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space, because X for p = N = 2 is qualitatively distinct from the present situation
where 1 < p < N , see [4] for more details. The focus of the papers [1,12,13,15] is on
existence results for variational inequalities in unbounded domains with nonlinear
elliptic operators of Leray-Lions type in a Sobolev space or Sobolev-Orlicz space
setting that require certain coercivity-related conditions to meet the assumptions
of abstract existence results.

The study of quasilinear elliptic variational inequalities in unbounded domains
causes a number of additional difficulties such as e.g. the lack of compact embed-
ding, and therefore cannot be considered as just a straightforward extension of the
bounded domain problems. Further the choice of an appropriate solution space
which is not too narrow such as the usual Sobolev spaces as used in the above
mentioned papers [1, 12, 13, 15], is essential. In our treatment of the variational
inequality (1.1), we make use of the Beppo-Levi space X that contains the Sobolev

space W 1,p
0 (Ω) (note Ω = RN \B(0, 1)) as a subspace.

The main goal and the novelty of this paper is, first, to establish a sub-supersolution
method and to prove the existence of solutions of (1.1) within an ordered interval
[u, u] of appropriately defined sub-supersolutions u and u, respectively, which allows
us to deal with variational inequalities that lack coercivity.

Second, we will characterize the solution set topologically and order-theoretically.
In particular, we are going to prove the existence of extremal solutions with respect
to the underlying natural partial ordering of functions, that is, u ≤ v iff u(x) ≤ v(x)
for a.e. x ∈ Ω. Thereby the embedding behavior of X into weighted Lebesgue
spaces will play an important role to overcome some of the difficulties that arise in
the functional analytic treatment of variational inequalities in unbounded domains.

Moreover, as an application of the obtained results we deal with an obstacle
problem, that is, (1.1) along with the unilateral condition

(1.2) K = {u ∈ X : u(x) ≥ ψ(x) for a.e. x ∈ Ω},

where the coefficient a is supposed to be positive and satisfies the decay condition
above. By imposing a certain growth condition on the nonlinearity s 7→ f(x, s)
in terms of the first eigenvalue λ1 of the eigenvalue problem (in the distributional
sense)

(1.3) −∆pu = λa|u|p−2u in Ω, u = 0 on ∂B(0, 1) = ∂Ω,

as well as a condition on the obstacle function ψ in terms of the eigenfunction ϕ1

associated with λ1, we are able to prove the existence of extremal solutions of the
obstacle problem within the interval [εϕ1,MΓ]. Here the function Γ ∈ X denotes
the unique solution of the equation (in the distributional sense)

(1.4) −∆pu = a in Ω, u = 0 on ∂B(0, 1),

where the boundary values on ∂B(0, 1) are understood in the sense of traces.
It should be noted that the theory to be developed in this paper holds true if

the p-Laplacian ∆p in (1.1) is replaced by the more general elliptic operator of
divergence type

(1.5) divA(x,∇u),
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where A : Ω × RN → RN is a Carathéodory vector field satisfying the following
Leray-Lions conditions

(A1) |A(x, ξ)| ≤ k0(x) + c0|ξ|p−1, ∀ξ ∈ RN , a.e. x ∈ Ω, where c0 > 0, k0 ∈
Lp′(Ω).

(A2) (A(x, ξ)−A(x, ξ̂))(ξ − ξ̂) > 0, ∀ξ, ξ̂ ∈ RN , ξ 6= ξ̂, a.e. x ∈ Ω.
(A3) A(x, ξ)ξ ≥ ν|ξ|p−k1(x), ∀ξ ∈ RN , a.e. x ∈ Ω, where ν > 0 and k1 ∈ L1(Ω).

Only for the sake of clarity and emphasizing the key ideas and techniques we have
confined ourselves to consider the p-Laplacian instead of the more general elliptic
operator (1.5).

The paper is organized as follows: In Section 2 we introduce appropriate weighted
Lebesgue spaces Lq(Ω, w) with weight w, and prove a compact embedding result of
the underlying solution space X into Lq(Ω, w). Mapping properties of the Nemytskij
operator F generated by f of (1.1) as well as of the operator Fa = aF : X → X∗

(X∗ is the dual of X) are investigated, and a precise definition of solutions of (1.1) is
given. In Section 3 we introduce our basic notion of sub-supersolution and establish
the method of sub-supersolution. The qualitative characterization of the solution
set of (1.1) enclosed by an ordered pair of sub-supersolutions such as compactness,
directedness, and extremality of solutions is provided in Section 4. Finally, in the
last section, Section 5, we study the obstacle problem (1.1), (1.2) in the exterior
domain Ω. To this end we prove various regularity results of the solutions Γ and ϕ1 of
(1.4) and (1.3), respectively, as well as their qualitative behavior for x ∈ Ω\B(0, R),
R > 1.

2. Hypotheses, notations, and preliminaries

Throughout this paper we assume 1 < p < N and Ω = RN \B(0, 1). Due to the
Gagliardo-Nirenberg-Sobolev Inequality, the Beppo-Levi space X is continuously
embedded into Lp∗(Ω) with p∗ = Np

N−p denoting the critical Sobolev exponent, and

X can be characterized as

(2.1) X =
{
u ∈ Lp∗(Ω) :

∫
Ω
|∇u|p dx <∞, u = 0 on ∂B(0, 1)

}
,

which is a separable and reflexive Banach space with the norm

‖u‖X =
(∫

Ω
|∇u|p dx

) 1
p
.

We use the following notations: for any σ ∈ (1,∞) the Hölder conjugate is denoted
by σ′ (1/σ+1/σ′ = 1), Y ↪→ Z and Y ↪→↪→ Z denotes the continuous and compact
embedding, respectively, of normed spaces Y, Z.

The assumptions on the coefficient a and the nonlinearity f of the variational
inequality (1.1) are as follows:

(Ha) Let a : Ω → R be a measurable function satisfying the decay property

(2.2) |a(x)| ≤ ca
1

|x|N+α
, for a.e. x ∈ Ω,

where ca and α are positive constants.
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(Hf) The function f : Ω×R → R is a Carathéodory function, that is, x 7→ f(x, s)
is measurable in Ω for all s ∈ R and s 7→ f(x, s) is continuous for a.e.
x ∈ Ω, and f satisfies the growth condition with q ∈ (1, p∗) and some
positive constant cf ,

(2.3) |f(x, s)| ≤ k(x) + cf |s|q−1, ∀ s ∈ R, and for a.e. x ∈ Ω,

where k ∈ Lq′(Ω, w).

The space Lq′(Ω, w) that appears in (Hf) denotes the weighted Lebesgue space with
the weight w : Ω → R+ given by

(2.4) w(x) = w(|x|) = 1

|x|N+α
with α > 0 as in (Ha).

Clearly, w ∈ L∞(Ω). By applying spherical coordinates we get∫
Ω
w(x) dx ≤ c

∫ ∞

1

1

%N+α
%N−1 d% <∞,

which shows that w ∈ L1(Ω), and thus by interpolation we have w ∈ Lr(Ω) for
1 ≤ r ≤ ∞.

