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be given by (−A)σG0, σ ∈ (0, 1), where the map G0 : I×B −→ γ(H,E) is bounded
and continuous with respect the state variable. Further, it is also assumed in [8]
that the operator G is independent of the control variable. The technique used by
Brzeźniak and Serrano [8] to prove existence of optimal relaxed controls is based
on an extension of Skorohod representation theorem where the probability space is
not fixed a priori. In [4,5] we considered relaxed control problems in Hilbert space
setting under somewhat similar assumptions requiring the nonlinear drift F to be
dissipative admitting polynomial growth and A to be the generator of an analytic
semigroup. But only additive noise is admitted.

Here in this paper we assume that A is the infinitesimal generator of an analytic
semigroup and that both the drift and the diffusion operators F and G are Lipschitz
in the state variable from E to E−θ1 and E−θ2 , θ1, θ2 ∈ (0, 1), respectively. This
implies that both F and G are unbounded nonlinear operators on the state space
E. But both contain control variables unlike in [9]. Our approach is different. We
introduce a metric topology on the space of relaxed controls adapted to a current
of subsigma algebras of the parent sigma algebra F , and then prove continuity of
the control to solution map. Using this result we prove the existence of optimal
relaxed controls for Bolza problem. Further on, we prove weak compactness of the
reachable set of measures induced by the mild solutions. Using the reachable set we
formulate several interesting control problems involving the induced measures, and
present several results on existence of optimal relaxed controls for such problems.
Such problems are not considered in [9]. Thus there are two fundamental differ-
ences between our paper and the paper of Brzeźniak-Serrano [9]. We do not impose
dissipativity condition on the drift but we demand Lipschitz property for both drift
and diffusion. However, we believe the Lipschitz assumption can be relaxed to local
Lipschitz property using stopping time arguments. In [9], the authors assume the
diffusion to be free of control while we assume that both the drift and diffusion
operators are explicitly control dependent. Another interesting difference is that
Brzeźniak-Serrano paper uses weak formulation based on generalized Skorohod rep-
resentation, and in contrast, we use strong formulation. Thus the results of [9] and
this paper are complementary. To admit non-Lipschitz, and non-dissipative vector
fields one is required to extend the notion of mild solutions to relaxed solutions or
measure valued solutions as seen in [3, 5].

The rest of the paper is organized as follows. In section 2, we state some well-
known facts on γ-Radonifying operators, the class of UMD Banach spaces, and the
notions of type and cotype of Banach spaces. Further, we discuss the question of
integrability of Banach space valued (operator valued) stochastic processes with
respect to cylindrical Brownian motion. In section 3, we introduce stochastic dif-
ferential equations on Banach spaces and present some special spaces in which the
solutions are expected to reside. In section 4, we present the basic assumptions
on the operators describing the stochastic system and consider the question of ex-
istence and uniqueness of mild solutions after presenting some basic properties of
γ-Radonifying operators and stochastic convolutions. In section 5, we consider con-
trol problems and introduce a metric topology on the space of relaxed controls. We
prove continuity of the control to solution map with respect to the metric topology
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on the set of admissible controls and the norm topology on the path space of solu-
tions. Then we prove the existence of optimal relaxed controls for Meyer’s problem.
Further, in section 6, we present some compactness properties of induced measures.
In particular, we prove weak compactness of the reachable set of measures and then
consider several interesting control problems involving objective functionals which
are suitable functions of induced measures and measure valued functions. The au-
thor is not aware of any paper dealing with such problems in the context of SDE
on Banach spaces.

2. UMD spaces and γ-radonifying operators

For study of stochastic differential equations on Banach spaces we need some
basic concepts and definitions not encountered in the study of stochastic differen-
tial equations on Hilbert spaces. These are UMD-Banach spaces, γ-Radonifying
operators and type and co-type of Banach spaces. We present these materials here
briefly. For details the reader is referred to the literature [7, 10,11,13,16,17].

Let H be a real separable Hilbert space and E a real Banach space and {γn}
a sequence of mutually independent, centered, zero mean, standard Gaussian ran-
dom variables defined on the probability space (Ω,F , P ). Let {hn} be a complete
orthonormal basis of H and let F(H,E) denote the class of (linear) finite rank oper-

ators from H to E. An element L ∈ F(H,E) has the representation L ≡
∑k

i hi⊗ ei
with Lh ≡

∑k
i=1(h, hi)ei where {ei} ∈ E is an arbitrary sequence from the Banach

space E and k is any finite positive integer. Let F(H,E) be given the norm topology

∥ L ∥γ(H,E)≡
(
E ∥

k∑
i=1

γiLhi ∥2E
)1/2

≡
(
E ∥

k∑
i=1

γi ei ∥2E
)1/2

.

Completion of F(H,E) with respect to this norm topology is a Banach space which
is denoted by γ(H,E) and it is called the space of γ-Radonifying operators. Since
finite rank operators F(H,E) are compact, and the γ-Radonifying operators are
given by the limits of finite rank operators with respect to the above norm topology,
γ-Radonifying operators are also compact. If E is also a Hilbert space, the space
γ(H,E) coincides with the space of Hilbert-Schmidt operators denoted by L2(H,E)
and the Hilbert-Schmidt norm equals the γ-Radonifying norm. In other words, when
both H and E are Hilbert spaces, the space γ(H,E) is isometrically isomorphic to
L2(H,E) and this property is symbolized by the expression γ(H,E) ∼= L2(H,E).

Let E be any real Banach space and let FON(H) denote the class of all finite
subsets of any system of complete orthonormal basis of the Hilbert space H. It is
known, Neerven [17] and Brzezńiak [7, 11], that for L ∈ γ(H,E)

∥ L ∥2γ(H,E)= sup
h∈FON(H)

E ∥
∑

γiLhi ∥2E ,

where the supremum is taken over all finite orthonormal systems in the Hilbert
space H. In view of this, the class of γ-Radonifying operators is formally defined
as follows.
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Definition 2.1 (γ-Radonifying Operators)). Let E be a Banach space and H a
separable Hilbert space. A bounded linear operator L ∈ L(H,E) is said to be a
γ-Radonifying operator if there exists a constant CL > 0 such that

E ∥
∑

γnLhn ∥2E ≤ CL(2.1)

for every complete orthonormal system {hn} ofH. In other words, the sum converges
in L2(Ω, E) independently of the choice of the orthonormal system.

Another definition of γ-Radonifying operators is more intuitive. Let γ denote
the cylindrical Wiener measure on the Hilbert space H, and E a separable Banach
space. An operator L ∈ L(H,E) is said to be γ-Radonifying if

∥ L ∥γ(H,E)≡
(∫

H
∥ Lh ∥2E dγ(h)

)1/2

=

(∫
E
∥ z ∥2E dµ(z)

)1/2

< ∞,

where µ ≡ γoL−1 is a Borel measure defined on the Borel algebra B(E) of subsets
of the Banach space E. It is interesting to mention that any L ∈ γ(H,E) maps the
cylindrical Wiener measure γ on the Hilbert space H to a Radon measure µ defined
on B(E). This means that the γ-Radonifying operators are sufficiently regular or
smoothing. An excellent illustration of γ-Radonifying operators, based on special
pairs of Hilbert and Banach spaces (H,E), in terms of integral operators in classical
Banach spaces Lp, 1 < p < ∞, can be found in Brzeźniak in [11].

Definition 2.2 (UMD Space). A Banach space E is called an UMD-space (Un-
conditional Martingale differences) if for each 1 < p < ∞ and every E valued Lp

martingale difference sequence {di}, there exists a constant α > 0 such that for any
ε ∈ {−1, 1}n the following inequality holds

E ∥
n∑

i=1

εidi ∥pE≤ αp E ∥
n∑

i=1

di ∥pE(2.2)

for every n ∈ N.

It is known that the UMD property is independent of p ∈ (1,∞). If E is a Hilbert
space, it is easy to verify that α = 1. It is also known that, for all p ∈ (1,∞), all
Lp spaces (over sigma finite measure spaces) are UMD spaces and clearly they are
also reflexive Banach spaces. In general UMD spaces are reflexive Banach spaces
but the converse is false. For details on UMD spaces see [7, 9–11,13,16,17].

Definition 2.3 (Type and Co-type [Tzafriri, 18]). A Banach space E is said to be
of type p ∈ [1, 2] if, and only if, there exists a constant C > 0 such that for any
n ∈ N and for any sequence {ei}ni=1 ∈ E and any symmetric i.i.d random variables
{ζi} with values {−1, 1} the following inequality holds

(T1) :

(
E ∥

n∑
i=1

ζiei ∥2E
)1/2

≤ C

( n∑
i=1

∥ ei ∥pE

)1/p

.

The smallest constant C for which the above inequality holds is called the type
p-constant of E and denoted by Cp(E).
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A Banach E is said to have co-type p ∈ [2,∞) if the reverse inequality holds,

that is, there exists a constant C̃ such that

(T2) :

( n∑
i=1

∥ ei ∥pE

)1/p

≤ C̃

(
E ∥

n∑
i=1

ζiei ∥2E
)1/2

.

