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domain compactly contained in Ω, and t1 < t2, t1, t2 ∈ (0, T ),∫
Ω′
u(x, t2)η(x, t2) dx−

∫
Ω′
u(x, t1)η(x, t1) dx

=

∫ t2

t1

∫
Ω′

(um∆η + uηt) dxdt−
∫ t2

t1

∫
∂Ω′

um
∂η

∂ν
dsdt .(1.2)

A Radon measure ν on ∂Ω×(0, T ) is called the lateral trace of a function F ∈ C(QT )
if

(1.3) lim
ε→0+

∫ T

0

∫
∂Ωε

Fhdsdt =

∫
∂Ω×(0,T )

h dν ,

where Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} and h is a continuous function defined in a
tubular neighborhood of ∂Ω× (0, T ) vanishing near t = 0, T . For a continuous very
weak solution u, um always admits a lateral trace. On the other hand, consider the
pair (µ, λ) where µ is a Radon measure on Ω satisfying

(1.4)

∫
Ω
ρ(x) dµ(x) <∞ ,

where ρ is the distance to the boundary of Ω, and λ is a Radon measure on ∂Ω.
This pair is called the initial trace of the continuous very weak solution u if for all
smooth φ vanishing on ∂Ω,

(1.5) lim
t→0+

∫
Ω
u(x, t)φ(x) dx =

∫
Ω
φdµ−

∫
∂Ω

∂φ

∂ν
dλ .

The study of these solutions goes in two directions according to whether its “total
mass” is finite or not. Indeed, when a continuous very weak solution satisfies the
condition

(1.6)

∫ T

0

∫
Ω
um(x, t) dxdt <∞ ,

we show in [4] that it admits an initial trace. Furthermore, the lateral trace of its
m-power is a finite measure. Conversely, given a triple (µ, λ, ν) where µ is a Radon
measure on Ω satisfying (1.4), λ is a finite Radon measure on ∂Ω, and ν is a finite
Radon measure on ∂Ω × (0, T ), there is a continuous very weak solution u taking
(µ, λ) as its initial trace and whose m-th power taking ν as its lateral trace. Indeed,
the continuous very weak solution satisfies the identity∫

Ω
u(x, t)η(x, t) dx =

∫
Ω
η(x, 0) dµ−

∫
∂Ω

∂η

∂ν
(x, 0) dλ

+

∫
Qt

(um∆η + uηt) dxdt−
∫
∂Ω×(0,t)

∂η

∂ν
dν ,(1.7)

for all η ∈ C∞(Ω × [0, T ]), η = 0 on ∂Ω × [0, T ), and a.e. t ∈ (0, T ). The proofs of
all these facts can be found in [4].

In this note we will restrict our attention to the case where the lateral trace is
given by a continuous function. Previously, rather complete results were obtained
in [6] when the lateral trace vanishes identically. Now we extend their results to the
nonhomogeneous case. First, we have
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Theorem 1.1. Let µ be a Radon measure on Ω satisfying (1.4), λ a Radon measure
at ∂Ω, and a Radon measure ν on ∂Ω × (0, T ) given by dν = gmdsdt where g is a
nonnegative, continuous function on ∂Ω× [0, T ]. There is a unique continuous very
weak solution u of (1.1) in QT belonging to C(Ω × (0, T ]), u = g on ∂Ω × (0, T ],
admitting (µ, λ) as its initial trace. Indeed, it satisfies (1.7) for all t ∈ (0, T ).

Next, we study the case when (1.6) is not satisfied. In the homogeneous case, it
is known that there is only one continuous very weak solution satisfies the condition

(1.8)

∫ T

0

∫
Ω
um(x, t) dxdt = ∞ .

This solution, called the friendly giant, tends to ∞ uniformly in each compact
subset of Ω as time goes to 0. We show that the same result remains valid in the
nonhomogeneous case.

Theorem 1.2. (a) Let g be a nonnegative, continuous function on ∂Ω× [0, T ].
There is a unique continuous very weak solution of (1.1) in QT , u, belonging
to C(Ω× (0, T ]), u = g on ∂Ω× (0, T ], which tends to ∞ uniformly in every
compact subset of Ω as t→ 0+.

(b) Any continuous very weak solution u of (1.1) in QT belonging to C(Ω ×
(0, T ]) satifies (1.8) is a friendly giant, that is, it is the continuous very
weak solution described in (a).

