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Also, notice that H1
0,ℓ(B) is a closed subspace of the Hilbert space H1

0 (B), and

consequently it is also a Hilbert space. Indeed, H1
0,ℓ(B) is the set of the fixed points

of the group O(l)×O(N − l) that acts isometrically on H1
0 (B).

Now, consider the space

H2
ℓ (B) ∩H1

0 (B) = {u ∈ H2(B) ∩H1
0 (B) : u(x) = u(y, z) = v(|y|, |z|)},

endowed with the norm

‖u‖H2 =

(∫
B
|∆u|2dx

)1/2

, u ∈ H2
ℓ (B) ∩H1

0 (B),

which is compactly embedded into L2(B) ↪→ L2
l (B, |x|α); throughout this paper

↪→ represents continuous embedding. Given f ∈ L2
l (B, |x|α) ↪→ L2

l (B, |x|2α), since
f |x|α ∈ L2(B), then

(1.1) −∆u = f |x|α in B, u = 0 on ∂B,

has a unique solution in H2
l (B) ∩H1

0 (B). Therefore, the linear operator

Tα : L2
ℓ (B, |x|α) −→ L2

ℓ (B, |x|α)
f 7−→ u = (−∆)−1(f |x|α)

is compact. Moreover, it is symmetric. Indeed, for all f, g ∈ L2
ℓ (B, |x|α),

(Tαf, g) =

∫
B
Tαf g|x|αdx =

∫
B
(−∆)−1(f |x|α) g|x|αdx

=

∫
B
(−∆)−1(f |x|α) (−∆)((−∆)−1(g|x|α))dx

=

∫
B
(−∆)((−∆)−1(f |x|α))(−∆)−1(g|x|α)dx

=

∫
B
f |x|α(−∆)−1(g|x|α)dx =

∫
B
f(−∆)−1(g|x|α)|x|αdx

= (f, Tαg).

Consequently, Tα has a sequence of eigenfunctions and a corresponding sequence
of eigenvalues, denoted by (ψn) and (µ−1

n ), respectively, such that (ψn) is a complete
orthonormal system in L2

ℓ (B, |x|α) and, since (Tαf, f) > 0 for all f 6= 0,

0 < µ1 < µ2 ≤ µ3 ≤ . . . ≤ µn → +∞, as n→ ∞ .

Moreover, the identity Tαψn = µ−1
n ψn reads

−∆ψn = µnψn|x|α in B, ψn = 0 on ∂B.

We consider E2
ℓ = {u =

∑∞
n=1 anψn ∈ L2

ℓ (B, |x|α);
∑∞

n=1 |an|2µ2n < ∞} endowed
with the norm

|||u||| := (

∞∑
n=1

|an|2µ2n)1/2.

It follows that E2
ℓ ↪→ H2

ℓ (B)∩H1
0 (B), and that E2

ℓ is the domain of the operator
T−1
α ; see Lemmas 3.1 and 3.2 ahead.
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For 0 ≤ t ≤ 2, we define fractional Sobolev spaces, as in [11], since T−1
α is an

accretive operator, by setting

Et
ℓ ≡ D(T−t/2

α ) = {u =

∞∑
n=1

anψn ∈ L2
ℓ (B, |x|α);

∞∑
n=1

|an|2µtn <∞}.

Then, writing At = T
−t/2
α , we have for u =

∑∞
n=1 anψn, that

At : Et
ℓ −→ L2

ℓ (B, |x|α)

u 7−→ Atu =

∞∑
n=1

µt/2n anψn.

We observe that Et
ℓ is a Hilbert space with inner product and norm given by

(u, v)Et
ℓ
:=

∫
B
AtuAtv|x|αdx and ||u||Et

ℓ
:= (

∫
B
|Atu|2|x|αdx)1/2,

for u, v ∈ Et
ℓ, and the Poincaré’s type inequality

||u||Et
ℓ
= (

∫
B
|Atu|2|x|αdx)1/2 ≥ µ

t/2
1 ||u||2,α, ∀u ∈ Et

ℓ,

holds, whence we infer that Et
ℓ is continuously embedded into L2

ℓ (B, |x|α).
Following [12], we define the fractional Sobolev space Hs

ℓ (B) as the interpolation
space

Hs
ℓ (B) = [H2

ℓ (B) ∩H1
0 (B), L2

ℓ (B)]θ,

where 0 < θ < 1, s = 2(1− θ) and we refer to [11] for results regarding this space.
In particular, it is proved in [11, Theorem 1], with α = 0, that

Et
ℓ = D(At) ⊂ Ht

ℓ(B), 0 ≤ t ≤ 2 .

