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INVARIANT CONES FOR LINEAR ELLIPTIC SYSTEMS
WITH GRADIENT COUPLING

I. CAPUZZO DOLCETTA, L. ROSSI, AND A. VITOLO

ABSTRACT. We discuss counterexamples to the validity of the weak Maximum
Principle for linear elliptic systems with zero and first order couplings and prove,
through a suitable reduction to a nonlinear scalar equation, a quite general result
showing that some algebraic condition on the structure of gradient couplings and
a cooperativity condition on the matrix of zero order couplings guarantee the
existence of invariant cones in the sense of Weinberger [22].

1. INTRODUCTION

We consider smooth vector-valued functions v = (uq,...,u,,) of the variable x
in a bounded open subset 2 C R satisfying linear systems of partial differential
inequalities of the following form

n
(1.1) Au—i—ZB(i)Diu—f—CuZO in
i=1
where A is the second order operator
Au1

(1.2) Au =
JAN T
B and C are m x m real matrices and with constant coefficients, and for i =

1,...,n,

ouq
ox;

Oum
ox;
denotes the 7 — th column of the Jacobian matrix of the vector function w.

Note that the above defined structure of the systems allows coupling between the
uj and their gradients but not at the level of second derivatives.
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Specific assumptions on the B and C will be made later on.

Systems of this kind naturally arise in several different contexts such as modeling
of simultaneous diffusions of m substances which decay spontaneously or in the
case of systems describing switching diffusion processes in probability theory. In the
latter case the homogeneous Dirichlet problem for system (1.1) describes discounted
exit times from (2, see for example [12].

We are interested here in investigating the validity of the weak Maximum Prin-
ciple, wMP in short, that is the sign propagation property from the boundary to
the interior for solutions v = (uq,...,u,) of the differential inequalities (1.1), i.e.,

(1.4) wMP: ©u<0ondQ = u<0in.

The vector function u will be always assumed to belong to [C%(Q)]™ N [CY(Q)]™
and we will adopt the standard notation u < 0 if u; <0 for each j =1,...,m
adopt the same notation for real-valued matrices, namely for a matrix A, A > 0
means that all its entries are nonnegative.

The validity of wMP is well-understood in the scalar case m = 1 even for general
degenerate elliptic fully nonlinear partial differential inequalities such as

F(z,u,Vu,V?u) >0

in a bounded Q and also in some unbounded domain of R", see [9], [10] for recent
results in this direction. Let us point out that the wMP property in the scalar
case is related, and in fact equivalent, to the positivity of the principal eigenvalue
(may be a pseudo one, if degeneracy occurs in the dependence of F' with respect to
Hessian matrix V2u) of the Dirichlet problem for F, see [3], [4].

The case m > 1 has been the object of several papers mainly in the case of
diagonal weakly coupled systems, that is when the matrices B(®) are diagonal and
couplings between the functions u; only occur at the level of zero-order terms,
described by a matrix C' = (c;i);; satisfying the cooperativity condition

m
(1.5) g >0 for j#k, Y cp<0 for j=1,...,m
k=1

Referring to the aforementioned exit time model, condition (1.5) requires the dis-
count factor for the j-th process to dominate the sum of the interactions coefficients
with all the other processes.

In the framework of purely weak cooperative couplings, let us mention the results
in Section 8 of the book by Protter and Weinberger [19] and the references therein.
For generalizations of those results in some semilinear cases see [20], [6], [1], while [7]
contains results in the same direction concerning fully nonlinear uniformly elliptic
operators F = F(z,u, Vu, VZu).

The recent paper [11] extends the validity of some of the results in [7] concerning
wMP to a large class of fully nonlinear degenerate elliptic operators.

In particular, for the case of linear systems as (1.1) with no coupling in first deriva-
tives (i.e. when each B® is diagonal), the main result in [11] is that wMP holds
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true for system (1.1) provided C' is cooperative.

Let us also point out that the main result in [11] holds even in the more general
case where the Laplace operator is replaced by more general expressions TI‘(AJ'VQUJ‘)
satisfying Tr(A;) >0 for j=1,...,m.

