ) ∈ {p = 0},

we have (x, ξ) 6∈ E∗
0 ⊕ E∗

s , so etHp(x, ξ) converges to κ(E∗
u) as t → ∞. Thus

etHp(x, ξ) ∈ Vu for t ≥ 0 large enough. Now, if (x, ξ) ∈ E∗
s and ξ is finite, then

etHp(x, ξ) converges to the zero section as t → ∞. Thus etHp(x, ξ) ∈ V0 for t ≥ 0
large enough. □

3.2.2. Weight functions. The dynamical properties of the flow etHp discussed in §3.2.1
make it possible to construct weight functions decaying along this flow, which are
used later to define the anisotropic Sobolev spaces:

Lemma 3.4. Fix some real numbers mu ≤ m0 ≤ ms and conic neighborhoods
Vu, Vs ⊂ T ∗M \0 of E∗

u, E
∗
s . Then there exists a function m ∈ C∞(T ∗M \0;R) such

that:

• m(x, ξ) is positively homogeneous of degree 0 in ξ;
• mu ≤ m ≤ ms everywhere;
• m = mu in some conic neighborhood of E∗

u;
• m = ms in some conic neighborhood of E∗

s ;
• m = m0 outside of Vu ∪ Vs;
• Hpm ≤ 0 everywhere.

Remark 3.5. Amore refined version of Lemma 3.4 can be found in [15, Lemma 1.2].
In the present paper we do not use that m = m0 outside of Vu ∪ Vs, but it is a
convenient property to have for wavefront set analysis, see [15, Theorem 1.7].

Proof. A positively homogeneous function of degree 0 on T ∗M \ 0 is the pullback
by κ of a function on the fiber infinity ∂T ∗M , and Vu, Vs are preimages by κ of
some neighborhoods of κ(E∗

u), κ(E
∗
s ). Moreover, the flow etHp commutes with κ.

Thus we will construct m as a function on ∂T ∗M , consider Vu, Vs as open subsets
of ∂T ∗M , and work with the flow etHp restricted to ∂T ∗M .

We now construct dynamically adapted cutoffs on Vu, Vs following a standard
argument presented for example in [13, Lemma E.53]. We shrink Vu if necessary so
that it does not intersect κ(E∗

0 ⊕ E∗
s ). Take ψu ∈ C∞

c (Vu; [0, 1]) such that ψu = 1
near κ(E∗

u). Since κ(E∗
u) is a radial sink for the flow etHp , there exists T > 0 such

that

(3.7) etHp(suppψu) ⊂ {ψu = 1} for all t ≥ T.

Put

χu :=
1

T

∫ 2T

T
ψu ◦ e−tHp dt ∈ C∞(∂T ∗M ; [0, 1]).
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Then suppχu ⊂ Vu (as follows from (3.7)) and χu = 1 near κ(E∗
u). Moreover

Hpχu = − 1

T

∫ 2T

T
∂t(ψu ◦ e−tHp) dt =

ψu ◦ e−THp − ψu ◦ e−2THp

T
≥ 0

where we again use (3.7): for each (x, ξ) ∈ ∂T ∗M we have ψu(e
−2THp(x, ξ)) = 0 or

ψu(e
−THp(x, ξ)) = 1.

A similar argument gives a function χs ∈ C∞
c (Vs; [0, 1]) such that χs = 1 near

κ(E∗
s ) and Hpχs ≤ 0 everywhere. It remains to put

m := (mu −m0)χu + (ms −m0)χs +m0. □

3.2.3. Computing the adjoint-commutator. We now give the following lemma which
computes the expression in the positive commutator argument for the radial esti-
mates in §4.2.3 below:

Lemma 3.6. Assume that W ∈ Ψ2m
h (M ; End(E)) and W∗ = W. Then there exists

Z ∈ Ψ2m
h (M ; End(E)) such that Z∗ = Z, WFh(Z) ⊂ WFh(W), and for each λ ∈ C

and u ∈ C∞(M ; End(E))

(3.8) Im〈(P− ihλ)u,Wu〉L2(M ;E) = h
〈
(Z− (Reλ)W)u,u

〉
L2(M ;E).

Moreover, the semiclassical principal symbol of Z is given by

(3.9) σh(Z) =
1

2
HXσh(W)

where HX : C∞(T ∗M ; End(π∗E)) → C∞(T ∗M ; End(π∗E)) is a lift of the vector
field Hp (see Definition 2.7 which can be applied to any vector field).

Finally, the evolution group etHX is described in terms of the parallel transport
from (2.8):

(3.10) etHXw(x, ξ) = | det dφt(x)|(T t
X(x))∗w(etHp(x, ξ))T t

X(x)

for all w ∈ C∞(T ∗M ; End(π∗E)). Here the adjoint is taken with respect to the inner
product 〈•, •〉E on E and the determinant is taken with respect to the density ρ0 fixed
in the beginning of §3.

Proof. 1. A direct computation shows that (3.8) holds with

Z :=
i

2h
(P∗W −WP).

Since P ∈ Ψ1
h(M ; End(E)) is principally scalar with real-valued principal symbol,

the principal symbol of P∗W − WP is equal to 0. Thus Z ∈ Ψ2m
h (M ; End(E)).

