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A sequence {xt}∞t=0 ⊂ X is called a trajectory of a (or just a trajectory if the
mapping a is understood) if xt+1 ∈ a(xt) for all integers t ≥ 0.

Let T2 > T1 be integers. A sequence {xt}T2
t=T1

⊂ X is called a trajectory of a

(or just a trajectory if the mapping a is understood) if xt+1 ∈ a(xt) for all integers
t ∈ {T1, . . . , T2 − 1}.

Define

Ω(a) = {z ∈ X : for each ϵ > 0 there is a trajectory {xt}∞t=0

(1.1) such that lim inf
t→∞

ρ(z, xt) ≤ ϵ}.

Clearly, Ω(a) is a nonempty closed subset of (X, ρ). In the literature the set Ω(a)
is called a global attractor of a. Note that in [18, 19] Ω(a) is called a turnpike set
of a. This terminology is motivated by mathematical economics [13,18,25].

For each x ∈ X and each nonempty closed subset E ⊂ X put

ρ(x,E) = inf{ρ(x, y) : y ∈ E}.

It is clear that for each trajectory {xt}∞t=0 we have

lim
t→∞

ρ(xt,Ω(a)) = 0.

It is not difficult to see that if for a nonempty closed set B ⊂ X

lim
t→∞

ρ(xt, B) = 0

for each trajectory {xt}∞t=0, then Ω(a) ⊂ B.
Let ϕ : X → R1 be a continuous function such that

(1.2) ϕ(z) ≥ 0 for all z ∈ X,

(1.3) ϕ(y) ≤ ϕ(x) for all x ∈ X and all y ∈ a(x).

It is clear that the function ϕ is a Lyapunov function for the dynamical system
generated by the mapping a. It should be mentioned that in mathematical eco-
nomics usually X is a subset of the finite-dimensional Euclidean space and ϕ is a
linear functional on this space [13,18,25]. Our goal in [28] was to study approximate
solutions of the problem

ϕ(xT ) → max,

{xt}Tt=0 is a program satisfying x0 = x,

where x ∈ X and a natural number T are given.
The following theorem was obtained in [28].

Theorem 1.1. The following properties are equivalent:

(1) If a sequence {xt}∞t=−∞ ⊂ X satisfies xt+1 ∈ a(xt) and ϕ(xt+1) = ϕ(xt) for
all integers t, then

{xt}∞t=−∞ ⊂ Ω(a).

(2) For each ϵ > 0 there exists a natural number T (ϵ) such that for each tra-
jectory {xt}∞t=0 ⊂ X satisfying ϕ(xt) = ϕ(xt+1) for all integers t ≥ 0 the
inequality ρ(xt,Ω(a)) ≤ ϵ holds for all integers t ≥ T (ϵ).
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For each bounded function ψ : X → R1 set

∥ψ∥ = sup{|ψ(z)| : z ∈ X}.

We denote by Card(A) the cardinality of a set A and suppose that the sum over
empty set is zero.

For each (x1, x1), (y1, y2) ∈ X ×X set

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2).

For each (x1, x2) ∈ X ×X and each nonempty closed subset E ⊂ X ×X put

ρ1((x1, x2), E) = inf{ρ1((x1, x2), (y1, y2)) : (y1, y2) ∈ E}.

In [28] we established the turnpike properties for approximate solutions of the
problem

ϕ(xT ) → max,

{xt}Tt=0 is a program satisfying x0 = x,

where x ∈ X and a natural number T are given. In [30] we established a weak
version of the turnpike property which hold for all trajectories of our dynamical
system which are of a sufficient length and which are not necessarily approximate
solutions of the problem above. This result as well as the turnpike results of [28]
usually hold for model of economic dynamics which are prototypes of our dynamical
system [13, 18, 25]. In particular, it holds for von Neumann-Gale model generated
by a monotone process of convex type which was studied in [17].

Namely, in [30] we prove the following result.

Theorem 1.2. Assume that property (1) of Theorem 1.1 holds and that ϵ > 0.
Then there exists a natural number L such that for each integer T > L and each
trajectory {xt}Tt=0 the following inequality holds:

Card({t ∈ {0, . . . , T} : ρ(xt,Ω(a)) > ϵ}) ≤ L.

In this paper we show that the turnpike property established in Theorem 1.2 is
stable under small perturbations. More precisely, following result is true.

Theorem 1.3. Assume that property (1) of Theorem 1.1 holds and that ϵ > 0.
Then there exists a natural number Q and δ > 0 such that for each integer T > Q,
each function ψ : X → R1 satisfying

|ψ(z)− ϕ(z)| ≤ δ, z ∈ X

and each sequence {xt}Tt=0 such that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and

ρ1((xt, xt+1), graph(a)) ≤ δ

the following inequality holds:

Card({t ∈ {0, . . . , T} : ρ(xt,Ω(a)) > ϵ}) ≤ Q.
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This result is proved in Section 3. Its proof is based on an auxiliary result which
is proved in Section 2.

