Yokohama Publishers
ISSN 2189-3764 ONLINE JOURNAL
(c) Copyright 2023

FRACTIONAL SOBOLEV SPACES OF SYMMETRIC FUNCTIONS AND APPLICATIONS TO HAMILTONIAN ELLIPTIC SYSTEMS

DAVID G. COSTA, DJAIRO G. DE FIGUEIREDO, EDERSON MOREIRA DOS SANTOS, AND OLÍMPIO HIROSHI MIYAGAKI

Abstract

In this paper we study compact embeddings of fractional Sobolev spaces of symmetric functions into weighted L^{p} spaces in situations above the Sobolev critical exponent. The proof combines a compact embedding of a Sobolev space of symmetric functions into a weighted L^{p} space with an interpolation result by Persson. The result is applied to prove existence of solutions for a class of non autonomous Hamiltonian systems.

In memory of Louis Nirenberg

1. Introduction

When $\Omega \subset \mathbb{R}^{N}, N \geq 3$, is a bounded domain, the Sobolev space $H_{0}^{1}(\Omega)$ is compactly embedded into $L^{p}(\Omega)$ for $p \in\left[1,2^{*}\right), 2^{*}=\frac{2 N}{N-2}$. In [14], by using an analogue of Strauss' radial estimate [17], Ni proved the compact compact embedding into $L^{p}\left(\Omega,|x|^{\alpha}\right)$ holds for all $p \in\left[1,2^{*}+\frac{2 \alpha}{N-2}\right)$ for all $\alpha>0$, when one considers radially symmetric functions $u(x)=v(|x|) \in H_{0}^{1}(\Omega)$ on the unit ball $\Omega=B$ centered at the origin. By considering partially symmetric functions in

$$
\begin{aligned}
H_{0, \ell}^{1}(B):=\left\{u \in H_{0}^{1}(B): u(x)=u(y, z)\right. & =v(|y|,|z|) \\
& \left.x=(y, z) \in \mathbb{R}^{\ell} \times \mathbb{R}^{N-\ell}\right\}, 2 \leq N-\ell \leq \ell
\end{aligned}
$$

Badialle and Serra proved in [1] that $H_{0, \ell}^{1}(B)$ is compactly embedded into $L_{\ell}^{p}\left(\Omega,|x|^{\alpha}\right)$, for $\alpha>N+2$, when $p \in\left[1, \frac{2(N-1)}{N-3}\right), N \geq 4$. We recall that $L_{\ell}^{q}\left(B,|x|^{\alpha}\right)$ is the weighted L^{q} space endowed with the norm

$$
\|u\|_{q, \alpha}=\left(\int_{B}|x|^{\alpha}|u|^{q} d x\right)^{1 / q}
$$

[^0]Also, notice that $H_{0, \ell}^{1}(B)$ is a closed subspace of the Hilbert space $H_{0}^{1}(B)$, and consequently it is also a Hilbert space. Indeed, $H_{0, \ell}^{1}(B)$ is the set of the fixed points of the group $O(l) \times O(N-l)$ that acts isometrically on $H_{0}^{1}(B)$.

Now, consider the space

$$
H_{\ell}^{2}(B) \cap H_{0}^{1}(B)=\left\{u \in H^{2}(B) \cap H_{0}^{1}(B): u(x)=u(y, z)=v(|y|,|z|)\right\}
$$

endowed with the norm

$$
\|u\|_{H^{2}}=\left(\int_{B}|\Delta u|^{2} d x\right)^{1 / 2}, \quad u \in H_{\ell}^{2}(B) \cap H_{0}^{1}(B)
$$

which is compactly embedded into $L^{2}(B) \hookrightarrow L_{l}^{2}\left(B,|x|^{\alpha}\right)$; throughout this paper \hookrightarrow represents continuous embedding. Given $f \in L_{l}^{2}\left(B,|x|^{\alpha}\right) \hookrightarrow L_{l}^{2}\left(B,|x|^{2 \alpha}\right)$, since $f|x|^{\alpha} \in L^{2}(B)$, then

$$
\begin{equation*}
-\Delta u=f|x|^{\alpha} \text { in } B, \quad u=0 \text { on } \partial B \tag{1.1}
\end{equation*}
$$

has a unique solution in $H_{l}^{2}(B) \cap H_{0}^{1}(B)$. Therefore, the linear operator

$$
\begin{aligned}
T_{\alpha}: L_{\ell}^{2}\left(B,|x|^{\alpha}\right) & \longrightarrow L_{\ell}^{2}\left(B,|x|^{\alpha}\right) \\
f & \longmapsto u=(-\Delta)^{-1}\left(f|x|^{\alpha}\right)
\end{aligned}
$$

is compact. Moreover, it is symmetric. Indeed, for all $f, g \in L_{\ell}^{2}\left(B,|x|^{\alpha}\right)$,

$$
\begin{aligned}
\left(T_{\alpha} f, g\right) & =\int_{B} T_{\alpha} f g|x|^{\alpha} d x=\int_{B}(-\Delta)^{-1}\left(f|x|^{\alpha}\right) g|x|^{\alpha} d x \\
& =\int_{B}(-\Delta)^{-1}\left(f|x|^{\alpha}\right)(-\Delta)\left((-\Delta)^{-1}\left(g|x|^{\alpha}\right)\right) d x \\
& =\int_{B}(-\Delta)\left((-\Delta)^{-1}\left(f|x|^{\alpha}\right)\right)(-\Delta)^{-1}\left(g|x|^{\alpha}\right) d x \\
& =\int_{B} f|x|^{\alpha}(-\Delta)^{-1}\left(g|x|^{\alpha}\right) d x=\int_{B} f(-\Delta)^{-1}\left(g|x|^{\alpha}\right)|x|^{\alpha} d x \\
& =\left(f, T_{\alpha} g\right)
\end{aligned}
$$

Consequently, T_{α} has a sequence of eigenfunctions and a corresponding sequence of eigenvalues, denoted by $\left(\psi_{n}\right)$ and $\left(\mu_{n}^{-1}\right)$, respectively, such that $\left(\psi_{n}\right)$ is a complete orthonormal system in $L_{\ell}^{2}\left(B,|x|^{\alpha}\right)$ and, since $\left(T_{\alpha} f, f\right)>0$ for all $f \neq 0$,

$$
0<\mu_{1}<\mu_{2} \leq \mu_{3} \leq \ldots \leq \mu_{n} \rightarrow+\infty, \text { as } n \rightarrow \infty
$$

Moreover, the identity $T_{\alpha} \psi_{n}=\mu_{n}^{-1} \psi_{n}$ reads

$$
-\Delta \psi_{n}=\mu_{n} \psi_{n}|x|^{\alpha} \quad \text { in } B, \quad \psi_{n}=0 \quad \text { on } \quad \partial B .
$$

We consider $E_{\ell}^{2}=\left\{u=\sum_{n=1}^{\infty} a_{n} \psi_{n} \in L_{\ell}^{2}\left(B,|x|^{\alpha}\right) ; \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \mu_{n}^{2}<\infty\right\}$ endowed with the norm

$$
\left\|\left|\|u \mid\|:=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \mu_{n}^{2}\right)^{1 / 2}\right.\right.
$$

It follows that $E_{\ell}^{2} \hookrightarrow H_{\ell}^{2}(B) \cap H_{0}^{1}(B)$, and that E_{ℓ}^{2} is the domain of the operator T_{α}^{-1}; see Lemmas 3.1 and 3.2 ahead.