It is known that all normed spaces have type 1 and co-type ∞, and that the
type for Banach spaces always lies in the interval 1 ≤ p ≤ 2 and co-type lies in the
interval 2 ≤ p < ∞. All Hilbert spaces have type 2. The type and also co-type is a
kind of measure of disparity or distance of a Banach space with respect to Hilbert
space. For Hilbert spaces the parallelogram identity,

∥ x+ y ∥2 + ∥ x− y ∥2= 2
(
∥ x ∥2 + ∥ y ∥2

)
,

holds, and in fact this distinguishes Hilbert spaces from general Banach spaces. The
inequality (T1) plays somewhat similar role for Banach spaces as the parallelogram
identity does for Hilbert spaces. For type 2 Banach space E, compare (T1) with the
above parallelogram identity. If a Banach space has type 2 and co-type 2 then the
inequality turns into an equality with C = 2 and in this case E must be isomorphic
to a Hilbert space. Thus Hilbert space is at the center with type p Banach spaces
sitting on the left and co-type p Banach spaces sitting on the right. It is known
that the Lp spaces, for 1 ≤ p ≤ 2, have type p and co-type 2; while the spaces
Lp, 2 ≤ p < ∞, have co-type p and type 2. It is known that if a Banach space X
has type p then its dual X∗ has co-type q for 1/p+ 1/q = 1. For more on type and
co-type of Banach spaces see Tzafriri [19].

Stochastic Integrability: One crucial question that arises in the study of stochas-
tic differential equations on Banach spaces is the question of integrability of Banach
space valued random processes with respect to Wiener process. Here we present a
brief outline of some crucial points. Let (Ω,F ,Ft≥0, P ) denote a complete filtered
probability space equipped with the filtration Ft, t ≥ 0, which is right continuous
having left limits. Consider the stochastic integral,

z ≡
∫ T

0
Φ(t)dWH ,(2.3)

where Φ is an Ft-adapted operator valued process with values in L(H,E), and WH

is the H-cylindrical Brownian motion defined on the above probability space. It is
well known that if both H and E are Hilbert spaces, the integral (2.3) is well defined
as an Itô integral provided Φ is an Ft adapted random process taking values in the
space of Hilbert-Schmidt operators, that is, Φ ∈ La

2(I×Ω,L2(H,E)) where L2(H,E)
denotes the space of Hilbert-Schmidt operators from H to E. The superscript “a”
indicates that the elements of this class are Ft-adapted. Under these conditions
z ∈ L2(Ω, E) and

E ∥ z ∥2E= E

∫ T

0
Tr(Φ∗(t)Φ(t))dt = E

∫ T

0
∥ Φ(t) ∥2L2(H,E) dt.

Under the same conditions, the process {ξ(t), t ∈ I}, given by

ξ(t) ≡
∫ t

0
Φ(s)dWH(s), t ∈ I,



6 N. U. AHMED

is a well defined E valued stochastic process having continuous modification yielding
ξ ∈ L2(Ω, C(I, E)) satisfying the well known Doob’s martingale inequality,

E
{
sup
t∈I

∥ ξ(t) ∥pE
}
≤ (p/p− 1)p E ∥ ξ(T ) ∥pE ,

for all p ∈ (1,∞).

In contrast, in the case of Banach spaces, the stochastic integral is well defined if
E is a UMD space and the operator valued Ft-adapted process Φ is γ-Radonifying,
that is, Φ ∈ γ(L2(I,H), E) P -a.s. The question, why we need UMD spaces and
γ-Radonifying operators for stochastic integration in Banach spaces, can be clearly
understood from the pioneering work of Neerven, Veraar and Weis [16, 17]. Here
we present only an intuitive understanding of the subject by writing the integral
(2.3) for step functions Φ. Consider the interval I ≡ [0, T ] and, for each n ∈ N , the
partition

Πn ≡ {∆n
j ≡ (tj−1, tj ] = ((j − 1)T/n, jT/n], j = 1, 2, · · · , n}

of I into disjoint intervals {∆n
j , j = 1, 2, · · · , n} giving I =

∪n
j=1∆

n
j with the under-

standing that t0 = 0. Letting d denote the diameter of the partition Πn, it is clear
that d(Πn) → 0 as n → ∞. Let Φ(·) be a step function or simple process with values
in L(H,E) P -a.s and let Fj−1 ≡ Ftj−1 ⊂ F denote the subsigma algebra correspond-
ing to the time index tj−1 ≡ (j − 1)T/n, j = 1, 2, · · ·n, with Φ(t) = Φj−1, t ∈ ∆n

j ,

with Φj−1 ∈ L(H,E) being Fj−1 measurable. Let us define the random element
(variable) zn as given by

zn ≡
n∑

j=1

Φj−1[WH(jT/n)−WH((j − 1)T/n))].(2.4)

Since H is separable, it has a complete orthonormal basis {hk} and we can define
a sequence of standard and mutually independent Brownian motions as {βk(t) ≡
(WH(t), hk), t ≥ 0} . For each k ∈ N, define the sequence

γk(j − 1) ≡ (
√

(n/T ))[βk(jT/n)− βk((j − 1)T/n)], j = 1, 2, · · · , n; k ≥ 1.

Clearly, for each fixed j ∈ {1, 2, · · · , n}, this is a sequence of independent Gaussian
random variables with mean zero and variance one. In fact, for each j ∈ {1, 2, · · ·n},
the sequence {γk(j − 1), k ∈ N} is a martingale difference sequence. Thus the
expression (2.4) can be rewritten as

zn ≡
n∑

j=1

∞∑
k=1

γk(j − 1)Φj−1hk ≡
n∑

j=1

dj ,(2.5)

where for each j ∈ {1, 2, · · · , n},

dj ≡
∞∑
k=1

γk(j − 1)Φj−1hk.(2.6)

For convergence of the series (2.5) in the Banach space E, first and foremost, it
is clearly necessary that, for each j ∈ [1, 2, · · · , n], the series (2.6) converges in
probability unconditionally in the Banach space E. Note that {dj} in the summa-
tion, zn ≡

∑n
j=1 dj , is a martingale difference sequence. We want this sequence
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to converge strongly in Lp(Ω, E) for some p ∈ [1,∞). This requires that the Ba-
nach space E be a UMD space and that, for each j, {Φj , j = 0, 1, · · · , n − 1}
be a γ-Radonifying operator belonging to Lp(Ω, γ(H,E)) for some 1 ≤ p < ∞.
This ensures that the sum on the right-hand side of equation (2.6) converges in
Lp(Ω, E) and hence dj ∈ Lp(Ω, E). Thus for each n ∈ N , zn is a well defined ran-
dom element belonging to Lp(Ω, E). Now assuming that Φ, as a random process,
belongs to Lp(Ω, γ(L2(I,H), E)), and that the class of simple processes is dense
in Lp(Ω, γ(L2(I,H), E)), one proves that the sequence zn converges strongly to an
element z in the Banach space Lp(Ω, E). This is the intuitive explanation of the
stochastic integral (2.3) with values in E.

It is easy to verify that the covariance operator of the random element z is given
by

< Qe∗, e∗ >E∗∗,E∗= E

∫
I
< Φ(t)Φ∗(t)e∗, e∗ >E,E∗ dt,

for e∗ ∈ E∗. The random element z determines a regular probability measure on
B(E) if, and only if, Q is nuclear belonging to the space of nuclear operators
L1(E

∗, E) ⊂ L1(E
∗, E∗∗).

Remark 2.4. Using the expression for the norm topology of the Banach space
γ(H,E), it is easy to verify that it is both a left and right ideal in the Banach
space of bounded linear operators endowed with the uniform operator topology.
In particular, for any pair of UMD spaces {E,F} and separable Hilbert space
H, and for any B ∈ L(E,F ), and L ∈ γ(H,E), we have BL ∈ γ(H,F ) and
∥ BL ∥γ(H,F )≤∥ B ∥L(E,F )∥ L ∥γ(H,E) . Similarly, for any separable Hilbert space
H, and C ∈ L(H,H), we have LC ∈ γ(H, E) and

∥ LC ∥γ(H,E)≤∥ C ∥L(H,H)∥ L ∥γ(H,E) .

As an application of the ideal property, let us consider the stochastic convolution,

y(t) ≡
∫ t

0
S(t− s)Φ(s)dWH(s), t ∈ I,

where S(t), t ≥ 0, is a general C0-semigroup Ahmed [1] on the Banach space E, and
Φ is an Ft-adapted stochastic process satisfying Φ ∈ La

2(Ω, L2(I, γ(H,E))) and E
is a UMD Type-2 Banach space. Then, it follows from the preceding discussion on
stochastic integration and ideal property that

E ∥ y(t) ∥2E≤ c(M)E

∫ t

0
∥ Φ(s) ∥2γ(H,E) ds < ∞, t ∈ I,

where c(M) is a positive constant dependent on M = sup{∥ S(t) ∥L(E), t ∈ I}. Thus
y ∈ Ba

0 (I, L2(Ω, E)), the space of Ft adapted E valued strongly measurable random
processes having uniformly bounded second moments. In contrast, if S(t), t ≥ 0,
is an analytic semigroup, the process y has better spatial regularity. As discussed
in the next section, its infinitesimal generator A has the property that −A has
fractional powers, and using these fractional powers one can construct scales of
Banach spaces Eη ↪→ E ↪→ E−η for any η ∈ [0, 1) with E as the pivot space. Let
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η, θ ∈ [0, 1) satisfying 0 ≤ η + θ < 1/2, and suppose Φ ∈ Ba
0 (I, L2(Ω, γ(H,E−θ))).