For any r ∈ (1,∞) let us shortly recall the definition of the weighted Lebesgue
space Lr(Ω, w) with weight w defined by

Lr(Ω, w) =
{
u : Ω → R measurable:

∫
Ω
w|u|r dx <∞

}
,

which is a separable and reflexive Banach space under the norm

‖u‖r,w =
(∫

Ω
w|u|r dx

) 1
r
.

For r ∈ [1,∞), let ‖ · ‖r denote the norm in Lr(Ω). The following embedding result
will play an important role in the functional analytic treatment of the variational
inequality (1.1).

Lemma 2.1. The embedding X ↪→↪→ Lq(Ω, w) is compact for 1 < q < p∗, that
is, the embedding operator iw : X → Lq(Ω, w) given by u 7→ iwu = u is linear and
compact.

Proof. Let u ∈ X, then u ∈ Lp∗(Ω), and thus for some positive constant we get∫
Ω
w|u|q dx ≤ ‖w‖ p∗

p∗−q

‖u‖qp∗ ≤ c‖w‖ p∗
p∗−q

‖u‖qX ,

that is,

‖u‖q,w ≤ c‖w‖
1
q
p∗

p∗−q

‖u‖X ,

which shows that iw : X → Lq(Ω, w) is linear and continuous. SinceX is reflexive, to
prove the compactness of iw, we only need to prove that iw is completely continuous.
For a sequence (un) ⊂ X such that un ⇀ u (weakly) in X, we are going to show
that un → u in Lq(Ω, w). For simplicity of notation and without loss of clarity, we
shall use the same notation for a function defined on Ω and its restriction to some
subset of Ω.
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Let ε > 0 be arbitrarily given. For any R > 1, we have

(2.5) ‖un − u‖qq,w =

∫
Ω\B(0,R)

w|un − u|q dx+

∫
Ω∩B(0,R)

w|un − u|q dx.

Since (un) is bounded in X and thus in Lp∗(Ω), with some generic constant c
independent of n and R, we can estimate the first integral on the right-hand side of
(2.5) as follows:∫

Ω\B(0,R)
w|un − u|q dx ≤ c

∫
Ω\B(0,R)

w
(
|un|q + |u|q

)
dx

≤ c‖w‖
L

p∗
p∗−q (Ω\B(0,R))

(
‖un‖qLp∗ (Ω\B(0,R))

+ ‖u‖q
Lp∗ (Ω\B(0,R))

)
≤ c‖w‖

L
p∗

p∗−q (Ω\B(0,R))

(
‖un‖qp∗ + ‖u‖qp∗

)
,

which, together with the estimate ‖un‖p∗ ≤ c‖un‖X ≤ c, yields

(2.6)

∫
Ω\B(0,R)

w|un − u|q dx ≤ c ‖w‖
L

p∗
p∗−q (Ω\B(0,R))

.

The right-hand side of (2.6) can be further estimated as

(2.7) ‖w‖
p∗

p∗−q

L
p∗

p∗−q (Ω\B(0,R))

≤ c

∫ ∞

R

( 1

%N+α

) p∗
p∗−q

%N−1 d% ≤ cR
−(N+α) p∗

p∗−q
+N

,

since −(N +α) p∗

p∗−q +N < 0. It follows from (2.6) and (2.7) the existence of R > 0

sufficiently large such that

(2.8)

∫
Ω\B(0,R)

w|un − u|q dx < ε

2
, ∀n ∈ N.

Since X ⊂ W 1,p
loc (Ω), we have X ⊂ W 1,p(Ω ∩B(0, R)). Taking the compact embed-

ding W 1,p(Ω ∩B(0, R)) ↪→↪→ Lq(Ω ∩B(0, R)), 1 < q < p∗, into account, we deduce
from the weak convergence of un to u in X that

un → u (strongly) in Lq(Ω ∩B(0, R)).

In view of un → u (strongly) in Lq(Ω ∩ B(0, R)) and taking into account that
w ∈ L∞(Ω) one gets

(2.9)

∫
Ω∩B(0,R)

w|un − u|q dx < ε

2
for n sufficiently large.

Thus the estimates (2.8) and (2.9) complete the proof. □
Denote by F the Nemytskij operator associated with f by F (u)(x) = f(x, u(x)),

then the following lemma holds.

Lemma 2.2. Under hypothesis (Hf) the Nemytskij operator F : Lq(Ω, w) → Lq′(Ω)
is continuous and bounded.

The proof of Lemma 2.2 follows standard arguments and therefore can be omitted.
As an immediate consequence of Lemma 2.1 and Lemma 2.2 we get the following
result.
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Lemma 2.3. Under hypothesis (Hf) the composed operator F ◦ iw : X → Lq′(Ω, w)
is completely continuous.

By means of the coefficient a : Ω → R let us define the operator i∗a : Lq′(Ω, w) →
X∗ (X∗ denoting the dual space of X) through

(2.10) η ∈ Lq′(Ω, w) : 〈i∗aη, ϕ〉 =
∫
Ω
aηϕ dx, ∀ ϕ ∈ X,

where 〈·, ·〉 denotes the duality pairing of X∗ and X.

Lemma 2.4. Assume hypothesis (Ha). Then i∗a : Lq′(Ω, w) → X∗ is linear and

continuous. Analogously, the operators i∗|a| : L
q′(Ω, w) → X∗ and i∗w : Lq′(Ω, w) →

X∗ defined by

〈i∗|a|η, ϕ〉 =
∫
Ω
|a|ηϕ dx, ∀ ϕ ∈ X,

and

〈i∗wη, ϕ〉 =
∫
Ω
wηϕdx, ∀ ϕ ∈ X,

respectively, are linear and continuous.

Proof. For any η ∈ Lq′(Ω, w), we have the following estimate:

|〈i∗aη, ϕ〉| ≤
∫
Ω
|a| |η| |ϕ| dx ≤ ca

∫
Ω
w |η| |ϕ| dx

≤ ca

∫
Ω
w

1
q′ |η|w

1
q |ϕ| dx ≤ ca‖η‖q′,w‖ϕ‖q,w

≤ c ‖η‖q′,w‖ϕ‖X , ∀ v ∈ X.

This shows that i∗aη ∈ X∗, since the linearity ϕ 7→ 〈i∗aη, ϕ〉 is obvious. Clearly, the
proofs for the mappings i∗|a| and i

∗
w follow the same line. □

As an immediate consequence of Lemma 2.3 and Lemma 2.4 we obtain the fol-
lowing result.

Lemma 2.5. Assume hypotheses (Ha) and (Hf). Then the operator Fa := aF =
i∗a ◦ F ◦ iw : X → X∗ is completely continuous. Similarly, the operators F|a| :=
|a|F = i∗|a| ◦F ◦ iw : X → X∗ and Fw := wF = i∗w ◦F ◦ iw : X → X∗ are completely

continuous.

Bearing in mind the above notations, the precise definition of solutions of the
variational inequality (1.1) reads as follows.

Definition 2.6. The function u ∈ K ⊂ X is called a solution of (1.1) if there exists

a q ∈ (1, p∗) such that F (u) ∈ Lq′(Ω, w), and the following inequality holds

(2.11) 〈−∆pu, v − u〉+
∫
Ω
aF (u)(v − u) dx ≥ 0, ∀ v ∈ K.

