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(ii) the Hadamard bornology (β = H), which contains all centrally symmetric
compact sets;

(iii) the weak Hadamard bornology (β = WH), which contains all centrally sym-
metric weakly compact sets;

(iv) the Fréchet bornology (β = F ), which contains all centrally symmetric
bounded sets.

In what follows, by β1 ≤ β2 or β2 ≥ β1, we mean β1 ⊆ β2; and we also assume that
G ≤ β for all β in consideration.

Recall that cone(Ω) denotes the cone generated by the set Ω ⊂ X, i.e.,

cone(Ω) = ∪λ≥0λΩ.

A directional neighborhood ( [10]) D(x̄, ū; δ, η) at x̄ ∈ X in direction ū ∈ X is
defined as

D(x̄, ū; δ, η) := B(x̄; δ) ∩ (x̄+ cone(ū+ ηB))
for given δ, η > 0, and D◦(x̄, u; δ, η) is the set of interior points of D(x̄, ū; δ, η). Note
that D(x̄, ū; δ, η) reduces to the usual neighborhood B(x̄; δ) when ū = 0.

2. Directional continuity and Lipschitzian roperties

In this section, we present the notion of directional continuity, calmness, and
Lipschitzian properties.

Definition 2.1. Let f : X → Y and x̄, ū ∈ X. We say that f is directionally
continuous at x̄ in the direction ū if for any ε > 0, there are δ, η > 0 such that
∥f(x)− f(x̄)∥ < ε for all x ∈ D(x̄, ū; δ, η).

When ū = 0, the directional continuity reduces to the continuity in normal sense.
When ū ̸= 0, it is a rather different concept; see example 2.3 below. Before we see
the example, we define the directional calmness/Lipschitzian property.

Definition 2.2. Let f : X → Y , x̄, ū ∈ X, and let β be a bornology on X. We say
that

(i) f is directionally β-Lipschitzian around x̄ in direction ū if for each Λ ∈ β,
there are δ, η > 0 such that

ℓf,Λ(x̄, ū; δ, η) := sup
x,x+th∈D(x̄,ū;δ,η), h∈Λ,t>0

∥f(x+ th)− f(x)∥
t

< ∞.

(ii) f is directionally β-calm at x̄ in direction ū if for each Λ ∈ β, there are
δ, η > 0 such that

ℓf,Λ(x̄, ū; δ, η) := sup
x̄+th∈D(x̄,ū;δ,η), h∈Λ,t>0

∥f(x̄+ th)− f(x̄)∥
t

< ∞.

The constant ℓf,Λ(x̄, ū; δ, η) is called a Lipschitzian (resp. calmness) modulus of
f around x̄ in direction ū with respect to Λ. When ū = 0, the directional β-
calmness/Lipschitzian property reduces to the β-calmness/Lipschitzian property
introduced in [21]. When ū = 0, and β = F , the directional Lipschitzian property
reduces to the usual Lipschitzian property, and the directional calmness reduces to
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the usual calmness. When β = F , the directional F -Lipschitzian property reduces
to the directional Lipschitzian property introduced in [13].

Example 2.3. Let f : R2 → R be defined as f(u, v) = −
√
1− (u− 1)2 − v2 for

all (u, v) ∈ R2; then f is convex on the disk {(u, v) | (u − 1)2 + v2 ≤ 1}, and
is directionally continuous at x̄ = (0, 0) in direction ū = (1, 0). However, we can
check that f is not directionally G-calm at x̄ in direction ū, and consequently, not
directionally calm at or Lipschitzian around x̄ in direction ū.

This examples shows, the directional continuity of convex functions does not imply
the directional calmness/Lipschitzian property. This is very different to the classical
result that the continuity (actually boundedness is sufficient) of convex functions
implies the local Lipschitzian property.

Next we present a relation of the directional calmness/Lipschitzian property
among different bornologies. The case ū = 0 is established in [21].

