Yokohama Publishers

NONNEGATIVE SOLUTIONS OF THE POROUS MEDIUM EQUATION WITH CONTINUOUS LATERAL BOUNDARY DATA

KAI-SENG CHOU AND YING CHUEN KWONG

Abstract

It is shown that given any nonnegative, continuous function g on the lateral boundary of a cylinder, a Radon measure μ satisfying (1.4) on the bottom and a Radon measure λ at the corner of the bottom, there is a unique continuous very weak solution to the porous medium equation in the slow diffusion case which is continuous up to the boundary for positive time. Moreover, it is equal to g along the lateral boundary, and takes (μ, λ) as its initial trace.

1. Introduction

Consider the porous medium equation in the slow diffusion case

$$
\begin{equation*}
u_{t}=\Delta u^{m}, \quad m>1 \tag{1.1}
\end{equation*}
$$

in the cylinder $Q_{T} \equiv \Omega \times(0, T)$ where Ω is a smooth, bounded domain in \mathbb{R}^{n}. In the previous work [4] we have shown that every nonnegative, continuous very weak solution of (1.1) admits a Radon measure as its lateral trace. Moreover, when $\left\|u^{m}\right\|_{L^{1}\left(Q_{T}\right)}$ is finite, it has an initial trace consisting of a Radon measure on Ω and a Radon measure at $\partial \Omega$. Thus every nonnegative, continuous very weak solution of (1.1) admits a trace triple consisting of bottom, corner and lateral traces. This fact leads naturally to the initial-boundary value problem for this equation with prescribed trace triple. Given a triple of Radon measures in appropriate spaces of measures, it has been shown that the initial-boundary value problem for (1.1) admits a non-negative, continuous very weak solution in Q_{T} whose trace triple is the prescribed one. When (1.1) is considered in $\mathbb{R}^{n} \times(0, T)$, there are no lateral and corner traces and the initial trace problem is solved in [1] and [3].

To proceed further, it is necessary to describe things in analytical terms. A nonnegative function $u \in C\left(Q_{T}\right)$ is called a continuous very weak solution of (1.1) if for every $\eta \in C^{\infty}\left(\overline{\Omega^{\prime}} \times(0, T)\right)$ vanishing on $\partial \Omega^{\prime} \times(0, T)$, where Ω^{\prime} is a smooth

[^0]domain compactly contained in Ω, and $t_{1}<t_{2}, t_{1}, t_{2} \in(0, T)$,
\[

$$
\begin{align*}
& \int_{\Omega^{\prime}} u\left(x, t_{2}\right) \eta\left(x, t_{2}\right) d x-\int_{\Omega^{\prime}} u\left(x, t_{1}\right) \eta\left(x, t_{1}\right) d x \\
= & \int_{t_{1}}^{t_{2}} \int_{\Omega^{\prime}}\left(u^{m} \Delta \eta+u \eta_{t}\right) d x d t-\int_{t_{1}}^{t_{2}} \int_{\partial \Omega^{\prime}} u^{m} \frac{\partial \eta}{\partial \nu} d s d t . \tag{1.2}
\end{align*}
$$
\]

A Radon measure ν on $\partial \Omega \times(0, T)$ is called the lateral trace of a function $F \in C\left(Q_{T}\right)$ if

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{T} \int_{\partial \Omega_{\varepsilon}} F h d s d t=\int_{\partial \Omega \times(0, T)} h d \nu \tag{1.3}
\end{equation*}
$$

where $\Omega_{\varepsilon}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\varepsilon\}$ and h is a continuous function defined in a tubular neighborhood of $\partial \Omega \times(0, T)$ vanishing near $t=0, T$. For a continuous very weak solution u, u^{m} always admits a lateral trace. On the other hand, consider the pair (μ, λ) where μ is a Radon measure on Ω satisfying

$$
\begin{equation*}
\int_{\Omega} \rho(x) d \mu(x)<\infty \tag{1.4}
\end{equation*}
$$

where ρ is the distance to the boundary of Ω, and λ is a Radon measure on $\partial \Omega$. This pair is called the initial trace of the continuous very weak solution u if for all smooth φ vanishing on $\partial \Omega$,

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \int_{\Omega} u(x, t) \varphi(x) d x=\int_{\Omega} \varphi d \mu-\int_{\partial \Omega} \frac{\partial \varphi}{\partial \nu} d \lambda . \tag{1.5}
\end{equation*}
$$

The study of these solutions goes in two directions according to whether its "total mass" is finite or not. Indeed, when a continuous very weak solution satisfies the condition

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} u^{m}(x, t) d x d t<\infty \tag{1.6}
\end{equation*}
$$

we show in [4] that it admits an initial trace. Furthermore, the lateral trace of its m-power is a finite measure. Conversely, given a triple (μ, λ, ν) where μ is a Radon measure on Ω satisfying (1.4), λ is a finite Radon measure on $\partial \Omega$, and ν is a finite Radon measure on $\partial \Omega \times(0, T)$, there is a continuous very weak solution u taking (μ, λ) as its initial trace and whose m-th power taking ν as its lateral trace. Indeed, the continuous very weak solution satisfies the identity

$$
\begin{align*}
\int_{\Omega} u(x, t) \eta(x, t) d x & =\int_{\Omega} \eta(x, 0) d \mu-\int_{\partial \Omega} \frac{\partial \eta}{\partial \nu}(x, 0) d \lambda \\
& +\int_{Q_{t}}\left(u^{m} \Delta \eta+u \eta_{t}\right) d x d t-\int_{\partial \Omega \times(0, t)} \frac{\partial \eta}{\partial \nu} d \nu \tag{1.7}
\end{align*}
$$

for all $\eta \in C^{\infty}(\bar{\Omega} \times[0, T]), \eta=0$ on $\partial \Omega \times[0, T)$, and a.e. $t \in(0, T)$. The proofs of all these facts can be found in [4].

In this note we will restrict our attention to the case where the lateral trace is given by a continuous function. Previously, rather complete results were obtained in [6] when the lateral trace vanishes identically. Now we extend their results to the nonhomogeneous case. First, we have

Theorem 1.1. Let μ be a Radon measure on Ω satisfying (1.4), λ a Radon measure at $\partial \Omega$, and a Radon measure ν on $\partial \Omega \times(0, T)$ given by $d \nu=g^{m} d s d t$ where g is a nonnegative, continuous function on $\partial \Omega \times[0, T]$. There is a unique continuous very weak solution u of (1.1) in Q_{T} belonging to $C(\bar{\Omega} \times(0, T]), u=g$ on $\partial \Omega \times(0, T]$, admitting (μ, λ) as its initial trace. Indeed, it satisfies (1.7) for all $t \in(0, T)$.

