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As a main novelty in this paper, we introduce market participants with imper-
fect behavior. On the demand side, consumers make random errors while choosing
between differentiated alternatives. This makes it harder to predict their decisions.
Suppliers are assumed to be inflexible, as they face quantity adjustment costs. By
our suggested pricing schemes, a pricing agent can find equilibrium prices with a
rate of O(1/t), respectively O(1/t2) for an accelerated version. From the economical
perspective this is an astonishing result. Compared to the algorithmic equilibrium
model without random errors and quantity adjustment costs in [24] with the rate
O(1/

√
t), we have an improvement by an order of magnitude. Our main result sug-

gests that the imperfect behavior of market participants contributes to the stability
of markets.

Let us briefly refer to the related approaches for agents’ pricing of differentiated
goods under discrete choice demand. This has been studied in the context of the
oligopolistic price competition. Here, suppliers maximize their expected profits by
setting prices and facing the discrete choice demand of consumers. We recommend
[2] for a basic overview. A central challenge of this approach is to induce analytical
properties of the suppliers’ profit function. Concavity of the expected revenue under
the multinomial logit has been shown in [8], where the authors assume identical price
sensitivities. This assumption is relaxed in [18]. Furthermore, the authors prove
concavity for the nested logit expected revenue functions, if the price sensitivities
are equal for alternatives within the same nest. The concavity of the expected
revenue functions is with respect to the market shares. Note that the multinomial
logit expected revenue function is not concave with respect to prices [12].

The price competition à-la Bertrand is modeled classically by a Nash game. There
are several results concerning existence and uniqueness of the corresponding Nash
equilibria. For linear random utility models with an −1/(n + 1)-concave density
function and each of the n firms offering exactly one product, a price equilibrium
exists [2]. In the symmetric case where additionally all observable utilities of alter-
native are equal, the result can be strengthened to a unique Nash equilibrium [2].
With slightly more assumptions, the same authors show the existence of a subgame
perfect Nash equilibrium under nested logit demand. In [18] the multiproduct pric-
ing problem is reduced to finding the root of a single valued equation. The equilib-
rium price of such an oligopolistic competition is determined by using a modified
Lambert W function. The idea of dimensionality reduction can be found in [10],
where also the existence of a unique Nash equilibrium is proven.

Our approach provides a way to efficiently determine equilibrium prices beyond
the game-theoretic approach. The market participants are price takers, and not
price setters as in the oligipolistic environment. This allows us to use the convex
potential for the price adjustment. Namely, in order to achieve equilibrium prices,
the total expected revenue has to be minimized with respect to prices. One may
wonder: Is the principal who adjusts prices an idealist, purely instrumental, akin
to the Walrasian auctioneer? Although this interpretation is well possible, in this
paper the principal is understood as a market operator who is actually authorized
and financed by market participants.

Our notation is standard. By Rn we denote the space of n-dimensional vectors,

where the vectors x =
(
x(1), . . . , x(n)

)T
are column vectors. We write Rn

+ for the set
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of vectors with nonnegative components. If not stated otherwise, inequalities for
vectors are meant componentwise. We write en ∈ Rn for the n-dimensional vector
of all ones. We introduce the standard inner product in Rn:

⟨x, y⟩ =
n∑

i=1

x(i)y(i).

For x ∈ Rn, we use the norms

∥x∥1 =
n∑

i=1

|x(i)|, ∥x∥2 =

√√√√ n∑
i=1

(
x(i)
)2
, ∥x∥∞ = max

1≤i≤n
|x(i)|.

For a real number x, we denote by x+ = max{x, 0} its positive part. Given a
function f , we denote its domain by

domf = {x ∈ Rn | f(x) < ∞}.
Further, we recall the definition of the convex conjugate of a convex function f :

f⋆(s) = sup
x∈Rn

⟨x, s⟩ − f(x),

where s is a vector of dual variables. Finally, for the (n − 1)-dimensional simplex
we write

△ =

{
q ∈ Rn

∣∣∣∣∣
n∑

i=1

q(i) = 1, q(i) ≥ 0, i = 1, . . . , n

}
.

2. Discrete choice model

We present the consumer behavior given by additive random utility models. The
additive decomposition of utility goes back to psychological experiments accom-
plished in the 1920’s [26]. A formal description of this framework has been first
introduced in economic context [20], where rational decision-makers choose from a
finite set of mutually exclusive alternatives I = {1, . . . , n}. Although the decision
rule follows a rational behavior, agents are prone to random errors. The latter
describe decision-affecting features which cannot be observable. Each alternative
i ∈ I provides the utility

v(i) + ϵ(i),

where v(i) ∈ R is the deterministic utility part of the i-th alternative and ϵ(i) is
its stochastic error. We use the following notation for the vectors of deterministic
utilities and of random utilities, respectively:

v =
(
v(1), . . . , v(n)

)T
, ϵ =

(
ϵ(1), . . . , ϵ(n)

)T
.