From the definition of Z we see also that Z∗ = Z and WFh(Z) ⊂ WFh(W).
2. Fix a frame e1, . . . , en on E over some open set U ⊂ M which is orthonormal
with respect to the inner product 〈•, •〉E . The operator X is given by (2.6) for some
matrix A(x) = (Ajk(x))

n
j,k=1 depending on x ∈ U , so the operator P is given by

P
n∑

j=1

fjej = −ih
n∑

j=1

(
Xfj +

n∑
k=1

Ajkfk

)
ej .
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Denoting by divρ0 X := ρ−1
0 LXρ0 the divergence of the vector field X with respect

to the density ρ0, we compute the adjoint operator:

P∗
n∑

j=1

fjej = −ih
n∑

j=1

(
(X + divρ0 X)fj −

n∑
k=1

Akjfk

)
ej .

Using this we see that (3.9) holds with

(3.11) HXw(x, ξ) = Hpw(x, ξ) + divρ0 X(x)w(x, ξ)−A(x)∗w(x, ξ)−w(x, ξ)A(x)

where we identify sections of End(π∗E) with n×nmatrices using the frame e1, . . . , en
and Hp on the right-hand side acts on each matrix entry separately.
3. The operator defined by (3.10) forms a group in t, so it suffices to check that for
each w ∈ C∞(T ∗M ; End(π∗E)) we have

(3.12) ∂t|t=0

(
| det dφt(x)|(T t

X(x))∗w(etHp(x, ξ))T t
X(x)

)
= HXw(x, ξ).

We argue in a local frame as in Step 2 above. Using this frame we view T t
X(x)

as an n × n matrix. Using the definition of parallel transport (see (2.8)) and the
formula (2.7) we see that

∂t|t=0T
t
X(x) = −A(x).

We also have ∂t|t=0 det dφ
t(x) = divρ0 X(x). Using these two identities and (3.11),

we verify that (3.12) holds. □

3.3. The threshold conditions and existence of multipliers. We now intro-
duce the threshold regularity conditions needed for the proof of the Fredholm prop-
erty of P− ihλ; more specifically, they are used in the proofs of the radial estimates
in §4.2.3 below. We start with the following

Definition 3.7. Assume that mu ≤ 0 ≤ ms are given constants. Define the growth
factors ru(mu), rs(ms) ∈ R as the smallest numbers such that for each ε > 0 there
exists a constant Cε > 0 such that for all x ∈M and t ≥ 0

(3.13)
| det dφt(x)|

1
2 · ‖T t

X(x)‖ ·
∥∥dφt(x)T |E∗

u

∥∥−mu ≤ Cεe
(ru(mu)+ε)t,

| det dφt(x)|
1
2 · ‖T t

X(x)‖ ·
∥∥dφt(x)−T |E∗

s

∥∥ms ≤ Cεe
(rs(ms)+ε)t.

Remark 3.8. The constants ru(mu), rs(ms) do not depend on the choice of the
inner product on E , the metric on M , and the density ρ0 used to define the norms
in (3.13).

Remark 3.9. The bounds (3.13) can be reformulated in terms of the action of dφt

on the spaces Eu, Es: for all x ∈M and t ≥ 0

(3.14)
| det dφt(x)|

1
2 · ‖T t

X(x)‖ ·
∥∥dφt(x)|Es

∥∥−mu ≤ Cεe
(ru(mu)+ε)t,

| det dφt(x)|
1
2 · ‖T t

X(x)‖ ·
∥∥dφt(x)−1|Eu

∥∥ms ≤ Cεe
(rs(ms)+ε)t.

We see that

(3.15) ru(mu) ≤ C1 + θmu, rs(ms) ≤ C1 − θms

for some constant C1 depending only on the lift X, where θ > 0 is the constant in
the exponential contraction property (2.2).
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The next lemma introduces the threshold regularity conditions and constructs
the multipliers used in the proofs of the radial estimates:

Lemma 3.10. Assume that mu ≤ 0 ≤ ms and λ ∈ C satisfy the threshold condition

(3.16) ru(mu) < Reλ, rs(ms) < Reλ.

Then there exist wu,ws ∈ C∞(T ∗M \ 0; End(π∗E)) such that:

• w∗
u = wu, w

∗
s = ws, and wu,ws are positive definite everywhere;

• wu, ws are positively homogeneous of degrees 2mu, 2ms, that is for each
(x, ξ) ∈ T ∗M \ 0 and τ > 0

wu(x, τξ) = τ2muwu(x, ξ), ws(x, τξ) = τ2msws(x, ξ);

• if HX is the operator defined in Lemma 3.6, then

(HX − 2Reλ)wu(x, ξ), (HX − 2Reλ)ws(x, ξ)

are self-adjoint, positively homogeneous of degrees 2mu, 2ms respectively,
and negative definite for all (x, ξ) in E∗

u \ 0 and E∗
s \ 0 respectively.

Proof. For two self-adjoint elements a,b ∈ End(E(x)), we write a < b if b − a is
positive definite.
1. Fix a metric on M and define the sections w0

u,w
0
s ∈ C∞(T ∗M \ 0; End(π∗E)) by

w0
u(x, ξ) := |ξ|2muIE(x), w0

s(x, ξ) := |ξ|2msIE(x)

where IE(x) is the identity map in End(E(x)). We claim that under the threshold
condition (3.16) we have for all t > 0 large enough

(3.17)
etHXw0

u(x, ξ) < e2Reλtw0
u(x, ξ) for all (x, ξ) ∈ E∗

u \ 0,

etHXw0
s(x, ξ) < e2Reλtw0

s(x, ξ) for all (x, ξ) ∈ E∗
s \ 0.