For $0 \leq t \leq 2$, we define fractional Sobolev spaces, as in [11], since T_{α}^{-1} is an accretive operator, by setting

$$
E_{\ell}^{t} \equiv D\left(T_{\alpha}^{-t / 2}\right)=\left\{u=\sum_{n=1}^{\infty} a_{n} \psi_{n} \in L_{\ell}^{2}\left(B,|x|^{\alpha}\right) ; \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \mu_{n}^{t}<\infty\right\}
$$

Then, writing $A^{t}=T_{\alpha}^{-t / 2}$, we have for $u=\sum_{n=1}^{\infty} a_{n} \psi_{n}$, that

$$
\begin{aligned}
A^{t}: E_{\ell}^{t} & \longrightarrow L_{\ell}^{2}\left(B,|x|^{\alpha}\right) \\
u & \longmapsto A^{t} u=\sum_{n=1}^{\infty} \mu_{n}^{t / 2} a_{n} \psi_{n}
\end{aligned}
$$

We observe that E_{ℓ}^{t} is a Hilbert space with inner product and norm given by

$$
(u, v)_{E_{\ell}^{t}}:=\int_{B} A^{t} u A^{t} v|x|^{\alpha} d x \quad \text { and } \quad\|u\|_{E_{\ell}^{t}}:=\left(\int_{B}\left|A^{t} u\right|^{2}|x|^{\alpha} d x\right)^{1 / 2}
$$

for $u, v \in E_{\ell}^{t}$, and the Poincaré's type inequality

$$
\|u\|_{E_{\ell}^{t}}=\left(\int_{B}\left|A^{t} u\right|^{2}|x|^{\alpha} d x\right)^{1 / 2} \geq \mu_{1}^{t / 2}\|u\|_{2, \alpha}, \forall u \in E_{\ell}^{t}
$$

holds, whence we infer that E_{ℓ}^{t} is continuously embedded into $L_{\ell}^{2}\left(B,|x|^{\alpha}\right)$.
Following [12], we define the fractional Sobolev space $H_{\ell}^{s}(B)$ as the interpolation space

$$
H_{\ell}^{s}(B)=\left[H_{\ell}^{2}(B) \cap H_{0}^{1}(B), L_{\ell}^{2}(B)\right]_{\theta}
$$

where $0<\theta<1, s=2(1-\theta)$ and we refer to [11] for results regarding this space. In particular, it is proved in [11, Theorem 1$]$, with $\alpha=0$, that

$$
E_{\ell}^{t}=D\left(A^{t}\right) \subset H_{\ell}^{t}(B), 0 \leq t \leq 2
$$

Also, for $0<\theta<1$, we consider the interpolation spaces given by

$$
L_{\ell}^{r}\left(B,|x|^{\alpha}\right)=\left[L_{\ell}^{q}\left(B,|x|^{\alpha}\right), L_{\ell}^{2}\left(B,|x|^{\alpha}\right)\right]_{\theta}, \quad \frac{1}{r}=\frac{1-\theta}{q}+\frac{\theta}{2}
$$

One of our main result is the following
Theorem 1.1. The embedding $E_{\ell}^{t} \subset L_{\ell}^{r}\left(B,|x|^{\alpha}\right)$ is compact for $2 \leq r<\frac{2(N-1)}{N-1-2 t}, \alpha>$ 0 large, $0 \leq t \leq 2$.

As an application, we consider the following non autonomous Hamiltonian system with weights

$$
\left\{\begin{align*}
-\Delta u=|x|^{\beta}|v|^{q-1} v+g(x, v) & \text { in } \quad B \tag{P}\\
-\Delta v=|x|^{\alpha}|u|^{p-1} u+f(x, u) & \text { in } B \\
u, v=0 & \text { on } \quad \partial B \\
u, v>0 & \text { in } B
\end{align*}\right.
$$

where α, β are positive constants, and $p, q>1$ are such that (p, q) lies below the α, β critical hyperbola, that is,

$$
\begin{equation*}
\frac{N+\alpha}{p+1}+\frac{N+\beta}{q+1}>N-2, \quad N>2 \tag{1.2}
\end{equation*}
$$

Regarding the functions $f, g: B \times \mathbb{R} \longrightarrow \mathbb{R}$ we make the following assumptions:

$$
\begin{equation*}
f, g \in C(B \times \mathbb{R}, \mathbb{R}), f(x, 0)=g(x, 0)=0 \forall x \in B \tag{1}
\end{equation*}
$$

$\left(H_{2}\right) \quad \lim _{|u| \rightarrow \infty} \frac{f(x, u)}{|u|^{\tau}}, \lim _{|v| \rightarrow \infty} \frac{g(x, v)}{|v|^{\sigma}}<+\infty$, uniformly in $x \in B$,
where τ, σ satisfy

$$
\begin{equation*}
\frac{N}{\tau+1}+\frac{N}{\sigma+1}>N-2, \quad N>2 \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{|u| \rightarrow 0} \frac{f(x, u)}{|u|}=\lim _{|v| \rightarrow 0} \frac{g(x, v)}{|v|}=0, \text { uniformly in } x \in B \tag{3}
\end{equation*}
$$

$\left(H_{4}\right)$ There exist $\gamma>2$ and $\eta>0$ such that

$$
0<\gamma F(x, u) \leq u f(x, u), 0<\gamma G(x, v) \leq u g(x, v), \text { for }|u|,|v| \geq \eta
$$

uniformly in $x \in B$, where

$$
F(x, s)=\int_{0}^{s} f(x, t) d t \text { and } G(x, s)=\int_{0}^{s} g(x, t) d t
$$

When $f=g=0$ and under the above conditions, it is proved in [5] a non-existence result of classical solutions in $C^{2}(B) \cap C^{1}(\bar{B})$ for (p, q) lying above (and on) the α, β critical hyperbola, that is,

$$
\begin{equation*}
\frac{N+\alpha}{p+1}+\frac{N+\beta}{q+1} \leq N-2, \quad N>2 \tag{1.4}
\end{equation*}
$$

In the same work, it is proved the existence of radial solutions for (p, q) lying below the α, β critical hyperbola, i.e., (p, q) verifying (1.2). In $[2,3]$, the authors studied radial and foliated Schwarz symmetric solutions for (P) with $f=g=0$, when $p . q>1$ lies below the critical hyperbola, namely

$$
\begin{equation*}
\frac{N}{p+1}+\frac{N}{q+1}>N-2, \quad N>2 \tag{1.5}
\end{equation*}
$$

We recall that definitions of such hyperbola appeared independently in [6] and [18], and they were considered by several authors, including [13] and [7, 15]. We would also like to mention that these types of systems have been considered before in $[3,5,8-10]$ with $f=g=0$.