When coupling in first order terms occurs in (1.1), simple examples as the fol-
lowing one taken from [7] show that the wMP property (1.4) may indeed fail:

Example 1.1. The vector u(z1,z2) = (1 — 2} — 23, 23 + 425 — 20) is a solution of

in the unit ball Q@ € R?, u; = 0, ug < 0 on 9Q but u; > 0 in Q. Observe that the
zero-order matrix is C' = 0 in this example, so that (1.5) is fulfilled.

As a matter of fact, even a first-order coupling of arbitrarily small size in the
system can be responsible of the loss of wMP, as the following example shows:

Example 1.2. The system

Au—I—aﬁ >0
6.%'1

Av+ € ou >0
8371
in a bounded domain Q C R”, fulfills wMP if and only if e =&’ = 0.
Indeed the validity of wMP when € = ¢/ = 0 is classical. Conversely, if, say, € # 0,
then wMP is violated by the pair

u(z) =6 — |z — z|?, v(z) =v(z) =€’ — H,

by choosing z € Q and § > 0 small enough to have u < 0 on 02, then ¢ with the
same sign as € and with |o| large enough to have the two inequalities in the system,
and finally H large enough to have v < 0 on 9f).

Example 1.2 enlightens an instability property of wMP for cooperative systems
with respect to first order perturbations. This is in striking contrast with the scalar
case: indeed, for a uniformly elliptic scalar inequality, not only the presence of a
first order term does not affect the validity of wIMP when the zero-order term is
nonpositive, but in addition wMP is stable with respect to perturbations of the
coefficients, in the L* norm. This can be seen as a consequence of the fact that
wMP is characterized by the positivity of the associated principal eigenvalue, and
the latter depends continuously on the coefficients of the operator, see e.g. [19], [4]
and also [6], [7] where such characterization in terms of the same notion of principal
eigenvalue as in [4] is extended to cooperative systems without first-order coupling.
Example 1.2 reveals either that such notion does not exist when there is a first-order
coupling, or that it is not continuous with respect to the coefficients.

According to the above considerations, two perspectives can be adopted in order
to investigate the sign-propagation properties for coupled systems such as (1.1).
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The first one consists in strengthening the hypotheses on the coefficients of the
operators, namely the cooperativity condition (1.5). The second one is to replace
wMP by some different kind of propagation property which reflects in some way
the geometry of the coupling terms.

We will explore both directions.

Observe that the systems in Examples 1.1 and 1.2 fulfill the cooperativity condi-
tion (1.5) in the “border case”, that is, when all inequalities are replaced by equal-
ities. A natural question is then whether it is possible, for wMP to hold, to allow
some coupling in first-order terms in the system, at least when the cooperativity
conditions (1.5) hold with strict inequalities, i.e.,

m
(1.6) cjr > K for j #k, chkg—K for j=1,...,m,
k=1

with K possibly very large. The next result shows that this is not possible.

Proposition 1.3. Let ¢ > 0, a,¢ > 0. Then the following system with m = 2 and
n=1

" /
— >
(1.7) { ' tev —cu+av>0

V" —év >0 zel,=(0,p)
where u,v are scalar functions of © € R does not satisfy wMP, provided that

cosht —1

(1.8) C(pVe)We > % where ((7) =

sinht — 7 °

Remark 1.4. Since ¢(0") = +oo and ((+00) = 1, this proposition entails that, for
every e, K > 0, there exists a system of the type (1.1), with B(®) satisfying ]BJ(;C)\ <e
and C = (cjx)j,r satisfying (1.6), for which wMP fails. Namely, even an arbitrary
small amount of coupling at the level of first derivatives can prevent the validity of
wMP although the zero order matrix is, so to say, “very strongly cooperative”. It
also shows that, for any €,¢ > 0 and «, ¢ > 0, wMP fails for (1.7) in a small enough
interval 1,,.

The fact that wIMP fails when the diagonal zero-order term c is sufficiently large
or when the size p of the interval is sufficiently small can be surprising if one has
in mind the picture for the scalar equation where both having a large —negative—
zero-order term and a small domain help the validity of the Maximum Principle.
This phenomenon could be related to a non-monotonic structure of the system when
a first-order coupling is in force.