2. Initial-boundary value problem

In this section we prove Theorem 1.1. Our proof does not rely on a regularity
theory applying to the continuous very weak solution constructed in our previous
paper. Instead, we re-examine the proof therein by incorporating a boundary reg-
ularity result of DiBenedetto [5]. There is another boundary regularity result by
Ziemer [10] which covers the same equation. However, only the result in [5] provides
a modulus of continuity which is essential to our argument. To adapt this result to
our context, let us first recall that a modulus of continuity for a function defined
on a set E ⊂ Rn × [0, T ] is an increasing function ω : [0,∞) → [0,∞), which is
continuous at 0 satisfying ω(0) = 0, such that

|f(x1, t1)− f(x2, t2)| ≤ ω(|x1 − x2|+ |t1 − t2|1/2) , ∀(x1, t1), (x2, t2) ∈ E.

Every uniformly continuous function f on a set E admits a modulus of continuity
defined by

ω(r) = sup
{
|f(x1, t1)−f(x2, t2)| : |x1−x2|+|t1−t2|1/2 ≤ r, ∀(x1, t1), (x2, t2) ∈ E

}
.

The following result is taken from [5].

Theorem 2.1. Let g ∈ C(∂Ω × [0, T ]), g ≥ 0, and u a bounded, H1-solution of
(1.1) in QT satisfying u = g on ∂Ω × (0, T ] (in the sense of Sobolev trace). For
each modulus of continuity ωg of g and τ ∈ (0, T ), there associates a modulus of
continuity for u, ω, so that

|u(x1, t1)− u(x2, t2)| ≤ ω(|x1 − x2|+ |t1 − t2|1/2) , (xi, ti) ∈ Ω× [τ, T ] , i = 1, 2 .

The function ω only depends on ∥u∥L∞(QT ), ωg and τ .
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We will need the following result taken from (3.8) in [4].

Lemma 2.2. Let u be a continuous very weak solution of (1.1) in some QT with
trace triple (µ, λ, ν) where µ is a Radon measure on Ω satisfying (1.4), λ a Radon
measure at ∂Ω and ν is a finite Radon measure on ∂Ω × (0, T ). For each ε > 0,
there is some t1 ∈ (0, T ) such that∫ t1

0

∫
Ω
um dxdt < ε,

where t1 depends only on ε, ∥ρ∥L1(µ), λ(∂Ω) and ν(∂Ω× (0, T )).

Now we prove Theorem 1.1. First, we construct a continuous very weak solution
with trace triple (µ, 0, ν) where dµ = fdx, f ≥ 0, f ∈ C∞

c (Ω), dν = gmdsdt, and
g ∈ C(∂Ω × [0, T ]), g ≥ 0. We may assume that g has been extended to be a
nonnegative, uniformly continuous function g in Rn+1. Let ωg be a modulus of
continuity for g. Fix a bump function Ψ in the unit ball in Rn+1 with ∥Ψ∥L1 = 1
and, for each ε > 0, define a smooth function gε in ∂Ω× [0, T ] by gε = Ψε ∗ g where
Ψε(x) = ε−nΨ(x/ε). Then gε converges to g uniformly as ε tends to 0. Moreover,
since we have

|g(x1, t1)− g(x2, t2)| ≤ ωg(|x1 − x2|+ |t1 − t2|1/2) , (xi, ti) ∈ Rn+1 , i = 1, 2,

we have

|gε(x1, t1)− gε(x2, t2)|

=

∣∣∣∣ 1εn
∫

Ψ((y, τ)/ε) (g(x1 − y, t1 − τ)− g(x2 − y, t2 − τ)) ds(y)dτ

∣∣∣∣
≤ ωg(|x1 − x2|+ |t1 − t2|1/2) , (xi, ti) ∈ ∂Ω× [0, T ], i = 1, 2 .

Hence ωg is a modulus of continuity for all gε.
Now, for each k, we fix a nonnegative, smooth function ξk which is equal to 1

on [1/k, T ] and 0 on [0, 1/2k] and let hk = ξkg1/k. Each hk coincides with g1/k in
∂Ω × [1/k, T ] and vanishes near t = 0. Now, we solve (1.1) using f + 1/k as the
initial value and hk +1/k as the lateral value to obtain a positive, classical solution
uk in QT . The existence of uk can be established by a routine argument. On the
other hand, it is shown in section 4 in [4] that there is a supersolution of the form
W (x, t) = t−αφ(x), α > 0, φ > 0 in Ω, of which lateral value is always greater than
∥g∥L∞ + 1. By the comparison principle, all uk are bounded by W for all large k.
Hence, for each τ ∈ (0, T ],