Also, for 0 < θ < 1, we consider the interpolation spaces given by

Lr
ℓ(B, |x|α) = [Lq

ℓ(B, |x|
α), L2

ℓ (B, |x|α)]θ,
1

r
=

1− θ

q
+
θ

2
.

One of our main result is the following

Theorem 1.1. The embedding Et
ℓ ⊂ Lr

ℓ(B, |x|α) is compact for 2 ≤ r < 2(N−1)
N−1−2t , α >

0 large, 0 ≤ t ≤ 2.

As an application, we consider the following non autonomous Hamiltonian system
with weights 

−∆u = |x|β |v|q−1v + g(x, v) in B,
−∆v = |x|α|u|p−1u+ f(x, u) in B,

u, v = 0 on ∂B,
u, v > 0 in B,

(P )

where α, β are positive constants, and p, q > 1 are such that (p, q) lies below the
α, β critical hyperbola, that is,

(1.2)
N + α

p+ 1
+
N + β

q + 1
> N − 2, N > 2.
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Regarding the functions f, g : B × R −→ R we make the following assumptions:

(H1) f, g ∈ C(B × R,R), f(x, 0) = g(x, 0) = 0 ∀x ∈ B;

(H2) lim
|u|→∞

f(x, u)

|u|τ
, lim

|v|→∞

g(x, v)

|v|σ
< +∞, uniformly in x ∈ B,

where τ, σ satisfy

(1.3)
N

τ + 1
+

N

σ + 1
> N − 2, N > 2;

(H3) lim
|u|→0

f(x, u)

|u|
= lim

|v|→0

g(x, v)

|v|
= 0, uniformly in x ∈ B;

(H4) There exist γ > 2 and η > 0 such that

0 < γF (x, u) ≤ uf(x, u), 0 < γG(x, v) ≤ ug(x, v), for |u|, |v| ≥ η,

uniformly in x ∈ B, where

F (x, s) =

∫ s

0
f(x, t) dt and G(x, s) =

∫ s

0
g(x, t) dt.

When f = g = 0 and under the above conditions, it is proved in [5] a non-existence
result of classical solutions in C2(B)∩C1(B) for (p, q) lying above (and on) the α, β
critical hyperbola, that is,

(1.4)
N + α

p+ 1
+
N + β

q + 1
≤ N − 2, N > 2.

In the same work, it is proved the existence of radial solutions for (p, q) lying below
the α, β critical hyperbola, i.e., (p, q) verifying (1.2). In [2, 3], the authors studied
radial and foliated Schwarz symmetric solutions for (P ) with f = g = 0, when
p.q > 1 lies below the critical hyperbola, namely

(1.5)
N

p+ 1
+

N

q + 1
> N − 2, N > 2.

We recall that definitions of such hyperbola appeared independently in [6] and
[18], and they were considered by several authors, including [13] and [7, 15]. We
would also like to mention that these types of systems have been considered before
in [3, 5, 8–10] with f = g = 0.

Our next goal is to show existence of a solution (u, v) for the problem (P ).

Theorem 1.2. Assume (H1) − (H4), α, β > 0 are sufficiently large, and p > 1,
q > 1 verify

N − 1

p+ 1
+
N − 1

q + 1
> N − 3, N > 3.

In addition, assume that f(x, s) = f((|y|, |z|), s) and g(x, s) = g((|y|, |z|), s), x =
(y, z) ∈ Rℓ × RN−ℓ, ` ≥ 2 and N − l ≥ 2. Then the system (P ) possesses at least
one nontrivial positive solution (u, v).
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2. Interpolation spaces

In this section we will establish a compact embedding result for fractional Sobolev
spaces into weighted Lp spaces. For that, we will use an abstract theorem due to
Persson [16], which involves a result on compact linear mappings between interpo-
lation spaces.