Proposition 2.4. If f is directionally β-Lipschitzian around (resp. directionally β-
calm at) x̄ in direction ū with β ≥ H, then f is directionally F -Lipschitzian around
(resp. F -calm at) x̄ in direction ū.

Proof. The proof is a slight modification of the proof of Proposition 2.2 in [21]); for
completeness, we reproduce it here (cf. the proof of Proposition 2.2.1 in [6] or the
proof of Proposition 2.3 in [17]). For simplicity, we only present the proof to the case
of directional β-Lipschitzian property, the proof to the case of directional β-calmness
is similar. Suppose, to the contrary, that f is not directionally F -Lipschitzian
around x̄ at the direction ū. Then for each k ∈ N, there are uk, vk ∈ D(x̄, ū; 1/k, 1/k)

with uk ̸= vk and ∥f(vk) − f(uk)∥ ≥ k∥vk − uk∥. Let tk =
√
k∥vk − uk∥, hk =

(vk − uk)/tk. Then

tk ≤
√
k(∥vk − x̄∥+ ∥uk − x̄∥) ≤

√
k(2/k) = 2/

√
k → 0

and ∥hk∥ = 1/
√
k → 0 (as k → ∞) with vk = uk + tkhk. Let Λ = {h1, h2 . . .} ∪ {0};

then Λ is a compact set in X, and so is Λ ∪ (−Λ) which is centrally symmetric. It
follows that Λ ∪ (−Λ) ∈ β since β ≥ H. By the directional β-Lipschitzian property
of f around x̄, there exist δ, η > 0 such that

∥f(uk + tkhk)− f(uk)∥/tk ≤ ℓf,Λ(x̄, ū; δ, η) < ∞

for all large k ∈ N. On the other hand,

∥f(uk + tkhk)− f(uk)∥/tk = ∥f(vk)− f(uk)∥/tk
≥ k∥vk − uk∥/(

√
k∥vk − uk∥) =

√
k → ∞ (as k → ∞),

which is a contradiction. □

By the result above, we can derive a relation between the directional continuity
and the directional calmness/Lipschitzian property.

Proposition 2.5. If f is directionally β-Lipschitzian around (resp. directionally
β-calm at) x̄ in direction ū with β ≥ H, then f is directionally continuous at x̄ in
direction ū.
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Proof. It is easy to check that the F -calmness/Lipschitzian property implies the
directional continuity; and then the result follows from Proposition 2.4. □

In the case when X is finite-dimensional, next result shows that there is only one
directional Lipschitzian property among different bornologies.

Proposition 2.6. Let f : X → Y . If dimX < ∞ and f is directionally G-
Lipschitzian around x̄ ∈ X in direction ū ∈ X, then f is directionally F -Lipschitzian
around x̄ in direction ū.

Proof. (cf. the proofs of Theorem 2.4 in [21] and Theorem 2.5 in [13]) Let dimX = n
and e1, e2, . . . , en are unit vectors in X that form a basis. We use the ℓ1 norm on
X, i.e., ∥

∑n
i=1 λiek∥ =

∑n
i=1 |λi| for all λ1, . . . , λn ∈ R. By the directional Gâteaux

Lipschitzian property of f , we can find some δ̄, η̄ > 0 such that

(2.1) ∥f(x+ th)− f(x)∥ ≤ Mt

for some M > 0 and for all x ∈ D(x̄, ū; δ̄, η̄), t > 0 with x + th ∈ D(x̄, ū; δ̄, η̄), h ∈
Λ := {±ū,±e1,±e2, . . . ,±en}. Fix x ∈ D◦(x̄; ū; δ̄, η̄) and B(x; δ1) ⊆ D(x̄, ū; δ̄, η̄) for
some δ1 > 0. For any x′ ∈ B(x; δ1), let x′ − x =