(2.1) 0 ≤ uk(x, t) ≤Mτ , k ≥ 1, (x, t) ∈ Ω× [τ, T ] ,

where Mτ = τ−α supΩW . Moreover, since ωg is a modulus of continuity for all gε,
appealing to Theorem 2.1, for each τ ∈ (0, T ), there exists a modulus function ωτ

depending only on τ,Mτ and ωg such that for all k ≥ 1/τ, (x1, t1), (x2, t2) ∈ [τ, T ],

(2.2) |uk(x1, t1)− uk(x2, t2)| ≤ ωτ (|x1 − x2|+ |t1 − t2|1/2) .
In view of (2.1) and (2.2), we can apply Ascoli’s theorem to select a subsequence from
{uk}, still denoted by {uk}, which converges uniformly to some v ∈ C(Ω × (0, T ])
on each Ω× (τ, T ], τ ∈ (0, T ), as k → ∞.
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We now verify that v is a continuous very weak solution of (1.1). First of all,
v is clearly equal to g on the lateral boundary. Next, let η be a smooth function
in Ω′ × [0, T ] vanishing on ∂Ω × (0, T ) where Ω′ is a smooth subdomain of Ω. By
multiplying the equation satisfied by uk with η and then integrating over Ω′, we
have ∫

Ω′
uk(x, t2)η(x, t2) dx−

∫
Ω′
uk(x, t1)η(x, t1) dx

=

∫ t2

t1

∫
Ω′

(umk ∆η + ukηt) dxdt−
∫ t2

t1

∫
∂Ω′

umk
∂η

∂ν
dsdt .(2.3)

Note that (2.3) is more general than (1.2) since here Ω′ is not necessarily compactly
contained in Ω. Letting k → ∞, we see that (2.3) also holds for v. In particular, it
shows that v is a continuous very weak solution of (1.1). By the continuity of v in
Ω× (τ, T ], it is clear that

(2.4) lim
ε→0

∫ T

0

∫
∂Ωε

vm(x, t)h(x, t) dsdt =

∫ T

0

∫
∂Ω
h(x, t)gm(x, t) dsdt ,

for all continuous h vanishing near 0 and T . Finally, to verify the initial condition,
we observe that∫

Ω
uk(x, t)η(x, t) dx−

∫
Ω

(
fk(x) +

1

k

)
η(x, 0) dx

=

∫ t

0

∫
Ω
(umk ∆η + ukηt) dxdt−

∫ t

0

∫
∂Ω

(
gk +

1

k

)m ∂η

∂ν
dsdt .

Letting k → ∞, we obtain∫
Ω
v(x, t)η(x, t) dx−

∫
Ω
f(x)η(x, 0) dx

=

∫ t

0

∫
Ω
(vm∆η + vηt) dxdt−

∫ t

0

∫
∂Ω
gm

∂η

∂ν
dsdt .(2.5)

where we have applied Lemma 2.2 to the first integral on the right hand side.
Consequently,

lim
t→0+

∫
Ω
v(x, t)η(x, t) dx =

∫
Ω
f(x)η(x, 0) dx .

By comparing with (1.5), we see that (µ, 0) where dµ = fdx is the initial trace of
v. We have shown that v is a continuous weak solution of (1.1) whose trace triple
is given by (µ, 0, ν) as asserted. Moreover, (2.1) and (2.2) continue to hold for v.

Next, we solve (1.1) for (µ, 0, ν) where µ is a Radon measure compactly supported
in Ω and dν = gmdsdt, g ∈ C(∂Ω × [0, T ]), g ≥ 0. It suffices to fix a sequence of
nonnegative functions {fj} in C∞

c (Ω) which converges weakly to µ. Denote the
solution of (1.1) as constructed in the first step with initial value fj and lateral
value g by vj . Since (2.1) and (2.2) hold for all vj , by Ascoli’s theorem again it
contains a subsequence, which is still denoted by {vj}, converging uniformly on

each Ω × [τ, T ] to some w ∈ C(Ω × (0, T ]). By passing limit in (2.3) (replacing
uk by vj), it is readily seen that w is a continuous very weak solution of (1.1).

Furthermore, since w ∈ C(Ω× [τ, T ]) and is equal to g along the lateral boundary,
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(2.4) holds for w. Finally, each vj and fj satisfy (2.5) (replacing v and f by vj and
fj respectively). By Lemma 2.2 and the fact that {vj} converges uniformly to w in
each Ω× [τ, T ], τ ∈ (0, T ), by letting j → ∞, (2.5) implies∫

Ω
w(x, t)η(x, t) dx−

∫
Ω
η(x, 0) dµ

=

∫ t

0

∫
Ω
(wm∆η + wηt) dxdt−

∫ t

0

∫
∂Ω
gm

∂η

∂ν
dsdt .(2.6)

Letting t → 0+, by Lemma 2.2 again, the initial trace of w is equal to (µ, 0). We
note that (2.1) and (2.2) hold for w.