As already mentioned, the consumers behave rationally, meaning they maximize
utility. Hence, their corresponding surplus is given by the expected maximum utility

(2.1) E(v) = Eϵ

(
max
1≤i≤n

v(i) + ϵ(i)
)
.

Let us briefly give an interpretation of (2.1). Usually, one imagines a researcher who
is examining the choice. The consumer’s choice depends on many factors, some of
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them beeing observed by the researcher and some of them not. The utility that
the consumer obtains from choosing an alternative is decomposed into a part v,
that depends on variables that the researcher observes, and a part ε that depends
on variables that the researcher does not observe. In this paper, we follow the
rational inattention interpretation as advocated in [25]. According to the latter, the
consumer’s choice is intrinsically prone to errors, e. g. since the number of goods is
too large or they sometimes become tired of the goods’ comparison, see also [9].

Next, we review some important properties of the surplus function E. It is convex
and differentiable [2]. The well-known Williams-Daly-Zachary theorem states that
the gradient of E corresponds to the vector of choice probabilities [20], i. e. each
component gives the probability that alternative i provides the maximum utility
among all alternatives. To see this, let us denote the choice probabilities by

P(i) = P
(
v(i) + ϵ(i) = max

1≤i≤n
v(i) + ϵ(i)

)
.

Then, the expected maximum utility can be equivalently written as

E(v) =
n∑

i=1

P(i) · Eϵ

(
v(i) + ϵ(i)

)
.

From here we get in terms of partial derivatives of E:

(2.2)
∂E(v)

∂v(i)
= P(i).

The formula (2.2) holds if we assume that no ties will ever occur in (2.1). In this
case, the probability of two alternatives to simultaneously provide the maximum
utility becomes zero. The latter is, in particular, implied by a stronger assumption
widely used in the literature that the random vector ϵ follows a joint distribution
which is absolutely continuous with respect to the Lebesgue measure, see e. g. [2].

Let us specify the discrete choice demand in detail. For our model, we concentrate
on random utility errors which follow the nested logit distribution from [20] given
by the probability density function

(2.3) fϵ (z) = exp

−
L∑

ℓ=1

∑
i∈Nℓ

e−z(i)/µℓ

µℓ
 ,

where z =
(
z(1), . . . , z(n)

)T ∈ Rn. Here, every alternative i belongs to exactly one
nest Nℓ ⊂ {1, . . . , n} for ℓ = 1, . . . , L. Compared to the well-known multinomial
logit model with just one nest, the nested logit is more appropriate to model dif-
ferentiated products. Nested logit allows in particular the violation of the axiom of
irrelevance of independent alternatives, see e. g. [2]. The consumer surplus (2.1) is
then

(2.4) E(v) = ln

 L∑
l=1

∑
i∈Nℓ

ev
(i)/µℓ

µℓ
 .
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The corresponding choice probabilities of an alternative i ∈ Nℓ can be derived by
using (2.2), see also [9]:

P(i) =
ev(i)/µℓ

(∑
j∈Nℓ

ev
(j)/µℓ

)µℓ−1

∑L
k=1

(∑
j∈Nk

ev
(j)/µk

)µk
.

Note that the nested logit distribution fulfills the assumption on ties from above.
Equivalently, the choice probabilities can be written as

P(i) =
e
µℓ ln

∑
j∈Nℓ

e
v(j)/µℓ

L∑
k=1

e
µk ln

∑
j∈Nk

e
v(j)/µk

· ev
(i)/µℓ∑

j∈Nℓ

e
v(j)/µℓ

,

where the term

µℓ ln
∑
j∈Nℓ

e
v(j)/µℓ

can be interpreted as the inclusive value of the alternatives within the nest Nℓ.
We comment on the nest specific parameters µℓ, ℓ = 1, . . . , L. For the sake of

completeness the proof of the following Proposition 2.1 can be found in Appendix.

Proposition 2.1 (Nest parameters as correlations, [4]). The correlation of errors of
different alternatives within the same ℓ-th nest is 1−µ2

ℓ . The errors of alternatives
from different nests are uncorrelated.

Remark 2.2. For the analysis of nested logit the condition 0 < µℓ ≤ 1 for ℓ =
1, . . . , L is usually assumed. Proposition 2.1 is in accordance with this. Indeed,
the alternatives in the same nest are correlated, while the correlation between the
nests vanishes. The nested logit model only allows for nonnegative correlations,
i. e. 1 − µ2

ℓ ≥ 0, ℓ = 1, . . . , L. The latter is obviously equivalent to µℓ ≤ 1,
ℓ = 1, . . . , L. □

We are interested in strong smoothness of the surplus function E.