Next, we study the case when (1.6) is not satisfied. In the homogeneous case, it is known that there is only one continuous very weak solution satisfies the condition

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} u^{m}(x, t) d x d t=\infty \tag{1.8}
\end{equation*}
$$

This solution, called the friendly giant, tends to ∞ uniformly in each compact subset of Ω as time goes to 0 . We show that the same result remains valid in the nonhomogeneous case.

Theorem 1.2. (a) Let g be a nonnegative, continuous function on $\partial \Omega \times[0, T]$. There is a unique continuous very weak solution of (1.1) in Q_{T}, u, belonging to $C(\bar{\Omega} \times(0, T]), u=g$ on $\partial \Omega \times(0, T]$, which tends to ∞ uniformly in every compact subset of Ω as $t \rightarrow 0^{+}$.
(b) Any continuous very weak solution u of (1.1) in Q_{T} belonging to $C(\bar{\Omega} \times$ $(0, T])$ satifies (1.8) is a friendly giant, that is, it is the continuous very weak solution described in (a).

2. Initial-boundary value problem

In this section we prove Theorem 1.1. Our proof does not rely on a regularity theory applying to the continuous very weak solution constructed in our previous paper. Instead, we re-examine the proof therein by incorporating a boundary regularity result of DiBenedetto [5]. There is another boundary regularity result by Ziemer [10] which covers the same equation. However, only the result in [5] provides a modulus of continuity which is essential to our argument. To adapt this result to our context, let us first recall that a modulus of continuity for a function defined on a set $E \subset \mathbb{R}^{n} \times[0, T]$ is an increasing function $\omega:[0, \infty) \rightarrow[0, \infty)$, which is continuous at 0 satisfying $\omega(0)=0$, such that

$$
\left|f\left(x_{1}, t_{1}\right)-f\left(x_{2}, t_{2}\right)\right| \leq \omega\left(\left|x_{1}-x_{2}\right|+\left|t_{1}-t_{2}\right|^{1 / 2}\right), \quad \forall\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in E
$$

Every uniformly continuous function f on a set E admits a modulus of continuity defined by
$\omega(r)=\sup \left\{\left|f\left(x_{1}, t_{1}\right)-f\left(x_{2}, t_{2}\right)\right|:\left|x_{1}-x_{2}\right|+\left|t_{1}-t_{2}\right|^{1 / 2} \leq r, \forall\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in E\right\}$.
The following result is taken from [5].
Theorem 2.1. Let $g \in C(\partial \Omega \times[0, T]), g \geq 0$, and u a bounded, H^{1}-solution of (1.1) in Q_{T} satisfying $u=g$ on $\partial \Omega \times(0, T]$ (in the sense of Sobolev trace). For each modulus of continuity ω_{g} of g and $\tau \in(0, T)$, there associates a modulus of continuity for u, ω, so that
$\left|u\left(x_{1}, t_{1}\right)-u\left(x_{2}, t_{2}\right)\right| \leq \omega\left(\left|x_{1}-x_{2}\right|+\left|t_{1}-t_{2}\right|^{1 / 2}\right), \quad\left(x_{i}, t_{i}\right) \in \Omega \times[\tau, T], \quad i=1,2$.
The function ω only depends on $\|u\|_{L^{\infty}\left(Q_{T}\right)}, \omega_{g}$ and τ.

We will need the following result taken from (3.8) in [4].
Lemma 2.2. Let u be a continuous very weak solution of (1.1) in some Q_{T} with trace triple (μ, λ, ν) where μ is a Radon measure on Ω satisfying (1.4), λ a Radon measure at $\partial \Omega$ and ν is a finite Radon measure on $\partial \Omega \times(0, T)$. For each $\varepsilon>0$, there is some $t_{1} \in(0, T)$ such that

$$
\int_{0}^{t_{1}} \int_{\Omega} u^{m} d x d t<\varepsilon
$$

where t_{1} depends only on $\varepsilon,\|\rho\|_{L^{1}(\mu)}, \lambda(\partial \Omega)$ and $\nu(\partial \Omega \times(0, T))$.
Now we prove Theorem 1.1. First, we construct a continuous very weak solution with trace triple $(\mu, 0, \nu)$ where $d \mu=f d x, f \geq 0, f \in C_{c}^{\infty}(\Omega), d \nu=g^{m} d s d t$, and $g \in C(\partial \Omega \times[0, T]), g \geq 0$. We may assume that g has been extended to be a nonnegative, uniformly continuous function \bar{g} in \mathbb{R}^{n+1}. Let $\omega_{\bar{g}}$ be a modulus of continuity for \bar{g}. Fix a bump function Ψ in the unit ball in \mathbb{R}^{n+1} with $\|\Psi\|_{L^{1}}=1$ and, for each $\varepsilon>0$, define a smooth function g_{ε} in $\partial \Omega \times[0, T]$ by $g_{\varepsilon}=\Psi_{\varepsilon} * \bar{g}$ where $\Psi_{\varepsilon}(x)=\varepsilon^{-n} \Psi(x / \varepsilon)$. Then g_{ε} converges to g uniformly as ε tends to 0 . Moreover, since we have

$$
\left|\bar{g}\left(x_{1}, t_{1}\right)-\bar{g}\left(x_{2}, t_{2}\right)\right| \leq \omega_{\bar{g}}\left(\left|x_{1}-x_{2}\right|+\left|t_{1}-t_{2}\right|^{1 / 2}\right), \quad\left(x_{i}, t_{i}\right) \in \mathbb{R}^{n+1}, i=1,2,
$$

we have

$$
\begin{aligned}
& \left|g_{\varepsilon}\left(x_{1}, t_{1}\right)-g_{\varepsilon}\left(x_{2}, t_{2}\right)\right| \\
= & \left|\frac{1}{\overline{\varepsilon^{n}}} \int \Psi((y, \tau) / \varepsilon)\left(\bar{g}\left(x_{1}-y, t_{1}-\tau\right)-\bar{g}\left(x_{2}-y, t_{2}-\tau\right)\right) d s(y) d \tau\right| \\
\leq & \omega_{\bar{g}}\left(\left|x_{1}-x_{2}\right|+\left|t_{1}-t_{2}\right|^{1 / 2}\right), \quad\left(x_{i}, t_{i}\right) \in \partial \Omega \times[0, T], i=1,2 .
\end{aligned}
$$

