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FRACTIONAL SOBOLEV SPACES OF SYMMETRIC FUNCTIONS
AND APPLICATIONS TO HAMILTONIAN ELLIPTIC SYSTEMS

DAVID G. COSTA, DJAIRO G. DE FIGUEIREDO, EDERSON MOREIRA DOS SANTOS,
AND OLIMPIO HIROSHI MIYAGAKI

ABSTRACT. In this paper we study compact embeddings of fractional Sobolev
spaces of symmetric functions into weighted L? spaces in situations above the
Sobolev critical exponent. The proof combines a compact embedding of a Sobolev
space of symmetric functions into a weighted L space with an interpolation result
by Persson. The result is applied to prove existence of solutions for a class of non
autonomous Hamiltonian systems.

In memory of Louis Nirenberg

1. INTRODUCTION

When @ ¢ RY, N > 3, is a bounded domain, the Sobolev space H(Q) is
compactly embedded into LP(Q2) for p € [1,2%), 2* = 28, In [14], by using an
analogue of Strauss’ radial estimate [17], Ni proved the compact compact embedding
into LP(€, |2|*) holds for all p € [1,2* + 225) for all & > 0, when one considers

radially symmetric functions u(z) = v(|z|) € H(Q) on the unit ball 2 = B centered
at the origin. By considering partially symmetric functions in

Hgo(B) = {u € Hy(B) : u(z) = u(y, ) = v(lyl, |2]),
r=(y,2) eREXRY ) 2< N—t <0,
Badialle and Serra proved in [1] that Hé, ,(B) is compactly embedded into L) (2, |[z]%),

for @ > N +2, when p € [1,20=1) N > 4. We recall that LY(B, [|%) is the

weighted LY space endowed with the norm

[lullg.o = (/ ] u|?da) /.
B
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Also, notice that H&Z(B) is a closed subspace of the Hilbert space H}(B), and
consequently it is also a Hilbert space. Indeed, H&E(B) is the set of the fixed points

of the group O(I) x O(N — ) that acts isometrically on Hg(B).
Now, consider the space

HE(B) N Hy(B) = {u € H*(B)N Hy(B) : u(z) = u(y,z) = v(lyl,|2])},

endowed with the norm

1/2
||uHHz=(/ |Au12dx) . we HX(B)N HNB),
B

which is compactly embedded into L*(B) < L?(B,|z|%); throughout this paper
< represents continuous embedding. Given f € L(B,|z|%) < L}(B, |z|*®), since
flz|* € L3(B), then

(1.1) —Au = flz|* in B, u=0 on 0B,
has a unique solution in H?(B) N H{(B). Therefore, the linear operator

To: L3(B,|z|*) — L3(B,|z|*)
f — u=(=A)7(flz]*)

is compact. Moreover, it is symmetric. Indeed, for all f,g € LZ(B, |z|?),

(Tuf.g) = /B Tof gle|*de = /B (—A) " (flal®) glz]*dx
- /B (—A) () (=AY (—A) " (gle|"))dx
- /B (—A)(—A) " (flal)(~A) " (glz])da
= [ Sl 2) glap)do = [ F-8) M glal el da
B B

Consequently, Ty, has a sequence of eigenfunctions and a corresponding sequence
of eigenvalues, denoted by (1,,) and (u,, 1), respectively, such that (¢,,) is a complete
orthonormal system in L2(B,|z|%) and, since (Tnf, f) > 0 for all f # 0,

O<pu <pe<puz<...<pp — +00,asn — 00.
Moreover, the identity T, = p,, 1, reads
—AtYy, = pptp|z|® in B, 1, =0 on 0B.

We consider E? = {u = Y2 | anthy € L2(B, |z]|*); >02 |an|?u2 < 0o} endowed

with the norm
o

] = (3 lanf22) 2
n=1
It follows that E? < HZ(B) N H}(B), and that E7 is the domain of the operator
T, 1; see Lemmas 3.1 and 3.2 ahead.
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For 0 < t < 2, we define fractional Sobolev spaces, as in [11], since T; ! is an
accretive operator, by setting