We remark that (2.11) can equivalently be written in the form

(2.12) u ∈ K : 〈−∆pu+ Fa(u), v − u〉 ≥ 0, ∀ v ∈ K.
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3. Sub-supersolution method

In this section we are going to establish a sub-supersolution method for (1.1),
which is based on an appropriately generalized notion of sub-supersolutions for
variational inequalities. Before we define our basic notion of sub-supersolution, let
us introduce some notations. For functions w, z and sets W and Z of functions
defined on Ω or subsets of Ω we use the notations: w ∧ z = min{w, z}, w ∨ z =
max{w, z}, W ∧ Z = {w ∧ z : w ∈ W, z ∈ Z}, W ∨ Z = {w ∨ z : w ∈ W, z ∈ Z},
and w ∧ Z = {w} ∧ Z, w ∨ Z = {w} ∨ Z. In particular, we denote w+ = w ∨ 0, and
w− = (−w) ∨ 0. For functions u ≤ u we denote by

[u, u] = {u : u(x) ≤ u(x) ≤ u(x) for a.e. x ∈ Ω}

the ordered interval formed by u and u in a corresponding function space where u
and u reside.

Definition 3.1. A function u ∈ X is called a subsolution of the variational in-
equality (1.1) if F (u) ∈ Lq′(Ω, w) (q′ is the Hölder conjugate of q ∈ (1, p∗)) such
that

(i) u ∨K ⊂ K,
(ii) 〈−∆pu, v − u〉+

∫
Ω aF (u)(v − u) dx ≥ 0, ∀v ∈ u ∧K.

Definition 3.2. A function u ∈ X is called a supersolution of the variational
inequality (1.1) if F (u) ∈ Lq′(Ω, w) (q′ is the Hölder conjugate of q ∈ (1, p∗)) such
that

(i) u ∧K ⊂ K,
(ii) 〈−∆pu, v − u〉+

∫
Ω aF (u)(v − u) dx ≥ 0, ∀v ∈ u ∨K.

Remark 3.3. Note that the notion of sub-supersolution defined in Definition 3.1
and Definition 3.2, respectively, have a symmetric structure, that is, one obtains
Definition 3.2 for the supersolution u from Definition 3.1 by replacing u by u and
interchanging ∨ and ∧.

Next, let us recall an existence result for an abstract variational inequality, see
e.g. [16, Theorem 4.16, Theorem 4.17].

Theorem 3.4. Let A : V → V ∗ be a bounded pseudomonotone operator from a
reflexive Banach space V to its dual V ∗, and let K 6= ∅ be a closed and convex subset
of V . If either K is bounded or K is unbounded and A : V → V ∗ is coercive (relative
to K), then for any L ∈ V ∗ there exists at least one solution of the variational
inequality

u ∈ K : 〈Au− L, v − u〉 ≥ 0, ∀v ∈ K.

We remark that a bounded operator A : V → V ∗ is called coercive relative to K
if there exists v0 ∈ K such that

(3.1)
1

‖u‖V
〈Au, u− v0〉 → ∞ as ‖u‖V → ∞.

Our sub-supersolution method is established by the following theorem.
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Theorem 3.5. Assume hypotheses (Ha) and (Hf) and let u and u be sub- and
supersolutions of (1.1), respectively, satisfying u ≤ u. Then there exists at least one

solution u of the variational inequality (1.1) such that u ≤ u ≤ u in Ω = RN\B(0, 1).

Proof. First, we introduce the truncated nonlinearity f0 : Ω× R → R given by

(3.2) f0(x, s) =

 f(x, u(x)) if s > u(x)
f(x, s) if u(x) ≤ s ≤ u(x)
f(x, u(x)) if s < u(x).

One readily verifies that f0 : Ω×R → R is a Carathéodory function, which in view
of (Hf) satisfies the following uniform bound

|f0(x, s)| ≤ k(x) + cf

(
|u(x)|q−1 + |u(x)|q−1

)
=: k0(x), ∀(x, s) ∈ Ω× R,

where k0 ∈ Lq′(Ω, w), and thus by Lemma 2.2 the associated Nemytskij operator

F0 : Lq(Ω, w) → Lq′(Ω, w) is uniformly bounded and continuous, which due to
Lemma 2.3, Lemma 2.4, and Lemma 2.5 implies that the operator

(3.3) aF0 = F0,a = i∗a ◦ F0 ◦ iw : X → X∗

is uniformly bounded and completely continuous, and thus, in particular, pseu-
domonotone.

Next let us introduce the cut-off function b : Ω× R → R defined by

(3.4) b(x, s) =

 (s− u(x))p−1 if s > u(x)
0 if u(x) ≤ s ≤ u(x)

−(u(x)− s)p−1 if s < u(x),

and denote by B the associated Nemytskij operator B(u)(x) = b(x, u(x)). Then it
is clear that b is a Carathéodory function satisfying the growth condition

(3.5) |b(x, s)| ≤ c1(x) + c2|s|p−1, with c1 ∈ Lp′(Ω, w), c2 > 0.

In view of (3.5), by Lemma 2.2 the Nemytskij operator B : Lp(Ω, w) → Lp′(Ω, w) is
bounded and continuous. Therefore, by Lemma 2.3, Lemma 2.4, and Lemma 2.5,
the operator

(3.6) Bw = i∗w ◦B ◦ iw : X → X∗, 〈Bw(u), ϕ〉 =
∫
Ω
wb(·, u)ϕdx, ∀ϕ ∈ X,

is completely continuous, and thus, in particular, pseudomonotone. Further, there
are positive constants c3, c4 such that

(3.7) 〈Bw(u), u〉 ≥ c3‖u‖pp,w − c4.

With the above introduced truncated functions we consider the following auxiliary
variational inequality, which is the key tool in our proof.

(3.8) u ∈ K : 〈−∆pu+ F0,a(u) + Bw(u), v − u〉 ≥ 0, ∀v ∈ K.

The strategy of proof is first, to show the existence of solutions of the auxiliary
problem (3.8), and then to prove that any solution u of (3.8) belongs to the interval
[u, u], which completes the proof, because then Bw(u) = 0 and F0,a(u) = Fa(u),
that is (3.8) reduces to the original variational inequality (1.1) which is equivalent
to (2.12).
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As for the existence we are going to make use of the abstract existence result
given by Theorem 3.4 with L = 0, and

A = −∆p + F0,a + Bw : X → X∗.

The elliptic operator −∆p : X → X∗ is a bounded, continuous, and monotone
operator, which implies that A is pseudomonotone. As seen above F0,a + Bw :
X → X∗ is completely continuous, and thus pseudomonotone, hence it follows that
A : X → X∗ is a bounded and pseudomonotone operator. In case K ⊂ X is
bounded the existence of solutions for (3.8) follows from Theorem 3.4. In case that
K is unbounded, the existence follows from Theorem 3.4 provided that A is, in
addition, coercive (relative to K), which we are going to prove next. From (3.7)
and the uniform boundedness of F0,a we get (with c denoting a generic positive
constant)

(3.9) 〈Au, u〉 ≥ ‖u‖pX − c‖u‖X + c3‖u‖pp,w − c4.