Recall that, for analytic semigroups, there exists a constant Mη,θ such that

∥ (−A)η+θS(t) ∥L(E)≤ Mη,θ/t
η+θ, t > 0.

For proof see Ahmed [1]. Again, let E be a UMD-type-2 Banach space. Then using
the above properties and Fubini’s theorem one can easily verify that

E ∥ y(t) ∥2Eη
≡ E ∥ (−A)ηy(t) ∥2E

≤ Cη,θ

∫ t

0
(t− s)−2(η+θ)E ∥ Φ(s) ∥2γ(H,E−θ)

ds,

≤ Cη,θT
1−2(η+θ) ∥ Φ ∥2Ba

0 (I,L2(Ω,γ(H,E−θ)))
,

for all t ∈ [0, T ] where Cη,θ is a positive constant dependent on Mη,θ. This shows
that, if the semigroup is analytic we have y ∈ Ba

0 (I, L2(Ω, Eη)) possessing better
spatial regularity. Temporal regularity has been studied by Brzeźniak using the
well known DaPrato-Kwapien-Zabczyk factorization technique asserting that the
process y ∈ C(I, Eη) P -a.s. For details see Brzeźniak [7, Theorem 2.4].

3. The system model and special Banach spaces

The system without control is governed by a class of nonlinear stochastic differ-
ential equations on a suitable Banach space. It is given by

dx = Axdt+ F (t, x)dt+G(t, x)dWH , t ∈ I ≡ (0, T ], x(0) = x0,(3.1)

where A is the infinitesimal generator of a C0-semigroup [1] in a Banach space E, and
F and G are suitable Borel measurable maps to be clarified later and {WH(t), t ≥ 0}
is H-cylindrical Brownian motion on a probability space (Ω,F , P ).

Throughout the rest of the paper we assume that the operator A is the infinitesimal
generator of an analytic semigroup S(t), t ≥ 0, and without loss of generality we
may also assume that 0 ∈ ρ(A), the resolvent set of A, so that −A has fractional
powers [1]. Using the fractional powers one can introduce the scale of Banach spaces

Eη ↪→ E ↪→ E−η,

for 0 ≤ η < 1, where Eη ≡ {x ∈ E : (−A)ηx ∈ E}. The space Eη endowed with
the norm topology, ∥ x ∥Eη≡∥ (−A)ηx ∥E , is a Banach space. The space E−η is the
completion of E with respect to the norm topology ∥ x ∥E−η≡ ∥ (−A)−ηx ∥ .

For study of SDE on UMD spaces, Neerven et all [17,19] introduced several special
Banach spaces. Let (S,BS , µ) ≡ Sµ be a finite measure space. The space Lγ

2(Sµ, Eη)
is defined as

Lγ
2(Sµ, Eη) ≡ L2(Sµ, Eη) ∩ γ(L2(Sµ), Eη).

Endowed with the norm topology,

∥ Ψ ∥Lγ
2
≡ ∥ Ψ ∥L2(Sµ,Eη) + ∥ Ψ ∥γ(L2(Sµ),Eη),

the space Lγ
2(Sµ, Eη) is a Banach space. Note that the first one is the L2-norm

in the sense of Bochner and the second one is the γ-radonifying norm. Potentially
there are several Banach spaces on which one can consider the question of existence
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of solutions of the evolution equation (3.1). We present a brief description of these
spaces.

For α ∈ (0, 1/2), η ∈ [0, 1), and 1 < p < ∞, let us denote the space of all
Ft≥0-adapted Eη valued random processes defined on the interval I ≡ [0, T ] by
V p
α,∞(I × Ω;Eη) which is endowed with the following norm topology,

∥ ϕ ∥V p
α,∞≡

(
E ∥ ϕ ∥pC(I,Eη)

)1/p

(3.2)

+ sup
t∈I

(
E ∥ (t− ·)−αχ[0,t](·)ϕ(·) ∥

p
γ(L2[0,t],Eη)

)1/p

,

where χ[0,t](·) denotes the indicator function of the set [0, t]. Closely related to this

space, there are two other spaces V p
α,p(I × Ω, Eη) and Ṽ p

α,∞(I × Ω;Eη) where the
first one is given the norm topology

∥ ϕ ∥V p
α,p

≡
(
E ∥ ϕ ∥pC(I,Eη)

)1/p

(3.3)

+

(∫
I
E ∥ (t− ·)−αχ[0,t](·)ϕ(·) ∥

p
γ(L2[0,t],Eη)

dt

)1/p

.

These are the two classes of path-wise continuous Ft-adapted processes. The last
one is given the following norm topology

∥ ϕ ∥Ṽ p
α,∞

≡
(
E ∥ ϕ ∥pB0(I,Eη)

)1/p

(3.4)

+ sup
t∈I

(
E ∥ (t− ·)−αχ[0,t](·)ϕ(·) ∥

p
γ(L2[0,t],Eη)

)1/p

where B0(I, Eη) denotes the Banach space of Eη-valued path-wise bounded mea-
surable functions furnished with the standard sup norm topology. Clearly, V p

α,∞
is a closed subspace of Ṽ p

α,∞. It is known that, with respect to the above norm
topologies, these are Banach spaces. It was shown in Neerven, Veraar and Weis [17]
that under certain assumptions one can prove the existence and uniqueness of mild
solutions of the evolution equation (3.1) in all of the three spaces introduced above.
The proof is largely similar.

Throughout the rest of the paper we use the Banach space V p
α,∞ endowed with the

norm given by the expression (3.2) and, for convenience of notation, we denote it by
V. For convenience of presentation, we shall also use the notation V ([s, t]× Ω, Eη),
and when Eη is understood simply V[s,t], for the restriction of the elements of the

Banach space V p
α,∞ ≡ V to the interval [s, t], 0 ≤ s < t ≤ T.

4. Existence and uniqueness of solutions

Now we introduce the following basic assumptions used for study of existence of
solutions of the stochastic differential equation (3.1) and their regularity properties.

Basic Assumptions:
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(A1) The Banach space E is a UMD space of type τ ∈ [1, 2) and A is the infini-
tesimal generator of an analytic semigroup [1] S(t), t ≥ 0, on E. For details
on semigroup theory see Ahmed [1].

(A2) There exist η ∈ [0, 1), θ1 ∈ [0, 1) such that F : I ×Ω×Eη −→ E−θ1 is Borel
measurable and there exist constants C1 ≥ 0, L1 > 0 such that
(1) ∥ F (t, ω, x) ∥E−θ1

≤ C1(1+ ∥ x ∥Eη), ∀ ω ∈ Ω

(2) ∥ F (t, ω, x)− F (t, ω, y) ∥E−θ1
≤ L1 ∥ x− y ∥Eη , ∀ ω ∈ Ω.

Further, for each x ∈ Eη, (t, ω) −→ F (t, ω, x) is an Ft-adapted E−θ1 valued
strongly measurable function.

(A3) There exists θ2 ∈ [0, 1) such that G : I × Ω × Eη −→ γ(H,E−θ2) ⊂
L(H,E−θ2) is H-strongly measurable and there exist constants C2 ≥ 0, L2 >
0 such that for every x, y ∈ Lγ

2(Iµ, Eη) and for all ω ∈ Ω
(1) ∥ G(·, ω, x) ∥γ(L2(Iµ,H),E−θ2

) ≤ C2

(
1+ ∥ x ∥Lγ

2 (Iµ,Eη)

)
(2) ∥ G(·, ω, x)−G(·, ω, y) ∥γ(L2(Iµ,H),E−θ2

) ≤ L2 (∥ x− y ∥Lγ
2 (Iµ,Eη)).

Further, for each x ∈ Eη, (t, ω) −→ G(t, ω, x) is an Ft-adapted γ(H,E−θ2)
valued strongly measurable function defined on I × Ω.

Before we consider the question of existence, uniqueness and other regularity
properties of mild solutions of SDE (3.1), we need some preparatory materials as
presented below. As stated earlier, we use the Banach space V ≡ V p

α,∞(I × Ω, Eη).

Definition 4.1. An Ft-adapted process x, defined on the interval I and taking
values in the Banach space Eη, is said to be a mild solution of the evolution equation
(3.1) if it satisfies the following conditions:

(i) x ∈ V ≡ V p
α,∞(I × Ω, Eη) and

(ii) x satisfies the following integral equation,

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds(4.1)

+

∫ t

0
S(t− s)G(s, x(s))dWH(s), t ∈ I.

To consider the question of existence of solutions of the above integral equation
we introduce the family of operators, {Υr, r ∈ I} on V, where Υr is given by the
following integral operator,

(Υrx)(t) ≡ S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds(4.2)

+

∫ t

0
S(t− s)G(s, x(s))dWH(s), t ∈ [0, r],

for x ∈ V. It is clear that the question of existence of a solution of the integral
equation (4.1) is equivalent to the question of existence of a fixed point of the
operator ΥT . We prove that ΥT has a unique fixed point in V.