Let us start by giving some definitions. A pair E0, E1 of Banach spaces is called
an interpolation pair if E0 and E1 are continuously embedded in some separated
topological linear space E. Let A0, A1 and E0, E1 be interpolation pairs. Aθ and
Eθ are called interpolation spaces of exponent θ ∈ (0, 1), with respect to A0, A1 and
E0, E1, if we have the topological inclusions

A0 ∩A1 ⊂ Aθ ⊂ A0 +A1, E0 ∩ E1 ⊂ Eθ ⊂ E0 + E1,

and if each linear mapping T from a separated topological linear space A into E,
which maps Ai continuously into Ei (i = 0, 1), also maps Aθ continuously into Eθ

in such a way that

M ≤M1−θ
0 M θ

1 ,

where M denotes the norm of T : Aθ −→ Eθ and Mi the norm of T : Ai −→ Ei, i =
0, 1.

For the interpolation pair E0, E1 we shall consider the following condition:

(H) To each compact set K ⊂ E0 there exists a constant C > 0 and a set P of
linear operators P : E → E which map Ei into E0 ∩ E1 i = 0, 1, and are such that

(H)(i) ||P ||L(Ei,Ei) = sup||x||Ei
≤1 ||Tx||Ei ≤ C, i = 0, 1;

(H)(ii) Furthermore, for each ε > 0 there is P0 ∈ P so that ||P0x− x||Ei < ε
for all x ∈ K.

We now recall the following result due to Persson [16].

Theorem 2.1. (Persson) Let A0, A1 and E0, E1 be interpolation pairs, and sup-
pose that Aθ and Eθ are interpolation spaces of exponent θ ∈ (0, 1) with respect to
A0, A1 and E0, E1. Suppose also that Aθ ⊂ Aθ and E0, E1 satisfy (H). Then, if
T0 : A0 → E0 is compact and T1 : A1 → E1 is bounded, it follows that Tθ : Aθ → Eθ

is compact.

3. Proof of Theorem 1.1

We start with two basic lemmas.

Lemma 3.1. E2
ℓ ↪→ H2

ℓ (B) ∩H1
0 (B).
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Proof. Given u ∈ E2
l , with u =

∑∞
n=1 anψn, define uk =

∑k
n=1 anψn. Then, for

every m, k ≥ 1,∫
B
(∆(uk+m − uk))

2 dx =

∫
B

(
∆

k+m∑
n=k+1

anψn

)2

=

∫
B

(
n+m∑
n=k+1

anµnψn|x|α
)2

dx ≤
∫
B

(
n+m∑
n=k+1

anµnψn

)2

|x|αdx

=

n+m∑
n=k+1

a2nµ
2
n.

This argument shows that (uk) is a Cauchy sequence in H2
ℓ (B) ∩H1

0 (B) and that
uk → u in H2

ℓ (B) ∩H1
0 (B). Moreover,

‖u‖H2 ≤ |||u|||, ∀u ∈ E2
l .

Therefore, the continuous embedding E2
ℓ ↪→ H2

ℓ (B) ∩H1
0 (B) holds. □

Observe that

u = Tαf = (−∆)−1(f |x|α) ⇐⇒ −∆u = f |x|α ⇐⇒ |x|−α(−∆u) = f

⇐⇒ T−1
α u = (−∆u)|x|−α.

From this remark we obtain the following characterization.

Lemma 3.2. E2
ℓ is the domain of the operator T−1

α .

Proof. Given u =
∑∞

n=1 anψn = Tαf . Then,

+∞ >

∫
B
(T−1

α u)2|x|αdx =

∫
B
(∆u)2|x|−2α|x|αdx

=

∫
B

( ∞∑
n=1

anµnψn|x|α
)2

|x|−αdx =

∫
B

( ∞∑
n=1

anµnψn

)2

|x|αdx =

∞∑
n=1

a2nµ
2
n.