Let v0 ∈ K be fixed. Then we have

(3.10) |〈−∆pu, v0〉| ≤
∫
Ω
|∇u|p−1|∇v0| dx ≤ c‖u‖p−1

X ,

and by the uniform boundedness of F0,a : X → X∗ it follows

(3.11) |〈F0,a(u), v0〉| ≤ ĉ‖v0‖X =: c,

and finally by means of (3.5) we obtain the estimate

(3.12) |〈Bw(u), v0〉| ≤ ‖c1‖p′,w‖v0‖p,w + c2‖u‖p−1
p,w ‖v0‖p,w ≤ c

(
1 + ‖u‖p−1

X

)
.

Thus from (3.9)–(3.12) it follows

(3.13) 〈Au, u− v0〉 ≥ ‖u‖pX − c
(
‖u‖p−1

X + ‖u‖X + 1
)

which proves the coercivity of A (relative to K), since (3.13) implies

1

‖u‖X
〈Au, u− v0〉 → ∞ as ‖u‖X → ∞.

This completes the existence proof for (3.8). To complete the proof of the theorem,
it remains to show that any solution u of the auxiliary problem (3.8) satisfies u ≤
u ≤ u. Let us verify that u ≤ u. By Definition 3.1 of the subsolution we have
u ∨K ⊂ K and

〈−∆pu, v − u〉+
∫
Ω
aF (u)(v − u) dx ≥ 0, ∀v ∈ u ∧K.

In particular, v = u ∧ u = u − (u − u)+ is an admissible test function in the last
inequality, which yields

(3.14) 〈−∆pu,−(u− u)+〉 −
∫
Ω
aF (u)(u− u)+ dx ≥ 0.

On the other hand for the auxiliary variational inequality (3.8) we can apply the
special test function v = u ∨ u ∈ K, that is v = u+ (u− u)+ which gives

(3.15) 〈−∆pu+ F0,a(u) + Bw(u), (u− u)+〉 ≥ 0.
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Adding (3.14) and (3.15) we receive

(3.16)

∫
Ω
a
(
F0(u)− F (u)

)
(u− u)+dx+

∫
Ω
wb(·, u)(u− u)+dx

≥ 〈−∆pu− (−∆pu), (u− u)+〉.
Denote {u < u} := {x ∈ Ω : u(x) < u(x)}. By the definition of F0 we get∫

Ω
a
(
F0(u)− F (u)

)
(u− u)+dx =

∫
{u<u}

a
(
F (u)− F (u)

)
(u− u)dx = 0.

Since the right-hand side of (3.16) is nonnegative, we arrive at∫
Ω
wb(·, u)(u− u)+dx ≥ 0,

which by definition of b yields

0 ≤
∫
{u<u}

w
[
− (u− u)p−1

]
(u− u)dx = −

∫
{u<u}

w(u− u)p dx ≤ 0,

and thus ‖(u − u)+‖w,p = 0, that is, (u − u)+ = 0 which proves u ≤ u. The proof
of the inequality u ≤ u follows by similar arguments and can be omitted, which
completes the proof of Theorem 3.5. □

4. Extremal solutions

Let S denote the solution set of (1.1) (resp. (2.11) ) within the ordered interval
[u, u] of sub-supersolutions. Then By Theorem 3.5 we have S 6= ∅. In this section,
first we are going to show that S is a compact subset of X. Further, if K satisfies,
in addition, the lattice condition

(4.1) K ∧K ⊂ K and K ∨K ⊂ K,

then we will show the existence of extremal solutions, that is, the existence of
smallest and greatest solutions of S.

Theorem 4.1. Let the hypotheses of Theorem 3.5 be satisfied. Then the solution
set S is a compact subset of X.

Proof. Let (un) ⊂ S, which means u ≤ un ≤ u, and un solves (1.1) (resp. (2.11) ),
i.e.,

(4.2) un ∈ K : 〈−∆pun, v − un〉+
∫
Ω
aF (un)(v − un) dx ≥ 0, ∀v ∈ K.

Clearly, the sequence (F (un)) is bounded in Lq′(Ω, w), and for v0 ∈ K fixed we
obtain from (4.2) (with c being some positive generic constant)

〈−∆pun, un〉 = ‖un‖pX ≤ 〈−∆pun, v0〉+
∫
Ω
aF (un)(v0 − un) dx

≤ ‖un‖p−1
X ‖v0‖X + ca

∫
Ω
w|F (un)|

(
|v0|+ |un|

)
dx

≤ ‖un‖p−1
X ‖v0‖X + c‖F (un)‖q′,w

(
‖v0‖q,w + ‖un‖q,w

)
≤ c

(
‖un‖p−1

X + ‖un‖X + 1
)
,
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which implies that (un) is bounded in X. Thus there is a weakly convergent sub-
sequence (uj) of (un) such that uj ⇀ u (weakly) in X. Since K is weakly closed,
we infer that the weak limit u ∈ K. The compact embedding X ↪→↪→ Lq(Ω, w)
yields uj → u (strongly) in Lq(Ω, w) and u ≤ u ≤ u, and therefore F (uj) → F (u)

in Lq′(Ω, w). With v = u and un replaced by uj , from (4.2) we obtain

(4.3) 〈−∆puj , uj − u〉 ≤ c‖F (uj)‖q′,w‖u− uj‖q,w → 0 as j → ∞.

From (4.3) along with uj ⇀ u in X and taking into account that −∆p : X → X∗ is
monotone we see that

(4.4)
〈−∆puj − (−∆pu), uj − u〉
=

∫
Ω

(
|∇uj |p−2∇uj − |∇u|p−2∇u

)(
∇uj −∇u

)
dx→ 0 as j → ∞.

Further, by applying Hölder’s inequality we can estimate as follows

(4.5)

∫
Ω

(
|∇uj |p−2∇uj − |∇u|p−2∇u

)(
∇uj −∇u

)
dx

≥
∫
Ω

(
|∇uj |p + |∇u|p

)
dx−

∫
Ω

(
|∇uj |p−1|∇u|+ |∇u|p−1|∇uj |

)
dx

≥ ‖uj‖pX + ‖u‖pX − ‖uj‖p−1
X ‖u‖X − ‖u‖p−1

X ‖uj‖X
= (‖uj‖p−1

X − ‖u‖p−1
X )(‖uj‖X − ‖u‖X) ≥ 0.

and thus by (4.4) we get

lim
j→∞

(‖uj‖p−1
X − ‖u‖p−1

X )(‖uj‖X − ‖u‖X) = 0,

which implies

(4.6) lim
j→∞

‖uj‖X = ‖u‖X .

The weak convergence uj ⇀ u together with (4.6) yields the strong convergence
uj → u in X, which allows us to pass to the limit in (4.2) with un replaced by uj as
j → ∞ showing that the strong limit u of the subsequence (uj) belongs to S. □

Next we are going to prove that S is a directed set, which means that for any
u1, u2 ∈ S there exists a z ∈ S such that max{u1, u2} ≤ z (directed upward) as well
as a w ∈ S such that w ≤ min{u1, u2} (directed downward).

Theorem 4.2. Let the hypotheses of Theorem 3.5 be satisfied, and assume the
lattice condition (4.1) on the closed convex set K be fulfilled. Then the solution set
S is a directed set.