0 00
EL= D(T;) = {u =3 antén € LB, 2l S lanful, < o0},
n=1 n=1

Then, writing A" = Ta_t/2, we have for u =Y | any, that
At B} — L3(B, |xo\oa)

u — Alu= ZM%Qann-
n=1

We observe that E} is a Hilbert space with inner product and norm given by
(1, ) gy = / AtuAtololde and lullg = (/ | Atuf2|2]®da) V2,
B B

for u,v € E}f, and the Poincaré’s type inequality
2
lulleg = ([ |4'uPlafda) 7 2 i lfullar V€ EF

holds, whence we infer that E} is continuously embedded into L2 (B, |z|®).
Following [12], we define the fractional Sobolev space Hj(B) as the interpolation
space
H}(B) = [H(B) N Hy(B), L (B)]s,
where 0 < 0 < 1, s =2(1 — 0) and we refer to [11] for results regarding this space.
In particular, it is proved in [11, Theorem 1], with a = 0, that
E!=D(A") c H(B), 0<t<2.

Also, for 0 < 6 < 1, we consider the interpolation spaces given by

1 1-6 6
LB, Jaf*) = [E4(B. o). 2B, ol o, = =04 2,
One of our main result is the following
Theorem 1.1. The embedding E}, C Lj(B, |z|*) is compact for2 <r < %‘_&7 a >

0 large, 0 <t < 2.

As an application, we consider the following non autonomous Hamiltonian system
with weights

—e

—Au = |z/%v|* v + g(z,v) in B,

—Av = |z|YulP~lu + f(x,u) in B,
u,v=0 on 0B,
u,v >0 in B,

—

(P)

where «a, § are positive constants, and p,q > 1 are such that (p,q) lies below the
«, B critical hyperbola, that is,
N+a N+8

1.2 + >N —2, N > 2.
(1.2) p+1 qg+1
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Regarding the functions f,g: B x R — R we make the following assumptions:
(Hy) f,g€ C(BxR,R), f(z,0)=g(x,0) =0 Vx € B;

) < +00, uniformly in x € B,
ful=oo [ul" 7 fol=oo [0]°

where 7, 0 satisfy

N N
(1.3) + SN-2 N>2
7+1 o+1
(Hs) lim fla,w) li 9z, v) =0, uniformly in z € B;

u—0  ful =0 |y

(Hy) There exist v > 2 and n > 0 such that

0 <~vF(z,u) <uf(x,u), 0 <yG(z,v) < ug(x,v), for |ul,|v] >n,

uniformly in z € B, where

F(z,s) = /Osf(a:,t) dt and G(z,s) = /OS g(x,t)dt.

When f = g = 0 and under the above conditions, it is proved in [5] a non-existence
result of classical solutions in C?(B)NCY(B) for (p,q) lying above (and on) the a, 3
critical hyperbola, that is,

(1.4) Nta N¥6 _N_9 N>2

p+1 g+1
In the same work, it is proved the existence of radial solutions for (p, q) lying below
the «, 8 critical hyperbola, i.e., (p,q) verifying (1.2). In [2,3], the authors studied
radial and foliated Schwarz symmetric solutions for (P) with f = g = 0, when
p.q > 1 lies below the critical hyperbola, namely

(1.5) L+i>N—2, N >2.
p+1 qg+1
We recall that definitions of such hyperbola appeared independently in [6] and
[18], and they were considered by several authors, including [13] and [7,15]. We
would also like to mention that these types of systems have been considered before
in [3,5,8-10] with f = ¢ =0.
Our next goal is to show existence of a solution (u,v) for the problem (P).

Theorem 1.2. Assume (Hy) — (Hy4), o, 8 > 0 are sufficiently large, and p > 1,
q > 1 verify

N-1 N-1

+

p+1 q+1
In addition, assume that f(z,5) = f((y, |21), ) and g(z,s) = g((lyl,|21),5), & =
(y,2) € R xRVN=£ ¢ > 2 and N —1 > 2. Then the system (P) possesses at least
one nontrivial positive solution (u,v).

>N-3, N>3.
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2. INTERPOLATION SPACES

In this section we will establish a compact embedding result for fractional Sobolev
spaces into weighted LP spaces. For that, we will use an abstract theorem due to
Persson [16], which involves a result on compact linear mappings between interpo-
lation spaces.