Hence $\omega_{\bar{g}}$ is a modulus of continuity for all g_{ε}.
Now, for each k, we fix a nonnegative, smooth function ξ_{k} which is equal to 1 on $[1 / k, T]$ and 0 on $[0,1 / 2 k]$ and let $h_{k}=\xi_{k} g_{1 / k}$. Each h_{k} coincides with $g_{1 / k}$ in $\partial \Omega \times[1 / k, T]$ and vanishes near $t=0$. Now, we solve (1.1) using $f+1 / k$ as the initial value and $h_{k}+1 / k$ as the lateral value to obtain a positive, classical solution u_{k} in Q_{T}. The existence of u_{k} can be established by a routine argument. On the other hand, it is shown in section 4 in [4] that there is a supersolution of the form $W(x, t)=t^{-\alpha} \varphi(x), \alpha>0, \varphi>0$ in $\bar{\Omega}$, of which lateral value is always greater than $\|g\|_{L^{\infty}}+1$. By the comparison principle, all u_{k} are bounded by W for all large k. Hence, for each $\tau \in(0, T]$,

$$
\begin{equation*}
0 \leq u_{k}(x, t) \leq M_{\tau}, \quad k \geq 1, \quad(x, t) \in \Omega \times[\tau, T] \tag{2.1}
\end{equation*}
$$

where $M_{\tau}=\tau^{-\alpha} \sup _{\Omega} W$. Moreover, since $\omega_{\bar{g}}$ is a modulus of continuity for all g_{ε}, appealing to Theorem 2.1 , for each $\tau \in(0, T)$, there exists a modulus function ω_{τ} depending only on τ, M_{τ} and $\omega_{\bar{g}}$ such that for all $k \geq 1 / \tau$, $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in[\tau, T]$,

$$
\begin{equation*}
\left|u_{k}\left(x_{1}, t_{1}\right)-u_{k}\left(x_{2}, t_{2}\right)\right| \leq \omega_{\tau}\left(\left|x_{1}-x_{2}\right|+\left|t_{1}-t_{2}\right|^{1 / 2}\right) . \tag{2.2}
\end{equation*}
$$

In view of (2.1) and (2.2), we can apply Ascoli's theorem to select a subsequence from $\left\{u_{k}\right\}$, still denoted by $\left\{u_{k}\right\}$, which converges uniformly to some $v \in C(\bar{\Omega} \times(0, T])$ on each $\Omega \times(\tau, T], \tau \in(0, T)$, as $k \rightarrow \infty$.

We now verify that v is a continuous very weak solution of (1.1). First of all, v is clearly equal to g on the lateral boundary. Next, let η be a smooth function in $\Omega^{\prime} \times[0, T]$ vanishing on $\partial \Omega \times(0, T)$ where Ω^{\prime} is a smooth subdomain of Ω. By multiplying the equation satisfied by u_{k} with η and then integrating over Ω^{\prime}, we have

$$
\begin{align*}
& \int_{\Omega^{\prime}} u_{k}\left(x, t_{2}\right) \eta\left(x, t_{2}\right) d x-\int_{\Omega^{\prime}} u_{k}\left(x, t_{1}\right) \eta\left(x, t_{1}\right) d x \\
= & \int_{t_{1}}^{t_{2}} \int_{\Omega^{\prime}}\left(u_{k}^{m} \Delta \eta+u_{k} \eta_{t}\right) d x d t-\int_{t_{1}}^{t_{2}} \int_{\partial \Omega^{\prime}} u_{k}^{m} \frac{\partial \eta}{\partial \nu} d s d t \tag{2.3}
\end{align*}
$$

Note that (2.3) is more general than (1.2) since here Ω^{\prime} is not necessarily compactly contained in Ω. Letting $k \rightarrow \infty$, we see that (2.3) also holds for v. In particular, it shows that v is a continuous very weak solution of (1.1). By the continuity of v in $\bar{\Omega} \times(\tau, T]$, it is clear that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{0}^{T} \int_{\partial \Omega_{\varepsilon}} v^{m}(x, t) h(x, t) d s d t=\int_{0}^{T} \int_{\partial \Omega} h(x, t) g^{m}(x, t) d s d t \tag{2.4}
\end{equation*}
$$

for all continuous h vanishing near 0 and T. Finally, to verify the initial condition, we observe that

$$
\begin{aligned}
& \int_{\Omega} u_{k}(x, t) \eta(x, t) d x-\int_{\Omega}\left(f_{k}(x)+\frac{1}{k}\right) \eta(x, 0) d x \\
= & \int_{0}^{t} \int_{\Omega}\left(u_{k}^{m} \Delta \eta+u_{k} \eta_{t}\right) d x d t-\int_{0}^{t} \int_{\partial \Omega}\left(g_{k}+\frac{1}{k}\right)^{m} \frac{\partial \eta}{\partial \nu} d s d t .
\end{aligned}
$$

Letting $k \rightarrow \infty$, we obtain

$$
\begin{align*}
& \int_{\Omega} v(x, t) \eta(x, t) d x-\int_{\Omega} f(x) \eta(x, 0) d x \\
= & \int_{0}^{t} \int_{\Omega}\left(v^{m} \Delta \eta+v \eta_{t}\right) d x d t-\int_{0}^{t} \int_{\partial \Omega} g^{m} \frac{\partial \eta}{\partial \nu} d s d t \tag{2.5}
\end{align*}
$$

where we have applied Lemma 2.2 to the first integral on the right hand side. Consequently,

$$
\lim _{t \rightarrow 0^{+}} \int_{\Omega} v(x, t) \eta(x, t) d x=\int_{\Omega} f(x) \eta(x, 0) d x
$$

By comparing with (1.5), we see that $(\mu, 0)$ where $d \mu=f d x$ is the initial trace of v. We have shown that v is a continuous weak solution of (1.1) whose trace triple is given by $(\mu, 0, \nu)$ as asserted. Moreover, (2.1) and (2.2) continue to hold for v.

Next, we solve (1.1) for $(\mu, 0, \nu)$ where μ is a Radon measure compactly supported in Ω and $d \nu=g^{m} d s d t, g \in C(\partial \Omega \times[0, T]), g \geq 0$. It suffices to fix a sequence of nonnegative functions $\left\{f_{j}\right\}$ in $C_{c}^{\infty}(\Omega)$ which converges weakly to μ. Denote the solution of (1.1) as constructed in the first step with initial value f_{j} and lateral value g by v_{j}. Since (2.1) and (2.2) hold for all v_{j}, by Ascoli's theorem again it contains a subsequence, which is still denoted by $\left\{v_{j}\right\}$, converging uniformly on each $\Omega \times[\tau, T]$ to some $w \in C(\bar{\Omega} \times(0, T])$. By passing limit in (2.3) (replacing u_{k} by v_{j}), it is readily seen that w is a continuous very weak solution of (1.1). Furthermore, since $w \in C(\bar{\Omega} \times[\tau, T])$ and is equal to g along the lateral boundary,
(2.4) holds for w. Finally, each v_{j} and f_{j} satisfy (2.5) (replacing v and f by v_{j} and f_{j} respectively). By Lemma 2.2 and the fact that $\left\{v_{j}\right\}$ converges uniformly to w in each $\Omega \times[\tau, T], \tau \in(0, T)$, by letting $j \rightarrow \infty$, (2.5) implies

$$
\begin{align*}
& \int_{\Omega} w(x, t) \eta(x, t) d x-\int_{\Omega} \eta(x, 0) d \mu \\
= & \int_{0}^{t} \int_{\Omega}\left(w^{m} \Delta \eta+w \eta_{t}\right) d x d t-\int_{0}^{t} \int_{\partial \Omega} g^{m} \frac{\partial \eta}{\partial \nu} d s d t \tag{2.6}
\end{align*}
$$

Letting $t \rightarrow 0^{+}$, by Lemma 2.2 again, the initial trace of w is equal to $(\mu, 0)$. We note that (2.1) and (2.2) hold for w.