Proof. Let us show that S is directed upward only, as the proof for directed down-
ward can be carried out in a similar way by obvious modifications.

Given u1, u2 ∈ S, we will prove the existence of a solution u ∈ S such that
max{u1, u2} ≤ u. Our approach is roughly speaking the following: we first construct
an appropriate auxiliary variational inequality in terms of the given u1, u2 ∈ S, and
show the existence of solutions. Thereby the construction of the auxiliary problem
is done in such a way that any solution u of it belongs again to S, and, in addition,
satisfies um ≤ u for m = 1, 2, which is the desired directed upward of S.
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By definition the given um ∈ S, (m = 1, 2 ) satisfy um ∈ [u, u] and

(4.7) um ∈ K : 〈−∆pum, v − um〉+
∫
Ω
aF (um)(v − um) dx ≥ 0, ∀v ∈ K,

where F (um) ∈ Lq′(Ω, w). Define u0 = max{u1, u2}. Then F (u0) ∈ Lq′(Ω, w) is
given by

(4.8) F (u0)(x) = f(x, u0(x)) =

{
f(x, u1(x)) if x ∈ {u1 ≥ u2}
f(x, u2(x)) if x ∈ {u2 > u1},

where {ul ≥ (>)um} stands for {x ∈ Ω : ul(x) ≥ (>)um(x)}. Further, we introduce

the truncated function f̂ : Ω× R → R defined by

(4.9) f̂(x, s) =

 f(x, u0(x)) if s < u0(x)
f(x, s) if u0(x) ≤ s ≤ u(x)
f(x, u(x)) if s > u(x).

From (Hf) it readily follows that f̂ : Ω×R → R is a Carathéodory function, which
is uniformly bounded, i.e.,

(4.10) |f̂(x, s)| ≤ k̂(x), ∀(x, s) ∈ Ω× R,

where k̂ ∈ Lq′(Ω, w) can be given in terms of k, u, and u0. Thus the associated Ne-

mytskij operator F̂ is a uniformly bounded and continuous mapping from Lq(Ω, w)

to Lq′(Ω, w), which implies that the operator

(4.11) F̂a := i∗a ◦ F̂ ◦ iw : X → X∗

is uniformly bounded, and completely continuous, thus pseudomonotone. Next
define truncated functions fm : Ω× R → R (m = 1, 2) as follows

(4.12) fm(x, s) =

 f(x, um(x)) if s < um(x)
f(x, s) if um(x) ≤ s ≤ u(x)
f(x, u(x)) if s > u(x).

By similar arguments as for f̂ , we have fm : Ω×R → R are Carathéodory functions
that are uniformly bounded by some km ∈ Lq′(Ω, w), that is

(4.13) |fm(x, s)| ≤ km(x), ∀(x, s) ∈ Ω× R,

and the associated Nemytskij operators Fm : Lq(Ω, w) → Lq′(Ω, w) are uniformly
bounded and continuous, which yields uniformly bounded and completely continu-
ous, thus pseudomonotone, operators Fa,m given by

(4.14) Fa,m := i∗a ◦ Fm ◦ iw : X → X∗.

Finally, we introduce the cut-off function b̂ defined by

(4.15) b̂(x, s) =

 (s− u(x))p−1 if s > u(x)
0 if u0(x) ≤ s ≤ u(x)

−(u0(x)− s)p−1 if s < u0(x),
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which qualitatively behaves like b (see (3.4)) in Section 3, that is, b̂ : Ω × R → R
is a Carathéodory function, and its associated Nemytskij operator B̂ is a bounded
and continuous mapping from Lq(Ω, w) to Lq′(Ω, w), and thus the operator

(4.16) B̂w := i∗a ◦ B̂ ◦ iw : X → X∗.

is completely continuous, which implies that B̂w : X → X∗ is bounded and pseu-
domonotone. By means of Fm and F̂ we introduce operators Tm (m = 1, 2) by

(4.17) Tm(u) = |Fm(u)− F̂ (u)|.

The properties of Fm and F̂ immediately imply that Tm : Lq(Ω, w) → Lq′(Ω, w) are
uniformly bounded and continuous, and thus

T|a|,m = i|a| ◦ Tm ◦ iw = |a|Tm ◦ iw : X → X∗

are uniformly bounded and completely continuous, thus pseudomonotone, opera-
tors.

Now we are ready to formulate our basic auxiliary variational inequality, which
reads as follows:

(4.18) u ∈ K : 〈−∆pu+ B̂w(u) + F̂a(u)−
2∑

j=1

T|a|,j(u), v − u〉 ≥ 0, ∀v ∈ K.

Since F̂a −
∑2

j=1 T|a|,j : X → X∗ is uniformly bounded and pseudomonotone and

B̂w : X → X∗ behaves qualitatively like Bw (see (3.6)), the same arguments as for
the operator A in the proof of Theorem 3.5 apply to the operator

Â = −∆p + B̂w + F̂a −
2∑

j=1

T|a|,j : X → X∗,

which ensure that Â : X → X∗ is a bounded, pseudomonotone and coercive oper-
ator, and thus there exist solutions of the auxiliary variational inequality (4.18) by
applying Theorem 3.4.

The proof of Theorem 4.2 is finished provided we are able to show that any
solution u of the auxiliary variational inequality (4.18) satisfies the inequality

(4.19) um ≤ u ≤ u, (m = 1, 2),

because then we get B̂w(u) = 0, F̂a(u) = Fa(u), and T|a|,m(u) = 0, that is, (4.18)
reduces to the original variational inequality (1.1) (resp. (2.12)) and thus u ∈ S
and max{u1, u2} ≤ u, which completes the proof for S being directed upward.

Let us first show that um ≤ u, (m = 1, 2). By assumption um ∈ S, that is
um ∈ [u, u] and

(4.20) um ∈ K : 〈−∆pum + Fa(um), v − um〉 ≥ 0, ∀v ∈ K.

By virtue of the lattice condition (4.1), we may use the special test function v =
um ∨ u = u+ (um − u)+ in (4.18) which results in

(4.21) 〈−∆pu+ B̂w(u) + F̂a(u)−
2∑

j=1

T|a|,j(u), (um − u)+〉 ≥ 0,
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and in (4.20) we may apply the special test function v = um ∧ u = um − (um − u)+

which yields

(4.22) 〈−∆pum + Fa(um),−(um − u)+〉 ≥ 0.

Adding inequalities (4.21) and (4.22) we arrive at

(4.23)
〈B̂w(u) + (F̂a(u)−Fa(um))−

2∑
j=1

T|a|,j(u), (um − u)+〉

≥ 〈−∆pum − (−∆pu), (um − u)+〉.

For the right-hand side of (4.23) we get

(4.24)

〈−∆pum − (−∆pu), (um − u)+〉

=

∫
{u<um}

(
|∇um|p−2 −∇um − |∇u|p−2 −∇u

)
(∇um −∇u)dx ≥ 0.

Since um ≤ u0 (m = 1, 2), by the definition of F̂ one obtains

(4.25)

〈F̂a(u)−Fa(um), (um − u)+〉 =
∫
Ω
a(F̂ (u)− F (um))(um − u)+dx

=

∫
{u<um}

a(F (u0)− F (um))(um − u)dx.