Our next goal is to show existence of a solution (u, v) for the problem (P).
Theorem 1.2. Assume $\left(H_{1}\right)-\left(H_{4}\right), \alpha, \beta>0$ are sufficiently large, and $p>1$, $q>1$ verify

$$
\frac{N-1}{p+1}+\frac{N-1}{q+1}>N-3, \quad N>3
$$

In addition, assume that $f(x, s)=f((|y|,|z|), s)$ and $g(x, s)=g((|y|,|z|), s), x=$ $(y, z) \in R^{\ell} \times \mathbb{R}^{N-\ell}, \ell \geq 2$ and $N-l \geq 2$. Then the system (P) possesses at least one nontrivial positive solution (u, v).

2. Interpolation spaces

In this section we will establish a compact embedding result for fractional Sobolev spaces into weighted L^{p} spaces. For that, we will use an abstract theorem due to Persson [16], which involves a result on compact linear mappings between interpolation spaces.

Let us start by giving some definitions. A pair E_{0}, E_{1} of Banach spaces is called an interpolation pair if E_{0} and E_{1} are continuously embedded in some separated topological linear space \mathbf{E}. Let A_{0}, A_{1} and E_{0}, E_{1} be interpolation pairs. A_{θ} and E_{θ} are called interpolation spaces of exponent $\theta \in(0,1)$, with respect to A_{0}, A_{1} and E_{0}, E_{1}, if we have the topological inclusions

$$
A_{0} \cap A_{1} \subset A_{\theta} \subset A_{0}+A_{1}, \quad E_{0} \cap E_{1} \subset E_{\theta} \subset E_{0}+E_{1}
$$

and if each linear mapping T from a separated topological linear space \mathbf{A} into \mathbf{E}, which maps A_{i} continuously into $E_{i}(i=0,1)$, also maps A_{θ} continuously into E_{θ} in such a way that

$$
M \leq M_{0}^{1-\theta} M_{1}^{\theta}
$$

where M denotes the norm of $T: A_{\theta} \longrightarrow E_{\theta}$ and M_{i} the norm of $T: A_{i} \longrightarrow E_{i}, i=$ 0,1 .

For the interpolation pair E_{0}, E_{1} we shall consider the following condition:
(H) To each compact set $K \subset E_{0}$ there exists a constant $C>0$ and a set P of linear operators $P: \mathbf{E} \rightarrow \mathbf{E}$ which map E_{i} into $E_{0} \cap E_{1} i=0,1$, and are such that
$(H)(i) \quad\|P\|_{L\left(E_{i}, E_{i}\right)}=\sup _{\|x\|_{E_{i}} \leq 1}\|T x\|_{E_{i}} \leq C, i=0,1$;
$(H)(i i) \quad$ Furthermore, for each $\epsilon>0$ there is $P_{0} \in \mathrm{P}$ so that $\left\|P_{0} x-x\right\|_{E_{i}}<\epsilon$ for all $x \in K$.

We now recall the following result due to Persson [16].
Theorem 2.1. (Persson) Let A_{0}, A_{1} and E_{0}, E_{1} be interpolation pairs, and suppose that A_{θ} and E_{θ} are interpolation spaces of exponent $\theta \in(0,1)$ with respect to A_{0}, A_{1} and E_{0}, E_{1}. Suppose also that $A_{\theta} \subset \overline{A_{\theta}}$ and E_{0}, E_{1} satisfy (H). Then, if $T_{0}: A_{0} \rightarrow E_{0}$ is compact and $T_{1}: A_{1} \rightarrow E_{1}$ is bounded, it follows that $T_{\theta}: A_{\theta} \rightarrow E_{\theta}$ is compact.

3. Proof of Theorem 1.1

We start with two basic lemmas.
Lemma 3.1. $E_{\ell}^{2} \hookrightarrow H_{\ell}^{2}(B) \cap H_{0}^{1}(B)$.

Proof. Given $u \in E_{l}^{2}$, with $u=\sum_{n=1}^{\infty} a_{n} \psi_{n}$, define $u_{k}=\sum_{n=1}^{k} a_{n} \psi_{n}$. Then, for every $m, k \geq 1$,

$$
\begin{aligned}
& \int_{B}\left(\Delta\left(u_{k+m}-u_{k}\right)\right)^{2} d x=\int_{B}\left(\Delta \sum_{n=k+1}^{k+m} a_{n} \psi_{n}\right)^{2} \\
&=\int_{B}\left(\sum_{n=k+1}^{n+m} a_{n} \mu_{n} \psi_{n}|x|^{\alpha}\right)^{2} d x \leq \int_{B}\left(\sum_{n=k+1}^{n+m} a_{n} \mu_{n} \psi_{n}\right)^{2}|x|^{\alpha} d x \\
&=\sum_{n=k+1}^{n+m} a_{n}^{2} \mu_{n}^{2} .
\end{aligned}
$$

This argument shows that $\left(u_{k}\right)$ is a Cauchy sequence in $H_{\ell}^{2}(B) \cap H_{0}^{1}(B)$ and that $u_{k} \rightarrow u$ in $H_{\ell}^{2}(B) \cap H_{0}^{1}(B)$. Moreover,

$$
\|u\|_{H^{2}} \leq\| \| u\| \|, \quad \forall u \in E_{l}^{2} .
$$

Therefore, the continuous embedding $E_{\ell}^{2} \hookrightarrow H_{\ell}^{2}(B) \cap H_{0}^{1}(B)$ holds.
Observe that

$$
\begin{aligned}
& u=T_{\alpha} f=(-\Delta)^{-1}\left(f|x|^{\alpha}\right) \Longleftrightarrow-\Delta u=f|x|^{\alpha} \Longleftrightarrow|x|^{-\alpha}(-\Delta u)=f \\
& \Longleftrightarrow T_{\alpha}^{-1} u=(-\Delta u)|x|^{-\alpha}
\end{aligned}
$$

From this remark we obtain the following characterization.
Lemma 3.2. E_{ℓ}^{2} is the domain of the operator T_{α}^{-1}.
Proof. Given $u=\sum_{n=1}^{\infty} a_{n} \psi_{n}=T_{\alpha} f$. Then,

$$
\begin{aligned}
+\infty & >\int_{B}\left(T_{\alpha}^{-1} u\right)^{2}|x|^{\alpha} d x=\int_{B}(\Delta u)^{2}|x|^{-2 \alpha}|x|^{\alpha} d x \\
& =\int_{B}\left(\sum_{n=1}^{\infty} a_{n} \mu_{n} \psi_{n}|x|^{\alpha}\right)^{2}|x|^{-\alpha} d x=\int_{B}\left(\sum_{n=1}^{\infty} a_{n} \mu_{n} \psi_{n}\right)^{2}|x|^{\alpha} d x=\sum_{n=1}^{\infty} a_{n}^{2} \mu_{n}^{2}
\end{aligned}
$$

This proves that $T_{\alpha}\left(L_{\ell}^{2}\left(B,|x|^{\alpha}\right)\right) \subset E_{l}^{2}$. On the other hand, given $u=\sum_{n=1}^{\infty} a_{n} \psi_{n} \in$ $E_{l}^{2} \subset H_{l}^{2}(B) \cap H_{0}^{1}(B)$, set $f=\sum_{n=1}^{\infty} a_{n} \mu_{n} \psi_{n} \in L_{\ell}^{2}\left(B,|x|^{\alpha}\right)$. Then $-\Delta u=$ $\sum_{n=1}^{\infty} a_{n} \mu_{n} \psi_{n}|x|^{\alpha}=f|x|^{\alpha}$, that is, $u=T_{\alpha} f$. Therefore, E_{ℓ}^{2} is the domain of T_{α}^{-1}.
Proof of Theorem 1.1. Note that, in our setting, $E_{0}=L_{\ell}^{q}\left(B,|x|^{\alpha}\right), E_{1}=L_{\ell}^{2}\left(B,|x|^{\alpha}\right)$, $A_{0}=H_{\ell}^{2}, A_{1}=L_{\ell}^{2}$, and we have that
(a): $T_{0}: A_{0} \rightarrow E_{0}$ is compact for $2 \leq q<\frac{2(N-1)}{N-5}$ and α large enough,
(b): $T_{1}: A_{1} \rightarrow E_{1}$ is bounded, with $T_{1}=$ identity.