Let us start by giving some definitions. A pair Ey, E1 of Banach spaces is called
an interpolation pair if £y and E; are continuously embedded in some separated
topological linear space E. Let Ag, A1 and Ey, By be interpolation pairs. Ag and
Ey are called interpolation spaces of exponent 6 € (0, 1), with respect to Ap, A; and
Ey, F1, if we have the topological inclusions

AgNAL C Ay C A+ Ay, EoNnEy C Ey C Ey+ Eq,

and if each linear mapping 7' from a separated topological linear space A into E,
which maps A; continuously into E; (i = 0,1), also maps Ay continuously into Fjy
in such a way that

M < M}~MY,

where M denotes the norm of T': Ag —> Ey and M; the norm of T : A; — E;,1 =
0,1.
For the interpolation pair Ey, F1 we shall consider the following condition:

(H) To each compact set K C Ejy there exists a constant C' > 0 and a set P of
linear operators P : E — E which map F; into Fg N E; ¢ = 0,1, and are such that
(H)(@)  NPlLg,E) = suP)je)p, <1 1 T2l < C, i =0,1;
(H)(it) Furthermore, for each € > 0 there is Py € P so that ||Pox — z||g, < €
for all z € K.

We now recall the following result due to Persson [16].

Theorem 2.1. (Persson) Let Ay, A1 and Ey, E1 be interpolation pairs, and sup-
pose that Ag and Ey are interpolation spaces of exponent 6 € (0,1) with respect to
Ao, A1 and Ey, E1. Suppose also that Ay C Ay and Ey, Ey satisfy (H). Then, if
Ty : Ay — Ey is compact and Ty : Ay — Ey is bounded, it follows that Ty : Ag — Fy
18 compact.

3. PROOF OF THEOREM 1.1

We start with two basic lemmas.

Lemma 3.1. Ef — H?(B) N H)(B).



176 D. G. COSTA, D. G. DE FIGUEIREDO, E. M. DOS SANTOS, AND O. H. MIYAGAKI

Proof. Given u € E?, with u = Y °° | a,¢,, define uj = Z’;:l anty. Then, for
every m,k > 1,

[ @un - w)de= [ <A 3 w)

n=k+1
n+m n+m
/ ( Z anﬂnwnu" ) dIS/ ( Z anﬂnl/)n) |x|ada7
n=k+1 n=k+1
n+m
> anun.
n=k+1

This argument shows that (uy) is a Cauchy sequence in HZ(B) N Hi(B) and that
up — u in H(B) N H}(B). Moreover,

lull 2 < [llulll,  Vu e EF.

Therefore, the continuous embedding EZ < HZ(B) N H}(B) holds. O

Observe that

w=Tof = (~A) " (fl2]?) = —Au = fla]® <= o] (~Au) = f

= T 'u = (—Au)|z| 2.

From this remark we obtain the following characterization.
Lemma 3.2. Eg is the domain of the operator T 1.
Proof. Given u = >_>2  anty, = Ty f. Then,

n=1

+oo>/(Talu)2|xadx:/(Au)2]a:|2a]x|adx
B B

o 2 o0
:/ (Zanunwn‘x’a> ‘x‘_adac:/ (Z anﬂnwn) \xladx_zanun
B \n=1 B \n=1

This proves that T, (L%(B |2|%)) C E?. On the other hand, given u = anl anp €
E? C H}(B) N H{(B), set f = Y00 anpintn € L3(B,|z|*). Then —Au =
oo L anpintbp|z|® = flz|¥, that is, u = T,f. Therefore, E? is the domain of
;L. O

Proof of Theorem 1.1. Note that, in our setting, Ey = L(B, |z|*), By = L(B, |z|*),
Ag = Hg, A = L? , and we have that

(a): Tp: Ao — Ep is compact for 2 < g < 2(]@[__51) and «a large enough,
(b): Ty : Ay — Ej is bounded, with T = identity.

In order to conclude that Ty : Ay — Ey is compact it is sufficient to prove the
following lemma.

Lemma 3.3. The interpolation pair Ey = L}(B,|z|%), Ex = L}(B,|z|*) satisfies
condition (H).



FRACTIONAL SOBOLEV SPACES OF SYMMETRIC FUNCTIONS 177

Proof Actually, as in [16], we will show the following condition, which is stronger
than (H):

(H) There exist a constant C' > 0 and a set D of linear operators P : E — E
with P(E;) C EgN E1, i = 0,1, such that (H)(¢) is satisfied and so that, to every
€ > 0 and every finite set x1,x9,...,2y in Ey, we can find P in D verifying

(H)(ii7) ||Pzi — zi||lg, <€, k=1,2,...,m.

We claim that the pair Ey = L{(B, |z|*), E1 = L(B, |z|*) satisfies (H).

Some arguments in this proof were borrowed from [10, lemma 2.1], where o, 5 < 0
or the radial case were considered.