We show the first statement in (3.17), with the second one proved similarly. Let
(x, ξ) ∈ E∗

u \ 0 and v ∈ E(x). Using the formula (3.10) for etHX we compute

〈etHXw0
u(x, ξ)v,v〉E = | det dφt(x)| · |dφt(x)−T ξ|2mu · ‖T t

X(x)v‖2E(φt(x)),

〈w0
u(x, ξ)v,v〉E = |ξ|2mu‖v‖2E(x).

We have mu ≤ 0 and |dφt(x)−T ξ| ≥ ‖dφt(x)T |E∗
u
‖−1 · |ξ|, so

|dφt(x)−T ξ|2mu ≤ ‖dφt(x)T |E∗
u
‖−2mu · |ξ|2mu .

Now (3.17) follows from the bound

| det dφt(x)| · ‖dφt(x)T |E∗
u
‖−2mu‖T t

X(x)‖2 < e2Reλt

which holds for t > 0 large enough by (3.16) since the left-hand side isOε(e
(2ru(mu)+ε)t)

for any ε > 0.
2. Fix t0 > 0 such that (3.17) holds with t := t0. We define

wu :=

∫ t0

0
e−2ReλtetHXw0

u dt, ws :=

∫ t0

0
e−2ReλtetHXw0

s dt.
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It is straightforward to check using (3.10) that wu,ws are self-adjoint, positively
homogeneous of degrees 2mu, 2ms respectively, and positive definite. Since etHX is
the evolution group associated to HX, we have

(HX − 2Reλ)wu =

∫ t0

0
∂t
(
e−2ReλtetHXw0

u

)
dt = e−2Reλt0et0HXw0

u −w0
u

and similarly (HX − 2Reλ)ws = e−2Reλt0et0HXw0
s − w0

s . We see that (HX −
2Reλ)wu, (HX − 2Reλ)ws are self-adjoint and positively homogeneous of de-
grees 2mu, 2ms respectively. Moreover, by (3.17) these sections are negative definite
on E∗

u \ 0, E∗
s \ 0 respectively. □

3.3.1. Examples. We now compute the growth factors ru(mu), rs(ms) from Defi-
nition 3.7 in a couple of special cases of the examples considered in §2.3.2. More
precisely, we study the threshold regularity condition Re λ > max(ru(mu), rs(ms))
given in (3.16).

We start with the basic case when E =M×C is trivial, X = X, and φt is volume
preserving. In this case the condition (3.16) becomes

(3.18) Reλ > max(θsmu,−θums)

where θs, θu > 0 are the largest numbers such that for each ε > 0 there exists Cε > 0
such that for all t ≥ 0

‖dφt|Es‖ ≤ Cεe
−(θs−ε)t, ‖dφ−t|Eu‖ ≤ Cεe

−(θu−ε)t.

We next discuss the case when X is the generator of the geodesic flow on an
n+1-dimensional compact hyperbolic manifold (Σ, g) and X = LX acts on sections
of the bundle of perpendicular differential k-forms Ωk

0. In this case φt is volume
preserving, dimEu = dimEs = n, and for the correct choice of metric on M (the
Sasaki metric) we have

|dφt(x)v| =


|v|, v ∈ E0(x);

et|v|, v ∈ Eu(x);

e−t|v|, v ∈ Es(x).

It follows that the parallel transport T t
X(x) has norm emin(k,2n−k)t for t ≥ 0, and

the condition (3.16) becomes

(3.19) Reλ > max(mu,−ms) + min(k, 2n− k).

4. Meromorphic continuation

In this section we state and prove the main result of this paper, Theorem 4.1
(see §4.1.1).

4.1. Anisotropic Sobolev spaces and statement of the result. We first in-
troduce the spaces on which meromorphic continuation holds. We fix a function

m ∈ C∞(T ∗M \ 0;R)
which satisfies the following conditions:

• m is positively homogeneous of degree 0, that is m(x, τξ) = m(x, ξ) for all
(x, ξ) ∈ T ∗M \ 0 and τ > 0;



POLLICOTT–RUELLE RESOLVENT AND SOBOLEV REGULARITY 203

• there exist constants mu ≤ 0 ≤ ms such that mu ≤ m ≤ ms everywhere and

m = mu near E∗
u \ 0, m = ms near E∗

s \ 0

where the dual unstable/stable spaces E∗
u, E

∗
s ⊂ T ∗M were introduced

in (3.6);
• Hpm ≤ 0 everywhere, where the vector field Hp is introduced in §3.2.1;
equivalently, m(φt(x), dφt(x)−T ξ) ≤ m(x, ξ) for all (x, ξ) ∈ T ∗M \ 0 and
t ≥ 0.

Such m exists for any choice of mu ≤ 0 ≤ ms by Lemma 3.4.
Given m, we fix a semiclassical pseudodifferential operator Fm such that:

• Fm lies in Ψ0+
h (M ; End(E)) :=

⋂
ε>0Ψ

ε
h(M ; End(E)) and F∗

m = Fm;
• Fm is principally scalar and, for some fixed choice of Riemannian metric
on M ,

σh(Fm)(x, ξ) = m(x, ξ) log |ξ| when |ξ| ≥ 1.

For t ≥ 0 we can define the exponential operators

(4.1) etFm ∈ Ψtms+
h (M ; End(E)), e−tFm ∈ Ψ−tmu+

h (M ; End(E)).

See [28, Theorem 8.6] for the case of scalar operators and Weyl quantization on Rn

(with Beals’s theorem for the Kohn–Nirenberg calculus given in [28, Theorem 9.12]);
the proof adapts to the case of manifolds and vector bundles studied here. Alter-
natively, see [14, Appendix A].