Definition 2.3 (Strong smoothness of E). The surplus function E : Rn → R is
B-strongly smooth with respect to the maximum norm ∥ · ∥∞ if for all v, v̄ ∈ Rn we
have:

∥∇E(v)−∇E(v̄)∥1 ≤ B||v − v̄||∞.

The smallest constant B ≥ 0 with this property is called the modulus of smoothness
of E.

In what follows, we use a conjugate duality relation between strong smoothness
of E and strong convexity of its conjugate E⋆. Let us recall the definition of a
strongly convex function.

Definition 2.4 (Strong convexity of E⋆). The convex conjugate E⋆ : △ → R of the
surplus function is β-strongly convex with respect to ∥ · ∥1 norm if for all q, q̄ ∈ △
and λ ∈ [0, 1] we have:

E⋆(λq + (1− λ)q̄) ≤ λE⋆(q) + (1− λ)E⋆(q̄)− β

2
λ(1− λ)||q − q̄||21.
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The biggest constant β > 0 with the above property is called the modulus of strong
convexity of E⋆.

The convex conjugate of E is explicitly given in [9]:

E⋆(q) =
L∑

ℓ=1

µℓ

∑
i∈Nℓ

q(i) ln q(i) +
L∑

ℓ=1

(1− µℓ)

∑
i∈Nℓ

q(i)

 ln

∑
i∈Nℓ

q(i)

 .

It has an interpretation of the generalized entropy.

Lemma 2.5 (Strong convexity of E⋆). The modulus of strong convexity of E⋆ with
respect to ∥ · ∥1 norm is β = min

1≤ℓ≤L
µℓ.

Proof. We begin by examining the first part of the formula for E⋆, which we denote
for simplicity by

f(q) =
L∑

ℓ=1

µℓ

∑
i∈Nℓ

q(i) ln q(i).

Basic calculus gives its Hessian with the entries

∇2
iif(q) =

µℓ

q(i)
for all i ∈ Nℓ, ∇2

ijf(q) = 0 for all j ̸= i.

Consequently, the Hessian ∇2f(q) is a diagonal matrix. The second order criterion
for strong convexity with respect to an arbitrary norm ∥ · ∥ is given in [23]:〈

∇2f(q)h, h
〉
≥ β∥h∥2 for all h ∈ Rn.

Applying this criterion in our case provides〈
∇2f(q)h, h

〉
=

L∑
ℓ=1

µℓ

∑
i∈Nℓ

(
h(i)
)2

q(i)
≥ β

n∑
i=1

(
h(i)
)2

q(i)

(⋆)

≥ β

(
n∑

i=1

|h(i)|

)2

= β∥h∥21.

The last inequality (⋆) holds due to

n∑
i=1

|h(i)| =
n∑

i=1

|h(i)|√
q(i)

√
q(i) ≤

√√√√ n∑
i=1

(h(i))2

q(i)

√√√√ n∑
i=1

q(i) =

√√√√ n∑
i=1

(h(i))2

q(i)
.

Taking squares on both sides of this inequality gives (⋆). Overall, f is β-strongly
convex. Next, we turn our attention to the second part of E⋆, denoting the latter
by

g(q) =
L∑

ℓ=1

(1− µℓ)

∑
i∈Nℓ

q(i)

 ln

∑
i∈Nℓ

q(i)

 .

Clearly, g is convex in q. It remains to recall that E⋆ – as the sum of a β-strongly
convex function f and the convex function g – is β-strongly convex. □

The next result follows immediately.
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Corollary 2.6 (Strong smoothness of E). The nested logit surplus function E is
strongly smooth with modulus B = 1

min
1≤ℓ≤L

µℓ
.

Proof. We apply [16, Theorem 6]. It states that E⋆ is β-strongly convex with respect
to the ∥ · ∥1 norm if and only if E is 1

β -strongly smooth with respect to the dual

maximum norm ∥ · ∥∞. In the view of Lemma 2.5, the convex conjugate of E is
min

1≤ℓ≤L
µℓ-strongly convex, hence, the assertion follows. □

Remark 2.7 (Generalized nested logit). The nested logit model belongs to a special
class of distributions of random errors called generalized nested logit models (GNL),
which were introduced in [28]. For these models the vector of random errors ϵ follows
the joint distribution

fϵ (z) =

∂n exp

(
−
∑L

ℓ=1

(∑n
i=1

(
σiℓ · e−z(i)

)1/µℓ
)µℓ/µ

)
∂z(1) · · · ∂z(n)

,

where z =
(
z(1), . . . , z(n)

)T ∈ Rn. Different nests ℓ = 1, . . . , L are endowed with pa-
rameters µℓ > 0 reflecting the variance while choosing alternatives within the nests.
The variance of the choice among the nests is described by µ > 0. Additionally,
µℓ ≤ µ is assumed for all ℓ = 1, . . . , L. Every alternative can belong to more than
one nest, hence, the parameters σiℓ > 0 give the share of i-th alternative to belong
to the ℓ-th nest. For any fixed i ∈ I it holds therefore:

L∑
ℓ=1

σiℓ = 1.