Finally, let $(\mu, \lambda, \nu), d \nu=g^{m} d s d t$, be the general case. We may follow [DK] to construct a sequence of Radon measures $\left\{\mu_{i}\right\}$ compactly contained in Ω that satisfies

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \int_{\Omega} \varphi d \mu_{i}=\int_{\Omega} \varphi d \mu-\int_{\partial \Omega} \frac{\partial \varphi}{\partial \nu} d \lambda, \quad \forall \varphi \in C^{\infty}(\bar{\Omega}), \quad \varphi=0 \text { on } \partial \Omega \tag{2.7}
\end{equation*}
$$

Let w_{i} be the continuous very weak solution for the trace triple ($\mu_{i}, 0, \nu$) constructed in the last paragraph. As (2.1) and (2.2) hold for all $\left\{w_{i}\right\}$, we can extract a subsequence, still denoted by $\left\{w_{i}\right\}$, converging uniformly on each $\Omega \times[\tau, T]$ to some $u \in C(\bar{\Omega} \times(0, T])$. Arguing as before, u is a continuous very weak solution of (1.1) whose lateral value is g. Moreover, by passing limit in (2.6) (for w_{i} and μ_{i}) and using (2.7), we see that (μ, λ) is the initial trace of u, and (1.7) holds for u.

We have completed the proof of the existence part of Theorem 1.1. The uniqueness assertion will be established in Section 4.
Remark 2.1. The proof above in fact has shown that the continuous very weak solution satisfies (1.2) in every smooth subdomain Ω^{\prime} of Ω.

Remark 2.2. When the initial-boundary value is given by a continuous function h on $\bar{\Omega} \times\{0\} \bigcup \partial \Omega \times(0, T]$. According to the main theorem in [D], one can estimate the modulus of continuity of the very weak solution in Q_{T}. It follows that in this case the continuous very weak solution constructed above in fact belongs to $C\left(\overline{Q_{T}}\right)$ and is equal to h on its parabolic boundary.

3. Comparison Principles

The results of this section will be used in the next section to establish the uniqueness part of Theorem 1.1 and Theorem 1.2.

The Green's potential was first used in the study of the porous medium equation in $[\mathrm{P}]$. Pierre's maximum principle was subsequently employed in [6] to establish the uniqueness of the friendly giant under the homogeneous lateral boundary condition. Here we extend it to the nonhomogeneous case.

We start with a comparison principle for continuous very weak solutions. The proof is by modifying a standard argument $[\mathrm{ACP}]$.

Lemma 3.1. Let $u_{i}, i=1,2$, be continuous very weak solutions of (1.1) in Q_{T} belonging to $C\left(\overline{Q_{T}}\right)$. Suppose that $u_{1} \leq u_{2}$ on $\partial_{p} Q_{T}$, the parabolic boundary of Q_{T}. Then $u_{1} \leq u_{2}$ in $\overline{Q_{T}}$.

Proof. We note the relation $u_{1}^{m}-u_{2}^{m}=a\left(u_{1}-u_{2}\right)$ where

$$
a=m \int_{0}^{1}\left(u_{2}+s\left(u_{1}-u_{2}\right)\right)^{m-1} d s \geq 0
$$

Pick a sequence of positive $a_{k} \in C^{\infty}\left(\overline{Q_{T}}\right)$ satisfying $1 / k \leq a_{k} \leq\|a\|_{L^{\infty}}+1 / k$ satisfying and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\frac{\left(a_{k}-a\right)}{\sqrt{a_{k}}}\right\|_{L^{2}\left(Q_{T}\right)}=0 \tag{3.1}
\end{equation*}
$$

For a fixed $t, 0<t<T$, and a given a smooth, non-negative function θ in Ω vanishing on $\partial \Omega$, we solve the initial-boundary problem

$$
\left\{\begin{array}{l}
\eta_{t}+a_{k} \Delta \eta=0, \quad \text { in } \Omega \times(0, t) \\
\eta(x, t)=\theta(x), \\
\eta(x, \tau)=0, \quad(x, \tau) \in \partial \Omega \times(0, t)
\end{array}\right.
$$

to obtain a non-negative, smooth solution η_{k}. As $u_{i}, i=1,2$, are continuous up to $t=0$, from (1.5) we see that their corner traces vanish. Using η_{k} as a test function in (1.7) and noting that $d \mu_{i}=u_{i} d x$ and $\lambda_{i}=0$ at $t=0, \delta u \equiv u_{1}-u_{2}$ satisfies

$$
\begin{aligned}
\int_{\Omega} \delta u(x, t) \theta(x) d x= & \int_{\Omega} \delta u(x, 0) \eta_{k}(x, 0) d x \\
& +\int_{0}^{t} \int_{\Omega}\left(a-a_{k}\right) \Delta \eta_{k} \delta u d x d \tau-\int_{0}^{t} \int_{\partial \Omega}\left(u_{1}^{m}-u_{2}^{m}\right) \frac{\partial \eta_{k}}{\partial \nu} d s d t \\
\leq & \int_{0}^{t} \int_{\Omega}\left(a-a_{k}\right) \Delta \eta_{k} \delta u d x d t
\end{aligned}
$$

where $\delta u=u_{1}-u_{2}$. To estimate the right hand side of (3.2), we multiply $\Delta \eta_{k}$ to the equation satisfied by η_{k} and integrate to get

$$
\int_{0}^{t} \int_{\Omega} a_{k}\left(\Delta \eta_{k}\right)^{2} \delta u d x d \tau \leq \frac{1}{2} \int_{\Omega}|\nabla \theta|^{2} d x
$$

By Cauchy-Schwarz inequality

$$
\begin{aligned}
\mid \int_{0}^{t} \int_{\Omega}\left(a-a_{k}\right) \Delta \eta_{k} & \delta u d x d \tau \mid \\
\leq & \|\delta u\|_{L^{\infty}}\left(\int_{0}^{t} \int_{\Omega} \frac{\left(a-a_{k}\right)^{2}}{a_{k}} d x d t\right)^{1 / 2}\left(\frac{1}{2} \int_{\Omega}|\nabla \theta|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

Using (3.1) and passing limit, we arrive at

$$
\int_{\Omega} \delta u(x, t) \theta(x) d x \leq 0
$$

which implies $\delta u(x, t) \leq 0$. The desired conclusion follows.