In order to conclude that $T_{\theta}: A_{\theta} \rightarrow E_{\theta}$ is compact it is sufficient to prove the following lemma.

Lemma 3.3. The interpolation pair $E_{0}=L_{\ell}^{q}\left(B,|x|^{\alpha}\right), E_{1}=L_{\ell}^{2}\left(B,|x|^{\alpha}\right)$ satisfies condition (H).

Proof Actually, as in [16], we will show the following condition, which is stronger than (H) :
(\widetilde{H}) There exist a constant $C>0$ and a set D of linear operators $P: \mathbf{E} \rightarrow \mathbf{E}$ with $P\left(E_{i}\right) \subset E_{0} \cap E_{1}, i=0,1$, such that $(H)(i)$ is satisfied and so that, to every $\epsilon>0$ and every finite set $x_{1}, x_{2}, \ldots, x_{m}$ in E_{0}, we can find P in D verifying

$$
(H)(i i i) \quad\left\|P x_{k}-x_{k}\right\|_{E_{0}} \leq \epsilon, \quad k=1,2, \ldots, m .
$$

We claim that the pair $E_{0}=L_{\ell}^{q}\left(B,|x|^{\alpha}\right), E_{1}=L_{\ell}^{2}\left(B,|x|^{\alpha}\right)$ satisfies (\widetilde{H}).
Some arguments in this proof were borrowed from [10, lemma 2.1], where $\alpha, \beta \leq 0$ or the radial case were considered.

First of all we identify the space $L_{\ell}^{q}\left(B,|x|^{\alpha}\right)$ with $L_{\ell}^{q}(B, \mu)$, where $\mu=|x|^{\alpha} d x, \alpha>$ 0 , is a σ finite measure. Then $C_{0}^{\infty}(B)$ is dense in $L_{\ell}^{q}(B, \mu)$ and, in fact, $C_{0, \ell}^{\infty}(B)$ is dense in $L_{\ell}^{q}(B, \mu)$ (see [4]).

Now, let $f_{j}(j=1,2, \ldots, m)$ be given functions in $C_{0, \ell}^{\infty}(B) \subset L_{\ell}^{q}(B, \mu)$ and take a compact set K in B such that $f_{j}(x)=0, \forall x \in K^{c}=\mathbb{R}^{N} \backslash K$ and $j=1,2, \ldots, m$. Also, given $\epsilon>0$, pick $\eta>0$ so that $\eta \mu(K))<\epsilon$, where $\mu(K)$ denotes the measure of K. We then construct a partition $\left(K_{n}\right)$ of K consisting of a set K_{0} with measure zero and measurable sets K_{1}, K_{2}, \ldots, with $\mu\left(K_{n}\right)>0$, such that $\sup _{x \neq y \in K_{n}}\left|f_{j}(x)-f_{j}(y)\right|<$ η, for all $j=1,2, \ldots, m$.

Next, define

$$
P f=\sum_{n=1}^{\infty}\left(\mu\left(K_{n}\right)^{-1} \int_{B} f \phi_{n} d \mu\right) \phi_{n},
$$

where ϕ_{n} denotes the characteristic function of $K_{n}, n=1,2, \ldots$.
We claim that
(i): P satisfies $(H)(i)$, i.e.,

$$
\begin{aligned}
& \|P\|_{L\left(E_{i}, E_{i}\right)}=\sup _{\|x\|_{E_{i}} \leq 1}\|P x\|_{E_{i}} \leq C, i=0,1, C>0, \\
& P: E_{i} \rightarrow E_{0} \cap E_{1}(i=0,1) .
\end{aligned}
$$

(ii): P satisfies $(H)(i i i)$, i.e.,
for every finite set $x_{1}, x_{2}, \ldots, x_{m}$ in E_{0} we can find P such that $\left\|P x_{k}-x_{k}\right\|_{E_{0}} \leq \epsilon, k=1,2, \ldots, m$.
We start noticing that, for every $q \geq 2$, we have by Hölder inequality that

$$
\begin{align*}
& \int_{B}|P f|^{q} d \mu=\sum_{n=1}^{\infty}\left(\mu\left(K_{n}\right)^{-1} \int_{K_{n}} f \phi_{n} d \mu\right)^{q} \int_{K_{n}} \phi_{n}^{q} d \mu \tag{3.1}\\
& \leq \sum_{n=1}^{\infty}\left(\mu\left(K_{n}\right)^{-1}\left(\int_{K_{n}}|f|^{q} d \mu\right)^{1 / q}\left(\int_{K_{n}}\left|\phi_{n}\right|^{\frac{q}{q-1}} d \mu\right)^{(q-1) / q}\right)^{q} \int_{K_{n}}\left|\phi_{n}\right|^{q} d \mu \\
& \quad \leq \sum_{n=1}^{\infty}\left(\left(\mu\left(K_{n}\right)^{-q}\left(\mu\left(K_{n}\right)^{(q-1) / q}\right)^{q}|f|_{L_{\ell, \mu}^{q}}^{q} \mu\left(K_{n}\right)=|f|_{L_{\ell, \mu}^{q}}^{q} .\right.\right.
\end{align*}
$$

Verification of (i): From (3.1) it follows that $P: E_{i} \rightarrow E_{i}(i=0,1)$ is bounded. And, since $E_{0} \subset E_{1}$ we have that $P: E_{0} \rightarrow E_{0}=E_{0} \cap E_{1}$. Now we show that
$P\left(E_{1}\right) \subset E_{0}$, hence we also have $P: E_{1} \rightarrow E_{0} \cap E_{1}:$

$$
\begin{aligned}
& \int_{B}|P f|^{2} d \mu=\sum_{n=1}^{\infty}\left(\mu\left(K_{n}\right)^{-1} \int_{K_{n}} f \phi_{n} d \mu\right)^{2} \int_{K_{n}} \phi_{n}^{2} d \mu \\
& \leq \sum_{n=1}^{\infty} \mu\left(K_{n}\right)^{-2}\left(\left(\int_{K_{n}}|f|^{q} d \mu\right)^{1 / q}\left(\int_{K_{n}}\left|\phi_{n}\right|^{\frac{q}{q-1}} d \mu\right)^{(q-1) / q}\right)^{2} \mu\left(K_{n}\right) \\
&=\sum_{n=1}^{\infty} \mu\left(K_{n}\right)^{-2}|f|_{L_{\ell, \mu}^{q}}^{2} \mu\left(K_{n}\right)^{2(q-1) / q} \mu\left(K_{n}\right) \\
&=\sum_{n=1}^{\infty} \mu\left(K_{n}\right)^{(q-2) / q}|f|_{L_{\ell, \mu}^{q}}^{2} \leq C|f|_{L_{\ell, \mu}^{q}}^{2} .
\end{aligned}
$$