In the case of nested logit, there is a unique nest ℓi ∈ {1, . . . , L} where the i-
th alternative belongs to, i. e. σiℓi = 1. Thus, the nests are mutually exclusive.
Furthermore, we have µ = 1. Recently, estimations for the strong smoothness
parameter of GNL surplus functions have been derived in [21]:

M̂ =
2

min
1≤ℓ≤L

µℓ
− 1/µ.

For the nested logit, the estimator

M̂ =
2

min
1≤ℓ≤L

µℓ
− 1 <

2

min
1≤ℓ≤L

µℓ
= 2B

is at most twice bigger than the modulus from Corollary 2.6. We note that for other
GNL specifications the modulus of strong smoothness is not known yet. □

3. Pricing Problem

3.1. Demand. In order to face the dynamic pricing, we consider a population of
consumers whose demand follows the nested logit model. We divide the consumers
into J representative types and denote the number of consumers corresponding to
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the type j as Nj . Let p =
(
p(1), . . . , p(n)

)T ∈ Rn
+ denote the prices of products

1, . . . , n. The expected revenue of a consumer of type j is given by

Ej(p) = Eϵj

(
max
1≤i≤n

a
(i)
j − p(i) + ϵ

(i)
j

)
,

where a
(i)
j and ϵ

(i)
j are the observable and random utility attached to the i-th product

by a consumer of type j, respectively. In other words, the deterministic utility is

v
(i)
j = a

(i)
j − p(i).

We point out that utility is taken here as to be transferable. Given the price vector
p, the expected demand of the i-th alternative realized by a consumer of type j
equals to the choice probability

x
(i)
j (p) = P

(
a
(i)
j − p(i) + ϵ

(i)
j = max

1≤i≤n
a
(i)
j − p(i) + ϵ

(i)
j

)
.

Note that for the demand vector xj(p) =
(
x
(1)
j , . . . , x

(n)
j

)T
it holds xj(p) ∈ △.

This means that the overall normalized demand is divided between n alternatives
according to their choice probabilities. We refer to xj(p) as the expected demand
of a consumer of type j. For the latter it holds due to (2.2):

xj(p) = −∇Ej(p).

We assume that the vector of random utilities ϵj =
(
ϵ
(1)
j , . . . , ϵ

(n)
j

)T
follows the

nested logit model with nests Njℓ, and nest parameters 0 < µjℓ ≤ 1 for ℓ = 1, . . . , Lj .

3.2. Supply. Let us start in the general case with K suppliers. Each supplier offers
a vector yk ∈ Yk, where Yk ⊂ Rn is a closed and convex set reflecting the capacity
constraints, k = 1, . . . ,K. Each supplier has a natural supply level ŷk ∈ Rn and
faces additional quantity adjustment costs, so that the corresponding cost function
is

ck (yk) = ĉk (yk) + Γk · ∥yk − ŷk∥22,
where ĉk : Rn → R is convex, and Γk > 0. Note that ck : Rn → R is Γk-strongly
convex with respect to ∥ · ∥2.

Remark 3.1 (Quantity adjustment costs). We address the issue of quantity ad-
justment costs. The idea of price rigidity due to adjustment costs is well known in
economics, see e. g. [19] and [27]. As it is argued in [1], neglecting similar adjustment
costs for quantities would cause an asymmetry towards quantity flexibility. Further-
more [11] provides theoretical justification for modeling costly quantity adjustments.
Additionally, as [7] summarizes, there is no empirical evidence for neglecting these
costs. In our context, it seems natural to include some sort of adjustment costs
on the supply side. While suppliers may be able to react on an increase or de-
crease of demand, they will have to make short-term adjustments on their plans,
e. g. they might have to shut down some capacities or must acquire costly new
machines, which workers have to be trained for. By the properties of ∥ · ∥2-norm,
we penalize deviations from the natural production level in a symmetric way, i. e.
we assume adjustment costs due to higher demand to be as costly as costs due to a
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decrease in demand. Beyond that, we assume that suppliers are sensitive towards
big deviations. □

Due to the presence of a pricing agent, the suppliers are price takers. Hence,
given the prices p ∈ Rn

+ of products the k-th supplier maximizes the profit

(3.1) πk(p) = max
yk∈Yk

⟨p, yk⟩ − ck (yk) .