∑n
i=1 λiei for some λ1, . . . , λn ∈ R;

then ∥x′ − x∥ =
∑n

i=1 |λi| ≤ δ1; consequently ∥
∑k

i=1 λiei∥ =
∑k

i=1 |λi| ≤ δ1 and

vk := x+
∑k

i=1 λiei ∈ B(x; δ1) for all k = 1, . . . , n. By (2.1) we have

(2.2) ∥f(x)− f(x′)∥ ≤
n∑

i=1

∥f(vi)− f(vi−1)∥ ≤
n∑

i=1

M |λi| = M∥x− x′∥,

for all x′ ∈ B(x; δ1), where v0 := x. Now for any x1, x2 ∈ D◦(x̄; ū; δ̄, η̄), we can
find δ2 > 0 such that B(x1; δ2),B(x2; δ2) ⊆ D(x̄, ū; δ̄, η̄). Choose l ∈ N such that
∥x2 − x1∥/l < δ2, and let w0 := x1, wk := x1 +

k
l (x2 − x1) for k = 1, . . . , l. Then

wl = x2, B(wk; δ2) ⊆ D(x̄, ū; δ̄, η̄), and wk ∈ B(wk−1; δ2) for all k = 1, . . . , l. By
(2.2), we have

(2.3) ∥f(x2)− f(x1)∥ ≤
l∑

i=1

∥f(wi)− f(wi−1)∥ ≤
l∑

i=1

M
∥x2 − x1∥

l
= M∥x2 − x1∥

for all x1, x2 ∈ D◦(x̄; ū; δ̄, η̄).
Now we consider the case x1 = x̄, x2 ̸= x̄ with x2 ∈ D◦(x̄; ū; δ̄, η̄). By (2.1) again,

we have ∥f(x̄ + tū) − f(x̄)∥ ≤ Mt for all t ∈ (0, δ3) for some δ3 > 0. Now choose
t̄ ∈ (0, δ3) so small such that t̄, t̄∥ū∥ < ∥x2− x̄| and x̄+ t̄ū ∈ D◦(x̄, ū; δ̄, η̄). Then by
(2.3) we have

∥f(x2)− f(x1)∥
≤ ∥f(x2)− f(x̄+ t̄ū)∥+ ∥f(x̄+ t̄ū)− f(x̄)∥
≤ M∥x2 − x̄− t̄ū∥+Mt̄

≤ M(∥x2 − x̄∥+ t̄∥ū∥) +Mt̄

≤ M(∥x2 − x̄∥+ ∥x2 − x̄∥) +M∥x2 − x̄∥
≤ 3M∥x2 − x̄∥.

Combining this with (2.3), we obtain

∥f(x2)− f(x1)∥ ≤ 3M∥x2 − x1∥
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for all x1, x2 ∈ D◦(x̄, ū; δ̄, η̄) ∪ {x̄}. It derives that ℓf,B(x̄, ū;
δ
2 ,

η
2 ) ≤ 3M and the

proof is complete. □

We present a corollary of Proposition 2.5 and Proposition 2.6 to end this section.

Proposition 2.7. Let f : X → Y . If dimX < ∞ and f is directionally Gâteaux
Lipschitzian around x̄ ∈ X in direction ū ∈ X, then f is directionally continuous
at x̄ in direction ū.

3. Directional differentiabilities

We explore various kinds of directional differentiabilities in this section.

Definition 3.1. Let f : X → Y , x̄, ū ∈ X, and let β be a bornology on X. We say
that

(i) f is directionally strictly β-differentiable at x̄ in direction ū if there exists a
continuous linear operator A : X → Y such that for any ε > 0, Λ ∈ β, there
are δ, η > 0 with

(3.1)
∥∥∥f(x+ th)− f(x)

t
−A(h)

∥∥∥ ≤ ε

for all x ∈ D(x̄, ū; δ, η), t > 0 with x+ th ∈ D(x̄, ū; δ, η), and h ∈ Λ.
(ii) f is directionally β-differentiable at x̄ in direction ū if there exists a contin-

uous linear operator A : X → Y such that for any ε > 0, Λ ∈ β, there are
δ, η > 0 with (3.1) holds for all x = x̄, t > 0 with x̄+ th ∈ D(x̄, ū; δ, η) and
h ∈ Λ.