First of all we identify the space L}(B, |x|*) with L{(B, 1), where p = |z|*dz , a >
0, is a o finite measure. Then C§°(B) is dense in L](B, i) and, in fact, Coa(B) is
dense in L}(B, i) (see [4]).

Now, let f; (j = 1,2,...,m) be given functions in C§%(B) C L}(B, ) and take
a compact set K in B such that f;j(z) =0, Vo € K¢ = RMK and j = 1,2,...,m.
Also, given € > 0, pick n > 0 so that nu(K)) < €, where u(K) denotes the measure of
K. We then construct a partition (K,) of K consisting of a set K with measure zero

and measurable sets K1, Ko, ..., with u(K,) > 0, such that sup |fj(z)—f;(y)| <
r#YEKy
n, forall j =1,2,...,m.
Next, define

PF= Yo lE) ™ [ fondie,
n=1

where ¢,, denotes the characteristic function of K,,, n =1,2,....
We claim that

(i): P satisfies (H)(7), i.e.,

Pl (e, ) = $UP|j)|, <1 [|Pzl|E, < C) i = 0,1, C >0,
PZEZ‘—>E0ﬂE1(Z‘:0,1).

(ii): P satisfies (H)(iii), i.e.,
for every finite set x1,xo,..., 2z, in Fy we can find P such that
prk _kaEO <e k=1,2,...,m.

We start noticing that, for every q > 2, we have by Hoélder inequality that
GO [ (Prtd =Y () [ feuda)t [ ot
B el Ky, Kn
[e’e) Ly B
<) 1Yo ol [ g, v
1 Kn Kn Kn

< Z((M(Kn)_q(M(Kn)(q_l)/q)q\f\qy; 1K) = 1f17q -
n=1 " b

Verification of (i): From (3.1) it follows that P : E; — E; (¢ = 0, 1) is bounded.
And, since Ey C Eqi we have that P : Ey — Ey = Eg N E;. Now we show that
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P(Ey) C Ep, hence we also have P : Ey — Ey N Ey:

2 _ = —1 2 2
/B PAPd =D /K o) /K G

=D nlKn) A flL < CIflTg

n=1

Verification of (ii): We note that

Phe= Y ()™ [ Rweuwans,
n=1

and
o0

fula) = S8 i) [ nla)dn)

n=1

Then, by construction of the K;,’s and our choice of n = n(e, K), we conclude that

1P~ Aty / Z / o) — Fi(@)lbn)dn)|dnltds

<nZM ) = nu(K) <e,

and this finishes the proof of Lemma 3.3.

Now, we continue the proof of Theorem 1.1. Since we have checked (i), (ii), we

now apply Persson result. Indeed, since % = %9 + g and Hf(B) is compactly

embedded into Lj(B,|z|*) when 2 < ¢ < Z%V:;) and « is large enough, it follows

that

1 1-6 201-0) 0
>

rC 2 TN-1 %
And, recalling that 1 — 6 = s/2, we get
2(N -1
(3.2) N(—l—gs’ 0 <5 <2, a for sufficiently large.
This completes the proof of Theorem 1.1. O

Corollary 3.4. Let p,q > 0 and suppose that
N—-1 N-1

+
p+1 qg+1

>(N-1)—2=N -3,
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that is, (p,q) is below the (N-1)- critical hyperbola. Then, there exist s,t > 0 such

that s+t=2,p+1< ]%,(ivl__é)s, qg+1< ]%,(ivl__lz)t and the compact embeddings

Ej C Ly™N(B,|2|*),  EfC L{TN(B,|2]%),
for a and B sufficiently large, hold.

We include below a diagram illustrating Theorem 1.1:

HE(B) L} (B)

compact compact identity

2<g< 27

Li(B, x| L} (B, ||

4. PROOF OF THEOREM 1.2

We are going to search for the critical points of the functional I, : Ef x Ef — R
given by

o, |pt+1 mﬁ‘fl}’qﬂ
I — AS At _ |Q?‘ ”U,‘ _/ F
o) = [ audto— [ () - [ (P + G(a0)),

which are precisely the (classical) solutions of (P).
Indeed, we have that I, is of class C! with (Fréchet) derivative given by

oo = [ Auatvs [ aoato= [ (ol o+ jal ol o)
_/B(f(fﬁau)gbﬂLg(:B,v)qb).
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Recall that A = T75/2 : B — L2(|z|*) [where we are setting L2(B,|z|*) =
L2(|z|*) for simplicity] and Ej = D(T~%/?), 0 < s < 2, is endowed with the
equivalent norm ||A%u||, which satisfies
(4.1) || A%u|| > ||ul|, for all u € E,
so that we set
(42) <u,v >ppi=< A%u, A% >= [ AuA®vdr  and
4.2
[ullgg = A%l = ([ |A%u|*dz)"/? Vu € E;.