We now define the semiclassical anisotropic Sobolev space Hm
h (M ; E) similarly

to [28, §8.3.1]:

Hm
h (M ; E) := e−FmL2(M ; E), ‖u‖Hm

h
:= ‖eFmu‖L2 .

The spaces Hm
h (M ; E) for different values of h are all equivalent, with constants in

the norm equivalency bounds depending on h. Therefore, we may use the notation
Hm(M ; E) when the choice of norm is not important. We have

(4.2) Hms(M ; E) ⊂ Hm(M ; E) ⊂ Hmu(M ; E)

and the space C∞(M ; E) is dense in Hm(M ; E).
Fix open subsets

(4.3) Ṽu, Ṽs ⊂ T ∗M \ 0, κ(E∗
u) ⊂ Ṽu, κ(E∗

s ) ⊂ Ṽs,

such that m = mu on Ṽu and m = ms on Ṽs. Then the space Hm
h (M ; E) is equivalent

to the usual Sobolev space Hmu
h (M ; E) microlocally on Ṽu, that is for each A ∈

Ψ0
h(M ; End(E)) with WFh(A) ⊂ Ṽu, there exists a constant C such that for each

u ∈ C∞(M ; E) and each N

(4.4)
‖Au‖Hm

h
≤ C‖u‖Hmu

h
+O(h∞)‖u‖H−N

h
,

‖Au‖Hmu
h

≤ C‖u‖Hm
h
+O(h∞)‖u‖H−N

h
.

Similarly, Hm
h (M ; E) is equivalent to the space Hms(M ; E) microlocally on Ṽs.
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4.1.1. Statement of the result. We can now state the main result of this paper, which
gives meromorphic continuation of the Pollicott–Ruelle resolvent on anisotropic
Sobolev spaces to a specific half-plane:

Theorem 4.1. Let X be the generator of an Anosov flow φt on a compact mani-
fold M , E be a smooth vector bundle over M , and X : C∞(M ; E) → C∞(M ; E) be
a lift of X (see Definition 2.7).

Assume that the function m ∈ C∞(T ∗M \ 0;R) satisfies the conditions in the
beginning of §4.1, for some constants mu ≤ 0 ≤ ms. Let Hm(M ; E) be the corre-
sponding anisotropic Sobolev space.

Then the Pollicott–Ruelle resolvent RX(λ) defined in (2.10) admits a meromor-
phic continuation as a family of operators Hm(M ; E) → Hm(M ; E) to the half-plane

(4.5) Reλ > max(ru(mu), rs(ms))

where ru(mu), rs(ms) were introduced in Definition 3.7.

Remark 4.2. By (3.15), if we fix λ then for −mu,ms large enough the condi-
tion (4.5) holds. Since C∞(M ; E) ⊂ Hm(M ; E) ⊂ D′(M ; E), we see that RX(λ) con-
tinues meromorphically as a family of operators C∞(M ; E) → D′(M ; E) to λ ∈ C.

4.1.2. The conjugated operator. The action of P = −ihX onHm
h (M ; E) is equivalent

to the action on L2(M ; E) of the conjugated operator

(4.6) P̃ := eFmPe−Fm .

Using Taylor’s formula with integral remainder for the family of operators etFmPe−tFm ,

t ∈ [0, 1], we see that for any N ∈ N, we can expand P̃ as follows:

(4.7) P̃ =
N−1∑
j=0

adjFm
P

j!
+

∫ 1

0
(1− t)N−1etFm

adNFm
P

(N − 1)!
e−tFm dt

where adFm A = [Fm,A] for any operator A on C∞(M ; E).
Since Fm ∈ Ψ0+

h (M ; End(E)) is principally scalar, we have adFm : Ψm+
h (M ; End(E))

→ hΨm−1+
h (M ; End(E)) for all m. Therefore, the j-th term in the sum in (4.7) is

in hjΨ1−j+
h ; using (4.1), we see that the remainder is in hNΨ1−N+ms−mu+

h . Since
N can be chosen arbitrarily large, we in particular get the expansion

P̃ = P+ [Fm,P] +O(h2)Ψ−1+
h (M ;End(E)).

It follows that P̃ lies in Ψ1
h(M ; End(E)) and is principally scalar with

(4.8) σh(P̃) = p+ ih(Hpm) log |ξ|,

where we used that Hp log |ξ| ∈ S0 for |ξ| ≥ 1.
An expansion of the form (4.7) is valid for any pseudodifferential operator in

place of P. In particular, we get

(4.9) A ∈ Ψ0
h(M ; End(E)) =⇒ eFmAe−Fm ∈ Ψ0

h(M ; End(E))

and the wavefrontset / elliptic set of A coincide with those of eFmAe−Fm .
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4.2. Invertibility of the perturbed operator. We now state the key estimate
for the proof of Theorem 4.1, which gives invertibility for the operator P = −ihX
on the anisotropic Sobolev space Hm

h (M ; E) when modified by a complex absorbing
operator. Consider the dual space of Hm

h (M ; E) (with respect to the L2 inner
product), given by

H−m
h (M ; E) := eFmL2(M ; E).