We quote two fundamental estimates for deterministic and stochastic convolutions
due to Neerven, Veraar and Weis [17, 19]. These are used in the study of existence
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and regularity properties of solutions of the integral equation (4.1). For proof see [17,
Lemma 4.2, p17; Proposition 6.1, p26]

Deterministic Convolution:

Lemma 4.2. Let α ∈ (0, 1/2), η ≥ 0, θ1 ≥ 0, p > 2 satisfy η + θ1 < 1. Let A be the
infinitesimal generator of an analytic semigroup {S(t), t ≥ 0} on a UMD Banach
space E of Type τ ∈ [1, 2], and let Ψ : I×Ω −→ E−θ1 be measurable and Ft-adapted
and belong to La

p(Ω, B0(I, E−θ1)). Then there exists a constant c1 > 0 such that the
process z1 ≡ {z1(t), t ∈ I}, given by

z1(t) ≡
∫ t

0
S(t− s)Ψ(s)ds, t ∈ I,

satisfies the estimate ∥ z1 ∥V ≤ c1T
(1/2−α)∧(1−η−θ1) ∥ Ψ ∥Lp(Ω,B0(I,E−θ1

)) .

Proof. See expression 6.5 [17, Lemma 6.1, p27]. □

Stochastic Convolution:

Lemma 4.3. Let α ∈ (0, 1/2), λ ≥ 0, η ≥ 0, θ2 ≥ 0, p > 2 satisfy λ+η+θ2 < α−1/p.
Let A be the infinitesimal generator of an analytic semigroup {S(t), t ≥ 0} on a
UMD Banach space E of Type τ ∈ [1, 2] and let Φ : I × Ω −→ L(H,E−θ2) be
H−strongly measurable and Ft-adapted satisfying

sup
t∈I

{
E ∥ χ[0,t](·)(t− ·)−αΦ(·) ∥pγ(L2(0,t;H),E−θ2

)

}
< ∞.

Then there exist constants ε > 0 (dependent on {α, η, θ2}), and c2 > 0 such that the
process z2 ≡ {z2(t), t ∈ I}, given by the following stochastic convolution

z2(t) ≡
∫ t

0
S(t− s)Φ(s)dW (s), t ∈ I,

satisfies the following estimate

∥ z2 ∥V ≤ c2T
ε∧(1/2−η−θ2)

(
sup
t∈I

E ∥ χ[0,t](·)(t− ·)−αΦ(·) ∥pγ(L2(0,t;H),E−θ2
)

)1/p

.

Proof. See expression 6.8 [17, Lemma 6.1, p28]. □

Next we present some important properties of the family of integral operators
{Υr, r ∈ I} defined by the expression (4.2). In particular, we present some impor-
tant estimates which are used to prove existence of solutions of the integral equation
(4.1). These estimates are derived from Lemmas 4.2 and 4.3.

Theorem 4.4. Let E be an UMD space with type τ ∈ [1, 2) and suppose the as-
sumptions (A1)-(A3) hold and further the parameters {τ, p, α, η, θ1, θ2} satisfy

(i) 0 ≤ η + θ1 < 3/2− 1/τ
(ii) 0 ≤ η + θ2 < 1/2
(iii) p > 2, α ∈ (0, 1/2) such that η + θ2 < α− 1/p.
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Then, for every x0 ∈ Lp(Ω,F0, Eη), the operator ΥT is well defined on the space V.
Further, there exist constants C3 > 0 and Θr > 0 for r ∈ (0, T ], with the property:
limr↓0Θr = 0, such that for all ϕ,ϕ1, ϕ2 ∈ V[0,r], restriction of V to the interval
[0, r], we have

(S1) ∥ Υr(ϕ) ∥V[0,r]
≤ C3(1+ ∥ x0 ∥Lp(Ω,F0,Eη)) + Θr ∥ ϕ ∥V[0,r]

(S2) ∥ Υr(ϕ1)−Υr(ϕ2) ∥V[0,r]
≤ Θr ∥ ϕ1 − ϕ2 ∥V[0,r]

.

Proof. See Neerven-Veraar-Weis [17, Proposition 6.1, p26]. □

We note that the map r −→ Θr used above is strictly a function of the measure
of length of any interval [a, a + r] for all a, r ≥ 0 such that a, a + r ∈ I. In other
words, Θ is actually a nonnegative measure absolutely continuous with respect to
the Lebesgue measure.

Using the above estimates one can prove the following result on existence and
uniqueness of solution of the integral equation (4.1). The existence result given be-
low is originally due to Neerven-Veraar-Weis [17]. For some degree of completeness
we present a brief outline of its proof.

Theorem 4.5. Consider the integral equation (4.1) and suppose the assumptions of
Lemma 4.2, Lemma 4.3 and Lemma 4.4 hold. Then, for every x0 ∈ Lp(Ω,F0, Eη), p >
2, the integral equation has a unique solution x ∈ V ≡ V p

α,∞(I × Ω, Eη) and there

exists a constant Ĉ such that

∥ x ∥V ≤ Ĉ
(
1+ ∥ x0 ∥Lp(Ω,F0,Eη)

)
.(4.3)

Proof. We present a brief outline of the proof. It is based on classical Banach fixed
point theorem. For any r ∈ I, let V[0,r] ≡ V p

α,∞([0, r]×Ω, Eη) denote the restriction
of V to the interval [0, r] as stated above. It follows from Lemma 4.4, in particular
(S1) and (S2), that for any r ∈ I, Υr (the restriction of the operator ΥT to V[0,r])
maps V[0,r] into itself and it follows from the property of Θr that, for r sufficiently
small, Θr ≤ 1/2. Thus for such a choice of r, the operator Υr is a contraction on
the Banach space V[0,r] and therefore it has a unique fixed point in it. Hence the
integral equation (4.1) has a unique solution over the interval [0, r]. Since x ∈ V[0,r],
we have x ∈ C([0, r], Eη) P − a.s, and hence x(r) is well defined. Thus, starting
with x(r) as the initial state, and repeating the above procedure, one can verify
that the operator ΥT restricted to V[r,2r] has a unique fixed point. Since r > 0,
and T (> 0) is finite, continuing this process for a finite number of times, one can
cover the entire interval I ≡ [0, T ] and conclude that ΥT has a unique fixed point
in V and hence the integral equation has a unique solution in V. This completes the
outline of our proof. □

5. Optimal control

In this section we consider control of the following stochastic system

dx = Axdt+ F̂ (t, x, ut)dt+ Ĝ(t, x, ut)dWH(t), t ∈ I,(5.1)
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where u denotes the control and F̂ and Ĝ are suitable functions to be defined shortly.
The cost functional is given by

J(u) ≡ E

{∫ T

0

ˆ̀(t, x(t), ut)dt+Φ(x(T ))

}
.(5.2)

The objective is to find a control policy u ∈ Uad that minimizes the functional (5.2).
Before we can do so we must introduce the set of admissible controls Uad.

We consider relaxed controls. Let (Ω,F ,Ft≥0, P ) be a complete separable filtered
probability space. Let U be a compact Polish space and M1(U) the space of regular
probability measures on B(U), the class of Borel subsets of the set U. Let Gt≥0 be
a nondecreasing family of subsigma algebras of the sigma algebra Ft≥0 and let P
denote the Gt-predictable subsigma algebra of the product sigma algebra B(I)×F
and let ν denote the restriction of the product measure dt × dP on P and intro-
duce the Lebesgue-Bochner space L1(ν, C(U)) as ν measurable Bochner integrable
processes with values in C(U). Since the dual of C(U) is given by the space of reg-
ular Borel measures MB(U) and the later space does not satisfy Radon-Nikodym
property (RNP ), the dual of L1(ν, C(U)) is not given by L∞(ν,MB(U)). However,
it follows from the “theory of Lifting” [16, Theorem 7, p94] that the dual is given
by Lw

∞(ν,MB(U)) which consists of weak star P-measurable essentially bounded
random processes with values in MB(U). Recall that M1(U) ⊂ MB(U) denotes the
space of regular probability measures on B(U). Let Mw

∞(ν,M1(U)) denote the class
of weak-star ν-measurable processes with values in the space of probability mea-
suresM1(U). For admissible controls one may like to choose the set Mw

∞(ν,M1(U)).
Clearly this is a closed bounded convex subset of Lw

∞(ν,MB(U)). Thus by Alaoglu’s
theorem this set is weak star compact. But this vague topology is rather too weak.
We introduce a slightly stronger topology. Since U is a compact Polish space,
C(U) is a separable Banach space, and since the probability space is assumed to
be separable, the Banach space L1(ν, C(U)) is separable. Therefore, it follows from
Dunford-Schwartz [14, Theorem V.5.1, p426] that the set Mw

∞(ν,M1(U)) is metriz-
able. Let {ϕi} be a set dense in L1(ν, C(U)). For u, v ∈ Mw

∞(ν,M1(U)) define the
metric

d(u, v) ≡
∞∑
i=1

(1/2i)

∫
I×Ω

min{1, |ϕi(u)− ϕi(v)|} dν,(5.3)

where ϕ(u) ≡ ϕ(u)(t, ω) ≡
∫
U ϕ(t, ω, ξ)ut,ω(dξ), (t, ω) ∈ I × Ω. This is a complete

metric space. A sequence {un} ∈ Uad, converging in the metric topology d to
uo, is equivalent to convergence of ϕ(un) to ϕ(uo) in ν-measure on I × Ω for any
ϕ ∈ L1(ν, C(U)). That is, for each ϕ ∈ L1(ν, C(U)),

I × Ω ∋ (t, ω) −→
∫
U
ϕ(t, ω, ξ)[unt,ω(dξ)− uot,ω(dξ)]

≡ ϕ(un)− ϕ(uo) = ϕ(un − uo) −→ 0

in ν measure on I × Ω as n → ∞. We denote this metric space by (M,d) and note
that it is a complete metric space. For the set of admissible controls we take any
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compact (closed and totally bounded) subset of the metric space (M,d), and denote
it by Uad.