Remark 1.5. A few more comments are in order here. We are considering a system
with coupled gradients (¢ > 0). The first part of Proposition 1.3 says that wMP
cannot be satisfied in all bounded domains as soon as € > 0, whatever the amount
of cooperativity (o > 0) is. The second part means that in a fixed interval wMP
fails for ¢ large enough. In cooperative systems under consideration (0 < a < ¢)
an excess of coercivity with respect to the coupling (c large compared with a/e¢)
seems to be responsible for invalidating wIMP. In particular this is the case in any
interval I, when o = 0.
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We exhibit in Proposition 1.6 below that the same qualitative phenomenon occurs
for a larger class of systems. The proofs of Propositions 1.3 and 1.6 are detailed in
Section 2.

Proposition 1.6. For everye #0, ¢ > 0 and €, a, B € R, there exists ¢ > 0 large
enough such that the system

(1.9) in (0,1)

u' —ev' —cu4+av>0
v —éu — v+ fu>0

violates the wMP.
If, instead, ¢ > 0 is also fized in the system (1.9), there exists an interval I C
(0,1) in which such system does not fulfill wMP.

Let us turn now to the positive results. The study of sufficient conditions for
the validity of the weak Maximum Principle in the form wMP in the case where
coupling occurs also at the level of first or second order derivatives is apparently less
explored in literature, see however [14], [15], [16] and also [18], [17] for the related
issue of maximum norm estimates of the form sup,cq |u(z)] < C sup,cq|f(z)|
for solutions u of non-homogeneous systems of equations involving higher order
couplings.

The wMP property (1.4) can be understood in the framework of the general
theory of invariant sets introduced by H. F. Weinberger in [22] in the context of
elliptic and parabolic weakly coupled systems. We refer to the recent paper by
G. Kresin and V. Mazya [16] where the notion of invariance is thoroughly developed
for general systems with couplings at the first and the second order in the case C' = 0.
According to the notion introduced in [22], a set S C R™ is invariant for system
(1.1) if the following property holds

(1.10) INV : u(z) € S forallz € 90 = wu(x)e S forallz e

The sign propagation property (1.4) can then be rephrased as the property of the
negative orthant R™ = {u = (u1,...um) s u; <0, j=1,...,m} being an invariant
set for system (1.1) of partial differential inequalities.

In [22] it is proved in particular that wIMP holds for weakly coupled uniformly
elliptic systems such as

(1.11) Tr(A;V3u;) +b; - Vu; + f(u) =0, j=1,...,m

under the condition that the vector field f satisfies the property that for any p
belonging to the outward normal cone to R™ at a point u on the boundary of R™
the inequality

(1.12) p-flu) <0

holds. For f(u) = Cu, this geometric condition turns out to be the cooperativity
property (1.5) of matrix C'. Note also that this condition implies that R™ is invariant
under the flow du/dt = Cu,t > 0.

Let us observe that Example 1.2 and Proposition 1.3 show that R™ fails to be
an invariant set even when the coupling of the first order terms is very small. As a
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matter of fact, the matrix of the first order couplings in those cases is

(0 7)

which is not diagonalizable. This is indeed consistent with results in [16]. It is in
fact shown in that paper, see in particular results in Section 3, that the sufficient
conditions involving the relations between the geometry of a closed convex set S
and the matrices B which imply the invariance of S, necessarily require, in the
case S = R™, the diagonal structure of the first order couplings.

On the account of the example (1.7) exhibited in Proposition 1.3 we are forced
to investigate the validity of a weaker form of the sign propagation property or, in
other words, to single out an appropriate invariant set for system (1.1) when first
order couplings occur.

It turns out that under some algebraic conditions, including notably the simulta-
neous diagonalizability of the matrices B®, a cone propagation type result holds:

Theorem 1.7. Let Q) be a bounded open subset of R™. Assume that there exists an
invertible m x m matriz QQ such that, for alli=1,...,n,

(1.13) Q'BYQ = Diag(ﬁy), . ,57(7?) for some BJ@ eER, (j=1,....,m)

(1.14) Q'>0
and, moreover,
(1.15) Q'CQ is cooperative

Then the convex cone S = {u € R™ : Q~lu < 0} is invariant for (1.1).