Finally, let (µ, λ, ν), dν = gmdsdt, be the general case. We may follow [DK]
to construct a sequence of Radon measures {µi} compactly contained in Ω that
satisfies

(2.7) lim
i→∞

∫
Ω
φdµi =

∫
Ω
φdµ−

∫
∂Ω

∂φ

∂ν
dλ , ∀φ ∈ C∞(Ω), φ = 0 on ∂Ω .

Let wi be the continuous very weak solution for the trace triple (µi, 0, ν) constructed
in the last paragraph. As (2.1) and (2.2) hold for all {wi}, we can extract a sub-
sequence, still denoted by {wi}, converging uniformly on each Ω × [τ, T ] to some
u ∈ C(Ω× (0, T ]). Arguing as before, u is a continuous very weak solution of (1.1)
whose lateral value is g. Moreover, by passing limit in (2.6) (for wi and µi) and
using (2.7), we see that (µ, λ) is the initial trace of u, and (1.7) holds for u.

We have completed the proof of the existence part of Theorem 1.1. The unique-
ness assertion will be established in Section 4.
Remark 2.1. The proof above in fact has shown that the continuous very weak
solution satisfies (1.2) in every smooth subdomain Ω′ of Ω.

Remark 2.2. When the initial-boundary value is given by a continuous function
h on Ω×{0}

⋃
∂Ω× (0, T ]. According to the main theorem in [D], one can estimate

the modulus of continuity of the very weak solution in QT . It follows that in this
case the continuous very weak solution constructed above in fact belongs to C(QT )
and is equal to h on its parabolic boundary.

3. Comparison Principles

The results of this section will be used in the next section to establish the unique-
ness part of Theorem 1.1 and Theorem 1.2.

The Green’s potential was first used in the study of the porous medium equation
in [P]. Pierre’s maximum principle was subsequently employed in [6] to establish the
uniqueness of the friendly giant under the homogeneous lateral boundary condition.
Here we extend it to the nonhomogeneous case.

We start with a comparison principle for continuous very weak solutions. The
proof is by modifying a standard argument [ACP].
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Lemma 3.1. Let ui, i = 1, 2, be continuous very weak solutions of (1.1) in QT

belonging to C(QT ). Suppose that u1 ≤ u2 on ∂pQT , the parabolic boundary of QT .

Then u1 ≤ u2 in QT .

Proof. We note the relation um1 − um2 = a(u1 − u2) where

a = m

∫ 1

0
(u2 + s(u1 − u2))

m−1ds ≥ 0 .

Pick a sequence of positive ak ∈ C∞(QT ) satisfying 1/k ≤ ak ≤ ∥a∥L∞ + 1/k
satisfying and

(3.1) lim
k→∞

∥∥∥∥(ak − a)
√
ak

∥∥∥∥
L2(QT )

= 0 .

For a fixed t, 0 < t < T, and a given a smooth, non-negative function θ in Ω
vanishing on ∂Ω, we solve the initial-boundary problem

ηt + ak∆η = 0, in Ω× (0, t) ,

η(x, t) = θ(x) ,

η(x, τ) = 0, (x, τ) ∈ ∂Ω× (0, t) ,

to obtain a non-negative, smooth solution ηk. As ui, i = 1, 2, are continuous up to
t = 0, from (1.5) we see that their corner traces vanish. Using ηk as a test function
in (1.7) and noting that dµi = ui dx and λi = 0 at t = 0, δu ≡ u1 − u2 satisfies∫
Ω
δu(x, t)θ(x) dx =

∫
Ω
δu(x, 0)ηk(x, 0) dx

+

∫ t

0

∫
Ω
(a− ak)∆ηk δu dxdτ −

∫ t

0

∫
∂Ω

(um1 − um2 )
∂ηk
∂ν

dsdt

≤
∫ t

0

∫
Ω
(a− ak)∆ηk δu dxdt .(3.2)

where δu = u1 − u2. To estimate the right hand side of (3.2), we multiply ∆ηk to
the equation satisfied by ηk and integrate to get∫ t

0

∫
Ω
ak(∆ηk)

2δu dxdτ ≤ 1

2

∫
Ω
|∇θ|2 dx .

By Cauchy-Schwarz inequality∣∣∣∣∫ t

0

∫
Ω
(a− ak)∆ηkδu dxdτ

∣∣∣∣
≤ ∥δu∥L∞

(∫ t

0

∫
Ω

(a− ak)
2

ak
dxdt

)1/2(
1

2

∫
Ω
|∇θ|2 dx

)1/2

.