As stated earlier, for control problems (5.1) and (5.2) we have chosen the Banach
space V ≡ V p

α,∞(I × Ω, Eη). In this case we need slight modification of the basic
assumptions (A1), (A2), (A3). They are replaced by (B1), (B2), (B3) as follows:

(B1) = (A1).
(B2) There exist η ∈ [0, 1), θ1 ∈ [0, 1) such that F : I ×Ω×Eη ×U −→ E−θ1 is a

Borel measurable Ft≥0 adapted map, continuous in the last two arguments,
and there exist constants C1 ≥ 0, L1 > 0 such that
(1) ∥ F (t, ω, x, ξ) ∥E−θ1

≤ C1(1+ ∥ x ∥Eη), ∀ ω ∈ Ω, uniformly with respect
to ξ ∈ U ,

(2) ∥ F (t, ω, x, ξ)−F (t, ω, y, ξ) ∥E−θ1
≤ L1 ∥ x−y ∥Eη , ∀ ω ∈ Ω, uniformly

with respect to ξ ∈ U.
Further, for each x ∈ Eη, and ξ ∈ U, (t, ω) −→ F (t, ω, x, ξ) is an Ft-adapted
E−θ1 valued strongly measurable function.

(B3) There exists θ2 ∈ [0, 1) such that G : I × Ω × Eη × U −→ γ(H,E−θ2) ⊂
L(H,E−θ2) is H-strongly Borel measurable Ft≥0 adapted map, continuous
in the last two arguments, and there exist constants C2 ≥ 0, L2 > 0 such
that, for every x, y ∈ Lγ

2(Iµ, Eη),
(1) ∥ G(·, ω, x, ξ) ∥γ(L2(Iµ,H),E−θ2

) ≤ C2

(
1+ ∥ x ∥Lγ

2 (Iµ,Eη)

)
, ∀ ω ∈ Ω,

uniformly in ξ ∈ U,
(2) ∥ G(·, ω, x, ξ) − G(·, ω, y, ξ) ∥γ(L2(Iµ,H),E−θ2

) ≤ L2

(
∥ x − y ∥Lγ

2 (Iµ,Eη)

)
,

∀ ω ∈ Ω, uniformly in ξ ∈ U.
Further, for each x ∈ Eη, ξ ∈ U, (t, ω) −→ G(t, ω, x, ξ) is an Ft-adapted
γ(H,E−θ2) valued H-strongly measurable function.

The system is now given by the following controlled stochastic differential equa-
tion,

dx = Axdt+ F̂ (t, x, ut)dt+ Ĝ(t, x, ut)dWH , t ∈ I ≡ [0, T ],(5.4)

x(0) = x0,

where for each u ∈ Uad, ˆ̀(t, x, ut) ≡
∫
U `(t, x, ξ)ut(dξ), and

F̂ (t, x, ut) ≡
∫
U
F (t, x, ξ)ut(dξ), Ĝ(t, x, ut) ≡

∫
U
G(t, x, ξ)ut(dξ).(5.5)

Recall that Uad consists of relaxed controls convexifying nonconvex control problems.
For example, U may be nonconvex; it may consist of a finite or a countable set of
discrete points in a Polish space etc. In the absence of convexity optimal control
may not exist in the class of regular controls (P-measurable random processes with
values in U). However relaxed controls may exist. We prove in this section that
optimal controls exist in the class of relaxed controls.

Corollary 5.1. Suppose the assumptions (B1)-(B3) hold. Then, for each x0 ∈
Lp(Ω,F0, P ), ∞ > p > 2, and u ∈ Uad, the control system (5.4) has a unique mild
solution x ≡ x(u)(·) ∈ V . Further, the solution set S ≡ {x(u), u ∈ Uad} is a bounded
subset of V.
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Proof. Under the assumptions (B1)-(B3), for each given control u ∈ Uad the as-
sumptions (A1)-(A3) hold. Thus the statement on existence of solution follows as
a corollary of Theorem 4.5. It remains to prove that the solution set S is bounded.
Note that U is a compact Polish space and both F and G are Lipschitz with respect
to the state variable x ∈ Eη uniformly with respect to ξ ∈ U, and posses linear

growth property in the state variable. Thus both F̂ and Ĝ are also Lipschitz in the
state variable uniformly with respect to the controls u ∈ Uad. This is what is used to
prove the bound. Let u ∈ Uad and let x(u) ∈ V denote the corresponding solution.
Then considering the restriction of V to V [0, t] for t ∈ I ≡ [0, T ], it follows from
Lemma 4.4, in particular the inequality (S1), that for all u ∈ Uad, we have

∥ x(u) ∥V [0,t]≤ C3

[
1+ ∥ x0 ∥Lp(Ω,F0,Eη)

]
+Θt ∥ x(u) ∥V [0,t], t ∈ I,

where the constant C3 and the function Θ are independent of u ∈ Uad. It follows
from the property of the function t −→ Θt, as stated in Lemma 4.4, that there
exists a t1 ∈ (0, T ] such that Θt1 ≤ (1/2). Thus, for t = t1, it follows from the above
inequality that

∥ x(u) ∥V [0,t1]≤ 2C3

[
1+ ∥ x0 ∥Lp(Ω,F0,Eη)

]
, ∀u ∈ Uad.

Since x ∈ V implies x ∈ C(I, Eη) P − a.s, we conclude that x(u)(t1) is well defined
and belongs to Lp(Ω,Ft1 , Eη). Thus following similar steps we obtain the following
inequality

x(u) ∥V [t1,t]≤ C3

[
1+ ∥ x(u)(t1) ∥Lp(Ω,Ft1 ,Eη)

]
+ Θt−t1 ∥ x(u) ∥V [t1,t], t ∈ [t1, T ].

Again it follows from the property of the function Θ, that there exists t2 ∈ (t1, T ]
such that Θt2−t1 ≤ 1/2. Thus following similar steps we arrive at the following
inequality

∥ x(u) ∥V [t1,t2]≤ 2C3

[
1+ ∥ x(u)(t1) ∥Lp(Ω,Ft1 ,Eη)

]
.

Clearly, ∥ x(u)(t1) ∥Lp(Ω,Ft1 ,Eη)≤ ∥ x(u) ∥V[0,t1]
. Using this in the above inequality

we arrive at the following bound

∥ x(u) ∥V[t1,t2]
≤ 2C3 + (2C3)

2
[
1+ ∥ x0 ∥Lp(Ω,F0,Eη)], ∀u ∈ Uad.

Continuing this process for a finite number of times, say m, so that tm = T, we find
that

∥ x(u) ∥V[tm−1,tm]
≤

{
2C3 + (2C3)

2 + · · ·+ (2C3)
m−1

}
+(2C3)

m
[
1+ ∥ x0 ∥Lp(Ω,F0,Eη)], ∀u ∈ Uad.

From the above estimates it is clear that there exists a finite positive number b
dependent on the parameters {C3, T, ∥ x0 ∥Lp(Ω,F0,Eη)} such that

sup{∥ x(u) ∥V [0,T ], u ∈ Uad} ≤ b.

This completes the proof. □

For the proof of existence of optimal controls we need the continuity of the control
to solution map u → x(u). We prove this in the following theorem.
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Theorem 5.2. Consider the control system (5.4) with the admissible controls Uad

and suppose the assumptions of Corollary 5.1 hold. Then the control to solution
map u −→ x(u) is continuous with respect to the metric topology on Uad and the
norm topology on V.

Proof. Recall the Banach space V p
α,∞ with the norm given by the expression (3.2).