This proves that Tα(L
2
ℓ (B, |x|α)) ⊂ E2

l . On the other hand, given u =
∑∞

n=1 anψn ∈
E2

l ⊂ H2
l (B) ∩ H1

0 (B), set f =
∑∞

n=1 anµnψn ∈ L2
ℓ (B, |x|α). Then −∆u =∑∞

n=1 anµnψn|x|α = f |x|α, that is, u = Tαf . Therefore, E2
ℓ is the domain of

T−1
α . □

Proof of Theorem 1.1. Note that, in our setting, E0 = Lq
ℓ(B, |x|

α), E1 = L2
ℓ (B, |x|α),

A0 = H2
ℓ , A1 = L2

ℓ , and we have that

(a): T0 : A0 → E0 is compact for 2 ≤ q < 2(N−1)
N−5 and α large enough,

(b): T1 : A1 → E1 is bounded, with T1 = identity.

In order to conclude that Tθ : Aθ → Eθ is compact it is sufficient to prove the
following lemma.

Lemma 3.3. The interpolation pair E0 = Lq
ℓ(B, |x|

α), E1 = L2
ℓ (B, |x|α) satisfies

condition (H).
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Proof Actually, as in [16], we will show the following condition, which is stronger
than (H):

(H̃) There exist a constant C > 0 and a set D of linear operators P : E → E
with P (Ei) ⊂ E0 ∩ E1, i = 0, 1, such that (H)(i) is satisfied and so that, to every
ε > 0 and every finite set x1, x2, . . . , xm in E0, we can find P in D verifying

(H)(iii) ||Pxk − xk||E0 ≤ ε , k = 1, 2, . . . ,m .

We claim that the pair E0 = Lq
ℓ(B, |x|

α), E1 = L2
ℓ (B, |x|α) satisfies (H̃).

Some arguments in this proof were borrowed from [10, lemma 2.1], where α, β ≤ 0
or the radial case were considered.

First of all we identify the space Lq
ℓ(B, |x|

α) with Lq
ℓ(B,µ), where µ = |x|αdx , α >

0, is a σ finite measure. Then C∞
0 (B) is dense in Lq

ℓ(B,µ) and, in fact, C∞
0,ℓ(B) is

dense in Lq
ℓ(B,µ) (see [4]).

Now, let fj (j = 1, 2, . . . ,m) be given functions in C∞
0,ℓ(B) ⊂ Lq

ℓ(B,µ) and take

a compact set K in B such that fj(x) = 0, ∀x ∈ Kc = RN\K and j = 1, 2, . . . ,m.
Also, given ε > 0, pick η > 0 so that ηµ(K)) < ε, where µ(K) denotes the measure of
K. We then construct a partition (Kn) ofK consisting of a setK0 with measure zero
and measurable sets K1,K2, . . . , with µ(Kn) > 0, such that sup

x ̸=y∈Kn

|fj(x)−fj(y)| <

η, for all j = 1, 2, . . . ,m.
Next, define

Pf =
∞∑
n=1

(µ(Kn)
−1

∫
B
fφndµ)φn,

where φn denotes the characteristic function of Kn, n = 1, 2, . . ..
We claim that

(i): P satisfies (H)(i), i.e.,
||P ||L(Ei,Ei) = sup||x||Ei

≤1 ||Px||Ei ≤ C, i = 0, 1, C > 0,

P : Ei → E0 ∩ E1 (i = 0, 1) .
(ii): P satisfies (H)(iii), i.e.,

for every finite set x1, x2, . . . , xm in E0 we can find P such that
||Pxk − xk||E0 ≤ ε, k = 1, 2, . . . ,m.

We start noticing that, for every q ≥ 2, we have by Hölder inequality that

(3.1)

∫
B
|Pf |qdµ =

∞∑
n=1

(µ(Kn)
−1

∫
Kn

fφndµ)
q

∫
Kn

φqndµ

≤
∞∑
n=1

(µ(Kn)
−1(

∫
Kn

|f |qdµ)1/q(
∫
Kn

|φn|
q

q−1dµ)(q−1)/q)q
∫
Kn

|φn|qdµ

≤
∞∑
n=1

((µ(Kn)
−q(µ(Kn)

(q−1)/q)q|f |q
Lq
ℓ,µ
µ(Kn) = |f |q

Lq
ℓ,µ
.