Using (3.1) and passing limit, we arrive at∫
Ω
δu(x, t)θ(x) dx ≤ 0 ,

which implies δu(x, t) ≤ 0. The desired conclusion follows. □
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Given a continuous function u in Ω, we solve the equation −∆U = u, U =
0 on ∂Ω, to obtain the the Green’s potential of u. It assumes the form

U(x) =

∫
Ω
G(x, y)u(y) dy ,

where G is the Green’s function of the Laplacian under the Dirichlet condition [H].
In general, since C(Ω) ⊂ Lp(Ω) for all p ≥ 1, by elliptic theory U belongs to the
Sobolev space W 2,p(Ω) for all p ≥ 1. In particular, it implies that U is continuously
differentiable. However, stronger regularity is required to establish the following
result, so an approximate argument is needed.

Lemma 3.2. Let u be a continuous weak solution of (1.1) in QT belonging to
C(Ω× (0, T ]). For 0 < t1 < t2 ≤ T ,

U(x, t2)− U(x, t1) ≤ −
∫ t2

t1

∫
∂Ω

∂G

∂νy
(x, y)um dsdt ,

where U(·, t) is the Green’s potential of u(·, t).

Proof. For t1 < t2 in (0, T ), fix some t0 ∈ (0, t1). We pick a sequence of positive,
smooth functions {hk} decreasing to u uniformly on the parabolic boundary of
Ω × [t0, T ] and let vk be the continuous very weak solution of (1.1) taking hk as
its initial-boundary data. Each vk(·, t) is positive, smooth and its Green’s potential
Vk(·, t) is smooth too. We have

∂Vk
∂t

(x, t) =

∫
Ω
G(x, y)vkt(y, t) dy

=

∫
Ω
G(x, y)∆vmk (y, t) dy

= −vmk (x, t)−
∫
∂Ω

∂G

∂νy
(x, y)hmk (y, t) ds

≤ −
∫
∂Ω

∂G

∂νy
(x, y)hmk (y, t) ds .

Therefore,

(3.3) Vk(x, t2)− Vk(x, t1) ≤ −
∫ t2

t1

∫
∂Ω

∂G

∂νy
(x, y)hmk (y, t) dsdt .

By the weak maximum principle,

∥vk − vj∥L∞(Ω×(t0,T ])) ≤ ∥hk − hj∥L∞(∂p(Ω×[t0,T ]) ,

hence {vk} converges to some continuous very weak solution uniformly in Ω×[t0, T ],
and this solution takes u as its initial-boundary value. By Lemma 3.1, this solution
coincides with u. We conclude that {vk} converges to u uniformly in Ω × [t0, T ].
According to elliptic theory, Vk(·, t) converges to U(·, t) in W 2,p(Ω) for all t ∈ (0, T )
and p > n/2. By Sobolev’s inequality, in particular, Vk(·, t) converges to U(·, t)
uniformly. The lemma follows by passing limit in (3.3). □
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Lemma 3.3. Let ui, i = 1, 2, be two continuous very weak solutions of (1.1) be-
longing to C(Ω× (0, T ]). Let φ ∈ C∞(Ω) vanish on ∂Ω and τ < t, t, τ ∈ (0, T ), be
fixed. There are Radon measures mτ on Ω and Στ on ∂Ω× [τ, t] satisfying

(3.4)

∫
Ω
δU(x, t)φ(x) dx =

∫
Ω
δU(x, τ) dmτ (x) +

∫
∂Ω×[τ,t]

(um1 − um2 ) dΣτ .

Moreover,

(3.5) mτ (Ω) ≤ ∥φ∥L1 , Στ (∂Ω× (τ, t)) ≤ t∥φ∥L1 .

The measures mτ and Στ also depend on ui, t and φ. Nevertheless, in the
following we will let τ tend to 0 while all other quantities are fixed. Therefore, we
only put τ in the subscripts of these measures.

Proof. Let θ be the function obtained by solving −∆θ = φ in Ω and θ = 0 on
∂Ω. Use this θ to determine η as in the proof of Lemma 3.1. According to (3.2)
(replacing 0 by τ),∫

Ω
δU(x, t)φ(x) dx =

∫
Ω
δU(x, τ)∆ηk(x, τ) dx+∫ t

τ

∫
Ω
(a− ak)∆ηk δu dxdt+

∫ t

τ

∫
∂Ω

(um1 − um2 )

∣∣∣∣∂ηk∂ν
∣∣∣∣ dsdt ,(3.6)

where δU ≡ U1−U2. Observing that ∆ηk satisfies the equation (∆ηk)t+∆(ak∆ηk) =
0 and ∆ηk = −a−1

k ηkt = 0 on ∂Ω× (0, T ), ∆ηk ≤ 0 by the maximum principle. We
have

d

dt

∫
Ω
∆ηk = −

∫
Ω

∂

∂ν
(ak∆ηk) dx ≤ 0 .