Given a continuous function u in $\bar{\Omega}$, we solve the equation $-\Delta U=u, U=$ 0 on $\partial \Omega$, to obtain the the Green's potential of u. It assumes the form

$$
U(x)=\int_{\Omega} G(x, y) u(y) d y
$$

where G is the Green's function of the Laplacian under the Dirichlet condition $[\mathrm{H}]$. In general, since $C(\bar{\Omega}) \subset L^{p}(\Omega)$ for all $p \geq 1$, by elliptic theory U belongs to the Sobolev space $W^{2, p}(\Omega)$ for all $p \geq 1$. In particular, it implies that U is continuously differentiable. However, stronger regularity is required to establish the following result, so an approximate argument is needed.

Lemma 3.2. Let u be a continuous weak solution of (1.1) in Q_{T} belonging to $C(\bar{\Omega} \times(0, T])$. For $0<t_{1}<t_{2} \leq T$,

$$
U\left(x, t_{2}\right)-U\left(x, t_{1}\right) \leq-\int_{t_{1}}^{t_{2}} \int_{\partial \Omega} \frac{\partial G}{\partial \nu_{y}}(x, y) u^{m} d s d t
$$

where $U(\cdot, t)$ is the Green's potential of $u(\cdot, t)$.
Proof. For $t_{1}<t_{2}$ in $(0, T)$, fix some $t_{0} \in\left(0, t_{1}\right)$. We pick a sequence of positive, smooth functions $\left\{h_{k}\right\}$ decreasing to u uniformly on the parabolic boundary of $\Omega \times\left[t_{0}, T\right]$ and let v_{k} be the continuous very weak solution of (1.1) taking h_{k} as its initial-boundary data. Each $v_{k}(\cdot, t)$ is positive, smooth and its Green's potential $V_{k}(\cdot, t)$ is smooth too. We have

$$
\begin{aligned}
\frac{\partial V_{k}}{\partial t}(x, t) & =\int_{\Omega} G(x, y) v_{k t}(y, t) d y \\
& =\int_{\Omega} G(x, y) \Delta v_{k}^{m}(y, t) d y \\
& =-v_{k}^{m}(x, t)-\int_{\partial \Omega} \frac{\partial G}{\partial \nu_{y}}(x, y) h_{k}^{m}(y, t) d s \\
& \leq-\int_{\partial \Omega} \frac{\partial G}{\partial \nu_{y}}(x, y) h_{k}^{m}(y, t) d s .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
V_{k}\left(x, t_{2}\right)-V_{k}\left(x, t_{1}\right) \leq-\int_{t_{1}}^{t_{2}} \int_{\partial \Omega} \frac{\partial G}{\partial \nu_{y}}(x, y) h_{k}^{m}(y, t) d s d t \tag{3.3}
\end{equation*}
$$

By the weak maximum principle,

$$
\left\|v_{k}-v_{j}\right\|_{\left.L^{\infty}\left(\Omega \times\left(t_{0}, T\right]\right)\right)} \leq\left\|h_{k}-h_{j}\right\|_{L^{\infty}\left(\partial_{p}\left(\Omega \times\left[t_{0}, T\right]\right)\right.},
$$

hence $\left\{v_{k}\right\}$ converges to some continuous very weak solution uniformly in $\Omega \times\left[t_{0}, T\right]$, and this solution takes u as its initial-boundary value. By Lemma 3.1, this solution coincides with u. We conclude that $\left\{v_{k}\right\}$ converges to u uniformly in $\Omega \times\left[t_{0}, T\right]$. According to elliptic theory, $V_{k}(\cdot, t)$ converges to $U(\cdot, t)$ in $W^{2, p}(\Omega)$ for all $t \in(0, T)$ and $p>n / 2$. By Sobolev's inequality, in particular, $V_{k}(\cdot, t)$ converges to $U(\cdot, t)$ uniformly. The lemma follows by passing limit in (3.3).

Lemma 3.3. Let $u_{i}, i=1,2$, be two continuous very weak solutions of (1.1) belonging to $C(\bar{\Omega} \times(0, T])$. Let $\varphi \in C^{\infty}(\bar{\Omega})$ vanish on $\partial \Omega$ and $\tau<t, t, \tau \in(0, T)$, be fixed. There are Radon measures m_{τ} on Ω and Σ_{τ} on $\partial \Omega \times[\tau, t]$ satisfying

$$
\begin{equation*}
\int_{\Omega} \delta U(x, t) \varphi(x) d x=\int_{\Omega} \delta U(x, \tau) d m_{\tau}(x)+\int_{\partial \Omega \times[\tau, t]}\left(u_{1}^{m}-u_{2}^{m}\right) d \Sigma_{\tau} \tag{3.4}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
m_{\tau}(\Omega) \leq\|\varphi\|_{L^{1}}, \quad \Sigma_{\tau}(\partial \Omega \times(\tau, t)) \leq t\|\varphi\|_{L^{1}} \tag{3.5}
\end{equation*}
$$

The measures m_{τ} and Σ_{τ} also depend on u_{i}, t and φ. Nevertheless, in the following we will let τ tend to 0 while all other quantities are fixed. Therefore, we only put τ in the subscripts of these measures.

Proof. Let θ be the function obtained by solving $-\Delta \theta=\varphi$ in Ω and $\theta=0$ on $\partial \Omega$. Use this θ to determine η as in the proof of Lemma 3.1. According to (3.2) (replacing 0 by τ),

$$
\begin{align*}
& \int_{\Omega} \delta U(x, t) \varphi(x) d x=\int_{\Omega} \delta U(x, \tau) \Delta \eta_{k}(x, \tau) d x+ \\
& \int_{\tau}^{t} \int_{\Omega}\left(a-a_{k}\right) \Delta \eta_{k} \delta u d x d t+\int_{\tau}^{t} \int_{\partial \Omega}\left(u_{1}^{m}-u_{2}^{m}\right)\left|\frac{\partial \eta_{k}}{\partial \nu}\right| d s d t \tag{3.6}
\end{align*}
$$

where $\delta U \equiv U_{1}-U_{2}$. Observing that $\Delta \eta_{k}$ satisfies the equation $\left(\Delta \eta_{k}\right)_{t}+\Delta\left(a_{k} \Delta \eta_{k}\right)=$ 0 and $\Delta \eta_{k}=-a_{k}^{-1} \eta_{k t}=0$ on $\partial \Omega \times(0, T), \Delta \eta_{k} \leq 0$ by the maximum principle. We have

$$
\frac{d}{d t} \int_{\Omega} \Delta \eta_{k}=-\int_{\Omega} \frac{\partial}{\partial \nu}\left(a_{k} \Delta \eta_{k}\right) d x \leq 0
$$