For convenience of presentation, as stated above, we denote this by simply V. Let
{xn, xo} ∈ V denote the solutions of the following integral equation,

x(t) = S(t)x0 +

∫ t

0
S(t− s)F̂ (s, x(s), us)ds

+

∫ t

0
S(t− s)Ĝ(s, x(s), us)dWH(s), t ∈ I,

corresponding to the controls {un, uo} ∈ Uad respectively. That is, {xn, xo} satisfy,
respectively, the following integral equations,

xn(t) = S(t)x0 +

∫ t

0
S(t− s)F̂ (s, xn(s), uns )ds(5.6)

+

∫ t

0
S(t− s)Ĝ(s, xn(s), uns )dWH(s), t ∈ I,

and

xo(t) = S(t)x0 +

∫ t

0
S(t− s)F̂ (s, xo(s), uos)ds(5.7)

+

∫ t

0
S(t− s)Ĝ(s, xo(s), uos)dWH(s), t ∈ I.

Subtracting the expression (5.7) from the expression (5.6) we obtain

xn(t)− xo(t) =

∫ t

0
S(t− s)[F̂ (s, xn(s), uns )− F̂ (s, xo(s), uos)]ds(5.8)

+

∫ t

0
S(t− s)[Ĝ(s, xn(s), uns )− Ĝ(s, xo(s), uos)]dWH(s), t ∈ I.

By suitably rearranging the terms appearing on the righthand side of the above
identity one can easily verify that

xn(t)− xo(t) = Z1(t) + Z2(t) + e1,n(t) + e2,n(t) ∀ t ∈ I,(5.9)

where, for all t ∈ I, the processes {Z1(t), Z2(t), e1,n(t), e2,n(t)} are given by

Z1(t) =

∫ t

0
S(t− s)

(
F̂ (s, xn(s), uns )− F̂ (s, xo(s), uns )

)
ds,(5.10)

Z2(t) ≡
∫ t

0
S(t− s)

(
Ĝ(s, xn(s), uns )− Ĝ(s, xo(s), uns )

)
dWH(s),(5.11)
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and

e1,n(t) ≡
∫ t

0
S(t− s)

(
F̂ (s, xo(s), uns )− F̂ (s, xo(s), uos)

)
ds,(5.12)

e2,n(t) ≡
∫ t

0
S(t− s)

(
Ĝ(s, xo(s), uns )− Ĝ(s, xo(s), uos)

)
dWH(s).(5.13)

We show that ∥ xn − xo ∥V −→ 0 as n → ∞. Consider Z1, and let δ ≡ min{1/2 −
α, 1− η− θ1} where 1− (η+ θ1) > (1/τ)− (1/2) and type τ ∈ [1, 2). Then using the
assumption (B2) and the estimate for the deterministic convolution (See Lemma
4.2) we obtain,

∥ Z1 ∥V ([0,t]×Ω,Eη)≤ (CL1t
δ) ∥ xn − xo ∥V ([0,t]×Ω,Eη), t ∈ I,(5.14)

for a constant C which may depend on M ≡ sup{∥ S(t) ∥L(E), t ∈ I}. Under
the assumption (B2), the estimate (5.14) holds uniformly with respect to the set
Uad. Next, consider Z2 and define β ≡ min{ε, 1/2 − η − θ2}, ε ∈ (0, 1). Using the
assumption (B3) and the estimate for the stochastic convolution (see Lemma 4.3),
we obtain the following estimate for all t ∈ I,

∥ Z2(·) ∥V ([0,t]×Ω,Eη)≤ (CL2t
β) ∥ xn(·)− xo(·) ∥V ([0,t]×Ω,Eη),(5.15)

for the same constant C as above. We carry out similar computations and estimates
for the processes {e1,n, e2,n}. Considering e1,n and using the assumption (B2) and
following similar steps one can verify that

∥ e1,n(·) ∥V ([0,t]×Ω,Eη) ≤ C1t
δ ∥

∫
U
F (·, xo(·), ξ)[un· d(ξ)− uo· (dξ)] ∥Lp(Ω,B0([0,t],E−θ1

))

= C1t
δ ∥ F̂ (·, xo(·), un)− F̂ (·, xo(·), uo· ∥Lp(Ω,B0([0,t],E−θ1

))(5.16)

= C1t
δ ∥ F̂ (·, xo(·), un· − uo· ∥Lp(Ω,B0([0,t],E−θ1

)),

where, for simplicity of notation, we have again used the abbreviation Ψ̂(ν) ≡∫
U Ψ(ξ)ν(dξ). We use this abbreviation throughout the rest of the paper without
further notice. Define the measure µt,α on B(0, t) as follows:

µt,α(J) ≡
∫ t

0
(t− s)−2αχJ(s)ds for anyJ ∈ B(0, t),

where χJ denotes the indicator function of the set J ∈ B(0, t). Considering e2,n and
using the assumption (B3) and following similar steps one can verify that

∥ e2,n(·) ∥V ([0,t]×Ω,Eη)(5.17)

≤ C2t
β ∥ Ĝ(·, xo(·), un· − uo· ) ∥Lp(Ω,γ(L2([0,t],µt,α,H),E−θ2

)) .

Defining

C5(t) ≡ C
(
L1t

δ + L2t
β
)
and C6(t) ≡ (C1t

δ + C2t
β), t ∈ I,
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and combining the above estimates, and using triangle inequality applied to the
expression (5.9), one can verify that

∥ xn(·)− xo(·) ∥V ([0,t]×Ω,Eη)≤ C5(t) ∥ xn(·)− xo(·) ∥V ([0,t]×Ω,Eη) +(5.18)

+C6(t)

{
∥ F̂ (·, xo(·), un − uo) ∥Lp(Ω,B0([0,t],E−θ1

))

+ ∥ Ĝ(·, xo(·), un· − uo· ) ∥Lp(Ω,γ(L2([0,t],µt,α,H),E−θ2
))

}
, ∀ t ∈ I.

Thus it follows from the definition of C5 ≡ C5(t) that we can choose a t1 ∈ I,
sufficiently small, so that C5(t1) ≤ 1/2. So for this choice, it follows from the
inequality (5.18) that

∥ xn(·)− xo(·) ∥V ([0,t1]×Ω,Eη)(5.19)

≤ 2C6(t1)

{
∥ F̂ (·, xo(·), un· − uo· ) ∥Lp(Ω,B0([0,t1],E−θ1

))

+ ∥ Ĝ(·, xo(·), un· − uo· ) ∥Lp(Ω,γ(L2([0,t1],µt1,α,H),E−θ2
))

}
.

Recall the expressions (5.5) and note that the controls are measure valued processes

and hence F̂ and Ĝ, which are integrals with respect to these measure valued pro-

cesses, are linear in these variables. Since un
d−→ uo (in the metric topology d), it

follows from the property of the metric topology and the continuity of the map F
in its third argument, that

F̂ (·, xo(·), un· − uo· ) −→ 0 in ν measure

and therefore there exists a subsequence, relabeled as the original sequence, such
that F̂ (s, xo(s), uns − uos) −→ 0 ν-a.e on I × Ω. Further, it follows from (B2) that

F̂ (·, xo(·), un· − uo· ) ∈ La
p(Ω, B0(I, E−θ1)) independently of n ∈ N, and hence it

follows from Lebesgue dominated convergence theorem that for every t1 ∈ I,

lim
n→∞

∥ F̂ (·, xo(·), un· − uo· ) ∥Lp(Ω,B0([0,t1],E−θ1
))= 0.(5.20)

Using the assumption (B3) and following similar argument one can verify that

lim
n→∞

∥ Ĝ(·, xo(·), un· − uo· ) ∥Lp(Ω,γ(L2([0,t1],µt1,α,H),E−θ2
))= 0(5.21)

for every t1 ∈ I. By virtue of (5.20) and (5.21) it follows from the expression (5.19)
that

lim
n→∞

∥ xn(·)− xo(·) ∥V ([0,t1]×Ω,Eη)= 0.(5.22)

To continue this process beyond time t1, let us note that for any t ∈ [t1, T ], it follows
from the semigroup property that

xn(t)− xo(t) = S(t− t1)[x
n(t1)− xo(t1)] +

+

{∫ t

t1

S(t− s)[F̂ (s, xn(s), uns )− F̂ (s, xo(s), uos)]ds

+

∫ t

t1

S(t− s)[Ĝ(s, xn(s), uns )− Ĝ(s, xo(s), uos)]dW (s)

}
, t ≥ t1.
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Note that the second term on the righthand side of the above expression is similar to
the one given by the expression (5.8). Now taking t2 ∈ (t1, T ], so that C5(t2− t1) ≤
(1/2), and considering t1 as the starting time, and using the uniform bound of the
semigroup on the interval I, we obtain an expression very similar to the expression
(5.19) as presented below

∥ xn(·)− xo(·) ∥V ([t1,t2]×Ω,Eη)≤ 2M ∥ xn(t1)− xo(t1) ∥Eη +(5.23)

+2C6(t2 − t1)

{
∥ F̂ (·, xo(·), un − uo) ∥Lp(Ω,B0([t1,t2],E−θ1

))

+ ∥ Ĝ(·, xo(·), un· − uo· ) ∥Lp(Ω,γ(L2([t1,t2],µt2,α,H),E−θ2
))

}
.

By virtue of the norm topology of V given by the expression (3.2), the elements of
V are continuous almost surely. Hence it follows from (5.22) that

xn(t1)
s−→ xo(t1) in Eη, P − a.s.

Thus, again using similar argument as seen above, we obtain

lim
n→∞

∥ xn(·)− xo(·) ∥V ([t1,t2]×Ω,Eη)= 0.

Since T is finite, continuing this process step by step for a finite number of times,
we conclude that

lim
n→∞

∥ xn(·)− xo(·) ∥V ((0,T ]×Ω,Eη)= 0.

Thus we have proved that the control to solution map, u −→ x(u), from Uad to
V ≡ V ([0, T ]×Ω, Eη) is continuous with respect to the metric topology on Uad and
the norm topology on V. This completes the proof. □

Now we are prepared to consider the question of existence of optimal controls.