It follows that∫
Ω
|∆ηk(x, τ ′)|dx =

∫
∂Ω

∣∣∣∣∂ηk∂ν (x, τ ′)

∣∣∣∣ ds ≤ ∫
Ω
φ(x) dx ,

for all τ ′ ∈ [τ, t]. As {∆ηk} is uniformly bounded in L1(Ω), we can find a subse-
quence {ηki} and a Radon measure mτ such that |∆ηki | dx converges to dmτ weakly.
In particular, ∫

Ω
δU(x, τ)|∆ηki(x, τ)| dx→

∫
Ω
δU(x, τ) dmτ (x) .

On the other hand, the L1-norm of ∂ηk/∂ν over ∂Ω× [τ, t] is uniformly bounded by
t∥φ∥L1 , we may assume that |∂ηki/∂ν| dsdt also converges weakly to some Radon
measure Στ . We have∫ t

τ

∫
∂Ω

(um1 − um2 )

∣∣∣∣∂ηki∂ν

∣∣∣∣ dsdt→ ∫
∂Ω×[τ,t]

(um1 − um2 ) dΣτ .

The desired result follows by letting ki → ∞ in (3.6). □

Here is a version of Pierre’s maximum principle.
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Proposition 3.4. Let ui, i = 1, 2, be two continuous very weak solutions of (1.1)
belonging to ∂Ω × (0, T ]. Suppose that ui coincide with gi on ∂Ω × (0, T ] where
gi ∈ C(∂Ω × [0, T ]). Let Ui(·, t) be the Green’s function of ui(·, t). Assume that
U1 satisfies (a) U1(·, t) ∈ C0(Ω), t ∈ [0, T ), and (b) U1(·, t) converges to U1(·, 0)
uniformly as t → 0+. For each non-negative φ ∈ C∞(Ω) vanishing on ∂Ω and a
fixed t ∈ (0, T ), there are Radon measures m on Ω and Σ on ∂Ω× [0, t] such that∫
Ω
δU(x, t)φ(x) dx ≤

∫
Ω

(
U1(x, 0)− lim

t→0+
U2(x, t)

)
dm+

∫
∂Ω×[0,t]

(gm1 − gm2 ) dΣ .

Moreover,

(3.7) m(Ω) ≤ ∥φ∥L1 , Σ(∂Ω× [0, t]) ≤ t∥φ∥L1 .

By Lemma 3.2, for continuous very weak solutions ui, i = 1, 2, with Green’s
potential Ui, the functions

Ũi(x, t) ≡ Ui(x, t) +

∫ T

t
hi(x, τ)dτ ,

where

hi(x, τ) = −
∫
∂Ω

∂G

∂νy
(x, y)gmi (y, τ) ds(y) ,

is decreasing in t. Here hi(·, t) is the harmonic function taking gmi (·, t) as its bound-
ary value. As the lateral trace dν = gmi dsdt a finite measure, for each x ∈ Ω, both

limits limt→0+ Ui(x, t) and limt→0+ Ũi(x, t) exist in [0,∞] and

lim
t→0+

Ui(x, t) = lim
t→0+

Ũi(x, t)−
∫ T

0
hi(x, τ)dτ ,

holds.

Proof. In view of (3.5), we can pick subsequences τj ↓ 0 such that mτj ,Στj converge
weakly to some m,Σ on Ω and ∂Ω × [0, t] respectively. (We may extend Στ from
∂Ω× [τ, t] to ∂Ω× [0, t] trivially.)

For k ≤ j,∫
Ω
U2(x, τj) dmτj =

∫
Ω
Ũ2(x, τj) dmτj −

∫
Ω

∫ T

τj

h2(x, τ) dτdmτj

≥
∫
Ω
Ũ2(x, τk) dmτj −

∫
Ω

∫ T

τj

h2 dτdmτj

=

∫
Ω
U2(x, τk) dmτj +

∫
Ω

∫ τj

τk

h2 dτdmτj .