Remark 1.8. Concerning the linear algebraic conditions of Theorem 1.7, observe
first that a matrix @ simultaneously satisfying (1.13) for i = 1,...,n exists if the
B’s have a common basis of eigenvectors. This is the case when the matrices B
commute each other for alli=1,...,n.

Observe also that if () is an invertible M-matrix, that is Q = s — X where X >0
and s is strictly greater than the spectral radius of X, then @ fulfills condition
(1.14), see [5], [2].

Next, it is perhaps worth to point out that conditions (1.14) and (1.15) are com-
patible.

For example, @ = < _21 _21 > is an invertible M-matrix, C' = ( _13 _22 > is
. 1 -4 3 . .
cooperative and Q7 CQ = 0 _1 )8 cooperative as well.

If no coupling occurs in first derivatives, so that Q = Q' = I, the above result
reproduces the one in [11].

Remark 1.9. A related remark is that permutation matrices satisfies both Q=1 > 0
and @ > 0, so that in this case the conclusion of Theorem 1.7 is in fact that the
negative orthant R™ is invariant. However, it is easy to check that in this situation

condition (1.13) implies that each B® is diagonal and the results of [11] apply.
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A further remark is that one cannot expect in general the invariance of the negative
orthant R™. This is indeed coherent with results in [16]: Lemma 2 there states in
fact that the geometric sufficient condition on the matrices B(") guaranteeing the
invariance of R” implies their diagonal structure.

Remark 1.10. Theorem 1.7 can in fact be extended (with a completely analogous
proof) to a second order matrix operator

Tr(AV2U1)
Au =

Tr(AV?u,,)

where A is a positive semidefinite matrix such that Av-v > XA > 0 for some direction
v € R". For some applications of this notion of directional uniform ellipticity
condition see [8], [9], [10], [21].

A key role in the proof of this result, which is postponed to the next section,
is based on a reduction to a suitable fully nonlinear scalar differential inequality
governed by the elliptic convex Bellman-type operator F' defined, on scalar functions
P:Q— R, as

_ o) 0% _ ,
(1.16) F[y] = Ay + jzrrllﬁ?fm; B) gy, = A+ max bV
where ﬁj(i) are as in (1.13) and b; := (ﬁj(.l), . .,ﬂj(m)).
The main ingredients in the proof are results in [11], see in particular Theorems 1.1
and 1.3, and the notion of generalized principal eigenvalue for scalar fully nonlinear

degenerate elliptic operators and its relations with the validity of wMP, see [3].

Let us give a simple example illustrating the result of Theorem 1.7.

Example 1.11. Let u = (uj,u2) be a solution of

Auy 628 4 012 s
gl'l 6:r1

AUQ —87’“1 —Uug > 0
81‘1

in a bounded domain Q C R™. In this case B() = ( 68 (1) >, B® =0, C =
-1 0 . .
( > and Theorem 1.7 applies with

0 -1
(3 1) =3 0)

yielding that inequality us < min(—2u;; —4uq) propagates from 92 to the whole Q.

The result of Theorem 1.7 can be somewhat refined by a suitable weakening of
the assumptions there. Firstly, observe that B is not necessarily diagonalizable.
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A suitable change of basis leads to an upper triangular matrix, which yields a real
Jordan canonical form of B(®).

Suppose that the B ’s have a common eigenspace of dimension k < m and consider
a basis of R™ where the first k£ vectors are linearly independent (common) eigen-
vectors of B, then we can find an m x m invertible real matrix Q that produces
a real Jordan canonical form J® = Q=1BWQ, i=1,...,n.

In this setting we have the following:

Theorem 1.12. Let Q be a bounded open subset of R™. Suppose that the B® ’s
have a common eigenspace of dimension k < m, and let QQ be an m X m invertible
real matriz yielding the Jordan canonical form

JO =Q'BYQ i=1,...,n

Let the k x m submatriz of the first k rows of J@ be made up by a k x k diagonal
block A plus the k x (m — k) zero matriz.