Verification of (ii): We note that

$$
P f_{k}=\sum_{n=1}^{\infty}\left(\mu\left(K_{n}\right)^{-1} \int_{B} f_{k}(y) \phi_{n}(y) d \mu\right) \phi_{n}
$$

and

$$
f_{k}(x)=\sum_{n=1}^{\infty}\left(\mu\left(K_{n}\right)^{-1} f_{k}(x) \int_{B} \phi_{n}(y) d \mu\right) \phi_{n}
$$

Then, by construction of the K_{n} 's and our choice of $\eta=\eta(\epsilon, K)$, we conclude that

$$
\begin{array}{r}
\left\|P f_{k}-f_{k}\right\|_{L_{\ell, \mu}^{q}}^{q} \leq \int_{B} \sum_{n=1}^{\infty}\left(\mu\left(K_{n}\right)^{-q}\left(\int_{B}\left|f_{k}(y)-f_{k}(x)\right| \phi_{n}\right) d \mu\right)^{q}\left|\phi_{n}\right|^{q} d \mu \\
\leq \eta \sum_{n=1}^{\infty} \mu\left(K_{n}\right)=\eta \mu(K)<\epsilon
\end{array}
$$

and this finishes the proof of Lemma 3.3.
Now, we continue the proof of Theorem 1.1. Since we have checked (i), (ii), we now apply Persson result. Indeed, since $\frac{1}{r}=\frac{1-\theta}{q}+\frac{\theta}{2}$ and $H_{\ell}^{2}(B)$ is compactly embedded into $L_{\ell}^{q}\left(B,|x|^{\alpha}\right)$ when $2 \leq q<\frac{2(N-1)}{N-5}$ and α is large enough, it follows that

$$
\frac{1}{r}>\frac{1-\theta}{2}-\frac{2(1-\theta)}{N-1}+\frac{\theta}{2}
$$

And, recalling that $1-\theta=s / 2$, we get

$$
\begin{equation*}
r<\frac{2(N-1)}{N-1-2 s}, 0 \leq s \leq 2, \alpha \text { for sufficiently large. } \tag{3.2}
\end{equation*}
$$

This completes the proof of Theorem 1.1.
Corollary 3.4. Let $p, q>0$ and suppose that

$$
\frac{N-1}{p+1}+\frac{N-1}{q+1}>(N-1)-2=N-3
$$

that is, (p, q) is below the ($N-1$)- critical hyperbola. Then, there exist $s, t>0$ such that $s+t=2, p+1<\frac{2(N-1)}{N-1-2 s}, q+1<\frac{2(N-1)}{N-1-2 t}$ and the compact embeddings

$$
E_{\ell}^{s} \subset L_{\ell}^{p+1}\left(B,|x|^{\alpha}\right), \quad E_{\ell}^{t} \subset L_{\ell}^{q+1}\left(B,|x|^{\beta}\right)
$$

for α and β sufficiently large, hold.

We include below a diagram illustrating Theorem 1.1:

4. Proof of Theorem 1.2

We are going to search for the critical points of the functional $I_{\ell}: E_{\ell}^{s} \times E_{\ell}^{t} \longrightarrow \mathbb{R}$ given by

$$
I_{\ell}(u, v)=\int_{B} A^{s} u A^{t} v-\int_{B}\left(\frac{|x|^{\alpha}|u|^{p+1}}{p+1}+\frac{|x|^{\beta}|v|^{q+1}}{q+1}\right)-\int_{B}(F(x, u)+G(x, v)),
$$

which are precisely the (classical) solutions of (P).
Indeed, we have that I_{ℓ} is of class C^{1} with (Fréchet) derivative given by

$$
\begin{aligned}
& I_{\ell}^{\prime}(u, v)(\phi, \psi)=\int_{B} A^{s} u A^{t} \psi+\int_{B} A^{s} \phi A^{t} v-\int_{B}\left(|x|^{\alpha}|u|^{p-1} u \phi+|x|^{\beta}|v|^{q-1} v \psi\right) \\
&-\int_{B}(f(x, u) \phi+g(x, v) \psi)
\end{aligned}
$$

Recall that $A^{s}=T^{-s / 2}: E_{\ell}^{s} \rightarrow L_{\ell}^{2}\left(|x|^{\alpha}\right)$ [where we are setting $L_{\ell}^{2}\left(B,|x|^{\alpha}\right)=$ $L_{\ell}^{2}\left(|x|^{\alpha}\right)$ for simplicity] and $E_{\ell}^{s}=D\left(T^{-s / 2}\right), 0 \leq s \leq 2$, is endowed with the equivalent norm $\left\|A^{s} u\right\|$, which satisfies

$$
\begin{equation*}
\left\|A^{s} u\right\| \geq\|u\|, \text { for all } u \in E_{\ell}^{s} \tag{4.1}
\end{equation*}
$$

so that we set

$$
\begin{align*}
& <u, v>_{E_{\ell}^{s}}:=<A^{s} u, A^{s} v>=\int_{B} A^{s} u A^{s} v d x \quad \text { and } \\
& \quad\|u\|_{E_{\ell}^{s}}:=\left\|A^{s} u\right\|=\left(\int_{B}\left|A^{s} u\right|^{2} d x\right)^{1 / 2} \forall u \in E_{\ell}^{s} . \tag{4.2}
\end{align*}
$$

From (4.1), $A^{s}: E_{\ell}^{s} \rightarrow L_{\ell}^{2}\left(|x|^{\alpha}\right)$ is an isomorphism and we denote by A^{-s} the inverse of A^{s}.