From (4.1), A® : Ef — L?(|z|*) is an isomorphism and we denote by A~ the
inverse of A®.

Also, for given s, > 0 with s+t = 2, we denote by E the Hilbert space £} x E}f,
and define the symmetric bilinear form B : £ x F — R by the formula

B((u,v), (¢,9)) = /B (ASuAlp + ASpAlv)dz .

From (4.2) and applying the Cauchy-Schwartz inequality, we have that B is contin-
uous, i.e.

1 B((u,v), (¢, )| < |A%l| 5 | A" g + | A°@l| 53] | A0l |
so that B induces a selfadjoint bounded linear operator L : E — E satisfying
B(z,m) =< Lz,n >g, forall z,n€ E.

In addition, we can easily verify that

(4.3) L(u,v) = (A~ A, A7'A%u), for z = (u,v) € E.
Next, consider the eigenvalue problem
(4.4) Lz=Mz in E.

From (4.3) the above problem is equivalent to
A5A = A, and AT'Au=Mv, z= (u,v).

Since the operators A% and A! are isomorphisms onto LZ(|z|®), A cannot be zero,
and we obtain from the above that

v=A"2v.
Therefore A = £1, with corresponding eigenspaces
(4.5) E~ = {(u,—A7"A%u) : ue Ej} for A= -1,
(4.6) Et = {(u, A7"A%u) : ue Ej} for A=1.
And we have the direct sum decomposition
E=E PE',

where the spaces ET and E~ are orthogonal with respect to the bilinear form B,
that is,

(4.7) B(zt,z7)=0forall 2t ¢ ET, 27 ¢ E.
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We also have
1
(4.8) §Hz||%E =Q(z")—Q(z ) forall z=z"427, 2T € ET 2~ c B,

where (@) is the quadratic form associated with the bilinear form B:

1
Qz) = §B(z,z) = / AuAtvde, z = (u,v) € E.
B
Now, let {e;} (j = 1,2,...) be a complete orthogonal system in E; and let £,
denote the finite dimensional subspace of Ej spanned by {e;}, j =1,2,...n. Since
A% B — L¥(|z|*) and A' : E} — L2(|x|*) are isomorphisms, we can assume that
{é;}, 7=1,2,..., where &; :== A" A%¢;, is a complete orthogonal system in Ef. We

let E,, denote the finite dimensional subspace of E} spanned by {¢;}, j =1,2,...n.
In addition, for each n € N, we introduce the following subspaces of E+ and E~,
respectively:

Ef = span{(e;,é;) € ET|j=1,2,...,n} and

E, = span{(ej,—¢é;) e E=|j=1,2,...,n},

as well as E,, := E}Y @ E,,. The rest of the proof follows as in [10]. For the sake of
completeness, we will sketch some of its parts.

Proposition 4.1. The functional Iy has a local linking at 0, that is,

(i): Io(2) > 0, for z € ¥, ||z]| <.
(ii): Iy(2) <0, forze E~, ||z|]| <.

Proof. For z = (u,v) € E™, one shows that there exist C' > 0 and ry > 2 such that
Ip(u,v) > ||2l|% = Cllell8-
Hence, there is r > 0 such that
In(z) >0, for z€ ET, ||2||lg <.

Similarly, for z = (u,v) € E~, one also shows there exist some C,D > 0 and
ro > 2 such that
Ip(u,v) < =Cllz|[% + DIzl
Hence, there is also some r > 0 such that

Ij(z) <0, forze€e E7, |lz|]|lg <r. O

Proposition 4.2. The functional I, satisfies the (PS)* condition with respect to
{En}, that is,

(PS)* If a sequence {z,} C E, is such that |Ii(z,)] < C,
| < Vuli(up),n > | < elln||le, with €, — 0, for some C > 0 and all n € E,,
then {z,} possesses a subsequence converging to a critical point of Iy.

Here, V,, denotes the gradient of I, restricted to E,.
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Proof. In view of Theorem 1.1, it is sufficient to prove the uniform boundedness of
the sequence {z, = (un,v,)}, that is, that there exists a constant C' > 0 verifying
1zl = [|(un, vn)||E, < CVneN.