Applying the maximum principle to the harmonic function h2, |h2| ≤ ∥g∥mL∞ . We
have ∣∣∣∣∫

Ω

∫ τj

0
h2 dτdmτj

∣∣∣∣ ≤ ∥g∥mL∞τj∥φ∥L1 ,
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which tends to 0 as τj → 0. Consequently,

lim
j→∞

∫
Ω
U2(x, τj) dmτj ≥

∫
Ω
U2(x, τk) dm−

∫
Ω

∫ τk

0
h2 dτdm

=

∫
Ω
Ũ2(x, τk) dm−

∫
Ω

∫ T

0
h2 dτdm .

Now, letting k → ∞, by the monotone convergence theorem,

lim
j→∞

∫
Ω
U2(x, τj) dmτj ≥

∫
Ω

lim
k→∞

Ũ2(x, τk) dm−
∫
Ω

∫ T

0
h2 dτdm

=

∫
Ω

lim
t→0+

Ũ2(x, t) dm−
∫
Ω

∫ T

0
h2 dτdm

=

∫
Ω

lim
t→0+

U2(x, t) dm .(3.8)

On the other hand, using assumptions (a) and (b) on U1,

(3.9) lim
j→∞

∫
Ω
U1(x, τj) dmτj =

∫
Ω
U1(x, 0) dm .

The desired result follows by letting τ = τj → 0 in (3.4) and using (3.8) and
(3.9). □

4. Uniqueness of weak solutions

Let u be a continuous very weak solution of (1.1) in QT . Suppose that it has a
trace triple (µ, λ, ν) where dν = gm dsdt, g ∈ C(∂Ω× [0, T ]). The Green’s potential
of u(·, t), U(·, t) has its Lp-norm (1 ≤ p < n/(n − 1)) bounded by a constant
depending only on the trace triple and ∥u∥L1(ρdx) (see, e.g., Widman [Wi], [4]). By
Fatou’s lemma, both

U∗(x) ≡ lim
t→0+

U(x, t) ,

and

Ũ∗(x) ≡ U∗(x) +

∫ T

0
h(x, τ) dτ ,

are in Lp(Ω).
Now we prove the uniqueness part of Theorem 1.1. Let ui, i = 1, 2, be two

continuous very weak solutions of (1.1) with the same trace triple and ui = g along
the lateral boundary. For a nonnegative φ ∈ C∞

c (Ω), let θ satisfy −∆θ = φ and
θ = 0 on ∂Ω. We have∫

Ω
Ui(x, t)φ(x) dx = −

∫
Ω
ui(x, t)θ(x) dx .

As t→ 0, the right hand side of this identity tends to∫
Ω
θdµ+

∫
∂Ω

∂θ

∂ν
dλ .

Therefore,

lim
t→0+

∫
Ω
U1(x, t)φ(x) dx = lim

t→0+

∫
Ω
U2(x, t)φ(x) dx.
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By the monotonicity of Ũi, we deduce∫
Ω
Ũ1

∗
(x)φ(x) dx =

∫
Ω
Ũ2

∗
(x)φ(x) dx .

We conclude that U∗
1 and U∗

2 coincide when the two weak solutions share the same
trace triple.

Let T1 < T be fixed. We claim U1 ≤ U2 in QT1 . To this end, we fix τ0 ∈ (0, T−T1)
and let U(·, t) be the Green’s potential for u1(·, t+ τ0). Both U and U2 are defined
in QT1 . Applying Proposition 3.4 to U and U2, we have∫

Ω
(U(x, t)− U2(x, t))φdx

≤
∫
Ω
(U1(x, τ0)− U∗

2 (x)) dm+

∫
∂Ω×[0,t]

(gm(x, t+ τ0)− gm(x, t)) dΣ

=

∫
Ω

(
Ũ1(x, τ0)− Ũ1

∗
(x)

)
dm−

∫
Ω

∫ T1

τ0

h1(x, τ) dτdx+

∫
Ω

∫ T1

0
h2(x, τ) dτdx

+

∫
∂Ω×[0,t]

(gm(x, t+ τ0)− gm(x, t)) dΣ

≤ −
∫
Ω

∫ T1

τ0

h1(x, τ) dτdx+

∫
Ω

∫ T1

0
h2(x, τ) dτdx

+

∫
∂Ω×[0,t]

(gm(x, t+ τ0)− gm(x, t)) dΣ

≤ C1(m(Ω) + Σ(∂Ω× [0, t])) sup
∂Ω×[0,T1]

|gm(x, t+ τ0)− gm(x, t)|+ τ0C2m(Ω) ,

where the constants C1 and C2 are independent of τ0. Using (3.7) and the mono-

tonicity of Ũ1, we can let τ0 → 0+ to conclude∫
Ω
(U1(x, t)− U2(x, t))φdx ≤ 0 ,

for all nonnegative φ ∈ C∞
c (Ω), hence U1(x, t) ≤ U2(x, t). By reversing the role of

U1 and U2, U2(x, t) ≤ U1(x, t) also holds. Hence U1 and U2 coincide and this implies
u1 and u2 are the same. The uniqueness part of Theorem 1.1 is proved.