It follows that

$$
\int_{\Omega}\left|\Delta \eta_{k}\left(x, \tau^{\prime}\right)\right| d x=\int_{\partial \Omega}\left|\frac{\partial \eta_{k}}{\partial \nu}\left(x, \tau^{\prime}\right)\right| d s \leq \int_{\Omega} \varphi(x) d x
$$

for all $\tau^{\prime} \in[\tau, t]$. As $\left\{\Delta \eta_{k}\right\}$ is uniformly bounded in $L^{1}(\Omega)$, we can find a subsequence $\left\{\eta_{k_{i}}\right\}$ and a Radon measure m_{τ} such that $\left|\Delta \eta_{k_{i}}\right| d x$ converges to $d m_{\tau}$ weakly. In particular,

$$
\int_{\Omega} \delta U(x, \tau)\left|\Delta \eta_{k_{i}}(x, \tau)\right| d x \rightarrow \int_{\Omega} \delta U(x, \tau) d m_{\tau}(x)
$$

On the other hand, the L^{1}-norm of $\partial \eta_{k} / \partial \nu$ over $\partial \Omega \times[\tau, t]$ is uniformly bounded by $t\|\varphi\|_{L^{1}}$, we may assume that $\left|\partial \eta_{k_{i}} / \partial \nu\right| d s d t$ also converges weakly to some Radon measure Σ_{τ}. We have

$$
\int_{\tau}^{t} \int_{\partial \Omega}\left(u_{1}^{m}-u_{2}^{m}\right)\left|\frac{\partial \eta_{k_{i}}}{\partial \nu}\right| d s d t \rightarrow \int_{\partial \Omega \times[\tau, t]}\left(u_{1}^{m}-u_{2}^{m}\right) d \Sigma_{\tau}
$$

The desired result follows by letting $k_{i} \rightarrow \infty$ in (3.6).
Here is a version of Pierre's maximum principle.

Proposition 3.4. Let $u_{i}, i=1,2$, be two continuous very weak solutions of (1.1) belonging to $\partial \Omega \times(0, T]$. Suppose that u_{i} coincide with g_{i} on $\partial \Omega \times(0, T]$ where $g_{i} \in C(\partial \Omega \times[0, T])$. Let $U_{i}(\cdot, t)$ be the Green's function of $u_{i}(\cdot, t)$. Assume that U_{1} satisfies (a) $U_{1}(\cdot, t) \in C_{0}(\Omega), t \in[0, T)$, and (b) $U_{1}(\cdot, t)$ converges to $U_{1}(\cdot, 0)$ uniformly as $t \rightarrow 0^{+}$. For each non-negative $\varphi \in C^{\infty}(\bar{\Omega})$ vanishing on $\partial \Omega$ and a fixed $t \in(0, T)$, there are Radon measures m on Ω and Σ on $\partial \Omega \times[0, t]$ such that
$\int_{\Omega} \delta U(x, t) \varphi(x) d x \leq \int_{\Omega}\left(U_{1}(x, 0)-\lim _{t \rightarrow 0^{+}} U_{2}(x, t)\right) d m+\int_{\partial \Omega \times[0, t]}\left(g_{1}^{m}-g_{2}^{m}\right) d \Sigma$.
Moreover,

$$
\begin{equation*}
m(\Omega) \leq\|\varphi\|_{L^{1}}, \quad \Sigma(\partial \Omega \times[0, t]) \leq t\|\varphi\|_{L^{1}} \tag{3.7}
\end{equation*}
$$

By Lemma 3.2, for continuous very weak solutions $u_{i}, i=1,2$, with Green's potential U_{i}, the functions

$$
\tilde{U}_{i}(x, t) \equiv U_{i}(x, t)+\int_{t}^{T} h_{i}(x, \tau) d \tau
$$

where

$$
h_{i}(x, \tau)=-\int_{\partial \Omega} \frac{\partial G}{\partial \nu_{y}}(x, y) g_{i}^{m}(y, \tau) d s(y)
$$

is decreasing in t. Here $h_{i}(\cdot, t)$ is the harmonic function taking $g_{i}^{m}(\cdot, t)$ as its boundary value. As the lateral trace $d \nu=g_{i}^{m} d s d t$ a finite measure, for each $x \in \Omega$, both limits $\lim _{t \rightarrow 0^{+}} U_{i}(x, t)$ and $\lim _{t \rightarrow 0^{+}} \tilde{U}_{i}(x, t)$ exist in $[0, \infty]$ and

$$
\lim _{t \rightarrow 0^{+}} U_{i}(x, t)=\lim _{t \rightarrow 0^{+}} \tilde{U}_{i}(x, t)-\int_{0}^{T} h_{i}(x, \tau) d \tau
$$

holds.
Proof. In view of (3.5), we can pick subsequences $\tau_{j} \downarrow 0$ such that $m_{\tau_{j}}, \Sigma_{\tau_{j}}$ converge weakly to some m, Σ on Ω and $\partial \Omega \times[0, t]$ respectively. (We may extend Σ_{τ} from $\partial \Omega \times[\tau, t]$ to $\partial \Omega \times[0, t]$ trivially.)

For $k \leq j$,

$$
\begin{aligned}
\int_{\Omega} U_{2}\left(x, \tau_{j}\right) d m_{\tau_{j}} & =\int_{\Omega} \tilde{U}_{2}\left(x, \tau_{j}\right) d m_{\tau_{j}}-\int_{\Omega} \int_{\tau_{j}}^{T} h_{2}(x, \tau) d \tau d m_{\tau_{j}} \\
& \geq \int_{\Omega} \tilde{U}_{2}\left(x, \tau_{k}\right) d m_{\tau_{j}}-\int_{\Omega} \int_{\tau_{j}}^{T} h_{2} d \tau d m_{\tau_{j}} \\
& =\int_{\Omega} U_{2}\left(x, \tau_{k}\right) d m_{\tau_{j}}+\int_{\Omega} \int_{\tau_{k}}^{\tau_{j}} h_{2} d \tau d m_{\tau_{j}}
\end{aligned}
$$

Applying the maximum principle to the harmonic function $h_{2},\left|h_{2}\right| \leq\|g\|_{L^{\infty}}^{m}$. We have

$$
\left|\int_{\Omega} \int_{0}^{\tau_{j}} h_{2} d \tau d m_{\tau_{j}}\right| \leq\|g\|_{L^{\infty}}^{m} \tau_{j}\|\varphi\|_{L^{1}}
$$

which tends to 0 as $\tau_{j} \rightarrow 0$. Consequently,

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \int_{\Omega} U_{2}\left(x, \tau_{j}\right) d m_{\tau_{j}} & \geq \int_{\Omega} U_{2}\left(x, \tau_{k}\right) d m-\int_{\Omega} \int_{0}^{\tau_{k}} h_{2} d \tau d m \\
& =\int_{\Omega} \tilde{U}_{2}\left(x, \tau_{k}\right) d m-\int_{\Omega} \int_{0}^{T} h_{2} d \tau d m
\end{aligned}
$$