Assume in addition that the k x m sub-matriz containing the first k rows of C' =
QflCQA is made by a cooperative k x k block plus the k x (m — k) zero matriz. If
the k x m sub-matriz formed with the first k rows oflfj is positive, then the closed
convex set

m m
SZ UERm:Zplju]‘SO,...,ZpijjSO
=1 i=1

~

where p;; are the entries of the matriz P .= Q!

is invariant for system (1.1).
An illustrative example is provided next:

Example 1.13. Consider the 2 x 2 system
0
Aug + iz _ up >0
8951

AUQ—F%—UQZO
81‘1

in a domain Q of R%. In this case B() = < 01 ), B® =0, C = < -0 >
and Theorem 1.12 applies with

L (11 o (1/2 1)2

Q_<1 —1) @ _<1/2 —1/2>
Since the first row of P = Q_l is nonnegative the above result yields the invariance
of the convex set S = {u = (u1,u2) : u1 +ug < 0}.
Note that wMP, that is the invariance of R%, does not hold true in this example.
Indeed, the vector u = ((z1 —2%)(z2 — 23)3, (2} + 221 — 4) (22 — #3)) is a solution in
the square Q2 = [0,1] x [0, 1] taking non positive values on 9Q with us < 0, u; >0
in €.



INVARIANT CONES FOR LINEAR ELLIPTIC SYSTEMS WITH GRADIENT COUPLING 125

2. PROOFS OF THE RESULTS

The first part of this section is dedicated to the proofs of Proposition 1.3 and 1.6.

Proof of Proposition 1.3. We restrict to the case —e, with ¢ > 0. In fact, we can
reduce to it by using the change of coordinate x — p — z. We also observe that
the argument is not affected by ¢ > 0, so that we will omit to mention it when
discussing on the parameters.

Firstly, we observe that v(x) = —z obviously satisfies the second equation with
v <0 in [0, p].

Next, we introduce the sequence of functions
5{ 1 — e Velk Ve evVelk 1

—4/CT

dsinh(ve/k) ¢ 2sinh(ye/k) ©

-2 (e ) b

up(z) = -

Then, a direct computation, shows that for all kK € N,

up —ev' —cup +av=0 in I, = (0, p)

and ux(0) = 0.
The case ¢ = 0 is ruled out either by taking the limit as & — 400 or directly by
putting v = —x and ¢ = 0 in the above equation.

Note also that as k — oo

R {coshﬁx—l—j(sm\/f””—xﬂ.

Let the parameters ¢, ¢, « and p be fixed. For large k € N:

o= 2 (L cob (Ve o VEk
ue(0) = c {sinh(ﬁ/k)/\/a 3 (Sinh(\/é/k) 1>}
= % +o(1/k)

so that ) (0) > 0 for k large enough. Since u;(0) = 0, we also have ug(z) > 0 for
some z € I, for such k € N. So wMP will be violated if uz(p) < 0.
Next, rearranging (2.1) for z = p,

ug(p) = —% {cosh Vep —1— % (M) - p) } + ug(p) — uo(p)

Ve

B gsinhﬁp—ﬁp{ a}

= 7 C(Vep)ve = — p +uklp) = uo(p)
where the function ¢ is defined in (1.8). Therefore condition ((y/cp)y/c > ¢ in (1.8)
yields ug(p) < 0, for large k € N, so that wMP is not satisfied. Once established
this fact, we search for condition (1.8) to prove that wMP fails.

A straightforward calculation shows that ((7) — oo as 7 — 07 and ((7) — 1

as 7 — 00. Therefore there exists po = po(c; <) such that condition (1.8) holds for
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p < po, and wMP is not satisfied, thereby proving that as soon as € > 0 there are
intervals I,, small enough, where wMP fails, whatever c and « are.

On the other hand, let p > 0 be fixed. The function {(1/cp)y/c is increasing with
respect to ¢, see the Appendix, and ((y/cp) — 1 as ¢ — oo, so that

lim ¢(Vep)v/e = oo.

Hence there exists co = co(p; €) such that condition (1.8) holds for ¢ > cg, and
wMP is not satisfied, thereby proving that as soon as € > 0 then wMP fails in
any interval I, and for any o > 0 when a sufficiently large c is taken.

By the increasing monotonicity of the function ¢ — {(1/cp)+/c we get

. . 3
ggC(ﬁp)\/E = lim ((Vep)We = .