Fix a principally scalar pseudodifferential operator

Q ∈ Ψ0
h(M ; End(E)), σh(Q) ≥ 0

such that WFh(Q) does not intersect the fiber infinity ∂T ∗M and the elliptic set
ellh(Q) contains the zero section of T ∗M . For technical reasons we also assume that

(4.10) WFh(Q) ∩ Ṽu = WFh(Q) ∩ Ṽs = ∅

where Ṽu, Ṽs ⊂ T ∗M \ 0 were introduced in (4.3).

Lemma 4.3. Let m satisfy the conditions in the beginning of §4.1 and assume that
Ω ⊂ C is a compact set such that

(4.11) Reλ > max(ru(mu), rs(ms)) for all λ ∈ Ω.

Then we have the following estimates for h small enough, all λ ∈ Ω, and all u ∈
C∞(M ; E), with the constants independent of h, λ,u:

‖u‖Hm
h
≤ Ch−1‖(P− ihλ− iQ)u‖Hm

h
,(4.12)

‖u‖H−m
h

≤ Ch−1‖(P− ihλ− iQ)∗u‖H−m
h
.(4.13)

We will only give the proof of the direct estimate (4.12). The adjoint esti-
mate (4.13) follows from the direct estimate for the operator X∗ which is a lift
of the vector field −X. Note that −(P − ihλ − iQ)∗ = −ihX∗ − ihλ̄ − iQ∗. The
associated flow is φ−t and the stable/unstable spaces are switched places. The
constants mu,ms are replaced by −ms,−mu and the weight m is replaced by −m.
Using (3.13), we see that the threshold condition (4.11) gives the analogous condi-
tion for the operator X∗. (Here the parallel transport corresponding to X∗ can be
computed using (2.9), as (e−tX)∗ = e−tX∗

.)
The proof of (4.12) is broken into several components. Throughout this section we

assume that h is small, λ ∈ Ω, and u ∈ C∞(M ; E). The constants in the estimates
below are independent of h, and the Sobolev exponent N in the remainders can be
chosen arbitrarily.

4.2.1. Elliptic estimate. We first state the elliptic estimate:

Lemma 4.4. Assume that A ∈ Ψ0
h(M ; End(E)) and

WFh(A) ⊂ ellh(P) ∪ ellh(Q).

Then

(4.14) ‖Au‖Hm
h
≤ C‖(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.
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To prove Lemma 4.4, we first reduce it to an estimate in the space L2 for the

conjugated operator P̃− ihλ− Q̃ where

(4.15) Q̃ := eFmQe−Fm .

Denote Ã := eFmAe−Fm . Then (4.14) follows from the estimate

(4.16) ‖Ãv‖L2 ≤ C‖(P̃− ihλ− iQ̃)v‖L2 +O(h∞)‖v‖H−N
h

where we put v := eFmu ∈ C∞(M ; E).
Since WFh(Q) does not intersect the fiber infinity ∂T ∗M , using the expan-

sion (4.7) for Q in place of P we see that Q̃ = Q+O(h)Ψ−∞
h (M ;End(E)). Moreover,

by (4.9) the operator Ã ∈ Ψ0
h(M ; End(E)) has the same wavefront set as A. It

follows that WFh(Ã) ⊂ ellh(P̃ − ihλ − iQ̃). Now (4.16) follows from the stan-
dard elliptic estimate [13, Theorem E.33] whose proof adapts directly to the case of
operators on vector bundles.

4.2.2. Propagation of singularities. Our next estimate is propagation of singulari-
ties:

Lemma 4.5. Assume that A,B,B1 ∈ Ψ0
h(M ; End(E)) and the following control

condition holds:

for all (x, ξ) ∈ WFh(A) there exists T ≥ 0 such that

e−THp(x, ξ) ∈ ellh(B) and e−tHp(x, ξ) ∈ ellh(B1) for all t ∈ [0, T ].

Then

‖Au‖Hm
h
≤ C‖Bu‖Hm

h
+ Ch−1‖B1(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Similarly to §4.2.1, Lemma 4.5 can be reduced to an estimate in the space L2 for

the conjugated operator P̃− ihλ− iQ̃. The latter estimate is proved using the same
positive commutator estimate as standard scalar propagation of singularities [13,
Theorem E.47], using a principally scalar multiplier G, given that:

• P̃− ihλ− iQ̃ ∈ Ψ1
h(M ; End(E)) is principally scalar;

• Reσh(P̃− ihλ− iQ̃) = p;

• Imσh(P̃ − ihλ − iQ̃) ≤ 0. Indeed, Im σh(P̃) = h(Hpm) log |ξ| by (4.8) and

Hpm ≤ 0 as required in the beginning of §4.1. Moreover, σh(Q̃) = σh(Q) ≥
0;

• the sharp G̊arding inequality applies to principally scalar operators in
Ψ2m

h (M ; End(E)) with nonnegative principal symbol, as follows for exam-
ple from Lemma 3.1.

4.2.3. Radial estimates. We now prove the two radial estimates that are crucial in
the proof of Lemma 4.3. This is the place in the argument where the threshold

regularity condition (4.11) is important. Recall the sets Ṽu, Ṽs ⊂ T ∗M introduced
in (4.3).

We start with the high regularity radial estimate at the set κ(E∗
s ) ⊂ ∂T ∗M .
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Lemma 4.6. There exist operators

As,B1,s ∈ Ψ0
h(M ; End(E)), κ(E∗

s ) ⊂ ellh(As), WFh(As) ∪WFh(B1,s) ⊂ Ṽs

such that the following estimate holds:

(4.17) ‖Asu‖Hm
h
≤ Ch−1‖B1,s(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Proof. 1. SinceHm
h is equivalent toHms

h microlocally on Ṽs (see (4.4)) andWFh(Q)∩
Ṽs = ∅ (see (4.10)), it suffices to show the estimate

(4.18) ‖Asu‖Hms
h

≤ Ch−1‖B1,s(P− ihλ)u‖Hms
h

+O(h∞)‖u‖H−N
h
.