Now, letting $k \rightarrow \infty$, by the monotone convergence theorem,

$$
\begin{align*}
\lim _{j \rightarrow \infty} \int_{\Omega} U_{2}\left(x, \tau_{j}\right) d m_{\tau_{j}} & \geq \int_{\Omega} \lim _{k \rightarrow \infty} \tilde{U}_{2}\left(x, \tau_{k}\right) d m-\int_{\Omega} \int_{0}^{T} h_{2} d \tau d m \\
& =\int_{\Omega} \lim _{t \rightarrow 0^{+}} \tilde{U}_{2}(x, t) d m-\int_{\Omega} \int_{0}^{T} h_{2} d \tau d m \\
& =\int_{\Omega} \lim _{t \rightarrow 0^{+}} U_{2}(x, t) d m \tag{3.8}
\end{align*}
$$

On the other hand, using assumptions (a) and (b) on U_{1},

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\Omega} U_{1}\left(x, \tau_{j}\right) d m_{\tau_{j}}=\int_{\Omega} U_{1}(x, 0) d m \tag{3.9}
\end{equation*}
$$

The desired result follows by letting $\tau=\tau_{j} \rightarrow 0$ in (3.4) and using (3.8) and (3.9).

4. Uniqueness of weak solutions

Let u be a continuous very weak solution of (1.1) in Q_{T}. Suppose that it has a trace triple (μ, λ, ν) where $d \nu=g^{m} d s d t, g \in C(\partial \Omega \times[0, T])$. The Green's potential of $u(\cdot, t), U(\cdot, t)$ has its L^{p}-norm $(1 \leq p<n /(n-1))$ bounded by a constant depending only on the trace triple and $\|u\|_{L^{1}(\rho d x)}$ (see, e.g., Widman [Wi], [4]). By Fatou's lemma, both

$$
U^{*}(x) \equiv \lim _{t \rightarrow 0^{+}} U(x, t)
$$

and

$$
\tilde{U}^{*}(x) \equiv U^{*}(x)+\int_{0}^{T} h(x, \tau) d \tau
$$

are in $L^{p}(\Omega)$.
Now we prove the uniqueness part of Theorem 1.1. Let $u_{i}, i=1,2$, be two continuous very weak solutions of (1.1) with the same trace triple and $u_{i}=g$ along the lateral boundary. For a nonnegative $\varphi \in C_{c}^{\infty}(\Omega)$, let θ satisfy $-\Delta \theta=\varphi$ and $\theta=0$ on $\partial \Omega$. We have

$$
\int_{\Omega} U_{i}(x, t) \varphi(x) d x=-\int_{\Omega} u_{i}(x, t) \theta(x) d x
$$

As $t \rightarrow 0$, the right hand side of this identity tends to

$$
\int_{\Omega} \theta d \mu+\int_{\partial \Omega} \frac{\partial \theta}{\partial \nu} d \lambda
$$

Therefore,

$$
\lim _{t \rightarrow 0^{+}} \int_{\Omega} U_{1}(x, t) \varphi(x) d x=\lim _{t \rightarrow 0^{+}} \int_{\Omega} U_{2}(x, t) \varphi(x) d x
$$

By the monotonicity of \tilde{U}_{i}, we deduce

$$
\int_{\Omega} \tilde{U}_{1}^{*}(x) \varphi(x) d x=\int_{\Omega} \tilde{U}_{2}^{*}(x) \varphi(x) d x
$$

We conclude that U_{1}^{*} and U_{2}^{*} coincide when the two weak solutions share the same trace triple.

Let $T_{1}<T$ be fixed. We claim $U_{1} \leq U_{2}$ in $Q_{T_{1}}$. To this end, we fix $\tau_{0} \in\left(0, T-T_{1}\right)$ and let $U(\cdot, t)$ be the Green's potential for $u_{1}\left(\cdot, t+\tau_{0}\right)$. Both U and U_{2} are defined in $Q_{T_{1}}$. Applying Proposition 3.4 to U and U_{2}, we have

$$
\begin{aligned}
& \int_{\Omega}\left(U(x, t)-U_{2}(x, t)\right) \varphi d x \\
\leq & \int_{\Omega}\left(U_{1}\left(x, \tau_{0}\right)-U_{2}^{*}(x)\right) d m+\int_{\partial \Omega \times[0, t]}\left(g^{m}\left(x, t+\tau_{0}\right)-g^{m}(x, t)\right) d \Sigma \\
= & \int_{\Omega}\left(\tilde{U}_{1}\left(x, \tau_{0}\right)-\tilde{U}_{1}^{*}(x)\right) d m-\int_{\Omega} \int_{\tau_{0}}^{T_{1}} h_{1}(x, \tau) d \tau d x+\int_{\Omega} \int_{0}^{T_{1}} h_{2}(x, \tau) d \tau d x \\
& +\int_{\partial \Omega \times[0, t]}\left(g^{m}\left(x, t+\tau_{0}\right)-g^{m}(x, t)\right) d \Sigma \\
\leq & -\int_{\Omega} \int_{\tau_{0}}^{T_{1}} h_{1}(x, \tau) d \tau d x+\int_{\Omega} \int_{0}^{T_{1}} h_{2}(x, \tau) d \tau d x \\
& +\int_{\partial \Omega \times[0, t]}\left(g^{m}\left(x, t+\tau_{0}\right)-g^{m}(x, t)\right) d \Sigma \\
\leq & C_{1}(m(\Omega)+\Sigma(\partial \Omega \times[0, t])) \sup _{\partial \Omega \times\left[0, T_{1}\right]}\left|g^{m}\left(x, t+\tau_{0}\right)-g^{m}(x, t)\right|+\tau_{0} C_{2} m(\Omega)
\end{aligned}
$$

where the constants C_{1} and C_{2} are independent of τ_{0}. Using (3.7) and the monotonicity of \tilde{U}_{1}, we can let $\tau_{0} \rightarrow 0^{+}$to conclude

$$
\int_{\Omega}\left(U_{1}(x, t)-U_{2}(x, t)\right) \varphi d x \leq 0
$$

for all nonnegative $\varphi \in C_{c}^{\infty}(\Omega)$, hence $U_{1}(x, t) \leq U_{2}(x, t)$. By reversing the role of U_{1} and $U_{2}, U_{2}(x, t) \leq U_{1}(x, t)$ also holds. Hence U_{1} and U_{2} coincide and this implies u_{1} and u_{2} are the same. The uniqueness part of Theorem 1.1 is proved.