It should be mentioned that turnpike properties are well known in mathematical
economics. The term was first coined by Samuelson in 1948 (see [21]) where he
showed that an efficient expanding economy would spend most of the time in the
vicinity of a balanced equilibrium path (also called a von Neumann path and a
turnpike). This property was further investigated for optimal trajectories of models
of economic dynamics. See, for example, [13, 19, 25] and the references mentioned
there. Recently it was shown that the turnpike phenomenon holds for many impor-
tant classes of problems arising in various areas of research [6,10–12,14,15,22,23,29].
For related infinite horizon problems see [1–5,8, 9, 20,25].

2. An auxiliary result

Lemma 2.1. Assume that property (1) of Theorem 1.1 holds and that ϵ > 0. Then
there exist δ > 0 and a natural number L such that for each integer T > 2L and
each sequence {xt}Tt=0 which satisfies for all integers t = 0, . . . , T − 1,

|ϕ(xt+1)− ϕ(xt)| ≤ δ

and

ρ1((xt, xt+1), graph(a)) ≤ δ

the following inequality holds:

ρ(xt,Ω(a)) ≤ ϵ, t = L, . . . , T − L.

Proof. Assume the contrary. Then for each natural number n there exist an integer

(2.1) Tn > 2n

and a sequence {x(n)t }Tn
t=0 ⊂ X such that for all integers t = 0, . . . , Tn − 1,

(2.2) |ϕ(x(n)t+1)− ϕ(x
(n)
t )| ≤ 1/n,

(2.3) ρ1((x
(n)
t , x

(n)
t+1), graph(a)) ≤ 1/n,

(2.4) max{ρ(x(n)t ,Ω(a)) : t = n, . . . , Tn − n} > ϵ.

In view of (2.4), for each integer n ≥ 1 there exists an integer

(2.5) Sn ∈ {n, . . . , Tn − n}

such that

(2.6) ρ(x
(n)
Sn
,Ω(a)) > ϵ.

Let n ≥ 1 be an integer. Define

(2.7) y
(n)
t = x

(n)
t+Sn

, t = −Sn, . . . , Tn − Sn.

By (2.2) and (2.7), for all integers t = −Sn, . . . , Tn − Sn,

(2.8) |ϕ(y(n)t+1)− ϕ(y
(n)
t )| = |ϕ(x(n)t+1+Sn

)− ϕ(x
(n)
t+Sn

)| ≤ 1/n.
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Equations (2.3) and (2.7) imply that for all integers t ∈ {−Sn, . . . , Tn − Sn − 1},

(2.9) ρ1((y
(n)
t , y

(n)
t+1), graph(a)) = ρ1((x

(n)
t+Sn

, x
(n)
t+Sn+1), graph(a)) ≤ 1/n.

It follows from (2.6) and (2.7) that

(2.10) ρ(y
(n)
0 ,Ω(a)) = ρ(x

(n)
Sn
,Ω(a)) > ϵ.

Extracting subsequences and using diagonalization process we obtain that there
exists a strictly increasing sequence of natural numbers {nj}∞j=1 such that for each
integer t there exists

(2.11) yt = lim
j→∞

y
(nj)
t .

By (2.10) and (2.11),

(2.12) ρ(y0,Ω(a)) ≥ ϵ.

It follows from (2.8), (2.11) and the continuity of the function ϕ that for every
integer t,

(2.13) ϕ(yt+1) = lim
j→∞

ϕ(y
(nj)
t+1 ) = lim

j→∞
ϕ(y

(nj)
t ) = ϕ(yt).

Let t be an integer. We show that

yt+1 ∈ a(yt).

In view of (2.9), for every natural number j satisfying

−Snj ≤ t < Tnj − Snj − 1

there exists

(2.14) (ξj , zj) ∈ graph(a)

such that

(2.15) ρ(y
(nj)
t , ξj) + ρ(y

(nj)
t+1 , z) ≤ n−1

j .

Together with (2.11) this implies that

(2.16) lim
j→∞

zj = yt+1, lim
j→∞

ξj = yt.

Since the graph of a is closed it follows from (2.14) and (2.16) that

(2.17) (yt, yt+1) ∈ graph(a).

Property (1) of Theorem 1.1, (2.13) and (2.17) imply that

yt ∈ Ω(a)

for all integers t. This contradicts (2.12). The contradiction we have reached com-
pletes the proof of Lemma 2.1. □



1550 A. J. ZASLAVSKI

3. Proof of theorem 1.2

Lemma 2.1 implies that there exist δ1 ∈ (0,min{ϵ, 1}) and a natural number L0

such that the following property holds:
(a) for each integer T > 2L0 and each sequence {xt}Tt=0 ⊂ X which satisfies for

all integers t = 0, . . . , T − 1,

|ϕ(xt+1)− ϕ(xt)| ≤ δ1

and
ρ1((xt, xt+1), graph(a)) ≤ δ1

we have
ρ(xt,Ω(a)) ≤ ϵ, t = L0, . . . , T − L0.

Choose an integer

(3.1) Q > 2L0 + 2 + (4L0 + 7)(1 + 2δ−1
1 (∥ϕ∥+ 1))

and

(3.2) δ ∈ (0, 4−1δ1).