2. We now follow the proof of [13, Theorem E.52], indicating the necessary changes.
Since the threshold condition (4.11) holds, Lemma 3.10 applies to give a section
ws ∈ C∞(T ∗M \ 0; End(π∗E)) which is positive definite everywhere, positively ho-
mogeneous of degree 2ms, and satisfies (where ‘< 0’ means ‘negative definite’)

(4.19) (HX − 2Reλ)ws(x, ξ) < 0 for all λ ∈ Ω, (x, ξ) ∈ E∗
s \ 0.

Fix an open set Us ⊂ Ṽs such that κ(E∗
s ) ⊂ Us and there exists δ > 0 such that

(4.20) (12HX − Reλ+ δ)ws(x, ξ) < 0 for all λ ∈ Ω, (x, ξ) ∈ Us.

Arguing as in the proof of Lemma 3.4 (see also [13, Lemma E.53]), we construct a
function

(4.21) χs ∈ C∞
c (Us; [0, 1]), χs = 1 near κ(E∗

s ), Hpχs ≤ 0.

Denote by
√
ws the square root of ws, which is a positive definite section in

C∞(T ∗M \ 0; End(π∗E)) and positively homogeneous of degree ms. Define

gs := χs
√
ws ∈ C∞(T ∗M ; End(π∗E))

and note that gs lies in the symbol class Sms .
3. Take a pseudodifferential operator

Gs ∈ Ψms
h (M ; End(E)), WFh(Gs) ⊂ Us, σh(Gs) = gs.

Note that Gs is elliptic on κ(E∗
s ). Fix also operators As,B2,s ∈ Ψ0

h(M ; End(E))
such that

κ(E∗
s ) ⊂ ellh(As), WFh(As) ⊂ ellh(Gs), WFh(Gs) ⊂ ellh(B2,s), WFh(B2,s) ⊂ Us.

By Lemma 3.6, we have

(4.22) h−1 Im〈(P− ihλ)u,G∗
sGsu〉L2 + δ‖Gsu‖2L2 = 〈Zsu,u〉L2

where

Zs ∈ Ψ2ms(M ; End(E)), Z∗
s = Zs, WFh(Zs) ⊂ ellh(B2,s)

has principal symbol

(4.23) σh(Zs) = (12HX−Reλ+ δ)(χ2
sws) = χs(Hpχs)ws+χ

2
s(

1
2HX−Reλ+ δ)ws.

By (4.20)–(4.21), each of the two summands on the right-hand side of (4.23) is the
product of a nonnegative function in C∞

c (Us) and a self-adjoint section of End(π∗E)
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which is positively homogeneous of degree 2ms and negative definite on Us. Thus
the version of the sharp G̊arding inequality given in Lemma 3.1 gives

〈Zsu,u〉L2 ≤ Ch‖B2,su‖2
H

ms− 1
2

h

+O(h∞)‖u‖2
H−N

h

.

Together with (4.22) this implies

‖Gsu‖2L2 ≤ Ch−1‖B2,s(P−ihλ)u‖Hms
h

·‖Gsu‖L2+Ch‖B2,su‖2
H

ms− 1
2

h

+O(h∞)‖u‖2
H−N

h

which gives the estimate
(4.24)

‖Gsu‖L2 ≤ Ch−1‖B2,s(P− ihλ)u‖Hms
h

+ Ch
1
2 ‖B2,su‖

H
ms− 1

2
h

+O(h∞)‖u‖H−N
h
.

4. We now argue similarly to step 2 of the proof of [13, Theorem E.52]. By the ellip-
tic estimate we can replace ‖Gsu‖L2 on the left-hand side of (4.24) by ‖Asu‖Hms

h
.

If the set Us is chosen small enough, then propagation of singularities gives
(4.25)
‖B2,su‖

H
ms− 1

2
h

≤ C‖Asu‖
H

ms− 1
2

h

+ Ch−1‖B1,s(P− ihλ)u‖Hms
h

+O(h∞)‖u‖H−N
h

for some B1,s ∈ Ψ0
h(M ; End(E)) such that

WFh(B2,s) ⊂ ellh(B1,s), WFh(B1,s) ⊂ Ṽs.

Combining (4.24) and (4.25) and taking h small enough, we get (4.18). □
We next give the low regularity radial estimate at the set κ(E∗

u):

Lemma 4.7. There exist operators

Au,Bu,B1,u ∈ Ψ0
h(M ; End(E)), κ(E∗

u) ⊂ ellh(Au),

WFh(Au) ∪WFh(B1,u) ⊂ Ṽu, WFh(Bu) ⊂ Ṽu \ κ(E∗
u)

such that the following estimate holds:

(4.26) ‖Auu‖Hm
h
≤ C‖Buu‖Hm

h
+Ch−1‖B1,u(P−ihλ−iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Proof. 1. We argue similarly to the proof of [13, Theorem E.54], making changes
similar to the proof of Lemma 4.6. Since Hm

h is equivalent to Hmu
h microlocally on

Ṽu, it suffices to show the estimate

(4.27) ‖Auu‖Hmu
h

≤ C‖Buu‖Hmu
h

+Ch−1‖B1,u(P− ihλ)u‖Hmu
h

+O(h∞)‖u‖H−N
h
.