When ū = 0, these reduce to the β-/strict β-differentiabilities in the classical
sense. The case of directional strict G/F-differentiabilities were introduced in [13].
The continuous Linear operator A in the above definions is called a directional β-
derivative. Let us proceed to examine the uniqueness of such derivatives. We start
with the directional β-differentiability. The result below shows that the derivative
is never unique in this case unless X is of dimension one.

Proposition 3.2. If f is directionally β-differentiable at x̄ in direction ū ̸= 0, then
the set of directional β-derivatives is

(3.2)
{
T ∈ B(X,Y ) | T (ū) = lim

t→0+

f(x̄+ tū)− f(x̄)

t

}
.

Proof. If f is directionally β-differentiable at x̄ in direction ū ̸= 0, and T is a

directional β-derivative, then clearly T (ū) = ȳ := limt→0+
f(x̄+tū)−f(x̄)

t . Next we
show the converse, i.e., if f is β-differentiable at x̄ in direction ū, and T ∈ B(X,Y )
with T (ū) = ȳ, then T is a directional β-derivative. Fix ε > 0 and Λ ∈ β. Then
there is a constant M > 0 such that ∥h∥ ≤ M for all h ∈ Λ. Let A ∈ B(X,Y ) be a
directional β-derivative of f at x̄ in the direction ū, then A(ū) = T (ū) = ȳ, so there
exists 0 < η1 < ∥ū∥/2 such that

(3.3) ∥A(x)− T (x)∥ <
∥ū∥
4M

ε ∀x ∈ ū+ η1B.
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On the other hand, we can find δ, η > 0 such that η < η1 and

(3.4)
∥∥∥f(x̄+ th)− f(x̄)

t
−A(h)

∥∥∥ <
ε

2

for all h ∈ Λ and t > 0 with x̄ + th ∈ D(x̄, ū; δ, η). It follows that h = t′(ū + ηh′)

for some t′ > 0 and h′ ∈ B, and then t′ = ∥h∥
∥ū+ηh′∥ ≤ M

∥ū∥−η < M

∥ū∥− ∥ū∥
2

= 2M
∥ū∥ .

Consequently, ∥A(h)−T (h)∥ = t′∥A(ū+ ηh′)−T (ū+ ηh′)∥ ≤ 2M
∥ū∥ ·

∥ū∥
4M ε = ε

2 due to

(3.3). Together with (3.4), we derive∥∥∥f(x̄+ th)− f(x̄)

t
− T (h)

∥∥∥
≤

∥∥∥f(x̄+ th)− f(x̄)

t
−A(h)

∥∥∥+ ∥A(h)− T (h)∥

<
ε

2
+

ε

2
= ε

for all h ∈ Λ and t > 0 with x̄ + th ∈ D(x̄, ū; δ, η). Therefore T is a directional
β-derivative of f at x̄ in direction ū, and the conclusion follows. □

Now let us exam some other variants of the directional differentiability.

Definition 3.3. Let f : X → Y , x̄, ū ∈ X, and let β be a bornology on X.

(i) We say that f is directionally β-differentiable of type B at x̄ in direction ū if
there exists a continuous linear operator A : X → Y such that for any ε > 0,
Λ ∈ β, there are δ, η > 0 with (3.1) holds for all x ∈ D(x̄, ū; δ, η)∩ {x̄+ λū |
λ ≥ 0}, t > 0 with x+ th ∈ D(x̄, ū; δ, η), and h ∈ Λ.

(ii) We say that f is directionally β-differentiable of type C at x̄ in direction
ū if there exists a continuous linear operator A : X → Y such that for any
ε > 0, Λ ∈ β, there are δ, η > 0 with (3.1) holds for all x ∈ D(x̄, ū; δ, η),
t > 0 with x+ th ∈ D(x, ū; δ, η), and h ∈ Λ.