The argument is standard. Since

et p+1 mﬁ,v |q+1
1( Wu dl [21°un "
Eunavn / Unp A VU — /B( P+ 1 + 0+ 1 )

—/ (F(z,un) + (G(z,vy))
B

and

L) (tp, vn) (U, vp) = /

B

- / ([ an P+ ) o) — / (F (s tun Yt + 9(2, 00)0m)
B B

AsunAtvn—i—/ Asu, Alv,
B

it follows that

1
(4.9) C+enllznlle > Le(zn) = 5 T7(2n) (2n)
11

1 1
(= « ]H-Id - - B q+1d
G- i) [ el + G = =) [ el s

(5= [ ()i +g(o.)un).

On the other hand, recalling that

< L(u,v),n >= B((u,v),n) = / (AsuAtnz + AsnlAtv)dx, Vn = (m,n2),
B

and writing zF = (u, v}F), we get
lzn | = elllznlle < 1< Lan, 2 > —Io(2n) ()]

(4.10)

2| up [P uputde + z|P|vp [P o vl ) da
n n
B B
+ [ )i + (o000

and we will now estimate each term in the r.h.s of above.
From Holder inequality we get

| / 2] P i
B

(4.11)

IN

/ 2] [P dr) P / 2| [P+ dr) 7

( /B 2] P )P D)

IN

and

4.12 2P v, |9 o uTde| < 2| o, |7 da ) @D o E || e
B n B n IE,
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On other hand, noticing that (H;) — (Hy4) gives the estimate f(s)s'/7 < C(1 +
f(s)s), Vs € R, 7 > 1, and using Holder inequality, we infer that

(4.13) |/ (2, un)uif + g(x, va) V)|
/ f ()| )f+1HunHLT+1+/ gz, vn)| 7 )“+1anHLa+1
S(/B\f(x,un)llf(:r,un)%)mHZZEHE+(/B!g(rv,vnwg(x,vn)\a)““HZ;—LHE
s v z,00)) 7)) |2
§C(1+(/B|un||f(:v,un)l) +(/B| w|lg(@, vn)) 7)) 20 || 2

for some constant C' > 0.
Therefore, combining (4.11)-(4.12)-(4.13) with (4.10), we obtain

e —c < ([ folunPda/ 40 4 ([ fol? o7 dayl o0

(414 < (C+eullzal PP +(C + ezl
+C(1+ (C + €nl|2a)/TFD 4 (C + enl2al )7/ ).
This implies that ||z,||z is uniformly bounded in n. O

Proposition 4.3. For each n € N, one has Iy(z) = —oo as ||z||[g = oo, z €
Er@E-.

Proof. Let n € N be fixed and let 2, € E;" @ E~ be such that ||2,||g — oco. Writing
z=2%" 42" for z = (u,v), we have that

S i e

p+1 qg+1
— / (F(x,un) + G(z,vy,)).
B

And letting 2+ = (u*, v¥) we have that u~ = nu* + @, where 4 is orthogonal to u*
in L2(|z|*). Similarly, v~ = vo™ + 9, where 9 is orthogonal to v in L?(|z|®).

Notice that either v or 7 is positive. Supposing v > 0, we have the following
estimate, where 1/y +1/(7/)=1and v >1:

1+v / |2|%jut|? daz—/ 12 (1 4 v)ut + @)utde < |U|LW(‘$|5)|U |

(4.15) Ip(u,v) < (|27 1IE — 127 II% -

LY (|z/)
Since the norms in E; are equivalent, we get, for a positive constant C' > 0 :
(L + ) w2 (epsy < Clulzy ap)-
Then, using this inequality in (4.15) with 6 = a, v = p+1 (resp. § = 5, v = q¢+1),
we get

— +1 +1

which implies that

Ij(z) - —o0, as ||z|| = oo, because p,q > 1.
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g

Finally, the proof of Theorem 2.1 is complete by applying the following version
of Rabinowitz Linking Theorem (see [19]):

Theorem 4.4. Suppose that I € C'(E,R) satisfies the following conditions:

(a): I has a local linking at 0.

(b): I satisfies (PS)*.

(c): I maps bounded sets into bounded sets.

(d): For everyn € N, I(z) — —o0, as ||z]| > 00, 2 € Ef @ E™.

Then I has a nontrivial critical point.
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