Next we turn to the proof of Theorem 1.2.
A friendly giant with a prescribed Radon measure from M(∂Ω × (0, T )) as its

lateral trace is constructed in [4]. When the lateral trace is of the form dν =
gm dsdt where g ∈ C(∂Ω × [0, T ]), this friendly giant belongs to C(Ω × (0, T ]) and
is equal to g on the lateral boundary. Indeed, let us review the construction of
the friendly giant. First of all, we may assume that g has been extended as a
nonnegative, continuous function on the whole parabolic boundary. Fix a sequence
of subdomains, {Ωk},Ωk ⊂⊂ Ωk+1, satisfying

⋃
k Ωk = Ω and an increasing of

non-negative, smooth functions {φk} satisfying φk ≡ k in Ωk and vanishes outside
Ωk+1. We solve the initial-boundary value problem using g+φk as given data on the
parabolic boundary to get an increasing sequence of continuous very weak solutions
of (1.1) denoted by {uk}. Similarly, let {vk} be the sequence of continuous very
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weak solutions taking φk as initial data and vanishing on the lateral boundary. We
have vk ≤ uk for all k. Using (2.1) and (2.2) it can be shown that both sequences
converge uniformly in every Ω × (τ, T ], τ > 0, to continuous very weak solutions
u and v which are equal to g and 0 along the lateral boundary respectively. It is
known in [6] that v tends to ∞ as t tends to 0 compactly, so does u. We have proved
Part (a) of Theorem 1.2.

To prove Part (b) of Theorem 1.2, we note the following result.

Lemma 4.1. Let u be a continuous very weak solution of (1.1) in QT satisfying
u = g on ∂Ω× (0, T ] for some g ∈ C(∂Ω× [0, T ]). Then (1.8) holds if and only if

(4.1) lim
t→0+

∫
Ω
u(x, t)ρ(x) dx = ∞ .

Proof. Let ψ be the function satisfying −∆ψ = 1 in Ω and vanishes on the boundary.
There exists some positive constant C such that 1/Cρ ≤ ψ ≤ Cρ in Ω. Fix a
continuous, piecewise linear function ζ which is equal to 1 on [0, T ′] for some T ′ < T
and vanishes at (T ′+T )/2. Using ψ(x)ζ(t) as a test function in (2.3), for t ∈ (0, T ′),∫
Ω
u(x, t)ψ(x) dx =

∫ T

t

∫
Ω
um dxdt+

∫ T

T ′

∫
Ω
(umζ−uψζt) dxdt+

∫ T

t

∫
∂Ω

∂ψ

∂ν
ζgm dsdt .

Observing that the second and third terms on the right hand side are bounded
uniformly for all t, (1.8) and (4.1) are equivalent. □

Now we can prove Part (b) of Theorem 1.2. When a continuous very weak so-
lution u satisfies (1.8), by Lemma 4.1 (4.1) holds. Using the fact that G(x, y) ≥
Cxρ(y), y ∈ Ω, for some Cx > 0 [W], its Green’s potential U satisfies limt→0+ U(x, t) =
∞ for every x ∈ Ω. On the other hand, let u1 be the friendly giant constructed in the
proof of Part (a) and U1 its Green’s potential. Similarly, we have limt→0+ U1(x, t) =
∞. Using Proposition 3.4 and arguing as in the proof of Theorem 1.1, we conclude
that U and U1 coincide, so u is equal to u1.

The proof of Theorem 1.2 is completed.
Based on the results in [4] and this paper, we point out some further questions.
First of all, in the case of finite total mass (1.6), the prescribed triple trace

problem is completely solved. Moreover, the (unique) solution is continuous up to
the lateral boundary when the lateral data is a continuous function. However, the
uniqueness of the solution in the general case is not known.

In the case of infinite total mass (1.8), we conjecture that this continuous, very
weak solution must be a friendly giant. Here we have shown that it is true when the
lateral trace ν is given by dν = gm ds where g is a continuous function on ∂Ω×[0, T ].
But the general case is open. Conversely, given any Radon measure on the lateral
boundary, one would like to show that there is a unique friendly giant whose m-th
power takes this measure as its lateral trace.
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