Note that the type C directional differentiability in the case Y = R, β = F was
given in [10]. It does not guarantee the uniqueness of the corresponding derivative,
either; in fact, we can show by a similar argument like in the proof of Proposition 3.2
that,

Proposition 3.4. If a function is directionally β-differentiable of type C at x̄ in
direction ū, then the set of derivatives is also (3.2).

On the other hand, type B directional differentiability in Definition 3.3 can guar-
antee the uniqueness of the β-derivative, as below:

Proposition 3.5. If a function f : X → Y is strictly directionally β-differentiable
or directionally β-differentiable of type B at x̄ in direction ū, then the β-derivative
is unique.

Proof. It is clear that the directional strict β-differentiability implies the directional
β-differentiability of type B; so it suffices prove the case of type B differentiability.
Let T , S be two directional β-derivatives of f at x̄ in direction ū and fix h ∈ B.
Then for any ε > 0, we can find δ, η > 0, t > 0 with (3.1) holds for A = T and
A = S for all x ∈ D(x̄, ū; δ, η) ∩ {x̄+ λū | λ ≥ 0}, t > 0 with x+ th ∈ D(x̄, ū; δ, η).
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Now we choose λ > 0 such that x := x̄+λū ∈ D◦(x̄, ū; δ, η), and then we can choose
t > 0 such that x+ th = x̄+ λū+ th ∈ D(x̄, ū; δ, η). Now applying (3.1) for A = T
and A = S for x and x+ th, we have ∥(T − S)(h)∥ ≤ 2ε. Since this is true for any
h ∈ B, we derive that ∥T − S∥ ≤ 2ε for all ε > 0. Therefore T = S. □

Next we study the relation between directional differentiabilities and directional
calmness/Lipschitzian property.

Proposition 3.6. Let f : X → Y with x̄, ū ∈ X, and let β be a bornology on X.

(i) If f is directionally β-differentiable at x̄ in direction ū, then it is directionally
β-calm at x̄; in particular, f is directionally calm at x̄ in direction ū if
β ≥ H.

(ii) If f is directionally strictly β-differentiable at x̄ in direction ū, then it is
directionally β-Lipschitzian around x̄ in direction ū; in particular, f is di-
rectionally Lipschitzian around x̄ in direction ū if β ≥ H.

Proof. Both the first assertion in (i) and that in (ii) can be derived directly from the
definition of the directional differentiabilities. The corresponding second assertions
can then be derived taking into account of Proposition 2.4 □

We then have the following corollary of the above result which gives a relation of
directional differentiabilities and continuity.

Proposition 3.7. Let f : X → Y with x̄, ū ∈ X, and let β be a bornology on X.
If f is directionally β-differentiable or directionally strictly β-differentiable at x̄ in
direction ū with β ≥ H, then f is directionally continuous at x̄ in direction ū.

The following result generalizes the classical result (when ū = 0); the general
scheme of the proof is standard while a much more involved analysis involving the
directional neighborhood is used.

Proposition 3.8. Let f : X → Y with x̄, ū ∈ X. Suppose that f is directionally
Gâteaux-differentiable (resp. directionally strictly Gâteaux-differentiable) at x̄ in di-
rection ū, and that f is directionally H-Lipschitzian around x̄ at direction ū. Then
f is directionally H-differentiable (resp. directionally strictly H-differentiable) at x̄
in direction ū.