The third term on the left-hand side of (4.23) is equal to

(4.26)

〈 2∑
j=1

T|a|,j(u), (um − u)+
〉
=

∫
Ω

2∑
j=1

|a||Fj(u)− F̂ (u)|(um − u)+dx

=

∫
{u<um}

|a||Fj(u)− F (u0)|(um − u)dx (j 6= m)

+

∫
{u<um}

|a||F (um)− F (u0)|(um − u)dx (j = m)

Thus by (4.25) and (4.26) we get

(4.27)

〈F̂a(u)−Fa(um)−
2∑

j=1

T|a|,j(u), (um − u)+〉

≤ −
∫
{u<um}

|a||Fj(u)− F (u0)|(um − u)dx ≤ 0.

Taking (4.24) and (4.27) into account from (4.23) we finally obtain

(4.28) 〈B̂w(u), (um − u)+〉 ≥ 0,

which by definition of B̂w and um ≤ u0 results in

0 ≤
∫
Ω
wb̂(·, u)(um − u)+dx = −

∫
{u<um}

w(u0 − u)p−1(um − u)dx

≤ −
∫
{u<um}

w(um − u)p dx ≤ 0,
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hence it follows

0 =

∫
{u<um}

w(um − u)p dx =

∫
Ω
w[(um − u)+]p dx = ‖(um − u)+‖pp,w

which yields (um − u)+ = 0, that is, um ≤ u (m = 1, 2) proving the first inequality
of (4.19).

As for the proof of the second inequality of (4.19), that is, u ≤ u for any solu-
tion u of the auxiliary variational inequality (4.18), we recall the definition of the
supersolution (see Definition 3.2) according to which u ∧K ⊂ K and

(4.29) 〈−∆pu, v − u〉+
∫
Ω
aF (u)(v − u) dx ≥ 0, ∀v ∈ u ∨K.

Taking the special test function v = u ∨ u = u+ (u− u)+ in (4.29) we get

(4.30) 〈−∆pu, (u− u)+〉+
∫
Ω
aF (u)(u− u)+ dx ≥ 0,

and using in (4.18) the special test function v = u∧u = u− (u−u)+ ∈ K we obtain

(4.31) 〈−∆pu+ B̂w(u) + F̂a(u)−
2∑

j=1

T|a|,j(u),−(u− u)+〉 ≥ 0.

Adding (4.30) and (4.31), and taking into account that

〈−∆pu− (−∆pu), (u− u)+〉 ≥ 0,

one receives

(4.32) 〈−B̂w(u) + (Fa(u)− F̂a(u)) +
2∑

j=1

T|a|,j(u), (u− u)+〉 ≥ 0.

By definition of f̂ and fm and their corresponding Nemytskij operators F̂ and Fm,
respectively, we obtain for the second and third term on the left-hand side of (4.32)

(4.33)

〈Fa(u)− F̂a(u), (u− u)+〉 =
∫
{u>u}

a
(
F (u)− F̂ (u)

)
(u− u) dx

=

∫
{u>u}

a
(
F (u)− F (u)

)
(u− u) dx = 0,

and

(4.34)

〈 2∑
j=1

T|a|,j(u), (u− u)+
〉
=

2∑
j=1

∫
{u>u}

|a|
∣∣Fj(u)− F̂ (u)

∣∣(u− u) dx

=

2∑
j=1

∫
{u>u}

|a|
∣∣F (u)− F (u)

∣∣(u− u) dx = 0.

In view of (4.33) and (4.34), we get from (4.32)

〈B̂w(u), (u− u)+〉 ≤ 0,
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which by definition of B̂w yields

0 ≥ 〈B̂w(u), (u− u)+〉 =
∫
{u>u}

wb̂(·, u)(u− u) dx =

∫
{u>u}

w(u− u)p dx ≥ 0,

and hence

0 =

∫
{u>u}

w(u− u)p dx =

∫
Ω
w[(u− u)+]p dx = ‖(u− u)+‖pp,w,

which implies (u − u)+ = 0, that is, u ≤ u in Ω completing the proof of S being
directed upward. The proof for S being directed downward follows pretty much
the same idea by appropriately modifying the auxiliary variational inequality, and
therefore can be omitted. This completes the proof of the theorem. □

The compactness of S by Theorem 4.1 and the directedness of S by Theorem 4.2
will allow us to show the following existence result of extremal solutions.

Theorem 4.3. Let the hypotheses of Theorem 4.2 be satisfied. Then the solution
set S has a smallest solution u∗ and a greatest solution u∗, that is, u∗, u

∗ ∈ S such
that u∗ ≤ u ≤ u∗ for all u ∈ S.

Proof. Let us show the existence of the greatest solution u∗ only, since the proof
for the existence of u∗ follows analogous arguments. Since X is separable with the
metric generated by ‖ · ‖X , so is S. Let (wn) be a dense sequence in S . Using
the directedness of S, we can construct inductively a sequence (un) in S such that
wn ≤ un ≤ un+1, ∀n ∈ N. Let

u∗(x) = sup{un(x) : n ∈ N} = lim
n→∞

un(x), x ∈ Ω.

As a consequence of the compactness of S, and the pointwise convergence of (un),
we get un → u∗ in X and thus u∗ ∈ S. Since u∗ ≥ wn a.e. in Ω for all n ∈ N, from
the density of (wn) in S, we see that u∗ ≥ u a.e. in Ω for all u ∈ S. □

5. Obstacle problem

In this section we apply the theory developed in Section 3 and Section 4 to the
following obstacle problem in the exterior domain Ω = RN \B(0, 1):

(5.1) u ∈ K : 〈−∆pu, v − u〉+
∫
Ω
af(·, u)(v − u) dx ≥ 0, ∀v ∈ K,

where

(5.2) K = {u ∈ X : u ≥ ψ a.e. in Ω}
and ψ : Ω → R is a measurable function representing the obstacle, which will
be specified later. We readily observe that K given by (5.2) satisfies the lattice
condition (4.1). The coefficient a : Ω → R in (5.1) is supposed to be positive and
fulfills (Ha), that is,

(Ha+) a : Ω → R is measurable and satisfies

0 < a(x) ≤ ca
1

|x|N+α
= caw(x), for a.e. x ∈ Ω,

where ca and α are positive constants and w given by (2.4).
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We will provide conditions on the nonlinearity f of (5.1) as well as on the obstacle
function ψ of (5.2) in terms of the first eigenvalue λ1 and associated eigenfunction
ϕ1 of the eigenvalue problem

(5.3) −∆pu = λa|u|p−2u in Ω, u = 0 on ∂B(0, 1),

that will ensure the existence of extremal solutions of (5.1), (5.2) within the order
interval [εϕ1,MΓ] for some positive constants ε and M . Here Γ ∈ X denotes the
unique solution of the boundary value problem

(5.4) −∆pu = a in Ω, u = 0 on ∂B(0, 1).

whose existence, uniqueness, regularity, and further qualitative properties will be
proved by the next lemma. To this end we use the notation ΩR := Ω \ BR, where
BR = B(0, R) ⊂ RN denotes the ball with radius R > 1.