2. Since the threshold condition (4.11) holds, Lemma 3.10 applies to give a section
wu ∈ C∞(T ∗M \ 0; End(π∗E)) which is positive definite everywhere, positively
homogeneous of degree 2mu, and satisfies

(HX − 2Reλ)wu(x, ξ) < 0 for all λ ∈ Ω, (x, ξ) ∈ E∗
u \ 0.

Fix an open set Uu ⊂ Ṽu such that κ(E∗
u) ⊂ Uu and there exists δ > 0 such that

(4.28) (12HX − Reλ+ δ)wu(x, ξ) < 0 for all λ ∈ Ω, (x, ξ) ∈ Uu.

Take an arbitrary cutoff

χu ∈ C∞
c (Uu; [0, 1]), χu = 1 near κ(E∗

u)
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and define

gu := χu
√
wu ∈ C∞(T ∗M ; End(π∗E))

which lies in the class Smu .
3. Take a pseudodifferential operator

Gu ∈ Ψmu
h (M ; End(E)), WFh(Gu) ⊂ Uu, σh(Gu) = gu.

Note that Gu is elliptic on κ(E∗
u). Fix a cutoff function

(4.29) ψu ∈ C∞
c (Uu \ κ(E∗

u)) such that χu(Hpχu) ≤ |ψu|2 everywhere

and an operator Eu ∈ Ψmu
h (M ; End(E)) such that

WFh(Eu) ⊂ Uu \ κ(E∗
u), σh(Eu) = ψu

√
wu.

Now, fix Au,Bu ∈ Ψ0
h(M ; End(E)) such that, putting B1,u := A∗

uAu +B∗
uBu,

κ(E∗
u) ⊂ ellh(Au), WFh(Au) ⊂ ellh(Gu), WFh(Eu) ⊂ ellh(Bu),

WFh(Bu) ⊂ Uu \ κ(E∗
u), WFh(Gu) ⊂ ellh(Au) ∪ ellh(Bu) ⊂ ellh(B1,u).

By Lemma 3.6, we have

(4.30) h−1 Im〈(P− ihλ)u,G∗
uGuu〉L2 − ‖Euu‖2L2 + δ‖Guu‖2L2 = 〈Zuu,u〉L2

where

Zu ∈ Ψ2mu(M ; End(E)), Z∗
u = Zu, WFh(Zu) ⊂ ellh(B1,u)

has principal symbol

(4.31) σh(Zu) = (χu(Hpχu)− |ψu|2)wu + χ2
u(

1
2HX − Reλ+ δ)wu.

By (4.28)–(4.29), each of the two summands on the right-hand side of (4.31) is the
product of a nonnegative function in C∞

c (Uu) and a self-adjoint section of End(E)
which is positively homogeneous of degree 2mu and negative definite on Uu. Thus
Lemma 3.1 gives

〈Zuu,u〉L2 ≤ Ch‖B1,uu‖2
H

mu− 1
2

h

+O(h∞)‖u‖2
H−N

h

which together with (4.30) implies

(4.32)

‖Guu‖L2 ≤C‖Euu‖L2 + Ch−1‖B1,u(P− ihλ)u‖Hmu
h

+ Ch
1
2 ‖B1,uu‖

H
mu− 1

2
h

+O(h∞)‖u‖H−N
h
.

4. By the elliptic estimate, we can replace ‖Guu‖L2 on the left-hand side of (4.32)
by ‖Auu‖Hmu

h
. Similarly we may replace ‖Euu‖L2 on the right-hand side of (4.32)

by ‖Buu‖Hmu
h

. Finally, recalling the definition of B1,u we see that

‖B1,uu‖
H

mu− 1
2

h

≤ C
(
‖Auu‖

H
mu− 1

2
h

+ ‖Buu‖
H

mu− 1
2

h

)
.

Taking h small enough in (4.32), we now obtain (4.27). □
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4.2.4. Proof of Lemma 4.3. We are now ready to finish the proof of Lemma 4.3,
following the proof of [12, Proposition 3.4]. Let As,Au,Bu ∈ Ψ0

h(M ; End(E)) be
the operators from Lemmas 4.6–4.7. We first combine ellipticity, propagation of
singularities, and the high regularity radial estimate to get

Lemma 4.8. Let A ∈ Ψ0
h(M ; End(E)) satisfy WFh(A) ∩ κ(E∗

u) = ∅. Then

(4.33) ‖Au‖Hm
h
≤ Ch−1‖(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Proof. Fix an operator Q̃ ∈ Ψ0
h(M ; End(E)) such that WFh(Q̃) ⊂ ellh(Q) and

ellh(Q̃) contains the zero section of T ∗M . Define the open set U ⊂ T ∗M as follows:

U := {(x, ξ) ∈ T ∗M | ∃t ≥ 0 : e−tHp(x, ξ) ∈ ellh(Q̃) ∪ ellh(As)}.
Since ellh(As) contains κ(E

∗
s ), by Lemma 3.3 we have WFh(A)∩{p = 0} ⊂ U , that

is WFh(A) ⊂ ellh(P) ∪ U . Using a microlocal partition of unity, we write

A = A1+A2, A1,A2 ∈ Ψ0
h(M ; End(E)), WFh(A1) ⊂ ellh(P), WFh(A2) ⊂ U .