Next we turn to the proof of Theorem 1.2.
A friendly giant with a prescribed Radon measure from $M(\partial \Omega \times(0, T))$ as its lateral trace is constructed in [4]. When the lateral trace is of the form $d \nu=$ $g^{m} d s d t$ where $g \in C(\partial \Omega \times[0, T])$, this friendly giant belongs to $C(\bar{\Omega} \times(0, T])$ and is equal to g on the lateral boundary. Indeed, let us review the construction of the friendly giant. First of all, we may assume that g has been extended as a nonnegative, continuous function on the whole parabolic boundary. Fix a sequence of subdomains, $\left\{\Omega_{k}\right\}, \Omega_{k} \subset \subset \Omega_{k+1}$, satisfying $\bigcup_{k} \Omega_{k}=\Omega$ and an increasing of non-negative, smooth functions $\left\{\varphi_{k}\right\}$ satisfying $\varphi_{k} \equiv k$ in Ω_{k} and vanishes outside Ω_{k+1}. We solve the initial-boundary value problem using $g+\varphi_{k}$ as given data on the parabolic boundary to get an increasing sequence of continuous very weak solutions of (1.1) denoted by $\left\{u_{k}\right\}$. Similarly, let $\left\{v_{k}\right\}$ be the sequence of continuous very
weak solutions taking φ_{k} as initial data and vanishing on the lateral boundary. We have $v_{k} \leq u_{k}$ for all k. Using (2.1) and (2.2) it can be shown that both sequences converge uniformly in every $\bar{\Omega} \times(\tau, T], \tau>0$, to continuous very weak solutions u and v which are equal to g and 0 along the lateral boundary respectively. It is known in [6] that v tends to ∞ as t tends to 0 compactly, so does u. We have proved Part (a) of Theorem 1.2.

To prove Part (b) of Theorem 1.2, we note the following result.
Lemma 4.1. Let u be a continuous very weak solution of (1.1) in Q_{T} satisfying $u=g$ on $\partial \Omega \times(0, T]$ for some $g \in C(\partial \Omega \times[0, T])$. Then (1.8) holds if and only if

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \int_{\Omega} u(x, t) \rho(x) d x=\infty \tag{4.1}
\end{equation*}
$$

Proof. Let ψ be the function satisfying $-\Delta \psi=1$ in Ω and vanishes on the boundary. There exists some positive constant C such that $1 / C \rho \leq \psi \leq C \rho$ in Ω. Fix a continuous, piecewise linear function ζ which is equal to 1 on $\left[0, T^{\prime}\right]$ for some $T^{\prime}<T$ and vanishes at $\left(T^{\prime}+T\right) / 2$. Using $\psi(x) \zeta(t)$ as a test function in (2.3), for $t \in\left(0, T^{\prime}\right)$,
$\int_{\Omega} u(x, t) \psi(x) d x=\int_{t}^{T} \int_{\Omega} u^{m} d x d t+\int_{T^{\prime}}^{T} \int_{\Omega}\left(u^{m} \zeta-u \psi \zeta_{t}\right) d x d t+\int_{t}^{T} \int_{\partial \Omega} \frac{\partial \psi}{\partial \nu} \zeta g^{m} d s d t$
Observing that the second and third terms on the right hand side are bounded uniformly for all t, (1.8) and (4.1) are equivalent.

Now we can prove Part (b) of Theorem 1.2. When a continuous very weak solution u satisfies (1.8), by Lemma 4.1 (4.1) holds. Using the fact that $G(x, y) \geq$ $C_{x} \rho(y), y \in \Omega$, for some $C_{x}>0[\mathrm{~W}]$, its Green's potential U satisfies $\lim _{t \rightarrow 0^{+}} U(x, t)=$ ∞ for every $x \in \Omega$. On the other hand, let u_{1} be the friendly giant constructed in the proof of Part (a) and U_{1} its Green's potential. Similarly, we have $\lim _{t \rightarrow 0^{+}} U_{1}(x, t)=$ ∞. Using Proposition 3.4 and arguing as in the proof of Theorem 1.1, we conclude that U and U_{1} coincide, so u is equal to u_{1}.

The proof of Theorem 1.2 is completed.
Based on the results in [4] and this paper, we point out some further questions.
First of all, in the case of finite total mass (1.6), the prescribed triple trace problem is completely solved. Moreover, the (unique) solution is continuous up to the lateral boundary when the lateral data is a continuous function. However, the uniqueness of the solution in the general case is not known.

In the case of infinite total mass (1.8), we conjecture that this continuous, very weak solution must be a friendly giant. Here we have shown that it is true when the lateral trace ν is given by $d \nu=g^{m} d s$ where g is a continuous function on $\partial \Omega \times[0, T]$. But the general case is open. Conversely, given any Radon measure on the lateral boundary, one would like to show that there is a unique friendly giant whose m-th power takes this measure as its lateral trace.

Acknowledgement. The second author would like to thank the hospitality of the Mathematics Department of the Chinese University of Hong Kong during his visit there.

References

[1] D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1983), 351-366.
[2] D. G. Aronson, M. G. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. TMA 6 (1982), 1001-1022.
[3] P. Bénilan, M. G. Crandall and L. A. Peletier, Solutions of the porous medium eqaution under optimal condition on the initial values, Indianna U. Math. J. 33 (1884), 51-87.
[4] K. S. Chou and Y. C. Kwong, The trace triple for nonnegative solutions of generalized porous medium equations, Cal. Var. and PDE's 58 (2019): 23.
[5] E. DiBenedetto, A boundary modulus of continuity for a class of singular parabolic equations, J. Differential Eqn's. 63 (1986), 418-447.
[6] B. E. Dahlberg and C. E. Kenig, Non-negative solution of the initial-Dirichlet problem for generalized porous medium equations in cylinders, J. Amer. Math. Soc. 1 (1988), 401-412.
[7] L. L. Helms, Potential Theory, Universitext, Springer-Verlag London 2009.
[8] M. Pierre, Uniqueness of the solution of $u_{t}-\Delta \phi(u)=0$ with initial datum a measure, Nonlinear Anal. TMA 6 (1982), 175-187.
[9] K.-O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1968), 17-37.
[10] W. P. Ziemer, Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. Amer. Math. Soc. 271 (1982), 733-748.

Manuscript received September 212020
revised October 202020
K.-S. Chou

Institute of Mathematical Sciences, The Chinese University of Hong Kong, Hong Kong E-mail address: kschou@math. cuhk.edu.hk
Y. C. Kwong

Department of Mathematics, Northern Illinois University, DeKalb, IL60115, U.S.A.
E-mail address: ykwong@niu.edu

[^0]: 2020 Mathematics Subject Classification. Primary 35Q35, Secondary 76A20, 35B35, 93D20, 37B30.

 Key words and phrases. Initial trace, lateral trace, trace triple, the porous medium equation, Initial-Dirichlet problem, friendly giants.

 This work was partially supported by an Earmarked Grant for Research RGC CUHK 14301014, Hong Kong.