Verification of (i): From (3.1) it follows that P : Ei → Ei (i = 0, 1) is bounded.
And, since E0 ⊂ E1 we have that P : E0 → E0 = E0 ∩ E1. Now we show that
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P (E1) ⊂ E0, hence we also have P : E1 → E0 ∩ E1:∫
B
|Pf |2dµ =

∞∑
n=1

(µ(Kn)
−1

∫
Kn

fφndµ)
2

∫
Kn

φ2ndµ

≤
∞∑
n=1

µ(Kn)
−2((

∫
Kn

|f |qdµ)1/q(
∫
Kn

|φn|
q

q−1dµ)(q−1)/q)2µ(Kn)

=
∞∑
n=1

µ(Kn)
−2|f |2Lq

ℓ,µ
µ(Kn)

2(q−1)/qµ(Kn)

=

∞∑
n=1

µ(Kn)
(q−2)/q|f |2Lq

ℓ,µ
≤ C|f |2Lq

ℓ,µ
.

Verification of (ii): We note that

Pfk =

∞∑
n=1

(µ(Kn)
−1

∫
B
fk(y)φn(y)dµ)φn

and

fk(x) =

∞∑
n=1

(µ(Kn)
−1fk(x)

∫
B
φn(y)dµ)φn .

Then, by construction of the Kn’s and our choice of η = η(ε,K), we conclude that

||Pfk − fk||qLq
ℓ,µ

≤
∫
B

∞∑
n=1

(µ(Kn)
−q(

∫
B
|fk(y)− fk(x)|φn)dµ)q|φn|qdµ

≤ η
∞∑
n=1

µ(Kn) = ηµ(K) < ε,

and this finishes the proof of Lemma 3.3.
Now, we continue the proof of Theorem 1.1. Since we have checked (i), (ii), we

now apply Persson result. Indeed, since 1
r = 1−θ

q + θ
2 and H2

ℓ (B) is compactly

embedded into Lq
ℓ(B, |x|

α) when 2 ≤ q < 2(N−1)
N−5 and α is large enough, it follows

that
1

r
>

1− θ

2
− 2(1− θ)

N − 1
+
θ

2
.

And, recalling that 1− θ = s/2, we get

(3.2) r <
2(N − 1)

N − 1− 2s
, 0 ≤ s ≤ 2, α for sufficiently large.

This completes the proof of Theorem 1.1. □

Corollary 3.4. Let p, q > 0 and suppose that

N − 1

p+ 1
+
N − 1

q + 1
> (N − 1)− 2 = N − 3,
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that is, (p, q) is below the (N-1)- critical hyperbola. Then, there exist s, t > 0 such

that s+ t = 2, p+ 1 < 2(N−1)
N−1−2s , q + 1 < 2(N−1)

N−1−2t and the compact embeddings

Es
ℓ ⊂ Lp+1

ℓ (B, |x|α), Et
ℓ ⊂ Lq+1

ℓ (B, |x|β),

for α and β sufficiently large, hold.

We include below a diagram illustrating Theorem 1.1:

H2
ℓ (B) L2

ℓ (B)

Lq
ℓ(B, |x|

α) L2
ℓ (B, |x|α)

&%
'$

&%
'$
Lr
ℓ(B, |x|α)

Hs
ℓ (B)

compact

2 ≤ q < 2(N−1)
N−5

identitycompact

? ??