Theorem 5.3. Consider the control system (5.4) with the cost functional J given
by (5.2). Suppose Φ : Eη −→ R is lower semi-continuous, and ` : I × Eη × U −→
R ≡ [0,∞] is Borel measurable in all the variables, and lower semi-continuous in
the second and continuous in the third argument, and there exist g ∈ L+

1 (I) and
constants a, b, c ≥ 0 such that

|`(t, x, ξ)| ≤ g(t) + a ∥ x ∥pEη
,∞ > p > 2, ∀ x ∈ Eη,(5.24)

|Φ(x)| ≤ b+ c ∥ x ∥pη, ∀ x ∈ Eη.(5.25)

Then there exists a control uo ∈ Uad minimizing the cost functional J.

Proof. Let un ∈ Uad be any sequence. Since the set Uad is compact in the metric
topology d, there exists a subsequence, relabeled as the original sequence, that
converges in the metric topology to some uo ∈ Uad. It follows from Theorem 5.2 that
the sequence of corresponding mild solutions {xn} of the system (5.4) converges in
the norm topology of V to an element xo ∈ V which is the mild solution of equation
(5.4) corresponding to the control uo. Also, it follows from the definition of the norm
topology of V (see equation (3.2)) that xn(·) −→ xo(·) in the sup norm topology of
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C(I, Eη) P -a.s as un
d−→ uo in Uad. Thus it follows from lower semi-continuity of ˆ̀

in the second argument and continuity in its third argument that

ˆ̀(t, xo(t), uot ) ≤ lim ˆ̀(t, xn(t), unt ) for ν a.e on I × Ω.(5.26)

It follows from Corollary 5.1 that the solution set S is a bounded subset of La
p(I ×

Ω, Eη) and thus by virtue of the inequality (5.24) we conclude that ˆ̀ is bounded
from bellow (and above) by an integrable process. Hence it follows from generalized
Fatou’s Lemma that

E

∫
I

ˆ̀(t, xo(t), uot ) dt ≤ limE

∫
I

ˆ̀(t, xn(t), unt ) dt.(5.27)

Considering the terminal cost, since Φ is also lower semicontinuous on Eη and
bounded from below by an integrable random variable, again it follows from gener-
alized Fatou’s Lemma that

EΦ(xo(T )) ≤ limEΦ(xn(T )).(5.28)

It is well known that the sum of a finite number of lower semi-continuous func-
tionals is lower semi-continuous. Combing the above results we conclude that the
functional, u −→ J(u), given by (5.2), is lower semi-continuous on Uad in the metric
topology d. The set Uad is compact (in the metric topology d) and thus J attains
its minimum on it proving the existence of an optimal control. This completes the
proof. □

6. Induced measures and their optimal control

In this section we consider some control problems related to the measure valued
functions induced by the solution set S ⊂ V as introduced in Corollary 5.1. Let
M0(Eη) denote the space of regular Borel probability measures defined on the Borel
algebra B of subsets of the space Eη. Let x ∈ S and define, for each t ∈ I, the
measure µx

t (D) ≡ P{x(t) ∈ D} for any set D ⊂ Eη, D ∈ B. Then, with slight abuse
of notation, we can introduce the reachable set of measures at time t ∈ I by

R(t) ≡ {µx
t (·), x ∈ S} = {µx(u)

t (·) ≡ µu
t (·), u ∈ Uad} ⊂ M0(Eη).

For convenience of presentation, we use the notation L(z) to denote the (probabil-
ity) law of the random element z. In the following theorem we prove an importan
property of the reachable set.

Theorem 6.1. Suppose the assumptions of Corollary 5.1 and Theorem 5.2 hold.
Then for each t ∈ I, the reachable set R(t) is a weakly compact subset of the space
of regular Borel probability measures M0(Eη).

Proof. Let µn ∈ R(t). Then there exists a sequence xn ∈ S such that for t ∈ I,
µn = L(xn(t)), the (probability) law of xn(t). Corresponding to the sequence {xn}
there exists a sequence of controls {un} such that xn = x(un). Since the set Uad

is compact in the metric topology d, there exists a subsequence of the sequence

{un}, relabeled as {un}, and a uo ∈ Uad, such that un
d−→ uo. Let {xn, xo} denote

the mild solutions of the evolution equation (5.4) corresponding to the controls
{un, uo} ∈ Uad respectively. It follows from Theorem 5.2 that along a subsequence,
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if necessary, xn
s−→ xo in V, that is, xn converges to xo in the norm topology of

the Banach space V. Thus xn
s−→ xo in the space La

p(Ω, C(I, Eη)) also. Hence for

each t ∈ I, xn(t)
s−→ xo(t) in Lp(Ω, Eη). Let BC(Eη) denote the space of bounded

continuous real valued functions defined on the Banach space Eη endowed with the
sup-norm topology. Then, for any ϕ ∈ BC(Eη), ϕ(x

n(t)) −→ ϕ(xo(t)) in measure
and this is equivalent to convergence of µn

t to µo
t in distribution. Since convergence

in distribution is equivalent to weak convergence, we conclude that µn
t converges

weakly to µo
t where µo

t = L(xo(t)) and hence µo
t ∈ R(t). This proves the weak

compactness of the set R(t) as a subset of M0(Eη) □

Remark 6.2. It follows from Corollary 5.1 that whenever the initial state x0 ∈
Lp(Ω,F0, P ) for any p ∈ (2,∞), the (mild) solutions of equation (5.4) have p-th
moments for the same p, and therefore the reachable set R(t) ⊂ Mp(Eη) where
Mp(Eη) denotes the space of regular Borel probability measures on Eη having p-th
moment.

Remark 6.3. Let B0(Eη)(⊃ BC(Eη)) denote the Banach space of bounded Borel
measurable real valued functions defined on Eη equipped with the standard supnorm
topology. Suppressing the time variable let Au, for each u ∈ Uad, denote the forward
Kolmogorov operator corresponding to the controlled stochastic differential equation
5.4, and let L(x0) = ϑ ∈ M0(Eη) denote the probability law of the initial state.
Then, under the given assumptions, one can verify that the measure valued function,
t −→ µu

t , t ∈ I, is weakly differentiable and satisfies in the weak sense the following
forward Kolmogorov equation,

d

dt
µt(ϕ) = µt(Auϕ), µ0(ϕ) = ϑ(ϕ), t ∈ I,

for every ϕ ∈ BC(Eη) for which Au(ϕ) ∈ B0(Eη), where

µt(ϕ) ≡
∫
Eη

ϕ(x)µt(dx).

For some control problems, it is required to find a control policy u ∈ Uad so
that the corresponding measure valued function µu

t , t ∈ I, induced by the solution
process x(u) ∈ V, is close to a desired measure valued functionm ∈ Mw

∞(I,M0(Eη)).
Since the topology of weak convergence of measures on separable metric spaces is
equivalent to convergence in the Prokhorov metric, this problem can be formulated
as follows. Let ρ denote the Prokhorov metric on M0(Eη) and define the cost
functional as

J1(u) ≡
∫
I
ρ(µu

t ,mt)λ(dt)(6.1)

where λ is a positive finite Borel measure on I. The problem is to find a control
policy uo ∈ Uad that minimizes the functional J1(u).

Corollary 6.4. Consider the control system (5.4) with the admissible controls Uad

and cost functional J1 given by the expression (6.1). Suppose E is separable and
the assumptions of Theorem 6.1 hold. Then there exists a control uo ∈ Uad that
minimizes the functional J1(u) on Uad.
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Proof. Let un ∈ Uad be a minimizing sequence, that is,

lim
n→∞

J1(u
n) = inf{J1(u)., u ∈ Uad}.

By compactness of Uad in its metric topology d, there exists a control uo ∈ Uad

such that, along a subsequence if necessary, un
d−→ uo ∈ Uad. By Theorem 5.2,

xn ≡ x(un)
s−→ x(uo) ≡ xo in V and hence also in C(I, Eη) P -a.s. Then it follows

from Theorem 6.1 that, along a subsequence if necessary, for each t ∈ I,

µun

t ≡ µn
t

w−→ µo
t ≡ µuo

t (weakly).

Recall that, for separable metric spaces, weak convergence (of measures) is equiv-
alent to convergence in the Lévy-Prokhorov metric ρ. Hence, for almost all t ∈ I,
ρ(µn

t , µ
o
t ) → 0. Thus considering the integrand of the functional (6.1), we conclude

that ρ(µn
t ,mt) −→ ρ(µo

t ,mt) for almost all t ∈ I. Since ρ(µn
t ,mt) ≤ 2, for all t ∈ I

and n ∈ N , it follows from Lebesgue bounded convergence theorem that

lim
n→∞

J1(u
n) = J1(u

o).

Thus J1 is continuous on Uad in its metric topology d. Since Uad is compact in this
topology J1 attains its infimum on Uad at the point uo proving the existence of an
optimal control. □

Let C(t), t ∈ I, be a nonempty closed bounded set valued function with values
C(t) ⊂ Eη for all t ∈ I, and possibly continuous in the Hausdorff metric. The
problem is to find a control that maximizes the functional

J2(u) ≡
∫ T

0
µu
t (C(t))dt.(6.2)

The physical significance of this problem is tracking or following a moving set valued
target, C(t), t ∈ I, in the state space Eη as closely as possible under the given control
constraints.

Corollary 6.5. Consider the control system (5.4) with the admissible controls Uad

and the objective functional J2 given by (6.2). Suppose the assumptions of Theorem
6.1 hold and E is separable. Then there exists a control uo ∈ Uad at which J2 attains
its maximum.