We denote the unique solution of (3.1) by yk(p). Due to the strong convexity of the
cost function ck, the profit π(p) is differentiable, and for the supply we have:

yk(p) = ∇π(p).

3.3. Market clearing. In this section, we present a dynamic pricing model which
is based on the observed discrete choice demand. Specifically, we derive equilibrium
prices assuming the additive random utility behavior of consumers. Our key idea is
to characterize a suitable vector of prices which clears the market. As the discrete
choice demand is stochastic, we refer to an equilibrium price, whenever it clears the
market on average. In other words, the equilibrium price matches total expected
demand and total supply.

Definition 3.2 (Equilibrium price). A vector p⋆ ∈ Rn is called equilibrium price,
if the market clears on average, i. e.

p⋆ ≥ 0,
K∑
k=1

yk(p
⋆)−

J∑
j=1

Nj · xj(p⋆) ≥ 0,

and 〈
p⋆,

K∑
k=1

yk(p
⋆)−

J∑
j=1

Nj · xj(p⋆)

〉
= 0.

In order to face the pricing problem, we present a way to characterize such equi-
librium prices. For that, we define the total expected revenue function, which is
inspired by the total excessive revenue function in [24]. The key ingredient is to
sum up all the revenues of the market participants, i. e. consumers and suppliers,
who naturally have different preferences concerning the prices.

Definition 3.3 (Total expected revenue). The total expected revenue function of
the market with discrete choice demand is

(3.2) TER(p) =
K∑
k=1

πk (p) +
J∑

j=1

NjEj(p).

The pricing agent has to outbalance contrary price interests of consumers and
suppliers, in order to provide an efficient marketplace and secure participants’ loy-
alty. Note that the function TER is convex and differentiable.

In what follows, we show how the pricing agent can take advantage of the total
expected revenue function, in order to maximize the participants’ welfare. For that,
let us characterize equilibrium prices by making an additional assumption.
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Assumption 3.4 (Productivity condition). There exist vectors ȳk ∈ Yk, k =
1, . . . ,K, and q̄j ∈ △, j = 1, . . . , J , such that the total supply strictly exceeds
the total expected demand:

K∑
k=1

ȳk >

J∑
j=1

Nj q̄j .

The productivity condition has an economic justification, namely there must be
at least one scenario where a demand can be satisfied by the suppliers. Otherwise,
consumers would presumably leave the market, as their demand cannot be matched.
Hence, Assumption 3.4 is reasonable and not very restrictive.

Lemma 3.5. The total expected revenue function TER has bounded sublevel sets.

Proof. From convex duality, we have

Ej(p) = E
(
max
1≤i≤n

a
(i)
j − p(i) + ϵ

(i)
j

)
= max

qj∈△
⟨qj , aj − p⟩ − E⋆(qj).

Then for the total revenue function holds:

TER(p) =
∑K

k=1 πk(p) +
∑J

j=1NjEj(p)

=
∑K

k=1 max
yk∈Yk

⟨p, yk⟩ − ck (yk) +
∑J

j=1Njmax
qj∈△

⟨qj , aj − p⟩ − E⋆(qj)

≥
∑K

k=1 ⟨p, ȳk⟩ − ck(ȳk) +
∑J

j=1Nj (⟨q̄j , aj − p⟩ − E⋆(q̄j))

=
〈
p,
∑K

k=1 ȳk −
∑J

j=1Nj q̄j

〉
+

J∑
j=1

Nj (⟨q̄j , aj⟩ − E⋆(q̄j))−
K∑
k=1

ck(ȳk)︸ ︷︷ ︸
=C

.

=
〈
p,
∑K

k=1 ȳk −
∑J

j=1Nj q̄j

〉
+ C.

Due to Assumption 3.4, there exists t ∈ R++ such that it holds:〈
p,

K∑
k=1

ȳk −
J∑

j=1

Nj q̄j

〉
≥ ⟨t · en, p⟩ .

Hence, we get for p ∈ Rn
+:

TER(p) ≥ t||p||1 + C.

The latter provides that the sublevel sets of TER are bounded. □
We now characterize the equilibrium prices.

Theorem 3.6 (Equilibrium prices and minimizers of TER). The minimization
problem

(3.3) min
p∈Rn

+

TER(p)

is solvable, and its solutions are exactly the equilibrium prices.
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Proof. Because of the convexity of TER and Lemma 3.5, the existence of its mini-
mizers p⋆ ∈ Rn

+ is guaranteed. The optimality condition for (3.3) reads:

⟨∇TER (p⋆) , p− p⋆⟩ ≥ 0 for all p ∈ Rn
+.

This is equivalent to

p⋆ ≥ 0, ∇TER (p⋆) ≥ 0, ⟨p⋆,∇TER (p⋆)⟩ = 0.