Also, for given $s, t>0$ with $s+t=2$, we denote by E the Hilbert space $E_{\ell}^{s} \times E_{\ell}^{t}$, and define the symmetric bilinear form $B: E \times E \rightarrow \mathbb{R}$ by the formula

$$
B((u, v),(\phi, \psi))=\int_{B}\left(A^{s} u A^{t} \psi+A^{s} \phi A^{t} v\right) d x
$$

From (4.2) and applying the Cauchy-Schwartz inequality, we have that B is continuous, i.e.

$$
|B((u, v),(\phi, \psi))| \leq\left\|A^{s} u\right\|_{E_{\ell}^{s}}\left\|A^{t} \psi\right\|_{E_{\ell}^{t}}+\left\|A^{s} \phi\right\|_{E_{\ell}^{s}}\left\|A^{t} v\right\|_{E_{\ell}^{t}}
$$

so that B induces a selfadjoint bounded linear operator $L: E \rightarrow E$ satisfying

$$
B(z, \eta)=<L z, \eta>_{E}, \quad \text { for all } z, \eta \in E
$$

In addition, we can easily verify that

$$
\begin{equation*}
L(u, v)=\left(A^{-s} A^{t} v, A^{-t} A^{s} u\right), \text { for } z=(u, v) \in E \tag{4.3}
\end{equation*}
$$

Next, consider the eigenvalue problem

$$
\begin{equation*}
L z=\lambda z \text { in } E . \tag{4.4}
\end{equation*}
$$

From (4.3) the above problem is equivalent to

$$
A^{-s} A^{t} v=\lambda u, \quad \text { and } \quad A^{-t} A^{s} u=\lambda v, \quad z=(u, v)
$$

Since the operators A^{s} and A^{t} are isomorphisms onto $L_{\ell}^{2}\left(|x|^{\alpha}\right), \lambda$ cannot be zero, and we obtain from the above that

$$
v=\lambda^{-2} v
$$

Therefore $\lambda= \pm 1$, with corresponding eigenspaces

$$
\begin{gather*}
E^{-}=\left\{\left(u,-A^{-t} A^{s} u\right): u \in E_{\ell}^{s}\right\} \text { for } \lambda=-1 \tag{4.5}\\
E^{+}=\left\{\left(u, A^{-t} A^{s} u\right): u \in E_{\ell}^{s}\right\} \text { for } \lambda=1 \tag{4.6}
\end{gather*}
$$

And we have the direct sum decomposition

$$
E=E^{-} \bigoplus E^{+},
$$

where the spaces E^{+}and E^{-}are orthogonal with respect to the bilinear form B, that is,

$$
\begin{equation*}
B\left(z^{+}, z^{-}\right)=0 \text { for all } z^{+} \in E^{+}, z^{-} \in E^{-} . \tag{4.7}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\frac{1}{2}\|z\|_{E}^{2}=Q\left(z^{+}\right)-Q\left(z^{-}\right) \text {for all } z=z^{+}+z^{-}, z^{+} \in E^{+}, z^{-} \in E^{-} \tag{4.8}
\end{equation*}
$$

where Q is the quadratic form associated with the bilinear form B :

$$
Q(z)=\frac{1}{2} B(z, z)=\int_{B} A^{s} u A^{t} v d x, z=(u, v) \in E .
$$

Now, let $\left\{e_{j}\right\}(j=1,2, \ldots)$ be a complete orthogonal system in E_{ℓ}^{s} and let E_{n} denote the finite dimensional subspace of E_{ℓ}^{s} spanned by $\left\{e_{j}\right\}, j=1,2, \ldots$, n. Since $A^{s}: E_{\ell}^{s} \rightarrow L_{\ell}^{2}\left(|x|^{\alpha}\right)$ and $A^{t}: E_{\ell}^{t} \rightarrow L_{\ell}^{2}\left(|x|^{\alpha}\right)$ are isomorphisms, we can assume that $\left\{\hat{e}_{j}\right\}, j=1,2, \ldots$, where $\hat{e}_{j}:=A^{-t} A^{s} e_{j}$, is a complete orthogonal system in E_{ℓ}^{t}. We let \widehat{E}_{n} denote the finite dimensional subspace of E_{ℓ}^{t} spanned by $\left\{\hat{e}_{j}\right\}, j=1,2, \ldots, n$. In addition, for each $n \in \mathbb{N}$, we introduce the following subspaces of E^{+}and E^{-}, respectively:

$$
\begin{aligned}
& E_{n}^{+}=\operatorname{span}\left\{\left(e_{j}, \hat{e}_{j}\right) \in E^{+} \mid j=1,2, \ldots, n\right\} \text { and } \\
& E_{n}^{-}=\operatorname{span}\left\{\left(e_{j},-\hat{e}_{j}\right) \in E^{-} \mid j=1,2, \ldots, n\right\}
\end{aligned}
$$

as well as $E_{n}:=E_{n}^{+} \bigoplus E_{n}^{-}$. The rest of the proof follows as in [10]. For the sake of completeness, we will sketch some of its parts.

Proposition 4.1. The functional I_{ℓ} has a local linking at 0 , that is,
(i): $I_{\ell}(z) \geq 0$, for $z \in E^{+},\|z\| \leq r$,
(ii): $I_{\ell}(z) \leq 0$, for $z \in E^{-},\|z\| \leq r$.

Proof. For $z=(u, v) \in E^{+}$, one shows that there exist $C>0$ and $r_{0}>2$ such that

$$
I_{\ell}(u, v) \geq\|z\|_{E}^{2}-C\|z\|_{E}^{r_{0}}
$$

Hence, there is $r>0$ such that

$$
I_{\ell}(z) \geq 0, \text { for } z \in E^{+},\|z\|_{E} \leq r
$$

Similarly, for $z=(u, v) \in E^{-}$, one also shows there exist some $C, D>0$ and $r_{0}>2$ such that

$$
I_{\ell}(u, v) \leq-C\|z\|_{E}^{2}+D \mid z \|_{E}^{r_{o}} .
$$

Hence, there is also some $r>0$ such that

$$
I_{\ell}(z) \leq 0, \text { for } z \in E^{-},\|z\|_{E} \leq r
$$

Proposition 4.2. The functional I_{ℓ} satisfies the $(P S)^{*}$ condition with respect to $\left\{E_{n}\right\}$, that is,
$(P S)^{*} \quad$ If a sequence $\left\{z_{n}\right\} \subset E_{n}$ is such that $\left|I_{\ell}\left(z_{n}\right)\right| \leq C$, $\left|<\nabla_{n} I_{\ell}\left(u_{n}\right), \eta>\right| \leq \epsilon_{n}\left\|_{\eta}\right\|_{E}$, with $\epsilon_{n} \rightarrow 0$, for some $C>0$ and all $\eta \in E_{n}$, then $\left\{z_{n}\right\}$ possesses a subsequence converging to a critical point of I_{ℓ}.

Here, ∇_{n} denotes the gradient of I_{ℓ} restricted to E_{n}.

Proof. In view of Theorem 1.1, it is sufficient to prove the uniform boundedness of the sequence $\left\{z_{n}=\left(u_{n}, v_{n}\right)\right\}$, that is, that there exists a constant $C>0$ verifying $\left\|\left(z_{n}\right)\right\|=\left\|\left(u_{n}, v_{n}\right)\right\|_{E_{n}} \leq C \forall n \in \mathbb{N}$.