4. Proof of Theorem 1.2

We are going to search for the critical points of the functional Iℓ : E
s
ℓ ×Et

ℓ −→ R
given by

Iℓ(u, v) =

∫
B
AsuAtv −

∫
B
(
|x|α|u|p+1

p+ 1
+

|x|β |v|q+1

q + 1
)−

∫
B
(F (x, u) +G(x, v)),

which are precisely the (classical) solutions of (P ).
Indeed, we have that Iℓ is of class C

1 with (Fréchet) derivative given by

I ′ℓ(u, v)(φ, ψ) =

∫
B
AsuAtψ +

∫
B
AsφAtv −

∫
B
(|x|α|u|p−1uφ+ |x|β |v|q−1vψ)

−
∫
B
(f(x, u)φ+ g(x, v)ψ).
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Recall that As = T−s/2 : Es
ℓ → L2

ℓ (|x|α) [where we are setting L2
ℓ (B, |x|α) =

L2
ℓ (|x|α) for simplicity] and Es

ℓ = D(T−s/2), 0 ≤ s ≤ 2, is endowed with the
equivalent norm ||Asu||, which satisfies

(4.1) ||Asu|| ≥ ||u||, for all u ∈ Es
ℓ ,

so that we set

(4.2)
< u, v >Es

ℓ
:=< Asu,Asv >=

∫
B A

suAsvdx and

||u||Es
ℓ
:= ||Asu|| = (

∫
B |Asu|2dx)1/2 ∀u ∈ Es

ℓ .

From (4.1), As : Es
ℓ → L2

ℓ (|x|α) is an isomorphism and we denote by A−s the
inverse of As.

Also, for given s, t > 0 with s+ t = 2, we denote by E the Hilbert space Es
ℓ ×Et

ℓ,
and define the symmetric bilinear form B : E × E → R by the formula

B((u, v), (φ, ψ)) =

∫
B
(AsuAtψ +AsφAtv)dx .

From (4.2) and applying the Cauchy-Schwartz inequality, we have that B is contin-
uous, i.e.

|B((u, v), (φ, ψ))| ≤ ||Asu||Es
ℓ
||Atψ||Et

ℓ
+ ||Asφ||Es

ℓ
||Atv||Et

ℓ
,

so that B induces a selfadjoint bounded linear operator L : E → E satisfying

B(z, η) =< Lz, η >E , for all z, η ∈ E .

In addition, we can easily verify that

(4.3) L(u, v) = (A−sAtv,A−tAsu), for z = (u, v) ∈ E .

Next, consider the eigenvalue problem

(4.4) Lz = λz in E .

From (4.3) the above problem is equivalent to

A−sAtv = λu, and A−tAsu = λv, z = (u, v).

Since the operators As and At are isomorphisms onto L2
ℓ (|x|α), λ cannot be zero,

and we obtain from the above that

v = λ−2v .

Therefore λ = ±1, with corresponding eigenspaces

(4.5) E− = {(u,−A−tAsu) : u ∈ Es
ℓ} for λ = −1 ,

(4.6) E+ = {(u,A−tAsu) : u ∈ Es
ℓ} for λ = 1 .

And we have the direct sum decomposition

E = E−
⊕

E+ ,

where the spaces E+ and E− are orthogonal with respect to the bilinear form B,
that is,

(4.7) B(z+, z−) = 0 for all z+ ∈ E+, z− ∈ E− .
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We also have

(4.8)
1

2
||z||2E = Q(z+)−Q(z−) for all z = z+ + z−, z+ ∈ E+, z− ∈ E− ,

where Q is the quadratic form associated with the bilinear form B:

Q(z) =
1

2
B(z, z) =

∫
B
AsuAtv dx, z = (u, v) ∈ E .

Now, let {ej} (j = 1, 2, . . .) be a complete orthogonal system in Es
ℓ and let En

denote the finite dimensional subspace of Es
ℓ spanned by {ej}, j = 1, 2, . . .,n. Since

As : Es
ℓ → L2

ℓ (|x|α) and At : Et
ℓ → L2

ℓ (|x|α) are isomorphisms, we can assume that
{êj}, j = 1, 2, . . . , where êj := A−tAsej , is a complete orthogonal system in Et

ℓ. We

let Ên denote the finite dimensional subspace of Et
ℓ spanned by {êj}, j = 1, 2, . . .,n.