Proof. Using the Prokhorov metric ρ on M0(Eη), we introduce the metric D(µ, ν)
on the space of measure valued functions B0(I,M0(Eη)) as follows:

D(µ, ν) ≡ sup{ρ(µt, νt), t ∈ I}.
Let {un} ⊂ Uad be a maximizing sequence for the functional J2 given by (6.2) in
the sense that

lim
n→∞

J2(u
n) = sup{J2(u), u ∈ Uad} ≡ Mo.(6.3)

Since Uad is compact in the metric topology d, there exists a control uo ∈ Uad

such that, along a subsequence if necessary, relabeled as the original sequence,

un
d−→ uo. Let xn and xo denote the (mild) solutions of equation (5.4) corresponding

to the controls {un, uo} ∈ Uad respectively. Then it follows from Theorem 5.2 that

xn
s−→ xo in V and hence in La

p(Ω, C(I, Eη)). Let {µn, µo} denote the corresponding
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probability measure valued functions. Then it follows from Theorem 6.1 that for

each t ∈ I, µn
t

w−→ µo
t and hence (by the equivalence of Prokhorov metric topology

and the topology of weak convergence) D(µn, µo) → 0 as n → ∞. In other words the
weak convergence is uniform in t ∈ I. Since, for each t ∈ I, C(t) is a closed subset
of Eη, it follows from Parthasarathy [15, Theorem 6.1, p.40] that limµn

t (C(t)) ≤
µo
t (C(t)), t ∈ I. Hence we conclude that

lim

∫ T

0
µn
t (C(t)) dt ≤

∫ T

0
limµn

t (C(t)) dt ≤
∫ T

0
µo
t (C(t)) dt.

Thus lim J2(u
n) ≤ J2(u

o) and it follows from (6.3) that

Mo = lim
n→∞

J2(u
n) ≤ lim J2(u

n) ≤ J2(u
o).(6.4)

Since uo ∈ Uad, again it follows from (6.3) that J2(u
o) ≤ Mo. Combining the above

inequalities we conclude that J2(u
o) = Mo and hence uo is the optimal control. □

Another interesting problem is time optimal control related to stability and res-
idence time. Let µ0 = ν ∈ M0(Eη) denote the probability measure corresponding
to the initial state x0. Suppose it is supported on a closed bounded subset C0 ⊂ Eη.
Let

dη(x, y) ≡∥ x− y ∥Eη , x, y ∈ Eη,

denote the metric induced by the norm topology of Eη. For r > 0, let Cr ≡ {x ∈
Eη : dη(x,C0) ≤ r} denote the closed r-neighbourhood of C0. The objective is to
find a control that maximizes the residence time of the state in the set Cr containing
the set C0. This can be formulated as follows: for sufficiently small δ ∈ (0, 1) (as
small as desired), find a control that maximizes the escape time τδ(u) ≡ inf{t ≥ 0 :
µu
t (Cr) < 1− δ}. So we define the pay-off functional as

J3(u) ≡ τδ(u) ≡ inf{t ≥ 0 : µu
t (Cr) < 1− δ}.(6.5)

If the underlying set is empty, we set τδ(u) = T. Clearly, such a control has a
stabilizing effect on the system. We prove the existence of such a control.

Corollary 6.6. Consider the control system (5.4) with the admissible controls Uad

and the objective functional J3(u) ≡ τδ(u) given by (6.5). Suppose the assumptions
of Theorem 6.1 hold. Then there exists a control uo ∈ Uad at which J3 attains its
maximum.

Proof. We prove that the functional J3 is upper semicontinuous on Uad with respect

to the metric topology d. Let {un, uo} ∈ Uad and suppose un
d−→ uo. Let {µn, µo}

denote the measure valued functions induced by the (mild) solutions {x(un), x(uo)}
of the system (5.4) corresponding to the controls {un, uo} respectively. It follows

from Theorem 5.2 that, along a subsequence if necessary, x(un)
s−→ x(uo) in V. By

Theorem 6.1, for each t ∈ I, the reachable set R(t) ⊂ M0(Eη) is weakly compact.

Thus for each t ∈ I, µn
t

w−→ µo
t , and therefore, since Cr is a closed subset of Eη,

again it follows from [15, Theorem 6.1, p.40] that

limµn
t (Cr) ≤ µo

t (Cr), ∀ t ∈ I.
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Clearly, given any ε ∈ (0, δ), we can find a n0 ∈ N such that

µn0+k
t (Cr)− ε ≤ limµn

t (Cr), ∀ k ≥ 1, t ∈ I.

In other words, the following inequality

µn0+k
t (Cr) ≤ limµn

t (Cr) + ε, ∀ k ≥ 1, t ∈ I

holds. From these inequalities one can readily deduce the following inclusions{
t ≥ 0 : µn0+k

t (Cr) < 1− δ
}

⊃
{
t ≥ 0 : limµn

t (Cr) + ε < 1− δ
}

⊃
{
t ≥ 0 : µo

t (Cr) + ε < 1− δ
}
, ∀ k ≥ 1, ε ∈ (0, δ).

Clearly these inclusions imply the following inequalities,

inf
{
t ≥ 0 : µn0+k

t (Cr) < 1− δ
}

≤ inf
{
t ≥ 0 : limµn

t (Cr) + ε < 1− δ
}

≤ inf
{
t ≥ 0 : µo

t (Cr) < 1− (δ − ε)
}
, ∀ k ≥ 1, ε ∈ (0, δ)

and hence, by definition of τδ(u) given by (6.5), we have

τδ(u
n0+k) ≤ τδ−ε(u

o), ∀ k ≥ 1, ε ∈ (0, δ).

Hence lim τδ(u
n) = lim

k
τδ(u

no+k) ≤ τδ−ε(u
o). Since this holds for any ε ∈ (0, δ),

letting ε ↓ 0 in this expression we conclude that lim
n
τδ(u

n) ≤ τδ(u
o). By definition

of the objective functional (6.5) this is equivalent to lim
n
J3(u

n) ≤ J3(u
o) and hence

J3 is upper semicontinuos on Uad in its metric topology d. Since Uad is compact in
this topology, J3 attains its maximum on Uad. This proves the existence of a time
optimal control. □

Another closely related problem is to find a control so as to avoid being in the
neighbourhood of a forbidden zone for long period of time. This can be formulated as
follows. Let D be a nonempty open subset of Eη, denoting the open neighbourhood
of a forbidden zone Do ⊊ D. For a fixed δ ∈ (0, 1) define the set

Sδ(u) ≡ {t ∈ I : µu
t (D) > δ}

where µu
t ≡ L(x(u)(t)). Let λ denote the Lebesgue measure on the real line and

define the objective functional as the Lebesgue measure of the set Sδ(u) :

J4(u) ≡ λ(Sδ(u)).(6.6)

The problem is to find a control policy that minimizes this functional.

Corollary 6.7. Consider the control system (5.4) with the admissible controls Uad

and the objective functional J4 given by (6.6). Suppose the assumptions of Theorem
6.1 hold. Then there exists a control uo ∈ Uad at which J4 attains its minimum.

Proof. The proof is largely similar to that of Corollary 6.5. If the underlying set is
empty there is nothing to prove. So let us assume the contrary. Let D be an open
set in Eη containing the forbidden zone Do in its interior and suppose that for each

t ∈ I, µn
t

w−→ µo
t . Then it follows from Parthasarathy [15, Theorem 6.1, p.40] that

µo
t (D) ≤ limµn

t (D). Using this result and following similar arguments as seen in the
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proof of Corollary 6.5, one can prove that u −→ J4(u) is lower semicontinuous on
Uad. Since Uad is compact, J4 attains its minimum at some point uo ∈ Uad proving
existence of an optimal control. □

Some Open Problems:

(1) It follows from the works of Van Neerven, Veraar and Weis [17, 19], and
Brzeźniak [7, 11] that stochastic integration is well defined with respect to
gamma radonifying operators from Hilbert spaces to UMD Banach spaces.
Since UMD spaces are reflexive (but the converse is false), this is certainly
a limitation. Thus, currently known theory does not cover all reflexive
Banach spaces. Clearly stochastic integration theory extended to general
Banach spaces will broaden the scope of applications. The author believes
that this may be possible in some weak sense based on Pettis and Dunford
integrals. Some results are known for linear stochastic differential equations
on Banach spaces [5].

(2) The most interesting topic in the area of stochastic control theory is Opti-
mal Feedback control [?, 8, 18]. This is a very challenging problem. Based
on Bellman’s principle of optimality one can formulate the optimal control
problem leading to the HJB (Hamilton-Jacobi-Bellman) equation giving the
value function from which one can determine the optimal feedback control
law and the optimum cost. This is the method used in [8] for stochastic
differential equations on Hilbert spaces. However, for practical application
this requires solving nonlinear partial differential equations on infinite di-
mensional spaces, a formidable task indeed. It is theoretically interesting to
investigate if the control problem considered here on UMD spaces can be
formulated in the form of HJB equation under the same assumptions used
here.

(3) We have not developed necessary conditions of optimality for the problem
considered here. We believe that this is an interesting problem and can be
treated following similar steps as seen in Ahmed [2].
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