Lemma 5.1. Assume hypothesis (Ha+). Then problem (5.4) has a unique solution
Γ ∈ X with the following properties:

(i) Γ ∈ C1,γ(Ω ∩BR), with γ ∈ (0, 1) and R > 1.
(ii) Γ(x) > 0 for all x ∈ Ω.
(iii) There exist positive constants d1, d2 such that

(5.5)
d1

|x|
N−p
p−1

≤ Γ(x) ≤ d2

|x|
N−p
p−1

, ∀x ∈ ΩR, R > 1.

(iv) ∂Γ
∂n (x) < 0, ∀x ∈ ∂B(0, 1), where ∂Γ/∂n is the outward normal derivative
at x ∈ ∂B(0, 1).

Proof. u ∈ X is a solution of (5.4) if

(5.6) 〈−∆pu, ϕ〉 =
∫
Ω
aϕdx, ∀ϕ ∈ X.

Since w ∈ Lr(Ω) for all r ∈ [1,∞], by hypothesis (Ha+) we have a ∈ Lr(Ω) for

all r ∈ [1,∞]. In particular, a ∈ Lp∗′(Ω), and thus due to X ↪→ Lp∗(Ω), ϕ 7→∫
Ω aϕdx belongs to X∗. Since −∆p : X → X∗ is a strictly monotone, bounded, and
continuous mapping, the unique solvability of (5.4) follows from standard monotone
operator theory.

Ad (i): We note X ↪→W 1,p
loc (Ω), and thus X ↪→W 1,p(Ω∩BR) for any R > 1. Since

a ∈ L∞(Ω), by elliptic regularity results (see e.g. [7,11]), we get Γ ∈ C1,γ(Ω ∩BR),
with γ ∈ (0, 1). In particular, Γ is in C1(Ω).

Ad (ii): Replacing u by Γ in (5.6) and testing it with the test function ϕ = Γ− =
max{−Γ, 0} we obtain

〈−∆pΓ,Γ
−〉 = −

∫
Ω
|∇Γ−|p dx =

∫
Ω
aΓ− dx ≥ 0,

which yields ‖Γ−‖X = 0, i.e., Γ− = 0, and thus Γ ≥ 0 in Ω. By (i), Γ is, in
particular, continuous in Ω, and hence it follows from Harnack’s inequality that
Γ(x) > 0 for all x ∈ Ω.
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Ad (iii): If Φ is given by

Φ(x) =
1

|x|
N−p
p−1

, ∀x ∈ Ω,

then

−∆pΦ = 0 in Ω.

Since Γ(x) > 0 in Ω, and continuous in Ω, we have

δ := min
|x|=R

Γ(x) > 0, for R > 1

is well defined, and there is some % > 0 such that (note: Φ(x) = 1

R
N−p
p−1

, for |x| = R)

%
1

R
N−p
p−1

= δ,

and thus

(5.7) %Φ− Γ ≤ 0 on ∂BR,

and the following differential inequality (in the distributional sense) holds

(5.8) −∆p(%Φ)− (−∆pΓ) = −a ≤ 0 in ΩR.

Let us denote by XR the completion of C∞
c (ΩR) with respect to the Norm

‖u‖XR
=

(∫
ΩR

|∇u|p dx
) 1

p
.

Then due to (5.7), we have 0 ≤ (%Φ − Γ)+ ∈ XR, which yields when applied as
special test function to (5.8)

0 ≥
∫
ΩR

(
|∇(%Φ)|p−2∇(%Φ)− |∇Γ|p−2∇Γ

)
∇(%Φ− Γ)+ dx ≥ 0.

The last inequality implies∫
{x∈ΩR:ϱΦ(x)−Γ(x)>0}

(
|∇(%Φ)|p−2∇(%Φ)− |∇Γ|p−2∇Γ

)(
∇(%Φ)−∇Γ

)
dx = 0,

and therefore meas{x ∈ ΩR : %Φ(x)− Γ(x) > 0} = 0, that is,

%Φ(x) ≤ Γ(x), ∀x ∈ ΩR, R > 1,

which is the first part of inequality (5.5) with d1 = %.
Let us verify the second part of inequality (5.5). To this end we extend the

coefficient a to the entire RN by a positive constant, such as e.g. by ca, then the
extension â : RN → R given by

(5.9) â(x) =

{
ca if x ∈ B(0, 1)
a(x) if x ∈ Ω.

is a positive, measurable function, which satisfies

(5.10) 0 < â(x) ≤ 2ca
1 + |x|N+α

, ∀x ∈ RN .
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Consider the following problem in all RN

(5.11) −∆pu = â(x) in RN .

For solving (5.11) let X̂ denote the completion of C∞
c (RN ) with respect to the norm

‖u‖X̂ =
(∫

RN

|∇u|p dx
) 1

p
,

which can be characterized as

X̂ =
{
u ∈ Lp∗(RN ) :

∫
RN

|∇u|p dx <∞
}
.

In view of (5.10), we may apply [2, Theorem 2.2] to problem (5.11), which results

in the existence of a uniquely defined solution û ∈ X̂ of (5.11) satisfying û ∈
X̂ ∩ C1(RN ) and the inequality

(5.12)
c1

1 + |x|
N−p
p−1

≤ û(x) ≤ c2

1 + |x|
N−p
p−1

, x ∈ RN ,

where c1, c2 are some positive constants. In particular, û is a distributional solution
of

(5.13) −∆pû = â(x) = a(x) in ΩR, R > 1.

Since Γ(x) > 0 in Ω and û(x) > 0 in RN and both are continuous, there is some
positive constant %̂, which may be chosen %̂ > 1 such that

(5.14) Γ(x)− %̂û(x) ≤ 0, ∀x ∈ ∂BR.

Further, by (5.13) in ΩR we have the equation (in the distributional sense)

(5.15) −∆pΓ− (−∆p(%̂û)) = a− %̂p−1a =
(
1− %̂p−1

)
a ≤ 0, in ΩR.

By (5.14) the restriction of the function Γ − %̂û to ΩR satisfies (Γ − %̂û)+ ∈ XR,
which when taken as test function in (5.15) results in (Γ − %̂û)+ = 0, that is, using
(5.12) one gets

Γ(x) ≤ %̂û(x) ≤ %̂c2

1 + |x|
N−p
p−1

≤ d2

|x|
N−p
p−1

in ΩR,

where d2 = %̂c2, which is the second part of (5.5).

Ad (iv): To show ∂Γ
∂n (x) < 0, ∀x ∈ ∂B(0, 1) we note that Γ, in particular, solves

the following problem in the domain Ω ∩BR = BR \B(0, 1)

(5.16) −∆pΓ = a(x) in Ω ∩BR (R > 1), Γ = 0 on ∂B(0, 1),

and by (iii) satisfies Γ ∈ C1(BR \B(0, 1)), Γ(x) > 0 in BR \ B(0, 1). Therefore,
we may apply the boundary point lemma [14, Theorem 5.5.1], according to which
∂Γ
∂n < 0 on ∂B(0, 1), and thus completing the proof. □

The following characterization of the first eigenvalue λ1 and its associated eigen-
function ϕ1 of the eigenvalue problem (5.3) can be deduced from [6, Lemma 1.1]
and [6, Theorem 1.1].
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Lemma 5.2. Assume hypothesis (Ha+). Then the eigenvalue problem (5.3) has a
first eigenvalue λ1 > 0, which is simple and isolated. The associated eigenfunction
ϕ1 belongs to X and possesses the following properties:

(i) ϕ1 ∈ C1,γ(Ω ∩BR), γ ∈ (0, 1), for any R > 1.
(ii) ϕ1(x) > 0 for all x ∈ Ω.
(iii) There are positive constants C1, C2 such that

(5.17)
C1

|x|
N−p
p−1

≤ ϕ1(x) ≤
C2

|x|
N−p
p−1

, ∀x ∈ ΩR, R > 1.