By the elliptic estimate, Lemma 4.4, we have

(4.34) ‖A1u‖Hm
h
+ ‖Q̃u‖Hm

h
≤ C‖(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Next, by propagation of singularities, Lemma 4.5, with B := As + Q̃, ellh(B) =

ellh(As) ∪ ellh(Q̃), we have

(4.35)
‖A2u‖Hm

h
≤C‖Asu‖Hm

h
+ C‖Q̃u‖Hm

h

+ Ch−1‖(P− ihλ− iQ)u‖Hm
h
+O(h∞)‖u‖H−N

h
.

Finally, recall that by the high regularity radial estimate, Lemma 4.6,

(4.36) ‖Asu‖Hm
h
≤ Ch−1‖(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Putting together (4.34)–(4.36), we get (4.33). □

Now, recall that the low regularity radial estimate, Lemma 4.7, gives

(4.37) ‖Auu‖Hm
h
≤ C‖Buu‖Hm

h
+ Ch−1‖(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Take A ∈ Ψ0
h(M; End(E)) such that

T ∗M \ ellh(Au) ⊂ ellh(A), WFh(A) ⊂ T ∗M \ κ(E∗
u).

Since WFh(Bu) ∩ κ(E∗
u) = ∅, Lemma 4.8 applies to both A and Bu to give

(4.38) ‖Au‖Hm
h
+ ‖Buu‖Hm

h
≤ Ch−1‖(P− ihλ− iQ)u‖Hm

h
+O(h∞)‖u‖H−N

h
.

Since A∗A+A∗
uAu ∈ Ψ0

h(M ; End(E)) is elliptic on the entire T ∗M , we can use the
elliptic estimate to derive from (4.38) and (4.37) the bound

‖u‖Hm
h
≤ C‖Au‖Hm

h
+ C‖Auu‖Hm

h
+O(h∞)‖u‖H−N

h

≤ Ch−1‖(P− ihλ− iQ)u‖Hm
h
+O(h∞)‖u‖H−N

h
.

For h small enough, we may remove the last term on the right-hand side, obtain-
ing (4.12) and finishing the proof of Lemma 4.3.
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4.3. Meromorphic continuation. We finally give the proof of Theorem 4.1, fol-
lowing [12, §§3.3–3.4]. Let Ω ⊂ C be a compact set satisfying the threshold reg-
ularity condition (4.11). Fix h > 0 small enough so that Lemma 4.3 applies. We
henceforth suppress the subscript h in the notation Hm

h . Define the space

Dm := {u ∈ Hm | Pu ∈ Hm}

with the Hilbert norm

‖u‖2Dm := ‖u‖2Hm + ‖Pu‖2Hm .

Since WFh(Q) does not intersect the fiber infinity, Q is a smoothing operator. In
particular, Q maps Hm to itself. Therefore,

(4.39) P− ihλ− iQ : Dm → Hm

is a holomorphic family of bounded operators.
The space C∞(M ; E) is dense in Dm as follows from [13, Lemma E.45] applied

to the conjugated operator P̃ from §4.1.2 (whose proof adapts directly to the case
of operators on vector bundles). Therefore, the estimates of Lemma 4.3 show that
there exists a constant C such that for all λ ∈ Ω

(4.40)
‖u‖Dm ≤ C‖(P− ihλ− iQ)u‖Hm for all u ∈ Dm,

‖v‖D−m ≤ C‖(P− ihλ− iQ)∗v‖H−m for all v ∈ D−m.

Here C and Q depend on h, however we already fixed h small enough above.
By a standard argument from functional analysis (see for example the proof of [13,

Theorem 5.30]), the estimates (4.40) imply that the operator (4.39) is invertible for
all λ ∈ Ω. Since Q is smoothing, it is a compact operator Dm → Hm. It follows
that P− ihλ : Dm → Hm is a Fredholm operator of index 0 for all λ ∈ Ω. Recalling
that P = −ihX and Ω is an arbitrary compact subset of

Ωm := {λ ∈ C | Reλ > max(ru(mu), rs(ms))},

we get the following Fredholm property:

(4.41) X+ λ : Dm → Hm is a Fredholm operator of index 0 for all λ ∈ Ωm.

Recall from (2.10) that the Pollicott–Ruelle resolvent RX(λ) was defined for Reλ >
CX by

(4.42) RX(λ)f :=

∫ ∞

0
e−λte−tXf dt for f ∈ C∞(M ; E).

The operator e−tX is bounded on the space Hms(M ; E) locally uniformly in t. Since
e−tX forms a group in t, we see that there exists a constant CX(ms) ≥ CX such
that

‖e−tX‖Hms→Hms = O(eCX(ms)t) as t→ ∞.

For Reλ > CX(ms) and f ∈ C∞, the integral (4.42) converges in the space Hms

and thus (recalling (4.2)) in the larger space Hm. Thus u := RX(λ)f lies in Hm

and (recalling (2.11)) satisfies (X+ λ)u = f . It follows that the range of the opera-
tor (4.41) contains C∞(M ; E) and is thus dense in Hm. From the Fredholm property
we then see that when Re λ > max(CX(ms), ru(mu), rs(ms)), the operator (4.41) is
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invertible and its inverse coincides on C∞(M ; E) with the Pollicott–Ruelle resolvent
RX(λ). Now by Analytic Fredholm Theory [13, Theorem C.8] we see that

(X+ λ)−1 : Hm → Dm, λ ∈ Ωm

is meromorphic with poles of finite rank. This operator gives the meromorphic con-
tinuation of the Pollicott–Ruelle resolvent, which finishes the proof of Theorem 4.1.
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