By substituting the gradient

(3.4) ∇TER (p⋆) =

K∑
k=1

yk(p
⋆)−

J∑
j=1

Njxj(p
⋆),

the latter coincides with the market clearing condition for equilibrium prices. □

Theorem 3.6 gives a guidance for the pricing agent. By minimizing TER, he
clears the market on average and, therefore, avoids deadweight loss.

We derive the modulus of strong smoothness of TER.

Theorem 3.7 (Strong smoothness of TER). The total expected revenue function

TER is
(∑J

j=1
Nj

βj
+
∑K

k=1
1
Γk

)
-strongly smooth with respect to ∥ · ∥2, where

βj = min
1≤ℓ≤Lj

µjℓ.

Proof. Recall that

TER(p) =
K∑
k=1

πk (p) +
J∑

j=1

NjEj(p).

The nested logit surplus term Ej is 1
βj
-strongly smooth with respect to ∥ · ∥∞ for

j = 1, . . . , J , due to Corollary 2.6. Hence it is also at least 1
βj
-strongly smooth with

respect to ∥ · ∥2. The triangle inequality leads to the
∑J

j=1
Nj

βj
-strongly smoothness

for the consumers term. Consider the k-th suppliers total costs

ck (yk) = ĉk (yk) + Γk · ∥yk − ŷk∥2,

which is at least Γk-strongly convex with respect to ∥ · ∥2. Strong smoothness of the
supply term follows then by similar argumentation, which concludes the proof. □

4. Dynamics

In this chapter, we describe the strategy of a pricing agent, who aims to find
equilibrium prices, in order to clear the market. While the TER-function itself must
not be known to the pricing agent, the latter can take advantage of the gradient
derived in (3.4). We make an assumption regarding the available information.

Assumption 4.1. At each period, the pricing agent can observe demand and supply
at the market. Furthermore, at least one price p0 fulfilling Assumption 3.4 is known.

In what follows, we justify Assumption 4.1 by giving some examples of the pricing
agent.
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• Online marketplaces and intermediaries. Some of these marketplaces
offer smart price options, which result in a pricing problem (3.3). The agent
receives differentiated alternatives from the suppliers of the platform and
the demand from consumers. By choosing such an option, the suppliers
automatically become price takers. The goal of the pricing agent is to make
the website as popular as possible, because nowadays operating a popular
website is a valuable asset by itself. Therefore, the pricing agent shall out-
balance demand and supply, in order to satisfy the participants. Otherwise,
the market would become inefficient, as some of the possibly leaving par-
ticipants could have been matched by proper pricing. The setting of an
online shop can be regarded as a special case of a marketplace with only
one supplier offering goods. Price taking behavior can then be explained via
different company departments, e. g. the online marketing department oper-
ates the online store. Another popular trend of the e-commerce is so-called
flash sales. They are widespread at websites offering discount specials and
at traveling booking portals. The main point is to offer some fixed amounts
of differentiated products, e. g. exclusive holidays, for limited time. Often
the agents offering such a flash sale have the products already bought, hence
the problem in Definition 3.2 varies to the task of pricing product such that
a fixed amount will be sold to an optimal price.

• Financial intermediaries. A similar scenario arises for the work of finan-
cial intermediaries such as brokers. There are potential sellers and buyers of
assets, who are willing to make trades. The intermediary works as a market
maker and, therefore, has to match supply and demand. Often the broker is
paid per trade. Thus, it seems again to be a natural motivation for the bro-
ker to enable avoid unmatched demand and supply, i. e. to clear the market
on average. In the last years, there has been rising popularity of P2P lending
marketplaces. On these online platforms, borrowers and lenders are directly
brought together. Hence, the P2P platform acts as a kind of intermediary
and at the same time an online marketplace, where offering a pricing option
is possible.

Under Assumption 4.1 we can define an intuitive update rule for the prices.

Pricing Scheme 4.2. For t = 0, 1, 2, . . . update

pt+1 =

pt − h ·

 K∑
k=1

yk(pt)−
J∑

j=1

Nj · x(pt)


+

,

where the stepsize is

h ≤ 1(∑J
j=1

Nj

βj
+
∑K

k=1
1
Γk

) .
Pricing Scheme 4.2 follows an economically reasonable idea. The agent chooses
the new price of each alternative according to the difference between supply and
demand. If supply of an alternative in the last period exceeded its demand, then its
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new price will be lower than before, and vice versa. As prices have to be nonnegative,
the price vector is projected on the nonnegative orthant. The convergence analysis
of pricing scheme 4.2 follows from the analysis of the proximal gradient methods see
e. g. [3]. In fact, Pricing Scheme 4.2 coincides with the proximal gradient method
with constant stepsize for the problem (3.3). For that, we recall that the function
TER is convex. Clearly, the inverse of the strong smoothness parameter of TER is
chosen as the largest possible stepsize. The prox-operator for the indicator function
of the nonnegative orthant is simply the projection onto Rn

+. The derivation of the
gradient of the TER-function in (3.4) concludes the assertion. Therefore, the rate
of convergence follows from the analysis of the proximal gradient method.