In addition, for each n ∈ N, we introduce the following subspaces of E+ and E−,
respectively:

E+
n = span{(ej , êj) ∈ E+ | j = 1, 2, . . . , n } and

E−
n = span{(ej ,−êj) ∈ E− | j = 1, 2, . . . , n },

as well as En := E+
n

⊕
E−

n . The rest of the proof follows as in [10]. For the sake of
completeness, we will sketch some of its parts.

Proposition 4.1. The functional Iℓ has a local linking at 0, that is,

(i): Iℓ(z) ≥ 0, for z ∈ E+, ||z|| ≤ r,
(ii): Iℓ(z) ≤ 0, for z ∈ E−, ||z|| ≤ r.

Proof. For z = (u, v) ∈ E+, one shows that there exist C > 0 and r0 > 2 such that

Iℓ(u, v) ≥ ||z||2E − C||z||r0E .

Hence, there is r > 0 such that

Iℓ(z) ≥ 0, for z ∈ E+, ||z||E ≤ r.

Similarly, for z = (u, v) ∈ E−, one also shows there exist some C,D > 0 and
r0 > 2 such that

Iℓ(u, v) ≤ −C||z||2E +D|z||roE .
Hence, there is also some r > 0 such that

Iℓ(z) ≤ 0, for z ∈ E−, ||z||E ≤ r. □

Proposition 4.2. The functional Iℓ satisfies the (PS)∗ condition with respect to
{En }, that is,

(PS)∗ If a sequence {zn} ⊂ En is such that |Iℓ(zn)| ≤ C,
| < ∇nIℓ(un), η > | ≤ εn||η||E , with εn → 0, for some C > 0 and all η ∈ En,
then {zn} possesses a subsequence converging to a critical point of Iℓ.

Here, ∇n denotes the gradient of Iℓ restricted to En.
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Proof. In view of Theorem 1.1, it is sufficient to prove the uniform boundedness of
the sequence {zn = (un, vn)}, that is, that there exists a constant C > 0 verifying
||(zn)|| = ||(un, vn)||En ≤ C ∀ n ∈ N.

The argument is standard. Since

Iℓ(un, vn) =

∫
B
AsunA

tvn −
∫
B
(
|x|α|un|p+1

p+ 1
+

|x|β |vn|q+1

q + 1
)

−
∫
B
(F (x, un) + (G(x, vn))

and

I ′ℓ(un, vn)(un, vn) =

∫
B
AsunA

tvn +

∫
B
AsunA

tvn

−
∫
B
(|x|α|un|p+1 + |x|β |vn|q+1)−

∫
B
(f(x, un)un + g(x, vn)vn) ,

it follows that

(4.9) C + εn||zn||E ≥ Iℓ(zn)−
1

2
I ′ℓ(zn)(zn)

= (
1

2
− 1

p+ 1
)

∫
B
|x|α|un|p+1dx+ (

1

2
− 1

q + 1
)

∫
B
|x|β |vn|q+1dx

+ (
1

2
− 1

γ
)

∫
B
(f(x, un)un + g(x, vn)vn) .

On the other hand, recalling that

< L(u, v), η >= B((u, v), η) =

∫
B
(AsuAtη2 +Asη1A

tv)dx , ∀η = (η1, η2) ,

and writing z±n = (u±n , v
±
n ), we get

||z±n ||2 − ε|||z±n ||E ≤ | < Lzn, z
±
n > −I ′ℓ(zn)(z±n )|

= |
∫
B
|x|α|un|p−1unu

±
n dx+

∫
B
|x|β |vn|p−1vnv

±
n )dx(4.10)

+

∫
B
(f(x, un)u

±
n + g(x, vn)v

±
n )|

and we will now estimate each term in the r.h.s of above.
From Hölder inequality we get

|
∫
B
|x|α|un|p−1unu

±
n dx| ≤ (

∫
B
|x|α|un|p+1dx)

p
p+1 (

∫
B
|x|α|u±n |p+1dx)