It follows that, if & < %, then condition (1.8) is satisfied for all ¢ > 0. This means

that in this case we can choose co(p; ) = 0.
Finally, recalling that ((y/cp) — 1 as ¢ — oo, then ((y/cp)y/c = /¢ for ¢ > ¢1(p).
Hence condition (1.8) is equivalent to

\/E>g.
g

It follows that, if ¢ > c1, then we can choose co(p; 2) = (%)2 O

Proof of Proposition 1.6. Up to replacing u(x),v(z) with u(—z),v(—z), it is not
restrictive to assume that € > 0. We claim that, for ¢ sufficiently large, there exists
a pair (u,v) satisfying (1.9) in a strict sense, namely

inf <u” —ev — cu+0w> >0 , inf <v” —&u — év—i—ﬁu) >0

(0,1) (0,1)

such that «(0) =0 > u(1), v(0) <0, v(1) <0 and v/ (0) = 0.
Then, for § > 0 sufficiently small, the pair of functions (u(x)+dx,v(z)) still satisfies
the system (1.9) and both functions are < 0 on the boundary of (0,1), but u(z) > 0
for > 0 small, hence wMP is violated.

Let us construct the pair of strict subsolutions (u,v) by setting:

v(z) = 2% — =z, u(x) = ox(x),

where x is a smooth, non-increasing function satisfying

. 1 €
x(0) = x'(0) =0, x(z) = -1 for z > mln{ 1 W}

Let ¢ := min(o1,02), with o1 = 1/([8] + [E][IX[lL=(0,1)) + 1) and o2 =
e/(8lIX" e ((0,1)))- We compute, for z € (0, 1),

U// - éu' —Ccv + BU > 2 — U(‘ﬂ’ + &:HX/HL"O((OJ))) > 1,
where we have used that o < ;. Next, for x € (0,1), we have

W —ev —cu+av>e(l-2x)—|ajz —a|lx"| — cox.
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We estimate the above right-hand side considering first the case 0 < z <
min{1/4,e/(4|a| + 1)}, where we have

U’ — v — cu+ av > Z —allX" L (0,1)) =

ool ™

Next, for min(1/4, |e]/(4]|a| + 1)) <x <1, we find
u" —ev' —cu+av > —e —|al + co.
As a consequence, if ¢ > (2¢ + |a|) /o, there holds

{ u"—av'—cu+av

>
" ~ ~
v —éu —év+ Bu >

—ool m

The first statement of the proposition is thereby proved.

Let us turn to the second statement. We have seen above that wMP fails for (1.9)
provided c is larger than some ¢ > 0, and more precisely that it is violated by a pair
(u,v) with v < 0 on (0,1) and u > 0 somewhere. Consider the pair (u,v) associated
with ¢ = ¢ and let I be a connected component of the set where v > 0 in (0, 1),
hence © =0 on OI. For ¢ < ¢ there holds in I,

W —ev —cu+av>u" —ev —eu+av>0.
This means that wMP fails in I and then concludes the proof. O

Let us go now to the proof of Theorem 1.7.

Proof of Theorem 1.7. Assume that u € [C?()]™ N [CO(Q)]™ satisfies (1.1) and
that @ 'u < 0 on 99Q. Set

B .= Q_lB(i)Q and C:=Q 'CQ.

Observe that the change of unknown u = Qu gives, on the account of assumptions
(1.13), (1.14), that v satisfies

(2.2) Av—&—ZB(i)Div—i—CA'U >0 in Q and v <0on 00
i=1

that is, componentwise,

Avy +b; -V, +Civ >0

Avy, + b - Vo, + Cpv > 0

where b; = (BJ(-D, . ,5](-7”)) and C‘j is the j-th row of C, for j =1,...,m.
We now employ the argument of the proof of Theorem 1 in [11] which reduces the
above system to a scalar inequality governed by the uniformly elliptic (nonlinear)
Bellman operator F in (1.16).

By viscosity calculus results based on the cooperativity condition (1.15), see [11], [7],
since v = (v1,...,Uy) is a classical solution of (2.2) then the scalar function

v'(@) == max (vj)"(2),
=1,....,m

=1,...
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where + denotes the positive part of the various functions, is a continuous weak
solution in the viscosity sense, see [13], of

(2.3) Fv*] >0 in Q and v* =0o0n 09.