Proof. By Theorem 2.4, f is directionally F -Lipschitzian around x̄ in direction ū un-
der the assumptions made; then we can find δ̄, η̄ > 0 such that ℓ := ℓf,B(x, ū; δ̃, η̃) <
∞. We only consider the case of the directional strict differentiability (the proof
of the case of the directional differentiability corresponds to the situation xk = x̄,
h̄ = λū in case (i) below). Suppose that f is not directionally H-differentiable at x̄
in direction ū. Then there are sequences δk, ηk, tk ↓ 0, ε > 0, a compact set Λ ∈ H,
and hk ∈ Λ, xk, xk + tkhk ∈ D(x̄, ū; δk, ηk) such that

(3.5)
∥∥∥f(xk + tkhk)− f(xk)

tk
−A(hk)

∥∥∥ > ε

for all k ∈ N, where A is a directional G-derivative of f at x̄. Since Λ is compact,
without loss of generality, assume that limk→∞ hk = h̄ for some h̄ ∈ X. Then we
have

(3.6) (ℓ+ ∥A∥)∥hk − h̄∥ <
ε

2
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when k is sufficiently large. By the directional strict G-differentiability of f at x̄ in
direction ū we can find δ̄ ∈ (0, δ̃), η̄ ∈ (0, η̃) such that

(3.7)
∥∥∥f(x+ tw)− f(x)

t
−A(w)

∥∥∥ <
ε

2

for all x ∈ D(x̄, ū; δ̄, η̄), t > 0 with x + tw ∈ D(x̄, ū; δ̄, η̄), and w ∈ {h̄,−h̄}. Let
xk = x̄+ δ′k(ū+ηkh

′
k), xk+ tkhk = x̄+ δ′′k(ū+ηkh

′′
k) with δ′k, δ

′′
k ∈ [0, δk), h

′
k, h

′′
k ∈ B,

and we consider two cases:

Case 1. ū = 0 or h̄ = λū for some λ ≥ 0. If ū = 0, then clearly xk+tkh̄ ∈ D(x̄, ū; δ̄, η̄)
when k is large. If h̄ = λū for some λ > 0, then

xk + tkh̄ = x̄+ δ′k(ū+ ηkh
′
k) + tkλū

= x̄+ (δ′k + tkλ)(ū+
δ′k

δ′k + tkλ
ηkh

′
k) ∈ D(x̄, ū; δ̄, η̄)

when k is sufficiently large. Taking into account (3.6) and (3.7), we have∥∥∥f(xk + tkhk)− f(xk)

tk
−A(hk)

∥∥∥
≤

∥∥∥f(xk + tkh̄)− f(xk)

tk
−A(h̄)

∥∥∥
+
∥∥∥f(xk + tkhk)− f(xk + tkh̄)

tk

∥∥∥+ ∥A(h̄− hk)∥

≤
∥∥∥f(xk + tkh̄)− f(xk)

tk
−A(h̄)

∥∥∥
+ ℓ∥hk − h̄∥+ ∥A∥ · ∥h̄− hk∥

<
ε

2
+

ε

2
= ε,

which contradics to (3.5).

Case 2. Now assume that ū ̸= 0 and h̄ ̸= λu for all λ ≥ 0. We proceed to show that

(3.8)
δ′k
tk

≥ M for some M > 0 and all k ∈ N.

If this is not true, then there is a subsequence of { δ′k
tk
} that converges to 0. Without

loss of generality, assume that the whole sequence converges to 0. Because

xk + tkhk = x̄+ δ′k(ū+ ηkh
′
k) + tkhk = x̄+ δ′′k(ū+ ηkh

′′
k),

we have
δ′k
tk
(ū+ ηkh

′
k) + hk =

δ′′k
tk
(ū+ ηkh

′′
k),

and then

δ′′k
tk

=
∥ δ′k
tk
(ū+ ηkh

′
k) + hk∥

∥ū+ ηkh
′′
k∥

→ ∥h̄∥
∥ū∥

(as k → ∞).