The argument is standard. Since

$$
\begin{aligned}
I_{\ell}\left(u_{n}, v_{n}\right)= & \int_{B} A^{s} u_{n} A^{t} v_{n}-\int_{B}\left(\frac{|x|^{\alpha}\left|u_{n}\right|^{p+1}}{p+1}+\frac{|x|^{\beta}\left|v_{n}\right|^{q+1}}{q+1}\right) \\
& -\int_{B}\left(F\left(x, u_{n}\right)+\left(G\left(x, v_{n}\right)\right)\right.
\end{aligned}
$$

and

$$
\begin{aligned}
I_{\ell}^{\prime}\left(u_{n}, v_{n}\right)\left(u_{n}, v_{n}\right) & =\int_{B} A^{s} u_{n} A^{t} v_{n}+\int_{B} A^{s} u_{n} A^{t} v_{n} \\
& -\int_{B}\left(|x|^{\alpha}\left|u_{n}\right|^{p+1}+|x|^{\beta}\left|v_{n}\right|^{q+1}\right)-\int_{B}\left(f\left(x, u_{n}\right) u_{n}+g\left(x, v_{n}\right) v_{n}\right)
\end{aligned}
$$

it follows that

$$
\begin{align*}
& C+\epsilon_{n}\left\|z_{n}\right\|_{E} \geq I_{\ell}\left(z_{n}\right)-\frac{1}{2} I_{\ell}^{\prime}\left(z_{n}\right)\left(z_{n}\right) \tag{4.9}\\
&=\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{B}|x|^{\alpha}\left|u_{n}\right|^{p+1} d+\left(\frac{1}{2}-\frac{1}{q+1}\right) \int_{B}|x|^{\beta}\left|v_{n}\right|^{q+1} d x \\
&+\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{B}\left(f\left(x, u_{n}\right) u_{n}+g\left(x, v_{n}\right) v_{n}\right)
\end{align*}
$$

On the other hand, recalling that

$$
<L(u, v), \eta>=B((u, v), \eta)=\int_{B}\left(A^{s} u A^{t} \eta_{2}+A^{s} \eta_{1} A^{t} v\right) d x, \quad \forall \eta=\left(\eta_{1}, \eta_{2}\right)
$$

and writing $z_{n}^{ \pm}=\left(u_{n}^{ \pm}, v_{n}^{ \pm}\right)$, we get

$$
\begin{align*}
\left\|z_{n}^{ \pm}\right\|^{2}-\epsilon \mid\left\|z_{n}^{ \pm}\right\|_{E} \leq & \left|<L z_{n}, z_{n}^{ \pm}>-I_{\ell}^{\prime}\left(z_{n}\right)\left(z_{n}^{ \pm}\right)\right| \\
= & \left.\left.\left|\int_{B}\right| x\right|^{\alpha}\left|u_{n}\right|^{p-1} u_{n} u_{n}^{ \pm} d x+\int_{B}|x|^{\beta}\left|v_{n}\right|^{p-1} v_{n} v_{n}^{ \pm}\right) d x \tag{4.10}\\
& +\int_{B}\left(f\left(x, u_{n}\right) u_{n}^{ \pm}+g\left(x, v_{n}\right) v_{n}^{ \pm}\right) \mid
\end{align*}
$$

and we will now estimate each term in the r.h.s of above.
From Hölder inequality we get

$$
\begin{aligned}
\left.\left|\int_{B}\right| x\right|^{\alpha}\left|u_{n}\right|^{p-1} u_{n} u_{n}^{ \pm} d x \mid & \leq\left(\int_{B}|x|^{\alpha}\left|u_{n}\right|^{p+1} d x\right)^{\frac{p}{p+1}}\left(\int_{B}|x|^{\alpha}\left|u_{n}^{ \pm}\right|^{p+1} d x\right)^{\frac{1}{p+1}} \\
& \leq\left(\int_{B}|x|^{\alpha}\left|u_{n}\right|^{p+1} d x\right)^{p /(p+1)}\left\|u_{n}^{ \pm}\right\|_{E_{\ell}^{s}}
\end{aligned}
$$

and

$$
\begin{equation*}
\left.\left|\int_{B}\right| x\right|^{\beta}\left|v_{n}\right|^{q-1} v_{n} v_{n}^{ \pm} d x\left|\leq\left(\int_{B}|x|^{\beta}\left|v_{n}\right|^{q+1} d x\right)^{q /(q+1)}\right| \mid v_{n}^{ \pm} \|_{E_{\ell}^{t}} . \tag{4.12}
\end{equation*}
$$

On other hand, noticing that $\left(H_{1}\right)-\left(H_{4}\right)$ gives the estimate $f(s) s^{1 / \tau} \leq C(1+$ $f(s) s), \forall s \in \mathbb{R}, \tau>1$, and using Hölder inequality, we infer that

$$
\begin{align*}
& \text { 3) } \quad\left|\int_{B}\left(f\left(x, u_{n}\right) u_{n}^{ \pm}+g\left(x, v_{n}\right) v_{n}^{ \pm}\right)\right| \tag{4.13}\\
& \left.\left.\quad \leq \int_{B}\left|f\left(x, u_{n}\right)\right|^{\frac{\tau+1}{\tau}}\right)^{\frac{\tau}{\tau+1}}\left\|u_{n}^{ \pm}\right\|_{L_{\ell}^{\tau+1}}+\int_{B}\left|g\left(x, v_{n}\right)\right|^{\frac{\sigma+1}{\sigma}}\right)^{\frac{\sigma}{\sigma+1}}\left\|v_{n}^{ \pm}\right\|_{L_{\ell}^{\sigma+1}} \\
& \leq\left(\int_{B}\left|f\left(x, u_{n}\right)\right|\left|f\left(x, u_{n}\right)\right|^{\frac{1}{\tau}}\right)^{\frac{\tau}{\tau+1}}\left\|z_{n}^{ \pm}\right\|_{E}+\left(\int_{B}\left|g\left(x, v_{n}\right) \| g\left(x, v_{n}\right)\right|^{\frac{1}{\sigma}}\right)^{\frac{\sigma}{\sigma+1}}\left\|z_{n}^{ \pm}\right\|_{E} \\
& \left.\left.\quad \leq C\left(\left.1+\left(\int_{B}\left|u_{n}\right|\left|f\left(x, u_{n}\right)\right|\right)^{\frac{r}{r+1}}+\left(\int_{B} \mid v_{n}\right) \| g\left(x, v_{n}\right) \right\rvert\,\right)^{\frac{\sigma}{\sigma+1}}\right)\right)\left\|z_{n}^{ \pm}\right\|_{E}
\end{align*}
$$

for some constant $C>0$.
Therefore, combining (4.11)-(4.12)-(4.13) with (4.10), we obtain

$$
\begin{align*}
\left\|z_{n}^{ \pm}\right\|_{E}-\epsilon \leq & \left(\int_{B}|x|^{\alpha}\left|u_{n}\right|^{p+1} d x\right)^{p /(p+1)}+\left(\int_{B}|x|^{\beta}\left|v_{n}\right|^{q+1} d x\right)^{q /(q+1)} \\
\leq & \left(C+\epsilon_{n}| | z_{n}| |\right)^{p /(p+1)}+\left(C+\epsilon_{n}\left\|z_{n}\right\|\right)^{q /(q+1)} \tag{4.14}\\
& +C\left(1+\left(C+\epsilon_{n}\left\|z_{n}\right\|\right)^{\tau /(\tau+1)}+\left(C+\epsilon_{n}\left\|z_{n}\right\|\right)^{\sigma /(\sigma+1)}\right)
\end{align*}
$$

This implies that $\left\|z_{n}\right\|_{E}$ is uniformly bounded in n.
Proposition 4.3. For each $n \in \mathbb{N}$, one has $I_{\ell}(z) \rightarrow-\infty$ as $\|z\|_{E} \rightarrow \infty, z \in$ $E_{n}^{+} \bigoplus E^{-}$.