Assume that T > Q is an integer, ψ : X → R1 satisfies

(3.3) |ψ(z)− ϕ(z)| ≤ δ, z ∈ X

and that a sequence {xt}Tt=0 ⊂ X satisfies for all integers t = 0, . . . , T − 1,

(3.4) ψ(xt+1) ≤ ψ(xt)

and

(3.5) ρ1((xt, xt+1), graph(a)) ≤ δ.

By induction we define a strictly increasing finite sequence of integers ti ∈ [0, T ],
i = 0, . . . , q. Set

(3.6) t0 = 0.

If
ψ(xT ) ≥ ψ(x0)− δ,

then set
t1 = T

and the construction is completed.
Assume that

(3.7) ψ(xT ) < ψ(x0)− δ.

Evidently, there exists an integer t1 ∈ (t0, T ] such that

(3.8) ψ(xt1) < ψ(x0)− δ

and that if an integer S satisfies

t0 < S < t1,

then

(3.9) ψ(xS) ≥ ψ(x0)− δ.

If t1 = T , then the construction is completed.
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Assume that k is a natural number and that we defined a strictly increasing
sequence of nonnegative integers t0, . . . , tk ∈ [0, T ] such that

(3.10) t0 = 0, tk ≤ T

and that for each i ∈ {0, . . . , k − 1},
(3.11) ψ(xti+1) < ψ(xti)− δ

and if an integer S satisfies ti < S < ti+1, then

(3.12) ψ(xS) ≥ ψ(xti)− δ.

(In view of (3.8) and (3.9), our assumption holds for k = 1.)
If tk = T, then our construction is completed. Assume that tk < T . If

ψ(xT ) ≥ ψ(xtk)− δ,

then we set tk+1 = T and our construction is completed.
Assume that

(3.13) ψ(xT ) < ψ(xtk)− δ.

Clearly, there exists an integer

tk+1 ∈ (tk, T ]

such that

(3.14) ψ(xtk+1
) < ψ(xtk)− δ

and that if an integer S satisfies

tk < S < tk+1,

then

(3.15) ψ(xS) ≥ ψ(xtk)− δ.

It is clear that the assumption made for k also holds for k + 1. Therefore by
induction, we constructed the strictly increasing finite sequence of integers ti ∈
[0, T ], i = 0, . . . , q, where q is a natural number such that

t0 = 0, tq = T

and that for each i satisfying 0 ≤ i < q − 1,

(3.16) ψ(xti+1) < ψ(xti)− δ

and for each i ∈ {0, . . . , q − 1} and each integer S satisfies ti < S < ti+1, we have

(3.17) ψ(xS) ≥ ψ(xti)− δ.

By (3.2), (3.3) and (3.16),

2∥ϕ∥+ 2 ≥ ϕ(xt0)− ϕ(xtq−1) + 2

≥ ψ(xt0)− ψ(xtq−1)

=
∑

{ψ(xti)− ψ(xti+1) : i is an integer, 0 ≤ i ≤ q − 2} ≥ δ(q − 1)

and

(3.18) q ≤ 1 + 2δ−1(∥ϕ∥+ 1).



1552 A. J. ZASLAVSKI

Set

(3.19) E = {i ∈ {0, . . . , q − 1} : ti+1 − ti ≥ 2L0 + 4}.
Let

(3.20) i ∈ E.

By (3.19) and (3.20),

(3.21) ti+1 − 1− ti ≥ 2L0 + 3.

Equations (3.17) and (3.21) imply that

(3.22) ψ(xti+1−1) ≥ ψ(xti)− δ.

In view of (3.4) and (3.22), for each integer t ∈ {ti, . . . , ti+1 − 2},
(3.23) |ψ(xt+1)− ψ(xt)| ≤ δ.

By (3.2), (3.3) and (3.23), for each integer t ∈ {ti, . . . , ti+1 − 2},
(3.24) |ϕ(xt+1)− ϕ(xt)| ≤ |ψ(xt+1)− ψ(xt)|+ 2δ ≤ 3δ < δ1.

It follows from (3.5), (3.21), (3.24) and property (a) that

(3.25) ρ(xt,Ω(a)) ≤ ϵ, t = ti + L0, . . . , ti+1 − 1− L0.

In view of (3.20) and (3.25),

{t ∈ {0, . . . , T} : ρ(xt,Ω(a)) > ϵ}
⊂ ∪{{ti, . . . , ti+1} : i ∈ {0, . . . , q − 1} \ E}

(3.26) ∪{{ti, . . . , ti + L0 − 1} ∪ {ti+1 − L0, . . . , ti+1} : i ∈ E}.
By (3.18), (3.19) and (3.26),

Card({t ∈ {0, . . . , T} : ρ(xt,Ω(a)) > ϵ})
≤ q(2L0 + 5) + (2L0 + 2)q = q(4L0 + 7)

(4L0 + 7)(1 + 2δ−1(∥ϕ∥+ 1)) ≤ Q.

Theorem 1.3 is proved.
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