It follows that

hk =
δ′′k
tk
(ū+ ηkh

′′
k)−

δ′k
tk
(ū+ ηkh

′
k) →

∥h̄∥
∥ū∥

ū
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as k → ∞, which is a contradiction. So (3.8) holds. Now we have

xk + tkhk − tkh̄ = x̄+ δ′k(ū+ ηkh
′
k) + tk(hk − h̄) = x̄+ δ′k

(
ū+ ηkh

′
k +

tk
δ′k

(hk − h̄)
)

and ∥∥∥ηkh′k + tk
δ′k

(hk − h̄)
∥∥∥ ≤ ηk +

1

M
∥hk − h̄∥ < η̄

when k is sufficiently large; so xk + tkhk − tkh̄ ∈ D(x̄, ū; δ̄, η̄) for such k. and
consequently, by (3.6) and (3.7),∥∥∥f(xk + tkhk)− f(xk)

tk
−A(hk)

∥∥∥
≤

∥∥∥f(xk + tkhk)− f(xk + tkhk − tkh̄)

tk
−A(h̄)

∥∥∥
+
∥∥∥f(xk + tkhk − tkh̄)− f(xk)

tk

∥∥∥+ ∥A(h̄− hk)∥

≤
∥∥∥f(xk + tkhk + tk(−h̄))− f(xk + tkhk)

tk
−A(−h̄)

∥∥∥
+ ℓ∥hk − h̄∥+ ∥A∥ · ∥h̄− hk∥

<
ε

2
+

ε

2
= ε,

which contradics to (3.5). □

Combining Proposition 2.6, 3.6, and 3.8, we have the following corollary in the
case dimX < ∞.

Proposition 3.9. Let f : X → Y with x̄ ∈ X, ū ∈ X and dimX < ∞. Then
the directional strict G-differentiability of f at x̄ in direction ū is equivalent to the
directional strict F-differentiability of f at x̄ in direction ū.

4. Weak directional differentiabilities

Following [17,21], we can extend the study of directional differentiabilities to their
weak variants. Here we only present the definitions and omit the further discussions.
In the definition below, ⟨y∗, f⟩ : X → R is defined as ⟨y∗, f⟩(x) = ⟨y∗, f(x)⟩, where
y∗ ∈ Y ∗. By τ we mean a linear topology on Y ∗; a sequence {y∗k} is said τ -convergent
if it is convergent under the topology τ .

Definition 4.1. Let f : X → Y and x̄, ū ∈ X, and β be a bornology.

(i) f is said weakly directionally β-differentiable at x̄ in direction ū if ⟨y∗, f⟩ is
directionally β-differentiable at x̄ in direction ū for all y∗ ∈ Y ∗.

(ii) f is said weakly directionally strictly β-differentiable at x̄ in direction ū if
⟨y∗, f⟩ is directionally strictly β-differentiable at x̄ in direction ū for all
y∗ ∈ Y ∗.
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(iii) f is said τ -uniformly weakly directionally β-differentiable at x̄ in direction ū
if there is a function A∗ : Y ∗ → X∗ such that for any τ -convergent sequence
{y∗k} ⊂ Y ∗, any ε > 0, Λ ∈ β, there are δ, η > 0 such that

|⟨y∗k, [f(x̄+ th)− f(x̄)]/t⟩ − ⟨A∗(y∗k), h⟩| < ε

∀k ∈ N, h ∈ Λ, t > 0 with x̄+ th ∈ D(x̄, ū; δ, η).

(iv) f is said τ -uniformly weakly directionally strictly β-differentiable at x̄ in
direction ū if there is a function A∗ : Y ∗ → X∗ such that for any τ -convergent
sequence {y∗k} ⊂ Y ∗, any ε > 0, Λ ∈ β, there are δ, η > 0 such that

|⟨y∗k, [f(x+ th)− f(x)]/t⟩ − ⟨A∗(y∗k), h⟩| < ε

∀k ∈ N, h ∈ Λ, x ∈ D(x̄, ū; δ, η), t > 0 with x, x+ th ∈ D(x̄, ū; δ, η).

The non-directional versions of the weak differentiabilities were introduced in [17]
(the case ū = 0), and the non-directional uniform weak differentiabilities first ap-
peared in [21]. Extensive discussions on the theoretical issues as well as applications
to variational analysis can be found in these two papers. We will explore the direc-
tional versions of these results in separate papers.
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