Theorem 4.3. [e. g. [3]] Let Pricing Scheme 4.2 be applied. Then, the sequence
(pt)t≥0 converges to an equilibrium price p⋆. Moreover it holds for t ≥ 0:

TER (pt)− TER(p⋆) ≤ ∥p0 − p⋆∥22
2th

.

In other words, by applying this strategy, the market is cleared with an O(1/t)
rate of convergence. Although the result of Theorem 4.3 is not surprising from a
mathematical point of view, it seems to be unexpected from an economical view.
Recently, the study of convergence rates towards market equilibrium has been un-
dertaken. In [24], the convergence rate of order O(1/

√
t) is shown for a decentralized

market with rational participants. As explained in Section 3, consumers follow a
rational behavior in our model, but they are prone to errors. Additionally, we as-
sumed quantity adjustment costs for the supply side. Though at first glance those
conditions may seem counterproductive for an efficient market, Theorem 4.3 states
that the pricing agent can find an equilibrium price faster than without both re-
strictions on participants behavior. To clarify the economic idea of the smoothing,
we discuss the case of

h =
1(∑J

j=1
Nj

βj
+
∑K

k=1
1
Γk

) .
The upper bound in Theorem 4.3 then becomes

(4.1) TER (pt)− TER(p⋆) ≤

(∑J
j=1

Nj

βj
+
∑K

k=1
1
Γk

)
· ∥p0 − p⋆∥22

2t
.

Concerning supply side, this acceleration is reasonable because the quantity rigid-
ity additionally hurts the suppliers. Hence, suppliers prefer a stable market, in order
to adjust their long term natural supply level. This is also in accord with the upper
bound for the precision of TER in Equation (4.1). A bigger parameter Γk of k-th
supplier’s adjustment cost term will cause a smaller upper bound for the precision
of TER. We have already mentioned the duality between discrete choice and ratio-
nal inattention models. Namely, consumers choosing according to a discrete choice
model, can also be seen as facing information processing costs [9]. Compared to a
situation without information processing costs, consumers prefer to have a market
with nonvolatile prices, which means lesser information to process. Again, the be-
havior is reflected in the upper bound in Equation (4.1). The smoothness parameter
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of consumers of type j is

βj = min
1≤ℓ≤L

µjℓ

from Theorem 3.7. The parameters µjℓ’s depend on how similar the alternatives
within the nests are, see Proposition 2.1. Since the alternatives in the nest with the
smallest correlation 1−µ2

jℓ ≈ 0 are very different, i. e. βj is close to one, consumers
of type j have to pay relatively high information processing costs in this case. Note
that then even the alternatives within one nest can provide very different utilities.
In extreme case µjℓ = 1 and, therefore, each alternative has to be thoroughly
taken into account. On the other hand, βj close to zero indicates that once one of
the nests is chosen, the consumer will be very indifferent between the alternatives
within. Thus, information processing costs decrease. Due to Proposition 2.1, high
correlation of purchase alternatives within the nests corresponds to small µjℓ’s, and
hence, to small βj . Consequently, in pricing schemes we perform short steps, since
just relatively small step-sizes h can be taken to guarantee the derived convergence
rates. Intuitively speaking, the imperfect behaviour of consumers helps to facilitate
pricing with respect to the convergence rate. Previous discussion shows that the
pricing agent is able to exploit the imperfect behavior of market participants. They
will not vary their decisions as much as without quantity adjustment costs and
information processing costs. Hence, the pricing agent gains worth information out
of every new price set, which leads to faster convergence towards equilibrium prices.

As the nonnegative orthant is a closed and convex subset of Rn and the function
TER is strongly smooth and convex, the pricing agent is able to improve the rate
of convergence for clearing the market. The acceleration of first order methods
was first introduced in [22]. We suggest the following pricing scheme, which is an
application of the fast proximal gradient method presented in [3].

Pricing Scheme 4.4. By setting q0 = p0, γ0 = 1, for t = 0, 1, 2, . . .:

1) Update

pt+1 =

pt − h ·

 K∑
k=1

yk (qt)−
J∑

j=1

Nj · x (qt)


+

,

where the stepsize is

h ≤ 1(∑J
j=1

Nj

βj
+
∑K

k=1
1
Γk

) ;
2) Set γt+1 =

1+
√

1+4γ2
t

2 ;

3) Compute qt+1 = pt+1 +
(
γt−1
γt+1

)
(pt+1 − pt).