Just like in the proof of (iv) of Lemma 5.1, as an immediate consequence of
Lemma 5.2 we obtain the following result.

Corollary 5.3. Under the hypothesis of Lemma 5.2 the eigenfunction ϕ1 satisfies

∂ϕ1

∂n
(x) < 0, ∀x ∈ ∂B(0, 1),

where ∂ϕ1/∂n is the outward normal derivative at x ∈ ∂B(0, 1).

By means of Lemma 5.1, Lemma 5.2, and Corollary 5.3 we are able to provide
the following order relation between Γ and ϕ1.

Corollary 5.4. Assume hypothesis (Ha+). Then for any ε > 0 there is a constant
M > 0 such that

εϕ1(x) ≤MΓ(x), ∀x ∈ Ω.

Proof. By virtue of Lemma 5.1 (iv) and Corollary 5.3 there are constants %1 >
0, %2 > 0 and constants σ1 > 0, σ2 > 0 such that

(5.18) −σ2 ≤
∂Γ

∂n
(x) ≤ −σ1, −%2 ≤

∂ϕ1

∂n
(x) ≤ −%1, ∀x ∈ ∂B(0, 1).

For ε > 0 there is a M sufficiently large such that ε%2 < Mσ1, which implies by
using (5.18)

(5.19)
∂(MΓ)

∂n
(x) ≤ −Mσ1 < −ε%2 ≤

∂(εϕ1)

∂n
(x), ∀x ∈ ∂B(0, 1).

Since Γ = 0 and ϕ1 = 0 on ∂B(0, 1), from (5.19) we obtain εϕ1(x) ≤ MΓ(x) in

an δ-annulus B(0, 1 + δ \ B(0, 1) for δ > 0 small. As both function Γ and ϕ1 are
continuous and positive in Ω, by choosing M even larger if needed we arrive at

(5.20) εϕ1(x) ≤MΓ(x), ∀x ∈ BR \B(0, 1).

By virtue of (5.5) and (5.17) and choosing M , in addition, large enough such that
εC2 ≤Md1 we finally obtain

(5.21) εϕ1(x) ≤
εC2

|x|
N−p
p−1

≤ Md1

|x|
N−p
p−1

≤MΓ(x), ∀x ∈ RN \BR.

Thus (5.20) and (5.21) complete the proof. □

Now we are ready to prove the following existence result for the obstacle problem
(5.1), (5.2).
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Theorem 5.5. Assume hypotheses (Ha+) and (Hf), and suppose the obstacle func-
tion ψ satisfies

(5.22) either ess supx∈Ω
ψ(x)

Γ(x)
<∞ or ess supx∈Ω

ψ(x)

ϕ1(x)
<∞.

If f , in addition, satisfies

(5.23) lim sup
s→0

f(x, s)

|s|p−2s
= µ < −λ1, uniformly in x ∈ Ω,

and f is bounded below by some constant ν < 0, i.e.,

(5.24) f(x, s) ≥ ν ∀(x, s) ∈ Ω× R,
then there exist extremal solutions of the obstacle problem (5.1), (5.2) within the
interval [εϕ1,MΓ] for some positive constants ε small and M large enough.

Proof. We are going to prove that u = εϕ1 is a subsolution for ε > 0 small, and
u =MΓ is a supersolution for M > 0 large. Let us consider the case

ess supx∈Ω
ψ(x)

Γ(x)
<∞.

We note that the other case is treated in a similar way.
Clearly, we have u ∨K ⊂ K, and F (εϕ1) ∈ Lq′(Ω, w). To show that u = εϕ1 is

a subsolution, by definition the following inequality needs to be shown

(5.25) 〈−∆pu, v − u〉+
∫
Ω
af(·, u)(v − u) dx ≥ 0, ∀v ∈ u ∧K.

Note, v ∈ u ∧K is represented by v = u ∧ ϕ = u− (u− ϕ)+ with ϕ ∈ K, and thus
(5.25) is equivalent to

(5.26) 〈−∆pu,−(u− ϕ)+〉 −
∫
Ω
af(·, u)(u− ϕ)+ dx ≥ 0, ∀ϕ ∈ K.

Since (u − ϕ)+ ∈ {v ∈ X : v ≥ 0}, inequality (5.26) is proved if u = εϕ1 is a
subsolution of the following equation (in the distributional sense)

(5.27) −∆pu+ af(·, u) = 0 in Ω.

For ε small we get from (5.23)

(5.28)
f(x, εϕ1)

(εϕ1)p−1
≤ −λ1 − δ, with some δ > 0 small.

Using the properties of the eigenfunction ϕ1 along with (5.28) we can estimate as
follows

−∆pu+ af(·, u) = λ1a(εϕ1)
p−1 + af(·, εϕ1)

= a(εϕ1)
p−1

[
λ1 +

f(·, εϕ1)

(εϕ1)p−1

]
≤ a(εϕ1)

p−1[λ1 − λ1 − δ] ≤ 0,

which proves that u = εϕ1 is a subsolution for the obstacle problem.
To show that u = MΓ is a supersolution of the obstacle problem we first note

that by hypothesis (5.22) we infer that ψ(x) ≤MΓ(x) for M > 0 sufficiently large,
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and hence it follows u ∧K = MΓ ∧K ⊂ K. By definition of the supersolution it
remains to check the following inequality:

(5.29) 〈−∆pu, v − u〉+
∫
Ω
af(·, u)(v − u) dx ≥ 0, ∀v ∈ u ∨K.

Making use of v = u ∨ ϕ = u+ (ϕ− u)+ for all ϕ ∈ K, (5.29) is equivalent to

(5.30) 〈−∆pu, (ϕ− u)+〉+
∫
Ω
af(·, u)(ϕ− u)+ dx ≥ 0, ∀ϕ ∈ K.

Since (ϕ−u)+ ∈ {v ∈ X : v ≥ 0} for all ϕ ∈ K, a sufficient condition for (5.30) and
thus for (5.29) is to show that u = MΓ is a supersolution of the equation (5.27),
which is verified next. Making use of (5.24) and the definition of Γ yields

−∆pu+ af(·, u) = Mp−1a+ af(·,MΓ) = a
(
Mp−1 + f(·,MΓ

)
≥ a

(
Mp−1 + ν

)
≥ 0,

for M > 0 large enough, which shows that u =MΓ is supersolution of the obstacle
problem. Finally, Corollary 5.4 implies that for even larger M if needed one can
always get u = εϕ1 ≤MΓ = u. Thus we may apply Theorem 3.5 and Theorem 4.3,
which completes the proof. □
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