1
p+1

≤ (

∫
B
|x|α|un|p+1dx)p/(p+1)||u±n ||Es

ℓ
(4.11)

and

(4.12) |
∫
B
|x|β |vn|q−1vnv

±
n dx| ≤ (

∫
B
|x|β |vn|q+1dx)q/(q+1)||v±n ||Et

ℓ
.
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On other hand, noticing that (H1) − (H4) gives the estimate f(s)s1/τ ≤ C(1 +
f(s)s), ∀s ∈ R, τ > 1, and using Hölder inequality, we infer that

(4.13) |
∫
B
(f(x, un)u

±
n + g(x, vn)v

±
n )|

≤
∫
B
|f(x, un)|

τ+1
τ )

τ
τ+1 ||u±n ||Lτ+1

ℓ
+

∫
B
|g(x, vn)|

σ+1
σ )

σ
σ+1 ||v±n ||Lσ+1

ℓ

≤ (

∫
B
|f(x, un)||f(x, un)|

1
τ )

τ
τ+1 ||z±n ||E + (

∫
B
|g(x, vn)||g(x, vn)|

1
σ )

σ
σ+1 ||z±n ||E

≤ C(1 + (

∫
B
|un||f(x, un)|)

r
r+1 + (

∫
B
|vn)||g(x, vn)|)

σ
σ+1 ))||z±n ||E

for some constant C > 0 .
Therefore, combining (4.11)-(4.12)-(4.13) with (4.10), we obtain

||z±n ||E − ε ≤ (

∫
B
|x|α|un|p+1dx)p/(p+1) + (

∫
B
|x|β |vn|q+1dx)q/(q+1)

≤ (C + εn||zn||)p/(p+1) + (C + εn||zn||)q/(q+1)(4.14)

+C(1 + (C + εn||zn||)τ/(τ+1) + (C + εn||zn||)σ/(σ+1)) .

This implies that ||zn||E is uniformly bounded in n . □
Proposition 4.3. For each n ∈ N, one has Iℓ(z) → −∞ as ||z||E → ∞, z ∈
E+

n

⊕
E−.

Proof. Let n ∈ N be fixed and let zn ∈ E+
n

⊕
E− be such that ||zn||E → ∞ . Writing

z = z+ + z− for z = (u, v), we have that

(4.15) Iℓ(u, v) ≤ ||z+||2E − ||z−||2E −
∫
B

|x|α|u|p+1

p+ 1
+

|x|β |v|q+1

q + 1

−
∫
B
(F (x, un) +G(x, vn)).

And letting z± = (u±, v±) we have that u− = ηu++ û, where û is orthogonal to u+

in L2
ℓ (|x|α). Similarly, v− = νv+ + v̂, where v̂ is orthogonal to v+ in L2

ℓ (|x|α).
Notice that either ν or η is positive. Supposing ν > 0, we have the following

estimate, where 1/γ + 1/(γ′) = 1 and γ > 1 :

(1 + ν)

∫
B
|x|δ|u+|2dx =

∫
B
|x|δ((1 + ν)u+ + û)u+dx ≤ |u|Lγ

ℓ (|x|δ)
|u+|

Lγ′
ℓ (|x|δ) .

Since the norms in E+
n are equivalent, we get, for a positive constant C > 0 :

(1 + ν)|u+|L2
ℓ (|x|δ)

≤ C|u|Lγ
ℓ (|x|δ)

.

Then, using this inequality in (4.15) with δ = α, γ = p+1 (resp. δ = β, γ = q+1),
we get

Iℓ(z) ≤ ||z+||2E − ||z−||2E − C(|u+|p+1

Lp+1
ℓ (|x|α)

+ C|v+|q+1

Lq+1
ℓ (|x|β)

),

which implies that

Iℓ(z) → −∞, as ||z|| → ∞, because p, q > 1.
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□

Finally, the proof of Theorem 2.1 is complete by applying the following version
of Rabinowitz Linking Theorem (see [19]):

Theorem 4.4. Suppose that I ∈ C1(E,R) satisfies the following conditions:

(a): I has a local linking at 0.
(b): I satisfies (PS)∗.
(c): I maps bounded sets into bounded sets.
(d): For every n ∈ N, I(z) → −∞, as ||z|| → ∞, z ∈ E+

n ⊕ E−.

Then I has a nontrivial critical point.
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