Proof. Let $n \in \mathbb{N}$ be fixed and let $z_{n} \in E_{n}^{+} \bigoplus E^{-}$be such that $\left\|z_{n}\right\|_{E} \rightarrow \infty$. Writing $z=z^{+}+z^{-}$for $z=(u, v)$, we have that

$$
\begin{align*}
I_{\ell}(u, v) \leq\left\|z^{+}\right\|_{E}^{2}-\left\|z^{-}\right\|_{E}^{2}-\int_{B} \frac{|x|^{\alpha}|u|^{p+1}}{p+1}+ & \frac{|x|^{\beta}|v|^{q+1}}{q+1} \tag{4.15}\\
& -\int_{B}\left(F\left(x, u_{n}\right)+G\left(x, v_{n}\right)\right)
\end{align*}
$$

And letting $z^{ \pm}=\left(u^{ \pm}, v^{ \pm}\right)$we have that $u^{-}=\eta u^{+}+\hat{u}$, where \hat{u} is orthogonal to u^{+} in $L_{\ell}^{2}\left(|x|^{\alpha}\right)$. Similarly, $v^{-}=\nu v^{+}+\hat{v}$, where \hat{v} is orthogonal to v^{+}in $L_{\ell}^{2}\left(|x|^{\alpha}\right)$.

Notice that either ν or η is positive. Supposing $\nu>0$, we have the following estimate, where $1 / \gamma+1 /\left(\gamma^{\prime}\right)=1$ and $\gamma>1$:

$$
(1+\nu) \int_{B}|x|^{\delta}\left|u^{+}\right|^{2} d x=\int_{B}|x|^{\delta}\left((1+\nu) u^{+}+\hat{u}\right) u^{+} d x \leq|u|_{L_{\ell}^{\gamma}\left(|x|^{\delta}\right)}\left|u^{+}\right|_{L_{\ell}^{\gamma^{\prime}}\left(|x|^{\delta}\right)}
$$

Since the norms in E_{n}^{+}are equivalent, we get, for a positive constant $C>0$:

$$
(1+\nu)\left|u^{+}\right|_{L_{\ell}^{2}\left(|x|^{\delta}\right)} \leq C|u|_{L_{\ell}^{\gamma}\left(|x|^{\delta}\right)}
$$

Then, using this inequality in (4.15) with $\delta=\alpha, \gamma=p+1$ (resp. $\delta=\beta, \gamma=q+1$), we get

$$
I_{\ell}(z) \leq\left\|z^{+}\right\|_{E}^{2}-\left\|z^{-}\right\|_{E}^{2}-C\left(\left|u^{+}\right|_{L_{\ell}^{p+1}\left(|x|^{\alpha}\right)}^{p+1}+C\left|v^{+}\right|_{L_{\ell}^{q+1}\left(|x|^{\beta}\right)}^{q+1}\right)
$$

which implies that

$$
I_{\ell}(z) \rightarrow-\infty, \text { as }\|z\| \rightarrow \infty, \text { because } p, q>1
$$

Finally, the proof of Theorem 2.1 is complete by applying the following version of Rabinowitz Linking Theorem (see [19]):
Theorem 4.4. Suppose that $I \in C^{1}(E, \mathbb{R})$ satisfies the following conditions:
(a): I has a local linking at 0 .
(b): I satisfies $(P S)^{*}$.
(c): I maps bounded sets into bounded sets.
(d): For every $n \in \mathbb{N}, I(z) \rightarrow-\infty$, as $\|z\| \rightarrow \infty, z \in E_{n}^{+} \oplus E^{-}$.

Then I has a nontrivial critical point.

References

[1] M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation. Adv. Nonlinear Stud. 4 (2004), 453-467.
[2] D. Bonheure, E. M. dos Santos and M. Ramos, Ground state and non-ground state solutions of some strongly coupled elliptic systems, Trans. Amer. Math. Soc. 364 (2012), 447-491.
[3] D. Bonheure, E. M. dos Santos and M. Ramos. Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems. J. Funct. Anal. 264 (2013), 62-96.
[4] H. Brezis, Analyse Fonctionnelle, Thérie et Applications, Masson, New York, 1987.
[5] M. Calanchi and B. Ruf, Radial and non radial solutions for Hardy-Hénon type elliptic systems, Calc. Var. Partial Differential Equations 38 (2010), 111-133.
[6] Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems. Comm. Partial Differential Equations 17 (1992), 923-940.
[7] D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99-116.
[8] D. G. de Figueiredo, I. Peral and J. D. Rossi, The critical hyperbola for a Hamiltonian elliptic system with weights. Ann. Mat. Pura Appl. 187 (2008), 531-545.
[9] D. G. de Figueiredo, E. M. dos Santos and O. H. Miyagaki, Critical hyperbolas and multiple symmetric solutions to some strongly coupled elliptic systems. Advanced Nonlinear Studies 13 (2013), 359-371.
[10] L. Fang and Y. Jianfu, Nontrivial solutions of Hardy-Hénon type elliptic systems. Acta Math. Sci. Ser. B Engl. Ed. 27 (2007), 673-688.
[11] D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. 43 (1967), 82-86.
[12] J. L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes et Applications, vol. I, Dunod, Paris, 1968.
[13] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), 125-151.
[14] W.-M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J. 31 (1982), 801-807
[15] L. A. Peletier and R. C. A. M. van der Vorst, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential Integral Equations 5 (1992), 747-767.
[16] A. Persson, Compact linear mappings between interpolation spaces, Arkiv Matematik 5 (1963), 215-219.
[17] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.
[18] R.C.A.M. van der Vorst, Variational identities and applications to differential systems. Arch. Rational Mech.Anal. 116 (1991), 375-398.
[19] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser 1996.
D. G. Costa

Department of Mathematical Sciences, University of Nevada Las Vegas, Box 454020
E-mail address: david.costa@unlv.edu
D. G. De Figueiredo

Instituto de Matemática, Estatística e Computação, Científica - Universidade Estadual de Campinas, Caixa Postal 6065, CEP 13083-859 - Campinas - SP - Brazil

E-mail address: djairo@unicamp.br
Ederson M. dos Santos
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, CEP 13560-970 - São Carlos - SP - Brazil

E-mail address: ederson@icmc.usp.br
Olímpio H. Miyagaki
Departamento de Matemática, Universidade Federal de São Carlos, CEP 13565-905 - São Carlos -SP - Brazil

E-mail address: olimpio@ufscar.br

[^0]: 2020 Mathematics Subject Classification. Primary 31B30; Secondary 31A30, 35J30, 35J40.
 Key words and phrases. Hamiltonian system, Hénon type weights, supercritical problems, nonstandard fractional Sobolev embeddings.
 E. M. dos Santos has been partially supported by CNPq grant number 309006/2019-8, and FAPESP grant number 2015/17096-6. O. H. Miyagaki has been partially supported by CNPq/Brazil grant number 307061/2018-3, and FAPESP/Brazil grant number 2019/24901-3. The authors thank both institutes IMECC-UNICAMP and ICMC-USP, where this work was done, for the warm hospitality.