As mentioned above, Pricing Scheme 4.4 is an application of the fast proximal
gradient method, for which the O(1/t2) rate of convergence has been shown, see e. g.
[3]). Without further conditions for the function TER, this rate is unimprovable,
because the lower bound for first order methods is matched [23].
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Finally, we discuss the selection of stepsize parameter h. Pricing schemes 4.2 and
4.4 suggest a constant stepsize, which is less or equal the inverse of the smoothness
parameter of TER. In practice, however, the exact estimation of the parameters
βj for j = 1, . . . , J as well as Γk for k = 1, . . . ,K might be a difficult statistical
problem. Recall that we have:

βj = min
1≤ℓ≤L

µjℓ,

and, due to the closed form of choice probabilities, the nested logit parameters µjℓ

can be estimated via maximum likelihood [6]. Yet, the exact implementation has
to be done carefully, see e. g. [14] and [15] for a detailed discussion. Estimation of
suppliers’ adjustment cost parameters Γk is a matter of current research. Better
estimation of µjℓ for ℓ = 1, . . . , Lj and j = 1, . . . , J as well as Γk for k = 1, . . . ,K
leads to a tighter upper bound for the price adjustments.

5. Conclusion

We conclude that imperfect behaviour of consumers and producers facilitates to
iteratively outbalance demand and supply. From the technical point of view, it is
based on the property of strong smoothness of the expected maximum utility – on
the consumers’ side. Such smoothness stems from the strong convexity of the corre-
sponding conjugate function. As we have shown, this property holds, in particular,
for nested logit. It appears that any error distribution for which the conjugate of
the surplus function is strongly convex will do as well. To estimate the modulus
of smoothness for the surplus function with respect to given general randomness
is a matter of current research. Another issue, worth to be mention, concerns the
Walrasian auctioneer who updates prices. Previously in [24], we introduced dif-
ferent techniques for price decentralization, such as trade and auction. According
to the latter, either producers suggest prices and consumers choose the lowest, or
consumers suggest prices and producers choose the highest. Both strategies suc-
cessively lead to equilibrium prices. Unfortunately, these price designs introduce
nonsmoothness into the total revenue, so that the acceleration in convergence rate
up to one order gets lost. We plan to address this obstacle in the next paper.

Appendix

For the sake of completeness, we give a proof of Proposition 2.1.

Proof. The choice probability of any i ∈ Nℓ can be written as a product of two logit
choice probabilities

(5.1) P(i) = P(i|Nℓ) · P(Nℓ).

The first term in (5.1) denotes the probability to choose alternative i conditional
on nest Nℓ has been chosen. This can be regarded as a second stage decision. The
remaining term P(Nℓ) gives the probability to choose nest Nℓ among all nests, hence
the first stage decision. Equation (5.1) implies independence of the two logits. Hence

there must be random variables ϵ
(i)
Nℓ
, i ∈ Nℓ, ℓ = 1, . . . , L and ϵ(Nℓ), ℓ = 1, . . . , L,

such that the overall utility of every alternative i ∈ Nℓ can be written as
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(5.2) v(i) = v(i) + ϵ
(i)
Nℓ

+ v(Nℓ) + ϵ(Nℓ).

Due to (5.1), the alternative specific error terms ϵ
(i)
Nℓ

are independent on the nest

error terms ϵ(Nℓ). Obviously, the second stage decision only depends on the alter-

native specific terms, consequently the ϵ
(i)
Nℓ
’s are iid Gumbel distributed with scale

parameters µℓ, ℓ = 1, . . . , L. Since the first stage decision takes a logit form, the
nest specific error terms have to follow a distribution such that the random variable

max
i∈Nℓ

v(i)+ ϵ
(i)
Nℓ

+ ϵ(Nℓ) is Gumbel with the scale parameter one. Independence of the

error terms ϵ
(i)
Nℓ

+ ϵ(Nℓ) gives

V ar(ϵ
(i)
Nℓ

+ ϵ(Nℓ)) = V ar(ϵ
(i)
Nℓ
) + V ar(ϵNℓ).

Together with

V ar(ϵ
(i)
Nℓ

+ ϵ(Nℓ)) =
π2

6
,

it follows that

V ar(ϵNℓ) =
π2

6
−

µ2
ℓ · π2

6
.

Simple calculation gives for i, j ∈ Nℓ :

Cov(v(i), v(j)) = Cov(ϵ(Nℓ), ϵ(Nℓ)) = V ar(ϵ(Nℓ)) =
π2

6
· (1− µ2

ℓ ).

Due to V ar(v(i)) = V ar(ϵ
(i)
Nℓ
) + V ar(ϵNℓ), the proposition holds. □
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