Suppose indeed that a smooth function ¢ touches from above v* at some point
in Q. If at that point v* = 0 then clearly F[p] > 0 there. Otherwise ¢ touches from
above the component vj, realizing the positive maximum v* at that point and thus
there holds

Ap +bjy - Ve + Cjov > 0.
But then recalling that C fulfills the cooperativity condition (1.5), one infers that

Cjov < Ujo Z Cjok <0
k
whence again Fp] > 0.

In order to apply the general results of [3] we need to show that the generalized
principal eigenvalue of F' is positive. This amounts, by its very definition, to find a
strict supersolution which is strictly positive in Q. The latter is simply provided by
v(x) =YP(x1, ... xm) =1 — deT™1.

Indeed, this function satisfies
HM:—MW“@+,@n@P>
j=1,...m

which is strictly negative in R™ provided v > |minj—1, _m BJ(I)\. We then choose §
small enough, depending on 7 and (2, so that ¥ > 0 in Q.

Summing up, ¥ is positive in 2 and satisfies there F[1)] < 0, hence also F[t)]+\ < 0
for A > 0 suitably small. This implies that the numerical index u1(F,2) defined by

pi(F,Q) =sup{A e R: ¢ € C(Q), v >0, Fly] + \p <01in Q}

is strictly positive. Therefore, according to [3]|, the weak Maximum Principle for
the scalar problem (2.3) holds, that is v* < 0 in Q.
This means that Q 'u = v < 0 in Q and the proof is complete. U

We conclude the section with the proof of Theorem 1.12

Proof of Theorem 1.12. Following the same lines of the proof of Theorem 1.7, we
set u = Qv. When multiplying by P = Q‘l, this time we keep, by assumption,
the positivity for the first k equations, which again by the assumptions made are
decoupled in the gradient variables. So, letting C' be the diagonal part of C and
0= (v1,...,vk), we get

Avy + by - Vo + C15 > 0
Avk—i-bm'V’Uk—i-ék@ZO

where C’j is the j-th row of C. The conclusion follows as in the proof of Theorem
2 with k instead of m. O
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3. APPENDIX

In this short section we provide the proof of the increasing monotonicity of the
function ¢ — ((7+/c)v/c, where

cosht—1

() =

sinhT —7°

We recall that this fact has been used in the proof of Proposition 1.3. At this
purpose it is sufficient to show that the function

t(cosht —1) cosht—1
So(t) = i ~ Tsinht -1
¢

sinht — ¢
is increasing for ¢t > 0. Since
sinh ¢ (Smht 1) — (cosht — 1) teoshizsinht

t
: 2
( smth t 1)

/

¢i(t) =

it is enough to prove that

inht tcosht — sinht
snit (1) = feosht - 1) COREZIRE S

that is
1
(3.1) 2 (t 4 sinht) (cosht — 1) > sinht for ¢ > 0.

In fact, let (ap)nen be the coefficients of the Taylor expansion

3 t5 t2]€+1
Wt =t S
sin Ty tnt T arry

and (b, )nen be coefficients of the Taylor expansion of the left-hand side in (3.1):

1 1 t3 t5 t2 t4 t6
t—z(t+sinht)(cosht—1) (2t+ +5+- )( -|- + = )

31 o] 6!
/2 11N, (2 11 11\,
—t+(+g5) P+ G tantag)tr
2 11 11\ ot
* <(2k+2)! TN TR O Y 2l>t e

Both expansions only contain odd powers. We compare their coefficients:

1
b =1=ay; b3:6:a3’
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and, for k > 2,
ot = o bt e ey L L
2T 2k 4 2)! k-1 4 " (2k+1)! 2!

11 11
= |

Qk—Didl T ks 2

_LfkEE+D) ) 1
~2 6 2k + 1)
2
 ug.
7 k1) ek

As a consequence a,, < b, for every n € N, and therefore (3.1) holds, as it was to
be proved.

A picture of the function ((y/cp)+/c for different values of p > 0 is shown in
Figure 1 below, where condition (1.8) with the threshold ¢y is graphically exhibited
on the track p = % for different values of <.

{(c; p)c/?

p=1/8 e
2 F

0 5 10 15 20 25 30 35 40 cl?

17 11
002(5;5):0 cé(E;ZO) =20

FIGURE 1. The function ((y/cp)+\/c
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